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Abstract

The natural frequencies and mode shapes of the flapwise and chordwise vi-
brations of a rotating cracked Euler-Bernoulli beam are investigated using a
simplified method. This approach is based on obtaining the lateral deflection
of the cracked rotating beam by subtracting the potential energy of a rotating
massless spring, which represents the crack, from the total potential energy
of the intact rotating beam. With this new method, it is assumed that the
admissible function which satisfies the geometric boundary conditions of an
intact beam is valid even in the presence of a crack. Furthermore, the cen-
trifugal stiffness due to rotation is considered as an additional stiffness, which
is obtained from the rotational speed and the geometry of the beam. Finally,
the Rayleigh-Ritz method is utilised to solve the eigenvalue problem. The
validity of the results is confirmed at different rotational speeds, crack depth
and location by comparison with solid and beam finite element model sim-
ulations. Furthermore, the mode shapes are compared with those obtained
from finite element models using a Modal Assurance Criterion (MAC).
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Nomenclature

a Crack depth

b Beam width

d The displacement vector for flapwise motion

f The transverse lateral distributed force

h Beam height

n The number of admissible functions

r Hub radius

t Time

w The transverse displacement

x Position along the beam in X diration

d̄ An arbitrary vector with the same dimensions of d

A Cross sectional area

C Flexibility constant

E Young’s modulus of elasticity

F A correction factor

I The second moment of area

KE Kinetic energy

Kc The stress intensity factor (SIF)

L Beam length

Mb Bending moment

N The admissible functions

O Centre of rotation
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P The longitudinal (axial) force

PE Strain energy

T The tensile force

X, Y, Z Coordinate system fixed on the beam

Yw A shape function of static deformation of a cantelever beam subjected
to lateral load on the free-end

G The gyroscopic matrix

K The stiffness matrix

M The mass matrix

S The rotational motion-induced stiffness matrices

α The Ritz coefficients

µ The longitudinal deflection

ω Frequency

φ The rotational deflection

ρ Mass density

σ Stress

Θ Slope

$ An arbitrary weight function

ξ Crack depth ratio

Ω Rotational speed (rpm)

Π The elastic energy available per unit increase in the crack surface area

w,v ,s Subscript representing flapwise, chordwise and stretch
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1. Introduction

Vibration analysis of rotating beams is an important requirement in power
generation or aviation, due to the substantial role in various applications such
as gas turbine blades, wind turbines and helicopter propellers. Fractures are
the most common faults in these structures, which contribute to increased
vibration, ultimately causing complete failure of the structures. Research
has been carried out concerning the vibrational behaviour of a cracked ro-
tating blade, including crack identification and detection methods so that
subsequent damage could be prevented.

Numerous studies have investigated the effect of the rotational speed on
the natural vibration of cantilever beams. These studies concluded that the
natural frequencies of flexural vibration tended to increase above those for
the non-rotating beams, because of the centrifugal force and the subsequent
stiffening effects [1]. The free vibration analysis of rotating beams have
been widely studied using different numerical approximation methods, such
as, the Rayleigh or Rayleigh-Ritz methods [1, 2, 3, 4, 5], the finite element
method [6, 7, 8, 9, 10], the differential transform method [11] and Galerkin’s
method [12]. Moreover, AL-Said et al [13, 14] analysed the free vibration
of a Timoshenko beam modelled by a massless torsional spring, to simulate
the flapwise vibration of a thick rotating beam. The admissible functions
assumed were for the non rotating cracked beam either side of the crack. The
various methods give clear evidence of the efforts made in finding a simple
model that reproduces the rotational effect on rotating beams. However,
the analysis and publications covering rotating cracked beams are relatively
scarce in the literature [15, 16].

Furthermore, there is significant amount of research that has investigated
crack modelling and its effects on non-rotating beams [17, 18, 19, 20, 21,
22, 23, 24]. Fernandez-Saez et al. used the Rayleigh method to estimate
the fundamental frequency for bending vibration of a non-rotating cracked
beam. A cracked rectangular and circular cross section beam were modelled
using the finite element method [17]. In addition to a single crack, a multi
cracked beam was modelled by Mazanoglu et al [18, 19] using the Rayleigh-
Ritz method for a cracked non-uniform beam.

The objective of this paper is to develop a simplified method to model a
cracked rotating cantilever beam. This approach is achieved by selecting the
simplest admissible function of an un-cracked and non-rotating uniform can-
tilever beam. Then, the effect of beam rotation and flexibility of the cracked
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edge will be considered in obtaining the potential energy of the structure.
Initially, the un-cracked rotating beam is modelled using a simple contin-

uous beam. The equilibrium of forces and application of Hamilton’s principle
is then used to find the governing differential equations [8]. Subsequently, a
crack is introduced using fracture mechanics as presented by Dimarogonas
[25]. Then, a Rayleigh Ritz method is used to obtain the numerical results
for a rotating cracked beam. Finally, a parametric study is carried out for
a cracked rotating beam using parameters such as the rotational speed, the
crack depth and its location. In addition, the mode shapes are obtained and
compared with the numerical results from finite element models using the
Modal Assurance Criterion (MAC). From the modes identified, the veering
in the dispersion curve for the natural frequencies versus rotational speed
can be both inspected and interpreted.

2. Theoretical modelling of a rotating cracked beam

A rotating beam is considered as a homogeneous, Euler-Bernoulli uni-
form and isotropic cantilever beam of length L, with cross sectional area A,
Young’s modulus of elasticity E and mass density ρ. It is attached to a
rigid hub with radius r about an axis through point O as shown in Figure 1.
The cantilever beam and the rigid hub are rotating about the vertical axis Z
with angular velocity Ω. The cantilever beam’s length is along the X axis.
The flapwise vibration occurs in the XZ plane, perpendicular to the plane
of rotation. This coordinate system (X, Y, Z) rotates with the hub.

 

 

Figure 1: Configuration of rotating beam with length L in the XY Z coordinate system
subject to an axial centrifugal force P and transverse deflection w
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According to many researchers [12, 26, 16], the equation of motion for
the lateral vibration of a uniform thin homogeneous beam subjected to an
axial force can be written as;

ρA
∂2w

∂t2
+

∂2

∂x2

(
EI

∂2w

∂x2

)
− ∂

∂x

(
P
∂w

∂x

)
= f(x, t) (1)

where I, w, P and f represent the second moment of area, transverse dis-
placement, longitudinal (axial) force and transverse lateral distributed force
respectively. For a rotating beam, the axial force P is equal to the centrifugal
force as shown in Figure 1 and can be obtained as a function of the position
x along the beam from the hub outer radius, where,

P (x) =

∫ L

x

ρAΩ2(x+ r)dx = ρAΩ2{r(L− x) +
1

2
(L2 − x2)} (2)

The equation of motion for the transverse vibration of the rotating beam can
then be obtained by substituting equation (2) into equation (1);

ρA
∂2w

∂t2
+
∂2

∂x2

(
EI

∂2w

∂x2

)
−ρAΩ2 ∂

∂x

{
[r(L− x) +

1

2
(L2 − x2)]∂w

∂x

}
= 0 (3)

For the free vibration of the rotating beam when f(x, t) = 0, a harmonic
solution for the displacement with the frequency ω and amplitude W of the
separable following form is assumed.

w(x, t) = W (x) cos(ωt) (4)

Substituting the solution, 4, into 3 yields,

−ρAWω2 +
d2

dx2

(
EI

d2W

dx2

)
− ρAΩ2 d

dx

{
[r(L− x) +

1

2
(L2 − x2)]dW

dx

}
= 0

(5)
The boundary conditions are assumed to be as follows for a cantilever beam;

W (x) =
dW (x)

dx
= 0 , x = 0

EI
d2W (x)

dx2
= EI

d3W (x)

dx3
= 0 , x = L (6)

The exact solution of equation (5) is difficult to obtain analytically due to
the inclusion of the centrifugal force and the term d

dx
(x2 dW

dx
). Nevertheless,
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an approximate method using a numerical method such as the finite element
method or Rayleigh-Ritz method can be used to solve this equation. The
strong form for the solution is not sought, instead an equivalent weak form is
expressible by multiplication of arbitrary weight function $ and integration
over the domain, which is the length of the beam L.

∫ L

0

$

(
ρA

∂2w

∂t2
+

∂2

∂x2

(
EI

∂2w

∂x2

)
−ρAΩ2 ∂

∂x

{
[r(L− x) +

1

2
(L2 − x2)]∂w

∂x

}
− f

)
dx = 0 (7)

The weighting and displacements functions are now approximated by the
shape functions as

$ = (d̄)TNT
w ;w = Nwd (8)

where d and d̄ are the displacement vector for flapwise displacements and
an arbitrary vector with the same dimensions. N represents the admissible
functions and the subscript letter w refers to the the flapwise direction. The
admissible function Nw is assumed as a vector summation of n static defor-
mation shapes of a non-rotating uncracked cantilever beam that is subjected
to a concentrated load on the free end.

Nw(x) =
n∑
i=1

αi Ywi(x) (9)

Ywn(x) =
(x
L

)(n−1)
(
−Lx2

2
+
x3

6

)
(10)

where αi represents the constant Ritz coefficients satisfying the boundary
conditions and n is the number of shape functions used.

Introducing the approximate solutions given by equation 8 and substi-
tuting into the weak equations given by equation 7, the equations of motion
can also be written in a matrix form, yielding the discretised equations for
the flapwise motion as

(d̄w)T [Mwd̈w + (Kw + Ω2Sw)dw] = (d̄w)T fw (11)

where Mw, Kw and Sw are the mass, stiffness and motion-induced stiffness
matrices for the flapwise motion. fw is the load vector for the flapwise motion.
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The subscript letters w denote the flapwise direction and the matrix terms
are

Mw = ρA

∫ L

0

NwN
T
wdx, (12)

Kw = EIy

∫ L

0

d2Nw

dx2
d2NT

w

dx2
dx, (13)

Sw = ρA

∫ L

0

[
r(L− x) +

1

2
(L2 − x2)

]
dNw

dx

dNT
w

dx
dx, (14)

fw = pw

∫ L

0

Nwdx, (15)

According to Chung and Yoo [8], the chordwise vibration is coupled with
longitudinal or extensional vibration due to a gyroscopic effect and they are
both uncoupled with the flapwise vibration. Furthermore, the chordwise
vibration can be written as [8],

(dsv)
T{Msvd̈sv + 2ΩGsvḋsv + [Ksv + Ω2(Ssv −Msv) + Ω̇Gsv]dsv} = (dsv)

T fsv
(16)

where subscript letters s and v represent stretch and chordwise directions
respectively. Msv, Ksv, Gsv, Ssv and fsv are the corresponding mass, stiffness,
gyroscopic, rotational stiffness and external force matrices.

Msv = ρA

∫ L

0

(NsN
T
s +NvN

T
v )dx, (17)

Gsv = ρA

∫ L

0

(NvN
T
s +NsN

T
v )dx, (18)

Ksv =

∫ L

0

(
EA

dNs

dx

dNT
s

dx
+ EIz

d2Nv

dx2
d2NT

v

dx2

)
dx, (19)

Ssv = ρA

∫ L

0

[
r(L− x) +

1

2
(L2 − x2)

]
dNv

dx

dNT
v

dx
dx, (20)

fsv =

∫ L

0

{ρAΩ2(r + x)Ns + [pv − ρAΩ̇(r + x)]Nv}dx, (21)

where the static deflection function for the chordwise bending and longitu-
dinal vibration can be expressed as
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Yvn(x) =
(x
L

)n−1
(
−Lx2

2
+
x3

6

)
(22)

Ysn(x) =
(x
L

)n−1 (x
L

)
(23)

Regarding fracture mechanics theory, an open crack in a structure can be
considered as a source of additional local flexibility because of the increase
in the strain energy in the area surrounding the crack tip. The idea of sub-
stituting massless springs instead of a crack is to create the relation between
the strain energy and the applied loads as shown in Figure (2).

 

Figure 2: Modelling the crack using a massless torsional spring. The potential energy of
the rotational massless spring is subtracted from the total potential energy of the intact
beam

The typical method of modelling a cracked beam is based on dividing
the beam into two segments and building a relationship between two sides
using the compatibility conditions. The vertical displacement, bending mo-
ment and shear force are equal through the cracked edge. Nevertheless, the
presence of the crack introduces a discontinuity or change in the slope of
the beam, which is proportional to the bending moment that is transmitted
through the cracked section. For the axial vibration, it is assumed that the
tensile force is the same through the cracked segments. However, the axial
displacement is proportional to the transmitted force through the crack, and
it is proportional to the tensile force. The bending and axial discontinuity
can be expressed as presented in [21] and [22].

∆Θ = Cv,wMb (24)

∆s = CsT (25)
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where ∆Θ, C, Mb represent slope discontinuity, axial flexibility constant and
the bending moment transmitted through the crack section. ∆s and T rep-
resent the discontinuity of axial displacement and tensile force respectively.
The flexibility constant is dependent on the geometrical dimension of the
cross section and can be derived from the stress intensity factor Kc (SIF).

Kc = σ
√
πaF

(a
h

)
(26)

here σ, a, h and F are the stress according to the bending moment or tensile
force, crack depth, beam height and correction factor respectively. F depends
on the crack’s mode and force configurations. The stress σ and the correction
factor F for the bending moment and opening mode can be obtained from
[17, 27]

σMb
=

6Mb

bh2
(27)

FIMb
=

√
2

πξ
tan

πξ

2

0.923 + 0.199
[
1− sin

(
πξ
2

)]4√
cos
(
πξ
2

) (28)

where b represents the beam width and the crack depth to thickness ratio
ξ = (a/h), while for the tensile and opening mode, are

σT =
T

bh
(29)

FIT =

√
2

πξ
tan

πξ

2

0.752 + 2.02ξ + 0.37
[
1− sin

(
πξ
2

)]3√
cos
(
πξ
2

) (30)

These error functions are reported in [28] are accurate better than 0.5% for
any crack depth ratio ξ. The total strain energy of the elastic deformation
of the crack is given by,

PEtotal =

∫
Ac

Π dAc (31)

where Π is the elastic energy available per unit increase in the crack surface
area.

Π =
K2
c

E
(32)
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Substituting equations 26-32 into equation 31, yields

PEMb
=

(
3πM2h

EI

)∫ a

0

( a
h2

)
F 2
IMb

da (33)

PET =
πP 2h

EA

∫ a

0

( a
h2

)
F 2
IT da (34)

where PEMb
is the strain energy due to the bending and PET is the tensile

strain energy due to tension. Utilizing Castigliano’s theorem [23], the rota-
tion φ and stretch µ corresponding to the applied moment and longitudinal
force can be expressed as,

φ =
∂PEMb

∂Mb

(35)

µ =
∂PET
∂T

(36)

Finally, the additional flexibility in flapwise Cw, chordwise Cv and stretch
Cs directions due to the presence of the crack can be expressed as

Cv = Cw =
φ

M
(37)

Cs =
µ

T
(38)

3. Application of the Rayleigh-Ritz method

According to this approach, an admissible function of the non-rotating
intact beam satisfies the boundary conditions and it is used directly without
any modification. The potential energy of the system is modified to include
the effect of the extra flexibility due to the existence of the crack.

The potential energy of the non rotating intact beam can be expressed
as,

PEMb−intact−nonrotate =
EI

2

∫ L

0

d2Nv,w

dx2
d2NT

v,w

dx2
dx (39)

PET−intact−nonrotate =
EA

2

∫ L

0

NsN
T
s dx (40)
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The additional potential energy due to the centrifugal effect on the intact
beam can be written as,

PEcentrifugal =
1

2
Ω2ρA

∫ L

0

(r(L− x) +
1

2
(L2 − x2)dNv,w

dx

dNT
v,w

dx
dx (41)

Finally, the presence of additional flexibility due to the crack can be
represented by a massless rotational spring and the corresponding potential
energy in the spring has two components, which can be expressed as [24],

PEMb−crack =
1

2
(∆Θ)Mb =

1

2
EICv,w

(
d2Nv,w

dx2
d2NT

v,w

dx2

)
(42)

PET−crack =
1

2
(∆s)T =

1

2
EACs(NsN

T
s ) (43)

The kinetic energy of the system KE is equal to the kinetic energy of the
beam itself, i.e.

KEflapwise =
1

2
ρA

∫ L

0

NwN
T
wdx (44)

KEchordwise =
1

2
ρA

∫ L

0

(NsN
T
s +NvN

T
v )dx (45)

The Rayleigh-Ritz method can now be employed after determining the
kinetic and potential energies of the system.

When applying the mode shapes of the uncracked beam as the admissible
functions for the Rayleigh-Ritz approximation, the maximum strain energy
needs to be altered to account for the reduction of the energy as a result
of the presence of the crack. This energy reduction is proportional to the
amount of additional flexibility due to the rotational spring. As a result, the
total potential energy of the cracked rotating beam is equal to the summation
of the potential energy of the uncracked beam and the additional potential
energy due to the centrifugal force with subtraction of the potential energy
of the massless rotating spring representing the crack.

PEtotal = PEintact−nonrotate + PEcentrifugal − PEcrack (46)

Substituting equations 39-40, 41 and 42-43 into equation 46 provides the
total strain energy of the system for the flapwise vibration and the equations
44-45 gives the kinetic energy. These two energies were used to calculate the
flapwise and chordwise natural frequency of the rotating cracked cantilever
beam.
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4. Results and discussions

The numerical results for the newly developed simple model are compared
with a model built using one dimensional beam finite elements. Each element
has two nodes and each node has two degrees of freedom in the case of the
flapwise model, which are lateral displacement and slope. The elements are
chosen to have three degrees of freedom in the case of the chordwise model,
which are lateral displacement, slope and longitudinal displacement [29]. The
results are also compared with a solid 3D element model assembled and solved
using ANSYS. The solid model was built using a mesh of hexahedral beam
elements and with a fine sized mesh around the crack tip as shown in Figure
3. The frequency ratio for the natural frequencies of the rotating cracked
beam for different fixed rotational speeds against the fundamental frequency
of the uncracked beam are shown in Figure 4. The natural frequencies all
increase as the rotational speed increases. The estimated values using the
Rayleigh-Ritz method show good agreement with the values from the one
dimensional FE model with a maximum error less than 0.5% in the third
mode.

 

 

Rotating 

centre  

Crack location 

Free end  

Figure 3: Rotating cracked cantilever beam model using 3D hexahedral FE elements in
ANSYS.

Figure 5 shows the effect of the crack location on the natural frequencies
of the rotating beam. The closer the crack is to the hub supporting the can-
tilever beam, the greater the reduction in the natural frequencies. Moreover,
when the crack is located at a modal node, its effect becomes less evident,
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Flapwise vibration, frequency versus rotating speed
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Figure 4: Lowest three flapwise natural frequencies of a rotating cracked beam versus the
rotational speed. Crack location ratio is 0.075 of the beam length, crack depth ratio is 0.5
of the beam thickness. The maximum error is about 0.5% in the third mode.

as shown for the second and third modes in Figure 5. The maximum error
occurs in the first mode when the crack is located at the root (fixed end) of
the rotating beam.

In addition to the natural frequency comparison, the mode shapes of the
cracked rotating blades were evaluated and compared with the corresponding
modes using the finite element model. Figures 6 show the Modal Assurance
Criterion (MAC) between the results of the present work and the one dimen-
sional FE model. The diagonal white squares indicate the good agreement
between the mode shapes using the two approaches.
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Figure 5: Frequency versus crack location as a ratio of crack position divided by beam
length for the lowest three flapwise frequencies of a rotating cracked beam, for three
different rotational speeds ((a) non-rotating, (b) for 500 rpm and (c) for 1000 rpm) and
crack depth ratio ξ of 0.5. Solid and dashed lines refer to the proposed method and FEM
results respectively. The error bars are 1% difference.
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Figure 6: MAC diagrams for the lowest six modes of the flapwise vibration of the rotating
cracked beam with the crack location ratio of 0.075 and crack depth ratio of 0.5 and
rotational speeds (a) non-rotating, (b) 500 rpm and (c) 1000 rpm.
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Regarding chordwise vibration, similar comparison was made for the low-
est three natural frequencies with a model built using one-dimensional beam
finite elements [29] and a solid finite element model using ANSYS. The fre-
quency ratio between the natural frequency of the rotating cracked beam
for different fixed rotational speeds against the fundamental frequency of
the uncracked beam are shown in Figure 7. The estimated values using the
Rayleigh-Ritz method show good agreement with the values obtained from
one dimensional FE models having a maximum error of less than 0.77% in
the third mode.

Furthermore, the crack location versus the natural frequency was com-
pared in the chordwise vibration with the FE model and shows good agree-
ment with a maximum error less than 1% for the at first natural frequency
when the crack is close to the root of the cantilever beam. Likewise, the
mode shapes of the chordwise vibration cracked rotating beams were evalu-
ated and compared with the corresponding modes produced from the finite
element model. Figure 9 shows the Modal Assurance Criterion (MAC) be-
tween the results of the proposed method and the FE model. The diagonal
white squares indicate the good agreement for the mode shape matching
between the two approaches.

Figure 10 shows the flapwise and chordwise natural frequency ratios ver-
sus rotational speed for the same cross sectional dimensions and identical
crack location and depth. The chordwise vibration shows less sensitivity
to the rotational speed than the flapwise vibration, due to the gyroscopic
coupling effect in the chordwise vibration.

The coupling between bending and longitudinal displacements in the
chordwise plane leads to a veering phenomena in the natural frequency ver-
sus rotational speed graph as can be seen in Figure 11. In the third lowest
natural frequency, the bending chordwise mode natural frequency veers to
become a stretch mode at the speed of 5900 rpm. The fourth is veering
from bending to stretch at a rotational speed of 3800 rpm, then veering from
stretch to bending again at a speed 5900 rpm. A similar phenomena appears
in the fifth to seventh natural frequencies at the rotational speeds of 2800,
2050 and 1450 rpm respectively.
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Figure 7: Lowest three chordwise natural frequencies of a rotating cracked beam versus
the rotational speed. Crack location ratio is 0.075 of the beam length, crack depth ratio
is 0.5 of the beam thickness. The maximum error is about 0.77% in the third mode.
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Figure 8: Frequency versus crack location for the lowest three chordwise natural frequen-
cies of rotating cracked beam with three different rotational speeds ((a) non-rotating, (b)
for 500 rpm and (c) for 1000 rpm) and crack depth ratio ξ of 0.5. Solid and dashed lines
refer to the proposed method and FEM respectively. The error bars are 1% difference.
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Figure 9: MAC diagrams for the lowest six modes of the chordwise vibration of the rotating
cracked beam with the crack location ratio of 0.075 and crack ratio of 0.5 and rotational
speeds (a) non-rotating, (b) 500 rpm and (c) 1000 rpm.
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5. Conclusions

A new simplified model for a rotating cracked beam was presented, based
on a modified potential energy. This was used in a Rayleigh-Ritz approach
for an Euler-Bernoulli beam model, rather than separating a cracked beam
pre and post the crack which would require to separate additional polyno-
mial shape functions. The approach herein was implemented and showed a
good agreement, especially for the lowest three modes of the vibration, with
FE numerical models using one-dimensional beam and solid elements. The
maximum natural frequency error between the methods proposed and FE
was less than 0.5% for the flapwise and less than 0.77% for the chordwise.
Furthermore, the predicted vibration mode shapes matched well with the
corresponding mode shapes evaluated using the FE model as shown with
MAC plots. The bending vibration in the chordwise direction showed less
sensitivity to the rotational speed than the bending vibration in the flapwise
direction due to the gyroscopic coupling. Moreover, a veering phenomena
clearly appeared in the higher natural frequencies for the chordwise vibra-
tion due to gyroscopic coupling at high rotational speeds.

Overall, this approach showed the possibility of selecting the shape func-
tions for the Rayleigh-Ritz method, which satisfied only the beam end bound-
ary conditions is sufficient for modelling a cracked beam. Other researchers
[13, 14] used pre and post crack admissible functions for the Timoshenko
beam case. Furthermore, the use of the Rayleigh-Ritz method significantly
reduced the size of the numerical model when compared to alternatives such
as the finite element models.
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