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Abstract

In this work optimal control theory is applied to minimum lap time simulation of a GP2
car, using a multibody car model with enhanced load transfer dynamics. The mathematical
multibody model is formulated with use of the symbolic algebra software MBSymba and it
comprises 14 degrees of freedom (dof), including full chassis motion, suspension travels and
wheel spins. The kinematics of the suspension is exhaustively analysed and the impact of
tyre longitudinal and lateral forces in determining vehicle trim is demonstrated. An indirect
optimal control method is then used to solve the minimum lap time problem. Simulation
outcomes are compared with experimental data acquired during a qualifying lap at Montmeló
circuit (Barcelona) in the 2012 GP2 season. Results demonstrate the reliability of the model,
suggesting it can be used to optimize car settings (like gearing and aerodynamic setup) before
executing track tests.

1 Introduction

Lap time simulation of racing vehicles are nowadays widely used to predict car performance
on race tracks and to optimise the vehicle setup before track tests. The two most common
methods used to perform such kind of simulations are represented by the quasi steady state and
optimal control approaches. In the former, a fixed trajectory is provided as input data, then the
path is divided into small segments and the vehicle maximum speed is calculated at each corner
apex. Starting from these known points, acceleration and braking zones are reconstructed by
forward and backward integration. Examples of quasi steady state simulations can be found in
(1; 2; 3; 4). These kinds of simulations are relatively fast to compute and also very robust, even
when highly detailed car models are utilised. For this reason, quasi steady state simulations
are the most used by race teams as performance-optimising tools; an example is the Dallara
Lap Time Simulation (DLTS) software (5). The fixed trajectory represents a limitation for the
accuracy of the optimisation output.

Optimal control calculus instead allows to find simultaneously all driver inputs that maximise
the performance (usually the minimum lap time) and either the trajectory can be obtained as a
result of the simulation or a fixed driving line can be imposed. However, this type of simulations
is significantly more difficult to solve due to the complexity of the optimisation problem, thus
the car model is often simplified. The first relevant works in this area came at the beginning
of the new millennium by Casanova, (6; 7; 8), who adopted a non-linear programming (NLP)
optimisation algorithm to solve the minimum time problem of a 7 dof car model for long
manoeuvres (full laps). The car model used comprised 4 dof for the wheel spin and 3 dof for the
chassis, which are the longitudinal, lateral and yaw motion. Since the model does not include
any suspension degree of freedom (dof), tyre loads are calculated with in quasi steady state
(QSS) conditions using 4 balance equations. This car model is still widely used in recent works,
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as it can be found in (9; 10; 11; 12; 13). Kelly in (9) presented a newer NLP algorithm to
compute the minimum manoeuvring time both for few turns, and for a full lap, with different
car models. The first, and simplest one, is the same model of Casanova (6). The second one adds
the suspension travel and tyre loads are dynamically calculated from tyre radial deformation
(suspensions are modelled as vertical springs). The third one is similar to the first but adds
a thermodynamic tyre model. Another work by the same author can be found in (14), where
almost the same car models are used. Recently, other authors have used a simpler single track car
model (15; 16); however these two works do not aim at solving the minimum time problem, but
at demonstrating the advantage of the handbrake technique in particular scenarios. Moreover,
a full high fidelity Pacejka Magic Formula Tyre model (17) has been used. In all the above
cited optimal-control-related works (6; 7; 8; 9; 10; 13; 14; 15; 16), except for (11) and (12),
drag and lift coefficients are constant. However, in the case of GP2 or F1 car, the aerodynamic
forces depend significantly on the ride heights, thus any car model for such car category should
include a more complex aerodynamic modelling. In (11), a full lap of a Formula1 car on the
Montmeló circuit is simulated, and aerodynamic forces are obtained through a pre-calculated
map as function of tyre loads, while in (12) the aerodynamic coefficients depend on the forward
speed only.

Looking at the chronological development of car models for optimal control simulations, it
can be noticed that car models complexity has continuously increased as consequence of the need
for more accurate simulation outcomes. Model enhancements have been made possible thanks to
the improved solving software, computer processing power, and modelling strategies. However,
in most of the models that are being used till today (except in (9)) tyre loads are calculated in
QSS conditions, as long as this allows to significantly reduce the numerical complexity of the
resulting optimal control problem. Indeed in the QSS tyre load car models, the four suspensions
dof together with three of the chassis dof (pitch, roll, and vertical displacement) can be neglected.
A recent work (18) showed that the QSS tyre loads are a coarse approximation when using to
optimise some car parameters. In such work, a car model endowed with suspensions (similar
to the one in (9)) has been used for a full lap simulation on the Adria International Raceway
circuit. The comparison between such multibody model and a QSS-based one showed that
the QSS tyre loads assumption leads to different optimal values of the CoM position (≈ 6cm)
and suspension stiffness. Therefore, more complex vehicle models should be used for minimum
time optimal control simulations to maximise accuracy. In particular tyre load transfer can be
dynamically simulated if all the six chassis dof together with the four suspension-related dof
are included in the car model. Compared to a QSS tyre loads model, this approach allows to
simulate suspension related load transfer time delay, at the expense of seven additional dof.
However the need for more accurate car models is limited by the solving capabilities of current
software; when numerical complexity of the optimal control problem increases, it can take a
long time to compute the solution, or even worse, the simulation may fail (19). Performing
optimal control simulations with higher fidelity car models is not an easy task and it requires a
proper formulation both of the car multibody model and of the optimal control problem.

State-of-the-art optimal control solving techniques mainly divide into indirect and direct
methods. Indirect methods (20) (19) rely on the Pontryagin Maximum Principle to derive the
first-order necessary conditions (differential equations) for the optimal control problem, which
are then solved using common numerical techniques for differential equation systems. To the
best knowledge of the authors, the most effective optimal control software for lap time simula-
tions based on an indirect method is Pins, which has been used in (15; 16). Differently, direct
methods (20) (19) discretise first the optimal control problem so as to convert it to a Nonlinear
Programming (NLP) problem, which is then solved using NLP software such as Ipopt, Knitro,
Whorp, Snopt. Commercial software based on direct approach are Gpops, JModelica, Propt,
Falcon, Psopt, Acado. Moreover, we recall that when dealing with optimal control problems,
the well-known car models of commercial multibody software (like ADAMS, Virtual Lab Mo-
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tion, CarSim, RecurDyn, SimPack) present some set-backs. Indeed, numerical capabilities of
solving any optimal control problem significantly increase when the exact Jacobian of the equa-
tions are provided (19; 21; 20), and the analytic form of such expressions is generally required in
order to calculate the Jacobian either analytically, or with automatic or complex differentiation
techniques. Moreover, the analytic form allows fast and efficient evaluation of the equations,
leading to a significant reduction in computing time.

In this work we present an optimal control based minimum time simulation of a GP2 car
using a 14 dof car model. Particular attention has been put on the tyre load transfer dynamics
and the QSS tyre loads assumption has been abandoned; moreover the full suspension kinematics
are included in the model. The Pins software (22) has been chosen to solve the resulting
optimal control problem since it is generally faster than NLP-based solvers (23). Pins requires
the analytic expressions of the car model equations of motion which must be derived within the
symbolic algebra software Maple. The analytic expressions of the equations are used by Pins
to automatically generate both the first order necessary conditions and their Jacobian, which
is a fundamental element for a fast and robust solution calculation.

In the next section the multibody model is described and the corresponding equations of
motion are presented. The multibody model is composed by the main chassis (6 dof) and four
wheels (4 spin dof), which are connected to the chassis by means of the suspension system
(4 more dof). Suspension kinematics are accurately analysed in order to understand how
tyre lateral and longitudinal forces contribute to determine the vehicle trim and thus load
transfer. Then, the optimal control problem formulation is described and the minimum lap
time simulation outcomes are presented. Simulation results are validated by comparison with
experimental data acquired during a qualifying lap on the circuit of Montmelò in 2012.

2 Multibody model of the GP2 Car

As previously introduced, in this work the software used to solve the optimal-control minimum
lap time problem is Pins, which requires the analytic expression of the equations of motion. In
this section the car model is described and the corresponding equations of motion used to feed
Pins are presented.

A GP2 car is a rear wheel drive formula car characterized by very stiff suspensions and high
aerodynamic downforce generated by rear and front wings. The aerodynamics of GP2 cars is
quite complex and wing force intensity depends on ride heights, therefore any model used to
simulate GP2 car dynamics should carefully reproduce not only aerodynamic forces, but also
all parameters that determine vehicle trim, first of all suspensions and tyres. The model here
developed abandons the quasi-steady state tyre load simplification since it has been showed that
it negatively influences simulations outcomes (18). Moreover, suspension kinematics are taken
into consideration because they have a relevant influence on vehicle performance (24; 25). A car
model that includes this features leads to a relatively complex lap time optimal control problem,
that may be very difficult to solve. The car mathematical model is thus a key element, together
with the optimal control formulation and software used, to successfully solve the resulting
problem.

The chassis is modelled as a rigid body free to translate and rotate about the three axes,
as shown in figure 1, and SAE convention is adopted for the axes orientation. State variables
associated to these six degrees of freedom (dof) are: the vehicle speed V , drift angle λ, centre
of mass (CoM) vertical displacement z, yaw rate Ωz, pitch and roll angle µ, φ. Wheels are
connected to the main chassis through short-long arm suspensions, that introduce one additional
dof per wheel: the vertical motion of a generic wheel is named zas, where the suffix a ∈ {r, f}
stands for rear (r) or front (f) axle, while the suffix s ∈ {r, l} stands for right (r) or left (l)
side. As the suspension moves, the actual rigid motion of the wheel plane has been included in
the model. Suspension forces take into account coil springs, torsion bars, dampers and anti-roll
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bars. Finally, wheel spins add four more dof ωas. A torque sensitive differential is present
at the rear axle. Tyre longitudinal forces are calculated through a nonlinear tyre model, and

Figure 1: Car chassis degrees of freedom (dof)

aerodynamic drag and lift forces depend on ride heights. Summarizing, the model comprises 14
mechanical dof, which are reported in the table in appendix B.

2.1 Equations of motion

In this chapter the equations of motion will be derived. In a GP2 car, since the suspensions
are very stiff, the chassis vertical displacement z, roll φ and pitch angles µ are very small
(boundaries are 0 mm < z < 25 mm, |φ| < 1◦, |µ| < 0.5◦). The rigid motion of the chassis may
be described by a sequence of the 4× 4 Denavith Hartember transformation matrix (26; 27) as
follows:

Wc = Wc0 T (0, 0, z − h)Rx(φ)Ry(µ) (1)

where Wc0 is a reference system that follows the longitudinal, lateral and yaw motion of the
car along the circuit, Wc is the chassis reference system and h is the nominal distance of the
CoM from ground. As the chassis pitch and roll angles can be considered small, every function
of µ and φ has been approximated with its Taylor series expansion up to the first order. The
resulting chassis reference system Wc therefore is:

Wc = Wc0 T (0, 0, z − h)Rx(φ)Ry(µ) =


1 0 µ 0
0 1 −φ 0
−µ φ 1 z − h
0 0 0 1

 (2)

Moreover, also the time derivatives of z, φ and µ have been considered small, i.e. every function
of ż, φ̇, µ̇ have been approximated with its Taylor series expansion up to the first order. Taking
into account all the external forces acting on the vehicle (aerodynamic and tyre forces), it is
possible to obtain Newton’s equations of the full vehicle, these are:

m(ΩzV λ+ V̇ ) =
∑
as

Sas −D −R− ψflFfl − ψfrFfr (3a)

m(ΩzV − V̇ λ− V λ̇) =
∑
as

Fas + ψfrSfr + ψflSfl (3b)

m(z̈ − g) +
∑
as

masz̈as = Lf + Lr −
∑
as

Nas (3c)

where Ωz is the car yaw rate, Sas and Fas are the longitudinal and lateral tyre forces, z is
the car CoG coordinate along z-axis, mas are wheel masses, D is the drag force, Lf , Lr are
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the aerodynamic downforce at the front and rear axles and R is the rolling resistance of the
four wheels. Again, the suffix a ∈ {r, f} stands for rear (r) or front (f) axle, while the suffix
s ∈ {r, l} stands for right (r) or left (l) side; thus the suffix ‘as’ can be one of the following: ‘rr’,
‘rl’, ‘fr’, ‘fl’. The acceleration terms related to the second order derivative of the wheel plate
longitudinal xas and lateral yas displacements, as well as of the wheel plate camber φas, steering
δas and spin µas angles, have been neglected, since they are small compared to the acceleration
terms related to the chassis (z, φ, µ) and wheel plate vertical displacement zas (see appendix
A). The Euler equations with respect to the point ~A, which is the origin of the reference system
Wc0 defined before, are:

Ixxφ̈+

(
Izzµ− Ixxµ− Ixz −

∑
as

masbaszas

)
Ω̇z

+(Izz − Ixx − Iyy)Ωzµ̇−M
(
hV λ̇+ hλV̇ + (z − h)ΩzV

)
−
∑
as

mastasz̈as −

(
(Iyy − Izz)φ+

∑
as

mastaszas

)
Ω2
z −

∑
as

maszasΩzV

+
∑
as

IasωasΩz = Tx

(4a)

Iyyµ̈+

(
(Iyy − Izz)φ+

∑
as

mastaszas

)
Ω̇z + (Ixx + Iyy − Izz)Ωzφ̇

+M((z − h)V̇ − hλΩzV ) +
∑
as

masbaszas +
∑
as

maszasV̇

+

(
(Izz − Ixx)µ− Ixz +

∑
as

masbaszas

)
Ω2
z = Ty

(4b)

(Izz + 2Ixzµ)Ω̇z −
∑
as

Iasωasφ̇− Ixz(φ̈− 2Ωzµ̇) = Tz (4c)

where Ixx, Iyy, Izz are the principal moments of inertia of the car chassis, Ixz is the cross
moment of inertia, Irr = Irl = Ir are the rear wheel spin inertia moment, Ifr = Ifl = If are
front wheel spin inertia moment, tr = trl = −trr are the rear half track, tf = tfl = −tfr is the
front half track, br = brr = brl is the x-axis distance of the car CoM from the rear axle, and
bf = −bfr = −bfl is the x-axis distance of the car CoM from the front axle. Tx, Ty, and Tz are
respectively the x, y and z component of the net external torque acting on the chassis:

Tx =
∑
as

Nas(tas + hφ− yas + rasγas) (5a)

Ty = Lrbr − Lfbf +
∑
as

Nas

(
−bas + (h− ras)µ+ xas

)
(5b)

Tz =Sfrbfδfr + Sflbfδfl +
∑
as

Sas(tas + hφ− yas + rasγas)+

− Ffltfδfl + Ffrtfδfr −
∑
as

Fas

(
bas − (h− ras)µ− xas

) (5c)

where rrr = rrl = rr are the rear tyre radius, and rfr = rfl = rf is the front tyre radius.
The equations of motion governing the suspension dof (i.e. wheel plate vertical displacement)

are obtained using the Lagrangian approach which, in contrast to the Newton one, allows the
suspension links reaction forces to be disregarded. With the generalized force approach, the
suspension equations can be derived from:

d

dt

(
∂Kas

∂żas

)
− ∂Vas
∂zas

= Qas (6)

5



where żas is the time derivative of the wheel vertical displacement zas, Kas is the kinetic energy
of the wheel, Vas is the gravitational potential energy, and Qas is the generalized force acting on
the wheel. Suspension equations take into account for the suspension kinematics, i.e. that tyre
contact point moves fore and aft as well as left and right in the road plane as the suspension
moves up and down, so as that tyre lateral and longitudinal forces influence the equilibrium
of the suspension. Moreover, each wheel not only translates as the suspension moves, but it
also rotates about all the three axes; such rotations influence the in-plane forces generated by
the tyre as long as they modify both the tyre sideslip and camber angles. Then the explicit
equation form is:

mas(z̈ − z̈as + basµ̈− tasφ̈− g) = −Jas −Nas

+Sas

(
∂xas
∂zas

+
∂µas
∂zas

ras +
∂yas
∂zas

ψas +
∂ψas

∂zas
φasras

)
−Fas

(
∂yas
∂zas

+
∂φas
∂zas

ras +
∂xas
∂zas

ψas

) (7)

where mas is the wheel mass, ras is the tyre radius, xas, yas are respectively the wheel plate
longitudinal and lateral displacements, φas, ψas, µas are respectively the wheel plate camber
steering and spin angles, and Jas is the suspension force acting on the chassis and counter-
reacting on the wheel. The terms ∂xas/∂zas, ∂yas/∂zas, ∂µas/∂zas, ∂γas/∂zas are those related
to suspension kinematics and, as it can be noticed, they determine how the tyre longitudinal
and lateral forces contribute to suspension motion. The detailed analysis of the suspensions
kinematics is provided in appendix A. When equation (7) is derived from (6), the terms related
to the time derivative of the wheel plate variables in uas = {xas, yas, φas, ψas, µas} have been
neglected as long as they do not have a relevant physical effect on suspension dynamics. Indeed
such terms are related to small inertial forces (less than 0.1 times the inertial force related to
z̈as) that do not play an important role in time simulations (18). On the contrary, the terms
related to the ratio between variables in uas and zas are required to take into account the anti-
lift, anti-squat or scrub behaviour of the suspension and are relevant even in determining the
stationary trim of the suspension or of the vehicle (24; 25).

Wheel spin motion is governed by tyre forces and the driver’s braking or driving input
torques. Euler equations for the wheel spins are:

Iasω̇as = Tas − Sas(ras − zas − z − basµ+ tasφ) (8)

where Ias is wheel inertia moment around the spin axis (including also half of the axle and
powertrain inertias in the rear wheels), ras is the tyre radius, Sas is the tyre longitudinal force
and Tas is the torque delivered to the wheel. In the above equation the inertial terms related to
the fact that the wheel spin axis is not fixed but moves with and with respect the chassis have
been neglected because their expression is complex but their effect is negligible.

2.2 Forces

The multibody car model here presented is fully described by the chassis Newton (3) and Euler
(4) equations, together with the suspension (7) and wheel spin (8) ones, however the forces that
appears in these equations still have to be made explicit. In this section the suspension, tyre
and aerodynamic forces, together with the wheel driving torques are expressed in terms of the
model state variables and controls.

The four torque inputs Tas depend on one variable, the overall driving torque T , which is
the sum of the engine (positive part, Te) and braking (negative part, Tb) torque; moreover the
simultaneous presence of a driving torque at the rear axle and a braking torque at the front one
is not allowed:

T = f+(T ) + f−(T ) ≡ Te + Tb (9)
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where f− and f+ return respectively the (regularized) negative and positive part of the argu-
ment. It can be noticed that the engine torque is only positive, in other words we are neglecting
the engine brake torque; this is a consequence of the lack of experimental data regarding the
negative torque exerted by the engine at zero throttle. The traction torque Te is delivered only
to the rear axle, while the braking one Tb is split between both axes with a constant front
braking bias β. Moreover, at the rear axle a torque sensitive differential is present. Thus, the
torque delivered to each wheel is:

Trr =
Te
2

+ Tekd(ωrl − ωrr) + (1− β)
Tb
2

sign(ωrr) (10a)

Trl =
Te
2
− Tekd(ωrl − ωrr) + (1− β)

Tb
2

sign(ωrl) (10b)

Tfr = β
Tb
2

sign(ωfr) (10c)

Tfl = β
Tb
2

sign(ωff ) (10d)

where kd is the differential stiffness and sign is the (regularized) signum function which has
been introduced to cut the braking torque applied to the wheel when it locks, so as to prevent
a non-physical backward wheel spin. Suspensions forces Jas acting on the chassis and counter-
reacting on each wheel are the sum of elastic (spring), damper, anti-roll bar Ja

as and bump
rubber Jp

as forces:

Jas = Ks
aszas +Kd

asżas + Ja
as + Jp

as (11)

where Ks
as is the elastic force stiffness exerted by the torsion bars (front suspensions) or coil

springs (rear suspensions), Kd
as is the damping coefficient and zas is the wheel travel. The elastic

and damping forces are expressed by a linear relationship as long as the velocity ratio between
the wheel travel and torsion bar rotation angle or damper travel is constant in the working
range of the suspensions. The anti-roll bar forces Ja

as depend on the difference between right
and left wheel displacement:

Ja
rr = Ka

r (zrr − zrl) = −Ja
rl

Ja
fr = Ka

f (zfr − zfl) = −Ja
fl

(12)

where Ka
r and Ka

f are the rear and front reduced anti-roll bar stiffness. The last force Jp
as

in equation (11) is the force due to the bump rubbers, which prevent the suspensions from
excessive travel. The bump rubber forces, which are comparable or greater than the coil spring
or torsion bar ones even for wheel vertical travels of few millimeters and makes the suspension
rates highly highly non-linear, are given by splines used to fit the experimental force vs deflection
curve data. In a GP2/F1 car model, tyres cannot be considered completely rigid as long as
their radial stiffness is comparable to that of suspensions. The tyre manufacturer provides a
specific formula (28) to calculate the stationary tyre radial deformation as function of the tyre
load, spin, pressure, camber and lateral force:

ξas =
Nas

p1Pas + a1ω2
as + a2ωas + a3 + c1|γas|+ f1F 2

as/Nas
+ b1ω

2
as + b2ωas (13)

where Nas is the tyre load, ξas the tyre radial deformation, ωas the wheel spin, Pas is the
tyre pressure, p1, a1, a2, a3, c1, f1, b1 and b2 are constant coefficients. As long as tyre radial
deformations are determined by the chassis and suspensions trim, while tyre loads are not, we
numerically inverted the previous formula in order to obtain the tyre loads as function of the
other variables:

Nas = f+(ndaξas + ndoaξasωas + noaω
2
as + nyaF

2
as + ncaξ̇) (14)
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where nda, ndoa, noa and nya are the coefficients used to fit the data calculated using (13). The
camber dependence has been neglected, and the pressure has been considered to be constant at
19psi for the rear tyre, and 20psi for the front one. A damping coefficient nc has been added
to take transient behaviour into account. The f+ function ensures that the tyre load never
becomes negative. As previously pointed out, the tyre radial deformations are determined by
the chassis and suspension trims and are given by the following relationship:

ξas = z + zas + µbas −
1

2
φtas (15a)

where tr = trl = −trr is the rear half track, tf = tfl = −tfr is the front half track, br = brr = brl
is the x-axis distance of the car CoM from the rear axle, and bf = −bfr = −bfl is the x-axis
distance of the car CoM from the front axle.
With the approach we have adopted, lateral and longitudinal load transfers are automatically
calculated according to the model state variables as well as suspension characteristics. Lon-
gitudinal Sas and lateral Fas tyre forces are given by a Magic Formula Tyre Model 5.1 (17),
as functions of tyre load, longitudinal slip, sideslip and camber angles. Moreover a relaxation
equation for every tyre force has been added because it is known that tyre forces raise with a
certain time delay with respect to input variables, especially in the case of lateral forces (17).
Thus, the equations governing the tyre force relaxations are:

σx
Vas

Ṡas + Sas = Smagic(Nas, κas, λas, φas) (16a)

σy
Vas

Ḟas + Fas = Fmagic(Nas, κas, λas, φas) (16b)

where φas is the wheel camber angle, σx and σy are the relaxation lengths of the tyre in the
longitudinal and lateral direction, Smagic and Fmagic are the stationary Magic Formula tyre
forces, κas, λas, φas are respectively the tyre longitudinal slip, sideslip angle and camber angle.
The slip quantities necessary to calculate the tyre forces can be obtained as function of the
model state variables as shown below in (17). Only the expressions for the rear right tyre are
shown in (17) as long as similar ones apply to the other tyres.

Vx,rr =V − Ωtr + µ̇(h− rr0) + ẋrr + Ωφh

+ Ωφrrrr0 − Ωb(ψrr + ψr0)− Ωyrr
(17a)

Vy,rr =Ω(xrr − b)− φ̇h− γ̇rrrr0 + ẏrr − V λ
+ (h− rr0)Ωµ+ (Ωtr − V )(ψrr + ψr0)

(17b)

Vr,rr = µ̇rrrr0 − ωrr(rr0 + z + zrr + bµ+ trφ) (17c)

κrr =
Vr,rr
Vx,rr

− 1 (17d)

λrr =
Vy,rr
Vx,rr

(17e)

φrr = φ+ γrr0 + γrr (17f)

ψrr = δrr + δrr0 (17g)

where φrr and ψrr are respectively the rear right wheel camber and steer angle, γrr0, δrr0 are
the rear right wheel static camber and steer angle; moreover in the computation of λrr the
approximation tan(x) ≈ x holds.

The rolling resistance of each tyre is proportional to the tyre load. Thus, the total rolling
resistance force has been approximated with the following expression:

R = ρr(Mg
bf
w

+ Lr) + ρf (Mg
br
w

+ Lf ) (18)
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where ρr and ρf are the rear and front tyre rolling resistance coefficients.
Aerodynamic forces that act on the car are as follows:

D =
1

2
ρCd(hr, hf )V 2

Lr = −1

2
ρClr(hr, hf )V 2 (19)

Lf = −1

2
ρClf (hr, hf )V 2

where D is the drag force, Lr and Lf are respectively the rear and front aerodynamic downforce,
ρ is air density, Cd, Clr, Clf are the drag, rear lift and front lift coefficients that depend on
the rear hr and front hf ride heights as third-degree polynomials. The coefficients used in
such polynomials are those provided by the car manufacturer. The average front and rear ride
heights can be easily calculated as function of z and µ on the basis of elementary geometrical
considerations:

hr = hr0 − µbr + z

hf = hf0 + µbf + z
(20)

where hr0 and hf0 are respectively the rear and front ride height nominal values, br and bf are
the x-axis distance of the rear and front axle from the CoM.

3 Optimal Control Problem

3.1 Road and vehicle tracking

In minimum time simulations a road model is required. The approach used to describe both the
track and the vehicle position along the circuit is the same described in other works like (29),
so we are not going to describe it deeply; the reader can refer to that article for more details.
The road is described by means of the line curvature κ as a function of the road centre line
curvilinear abscissa s (see figure 2); the (x, y) position of the road and its heading can then be
obtained by simple integration (29). The car position and orientation is instead described by
three variables: the curvilinear abscissa along the road centre line s, the lateral displacement
from the centre line n and the relative heading to road centre line direction α, as shown in figure
2. The equations governing the time evolution of the tracking coordinates are:

Figure 2: Road tracking: the curvilinear abscissa s, car lateral displacement from road centre
line n and car relative heading angle α are displayed.

ṡ =
V (λ sinα+ cosα)

1− nκ(s)

ṅ = V sinα− V λ cosα (21)

α̇ = Ωz − κ(s)
V cosα+ V λ sinα

1− nκ(s)

9



Equations (26) track the vehicle position and orientation relative to the road by simply inte-
grating the vehicle speed and drift angle together with road curvature, so the vehicle lateral
position n and relative heading α are immediately available as state variables. This is a remark-
able advantage in comparison to the Cartesian coordinate approach, as described in (29).

3.2 State space formulation

The optimal control problem solution strategy used in this work (as many others) requires the
model dynamics to be describe by a set of first-order ordinary differential equations (ODE).
Newton’s (3), Euler’s (4) and suspension (7) equations may be immediately reduced to an ODE
system by introducing auxiliary variables for the relevant chassis and suspension speeds:

ż = v

φ̇ = Ωx

µ̇ = Ωy

żas = vas

(22)

At this point, equations (3) to (22) completely describe car dynamics as a system of 32 first
order differential equations with as many state variables and 2 inputs, respectively the overall
driving torque T and the steering rack displacement yr. However, optimal control solutions
typically include abrupt variation of the control inputs, which conflict with the dislike of jerk
felt by human drivers (30; 31; 32). To obtain smoother manoeuvres, the model is therefore
controlled by the steering angle rate and the longitudinal jerk. According to this, the two
driver inputs T and yr have been included to the state variables, while the controls have been
moved to their time derivatives, ju and jy, satisfying the following equations:

jy = ẏr

ju = Ṫ
(23)

where ju is the longitudinal jerk control, which (mainly) controls the longitudinal dynamics,
and jy is the lateral jerk control, which (mainly) controls the lateral dynamics.

In conclusion, vehicle dynamics is described by means of a set of 34 state variables:

x = {s, n, α, V, λ, z, v, φ,Ωx, µ,Ωy,Ωz, zas, vas, ωas, Fas, Sas, yr, T}T (24)

plus two inputs:
u = {jy, ju}T (25)

and as many implicit first order differential equations, which may be abbreviated to:

A(x)ẋ = f(x,u) (26)

where matrix A is invertible provided that V > 0, i.e. the vehicle never stops, and n < 1/κ(s),
i.e. the vehicle never passes over the local curvature centre of the road.

3.3 Optimal Control Problem formulation

The minimum time problem is here formulated as an indirect optimal control problem with the
same approach described in previous works (18) and (33), thus it will be described only briefly;
the reader can refer to those works for further information. The Optimal Control Problem
(OCP) allows to find the vehicle control inputs u = {ju, jy}T that drive the vehicle from the
starting grid line s = 0 and t(0) = 0 to the finish one s = L in the minimum time T = t(L), while

10



satisfying a set of both equality and inequality constraints. The OCP formulation accepted by
the software used, Pins, is the following:

find: min
u∈U

T (27a)

subject to: Aẋ = f (x,u, t) (27b)

ψ (x,u, t) ≤ 0 (27c)

b
(
x(0),x(T )

)
= 0 (27d)

where x is the state variable vector and u is the input one (24), (27b) is the state space model
(i.e. the equations of motion (26)), (27d) is the set of boundary conditions used to specify the
vehicle state at the beginning and at the end of the manoeuvre and (27c) is a set of algebraic
inequalities that may bound both the state variables and control inputs. In the specific case
of our car model, equations (27c) are used to make the simulation withstand to real physical
constraints; the first one ensures that the car position remains always within the track borders:

−(wl − tw cos(α)) ≤ n ≤ wr − tw cos(α) (28)

where n is the lateral displacement of the vehicle from the road centre, tw is the overall car
width, wr and wl are the right and left half-road widths which might vary along the track. Such
constraint is a good approximation of the real car borders limit thanks to the limited sideslip
angle of the car. Moreover, a second inequality has been added into (27c) so as to ensure that
the driving torque delivered to the wheels does not exceed that which the engine can deliver
Te,max:

Te ≤ τeTe,max(τe(ωrr + ωrl)) (29)

where τe is the transmission ratio between the rear axle and the engine spin (which depends on
the gear engaged); clearly, the maximum available engine torque Te,max depends on the engine
speed. A third constraint has been added to the optimal control formulation so as to prevent
the ideal driver from locking the front wheels when braking: indeed real drivers tend to avoid
such manoeuvre as long as it causes high tyre wear and makes the tyre to loose performance.
Mathematically this constraint has been expressed as:

κfr ≥ κmin

κfl ≥ κmin
(30)

where κmin ≈ −0.6 is the minimum slip value as it would result in unacceptable tyre wear.
Finally, the control inputs ju, jy, which are strictly related to the driving torque and steering
angle rate by equations (23), are limited in magnitude so as to avoid control rates higher than
what a human driver can sustain:

−ju,max ≤ ju ≤ ju,max

−jy,max ≤ jy ≤ jy,max
(31)

where ju,max and jy,max are the maximum value allowed for ju and jy controls.
With the indirect optimal control method used in this work the inequality constraints (28)

(29) (31) are converted into penalty terms that are added to the problem target in (27a).
The optimisation problem is thus reduced to a constrained minimisation problem, where the
constraints are the first-order equations (27b). The controls that minimise the target are then
found by solving the first-order necessary conditions (differential equations) that can be obtained
through the calculus of variations or the Pontryagin Minimum Principle. The software used,
Pins, automatically converts inequality constraints into penalty terms and derives the first-
order necessary conditions. Pins is composed by a Maple package (called XOptima) for the
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code generation of the first-order necessary conditions, an embedded ruby interpreter (called
Pins) to specify the problem numerical data, and a C++ library (called Mechatronix ) that
solves the problem. A detailed description of the underlying algorithm of the Pins solver can
be found in (34).

3.4 Lap time simulation and model validation

Figure 3: Optimal trajectory on Montmelò circuit. Numbers within ochre boxes indicate the
value of the road centre line abscissa in meters.

Optimal control simulation has been carried out on the circuit of Montmelò in Barcelona.
The simulation took approximately 26 minutes to be computed on an Intel Core i7 based
desktop computer, suggesting the proposed model, together with the used software, is very
efficient. In the first part of this section the car model will be validated through a comparison
between simulation results and the experimental data acquired in a qualifying lap of a driver
in 2012 GP2 season, while the second part will be focused in the analysis of the car dynamics.

Figure 3 shows the car trajectory resulting from the simulation, where the road geometry
has been reconstructed by getting GPS road coordinates from Google satellite photos. As
expected, the ideal driver tends to smooth the trajectory through corners in order to achieve the
minimum time. Figure 4 compares the simulated and the experimental speed profiles; there is
good agreement between simulation and telemetry especially in the first two thirds of the track,
while in the last sector the simulated speed is slightly higher than the real one in correspondence
of the corner apex point. Indeed the simulated lap time (91.287s) is lower than the real one
(91.600s) by approximately 0.4s. It is known that in a qualifying lap at the Montmelò circuit,
in the third sector rear tyres are very warm and their performance tends to decrease, thus this
phenomenon might generate the discrepancies between simulated and real speed profile that
arises in that part of the track. In figure 4 both longitudinal ax and lateral ay accelerations are
also reported, and it can be observed that the simulated ones are close to the real ones; ax and
ay bounds are of approximately −40m/s2 < ax < 20m/s2 and

∣∣ay∣∣ < 30m/s2. The resulting
g-g diagram, which is represented in the bottom-left corner of figure 5, highlights an ellipsoidal
shape for positive accelerations, while it has a remarkable triangular shape for negative ones;
this difference arises mainly because of the front inner wheel locking that occurs when braking
while steering, limiting the lateral acceleration. The maximum accelerations that the car can
withstand highly depend on the speed, as long as the aerodynamic downforce increases with the
square of the speed. The influence of the speed on the acceleration limits is also shown in figure
5: ax is the one which varies more with the speed, passing from −20m/s2 < ax < 20m/s2 at a
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speed of ≈ 100km/h up to −40m/s2 < ax < 5m/s2 at a speed of ≈ 250km/h, while the lateral
acceleration increases only from −20m/s2 < ay < 20m/s2 to −28m/s2 < ay < 28m/s2 for
the same speed range. From speed and acceleration comparisons, we can state that the model
developed in this work is able to well reproduce the dynamics of a GP2 car. Some differences
are clearly present, but they could be reduced with a better measurement of some parameters
affecting the performance, first of all tyre characterisation and road geometry.

The motion of the chassis along the track is shown in figure 6, where the vertical displacement
z, together with roll φ and pitch µ angles are reported. All these quantities are small, indeed
z is comprised between 0mm and 25mm, the roll angle is lower than 1◦ and the pitch angle
is never larger than 0.5◦. The very limited chassis displacements are consequence of the high
suspension stiffness, which is even greater than that of the tyres due to the presence of suspension
bump rubbers. Indeed, suspension travels are in the range −10mm < zas < 7mm (where
negative values correspond to a compressed suspension), while tyre radial deformation spans
in 0mm < ξas < 30mm, as it can be observed in figure 7. Within such limited range of
suspension travel and tyre deformation, tyre loads vary from almost 0 to 6000N . Even if chassis
and suspensions motions are so limited, they noticeably affect both aerodynamic forces and
load transfers. Figure 6 shows also the aerodynamic drag and downforce together with the ride
heights and the downforce balance (i.e. the front by total downforce ratio Lf/(Lf +Lr)). In such
figure, the aerodynamic force trends resemble that of the speed, due to the strict dependence of
the former on the square of the latter. However, as long as ride heights change along the track,
varying in the range −5mm < hf < 21mm (front ride height) and 40 < hr < 60 (rear ride
height), the downforce balance also changes. Indeed the downforce balance generally increases
with the speed, moreover it bumps up in correspondence of high braking manoeuvres. It can
be observed that, when the car withstands high negative accelerations, the front ride height
decreases while the rear one increases due to the chassis pitch, thus affecting aero balance.
Moreover, the minimum value of the front ride height is negative (−5mm) which might seem
non-realistic; however, it should be considered that the leading edge of the skid plane is located
well behind the front axle (that is where the front ride height is calculated), and that the skid
plane is quite flexible, thus slightly negative values for the front ride heights are very likely to
be reached when the car is bottoming on the road surface.

As previously said, chassis and suspension motions not only influence aerodynamic forces,
but also load transfers. The lateral load transfer at the rear axle (N lat

r ≡ Nrr−Nrl) versus that
at the front one (N lat

f ≡ Nfr−Nfl) resulting from the simulation is shown in figure 8, where the

two dashed lines correspond to a constant ratio N lat
r = 1.12N lat

f and N lat
r = 0.66N lat

f . It is clear

that the roll balance ratio N lat
r /N lat

f changes by a factor of almost 2 along the track, depending
on the trim of the car. Since the roll balance ratio is determined, at a first approximation, by the
ratios between tyre, anti-roll bar, coil spring and torsion bar stiffness, its variation is caused by
the highly non-linear suspension rates (the non-linearity is due to the bump rubber forces). In
different words, depending on the instant trim of the car, each wheel “sees” a different reduced
vertical stiffness to the chassis, and the roll balance ratio varies as a consequence. This effect
instead is not captured by the most commonly used QSS car models where, in order to determine
the loads on each wheel, it is generally assumed that the roll balance ratio is constant. Indeed
this is what is done in works as (6; 7; 8; 14; 10; 11) and (12).

4 Conclusions

The state of the art of minimum time optimal control simulations for race cars has been consid-
erably improved in the last years and relatively complex car models can nowadays be used for
such simulations. However, car multibody models for optimal control simulations are still gener-
ally based on quasi steady state tyre loads in order to reduce the numerical size of the resulting
problem and to make the problem easier to solve. Such assumptions can lead to suboptimal
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results when lap time simulations are used to optimize car setup parameters; this paper fills this
gap by proposing an accurate car model which includes wheels and suspension dynamics (thus,
load transfer dynamics too) but it is concise enough for optimal control applications thanks
to the symbolic approach. More in detail, we have developed a GP2 formula car multibody
model for optimal control simulations which include: chassis, suspension and wheel dynamics,
full Magic Formula tyre forces, non linear tyre loads and ride-height-dependent aerodynamic
forces. Suspension kinematics have been deeply analysed and included in the car model, as long
as it has a significant effect on tyre loads; moreover their impact on overall car performance
has been highlighted in steady state conditions. An indirect optimal control approach has then
been adopted to successfully perform a full lap time simulation on the circuit of Montmelo’, and
the model has been validated by comparison with the telemetry data of an official qualifying
lap in 2012. The simulation outcomes and the experimental data have shown a good agreement
in speed, accelerations and accelerations-speed dependence. Moreover, the simulated tyre loads
highlighted a roll balance ratio that changes by a factor ≈ 2 along the circuit; commonly used
car models based on quasi steady state loads are not able to capture this effect as long as they
assume a constant roll balance ratio. Further work can study more in detail the differences
in lap time and car optimisation that arise when using common quasi-steady state car mod-
els. Finally, this car model can be extended to a Formula 1 car, simply adding KERS system
modelling.
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Appendix A Suspension kinematics

In a GP2 car the suspension system is based on short-long arm (SLA) type, as shown in figure
9: the wheel is connected to the chassis by means of two A-shaped arms that end with spherical
joints, plus the steering rod which ends either in a movable spherical joint, in the case of the
front suspension, or in a fixed spherical joint, in the case of the rear one (even if the rear wheels
have no steer, we will refer to this latter rod as “steering rod”, as for the front suspension). From
the kinematic point of view, the SLA suspension is a special case of the multilink suspension
and it is composed by five rods attached through spherical joints to the chassis at one edge
and to the wheel plate at the other edge. With reference to figure 9, attachments points fixed
to the vehicle frame and are named: upper front chassis point C1, lower front chassis point
C2, upper rear chassis point C3, lower rear chassis point C4 and steer chassis point C5. This
latter point, which is connected to the steering rod, is fixed to the chassis in the case of the
rear suspension, while in the front one it moves along the y-axis as the driver steers. On the
wheel side, attachments points are named: upper front wheel point P1, lower front wheel point
P2, upper rear wheel point P3, lower rear wheel point P4 and steer wheel point P5. Due to the
design of this SLA suspensions, the point P1 coincide with P3, and P2 with P4 (see figure 9).

The wheel plate position and orientation can be completely described by the displacement
of the wheel plate centre w.r.t. its nominal configuration (xas, yas, zas), the steering angle δas,
the camber angle γas and the spin angle µas:

was = {xas, yas, zas, γas, µas, δas} (32)

The rigid motion of the wheel is described by the 4× 4 transformation matrix method (27) as
follows:

W (was) =Was0T (xas, yas, zas)Rz(δas)Rx(γas)Ry(µas)

≡Was0S(was)
(33)

where Was0 is the wheel reference system in nominal conditions, T (xas, yas, xas) is the trans-
lation transformation matrix, and Ri(a) are the rotation matrices around i-axis of an angle
a. From the equivalence in (33), S(was) is the transformation matrix that gives the wheel
plate configuration with respect to its nominal position. Since the suspension linkages allow the
wheel to have only one degree of freedom, the coordinates w are mutually dependent and can be
expressed as function of only one independent parameter; the wheel plate vertical displacement
zas has been chosen as independent dof since it represent the most important movement of the
suspension. The five mathematical constraints necessary to remove the dependent variables can
be obtained by imposing that the distance between the connecting points located at the extrem-
ities of each rod must be equal to the rod length. As the wheel plate moves, the coordinates of
each connecting point on the wheel side P i = {xP i , yP i , zP i , 1}T can be easily calculated from
their nominal position P i

0:
P i = Was0S(was)W

−1
as0P

i
0 (34)

Therefore the five constraints can be expressed by the following relationship:

(xP i − xCi)2 + (yP i − yCi)2 + (zP i − zCi)2 − l2i = 0, i ∈ {1..5}, (35)

where li is the length of the rod connecting P i with Ci. In conclusion, a set of five algebraic
constraint equations is obtained for each suspension:

φi (was) = 0, i ∈ 1..5 (36)

These constraint equations have been solved numerically for the given suspension geometry,
both rear and front.

The displacement of the wheel centre xrr, yrr, as well as camber γrr, and steer δrr angles
of the rear right wheel plate are depicted as a function of the vertical travel zrr in figure 10a.
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The figure shows that the wheel plate translation along x and y direction are less than 1mm,
moreover the camber and steer angles are smaller than 0.5◦ and 0.02◦. The trend of xrr, yrr, γrr
and δrr as function of zrr has been fitted by polynomials up to the second order, and the
resulting fittings are shown in figure 10a by continuous lines. The fitting of such variables is
required to analytically express the velocity ratio between the wheel plate movements and the
vertical displacement zrr, as required in equation (7). In the front suspension the position of
the steering chassis point (P5) along the y-axis is controlled by the driver input on the steering
wheel, therefore the movements of the front wheel plate (xfs, yfs, γfs, δfs) depend both on the
wheel vertical shift zfs and on the steering rack lateral displacement ys. Figure 10b shows the
front right wheel motion as function of zfr when the steering is null, while figure 10c shows
the same quantities as function of ys when the suspension travel is zero. Similarly to the rear
suspension, the variables xfr, yfr, γfr, δfr have been fitted by polynomials up to the second order
as function of zfr and ys, and the resulting fits are shown in the figures by continuous lines. The
same procedure described just above also allows calculation of the reduced stiffness at wheel
of the torsion bars, coil springs, dampers and anti-roll bars. The rear wheels are connected
through a push-rod and a rocker to the dampers and the coil springs, as shown in figure 9. The
rear anti-roll bar is connected to the left and right rocker through two link-bars. In the front
suspensions, again, a push-rod connects the wheel to a rocker; however, this rocker is not free
to rotate around its pivot because it is connected to the chassis with a torsion bar. Thus, when
the suspension moves, the elastic force is exerted by this torsion bar. Then, the damper and
the anti-roll bar are attached to the rocker similarly to the rear suspension design. The travel
of the dampers, rear coil springs and front torsion bars has again been fitted by polynomials as
functions of zas and yr, and the resulting polynomial coefficients are reported in table 1

variable and fit description

ξrs = −0.832zrs rear dampers and coil springs travel
ξfr = −0.879zfr + 0.0662yr front right damper travel
ξfl = −0.879zfl − 0.0662yr front left damper travel
θfr = −0.605zfr + 0.0458yr front right torsion bar angle1

θfl = −0.605zfl − 0.0458yr front left torsion bar angle1

Table 1: Spring and damper travels. Ranges are: −20 mm < zas < 20 mm, −14 mm < yr <
14 mm. 1 the coefficients are expressed in degrees per millimetre.
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Appendix B List of symbols

degrees of freedom units description
V m/s speed
λ rad drift angle
z m centre of mass (CoM) vertical displacement
φ rad roll angle
µ rad pitch angle

Ωz rad/s yaw rate
zas m wheel vertical displacement with respect to the chassis
ωas rad/s wheel spin velocity

dependent variables units description
yr m steering rack displacement
ξas m tyre radial deformation
hf m front ride height
hr m rear ride height
s m road centre line curvilinear abscissa
n m car lateral displacement from road centre line
α rad car heading relative to road centre line
κ m−1 road curvature

ψas rad wheel steering angle
φas rad wheel camber angle
xas m wheel plate displacement along x-axis

(with respect to nominal position)
yas m wheel plate displacement along y-axis

(with respect to nominal position)
γas rad wheel plate camber angle (with respect to nominal position)
µas rad wheel plate pitch angle (with respect to nominal position)
δas rad wheel plate steering angle (with respect to nominal position)

Nas N tyre load
Sas N tyre longitudinal force
Fas N tyre lateral force
Te Nm engine torque
Tb Nm braking torque
Tas Nm driving torque applied to the wheel
Jas N suspension force acting on the chassis and counter-reacting on

the wheel
D N drag force
Lf N front axle aero-downforce
Lr N rear axle aero-downforce
R N tyres rolling resistance

κas tyre longitudinal slip
λas rad tyre sideslip angle
V cp
as m/s tyre contact point longitudinal speed
V r
as m/s tyre contact point spinning speed
V l
as m/s tyre contact point lateral speed
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Table 2: Model variables. The suffix a ∈ {r, f} stands for rear (r) or front (f) axle, while the
suffix s ∈ {r, l} stand for right (r) or left (l) side.

Appendix C Vehicle data

symbol value units description

g 9.81 m/s2 gravitational acceleration
ρ 1.2 kg/m3 air density

h 0.31 m centre of gravity (CoG) height
br = brr = brl 1.34 m x-axis distance between the rear axle and the vehicle

CoG
bf = −bfr = −bfl 1.78 m x-axis distance between the front axle and the vehicle

CoG
w 3.12 m wheelbase

tf = tfl = −tfr 0.739 m front half track
tr = trl = −trr 0.708 m rear half track

hr0 6e-2 m nominal rear ride height
hf0 2e-2 m nominal front ride height
β 0.62 front braking bias
δrr0 -0.04 deg rear right wheel nominal steer angle
γrr0 -0.5 deg rear right wheel nominal camber angle
δfr0 0.09 deg front right wheel nominal steer angle
γfr0 -2.7 deg front right wheel nominal camber angle

m 700 kg vehicle mass (rider included)
Ixx 200 kgm2 roll moment of inertia
Iyy 1000 kgm2 pitch moment of inertia
Izz 1100 kgm2 yaw moment of inertia
Ixz 0 kgm2 mixed moment of inertia

mrr = mrl 30.4 kg rear wheel mass
mfr = mfl 24.4 kg front wheel mass
Irr = Irl 1.55 kgm2 rear wheel spin inertia (including half of rear axle)
Irr = Irl 1 kgm2 front wheel spin inertia

ndr 2.03e5 N/m rear tyre load coefficient
ndf 1.96e5 N/m front tyre load coefficient
ndor 7.28e2 Ns/m rear tyre load coefficient
ndof 4.73e2 Ns/m front tyre load coefficient
nor 5.85e-2 Ns2 rear tyre load coefficient
nof 1.57e-2 Ns2 front tyre load coefficient
nyr -1.39e-5 N−1 rear tyre load coefficient
nyf -1.9e-5 N−1 front tyre load coefficient
ncr 500 Ns/m rear tyre load damping stiffness
ncf 500 Ns/m front tyre load damping stiffness
ρr 0.01 rear tyre rolling resistance coefficient
ρf 0.01 front tyre rolling resistance coefficient
rr 0.31 m rear tyres radius
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rf 0.31 m front tyres radius

σy 0.1 m tyres lateral relaxation length
σx 0.1 m tyres longitudinal relaxation length

Table 3: Vehicle parameters.
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Figure 4: Speed (top), longitudinal (centre) and lateral (bottom) accelerations versus distance
travelled. Blue continuous lines refer to simulation outcomes, orange dashed ones to telemetry
data.
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Figure 5: Accelerations versus car speed (top left and bottom right) and g-g diagram (bottom
left). Blue crosses refer to simulation outcomes, orange circles to telemetry data. The car model
reproduces well the real accelerations envelope, moreover the increase of accelerations bounds
with speed due to aerodynamic down-force is highly noticeable and well captured.
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Figure 6: From top to bottom: simulated speed (a), chassis roll φ and pitch µ angles (b), chassis
vertical displacement z (c), aerodynamic down-forces Lf +Lr and drag D (d), front down-force
balance Lf/(Lf + Lr) (e).
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Figure 7: Simulated suspension travels, tyre radial deformations and tyre loads (left side of the
car).
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Figure 8: Rear axle lateral load transfer N lat
r ≡ Nrr−Nrl versus front axle one N lat

f ≡ Nfr−Nfl

(blue crosses). The two dashed lines correspond to the linear relationship N lat
r = 1.12N lat

f and

N lat
r = 0.66N lat

f . It is evident that the roll balance ratio N lat
r /N lat

f varies of a factor of almost
2 along the track.

Figure 9: Front (left) and rear (right) short-long arm suspension scheme.
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(a) Rear wheel plate movements: xrr, yrr displacements and γrr, δrr angles are represented as function
of the wheel vertical travel zrr. The continuous lines represent the fitting.

(b) Front wheel plate movements: xfr, yfr displacements and γfr, δfr angles are represented as function
of the wheel vertical travel zfr when yr = 0. The continuous lines represent the fitting.

(c) Front wheel plate movements: xfr, yfr displacements and γfr, δfr angles are represented as function
of the steering rack displacement yr when the vertical displacement is null zfr = 0. The continuous lines
represent the fitting.

Figure 10: Suspension kinematics analysis: rear and front wheel plate motions are shown as
function of the suspension degrees of freedom.
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