Collapse and Nonlinear Instability of AdS with Angular Momenta
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We present a numerical study of rotational dynamics in AdSs with equal angular momenta in the
presence of a complex doublet scalar field. We determine that the endpoint of gravitational collapse
is a Myers-Perry black hole for high energies and a hairy black hole for low energies. We investigate
the timescale for collapse at low energies F, keeping the angular momenta J o E in AdS length
units. We find that the inclusion of angular momenta delays the collapse time, but retainsat ~ 1/E
scaling. We perturb and evolve rotating boson stars, and find that boson stars near AdS appear
stable, but those sufficiently far from AdS are unstable. We find that the dynamics of the boson
star instability depend on the perturbation, resulting either in collapse to a Myers-Perry black hole,

or development towards a stable oscillating solution.

Introduction — Spacetimes with anti-de Sitter (AdS)
boundary conditions play a central role in our under-
standing of gauge/gravity duality [1-4], where solutions
to the Einstein equation with a negative cosmological
constant are dual to states of strongly coupled field theo-
ries. This correspondence has inspired the study of grav-
itational physics in AdS over the past two decades.

It is perhaps surprising that the issue of the nonlinear
stability of (global) AdS was only raised nine years af-
ter AdS/CFT was first formulated [5, 6]. Dafermos and
Holzegel conjectured a nonlinear instability where the re-
flecting boundary of AdS allows for small but finite en-
ergy perturbations to grow and eventually collapse into a
black hole. This is in stark contrast with Minkowksi and
de Sitter spacetimes, where nonlinear stability has long
been established [7, 8].

The first numerical evidence in favour of such an in-
stability of AdS was reported in [9]. This topic has since
attracted much attention both from numerical and for-
mal perspectives [10-64], for reviews see [35, 65-67]. Re-
markably, this instability has recently been proved for the
spherically symmetric and pressureless Einstein-massless
Vlasov system [62, 63].

The collapse timescale is dual to the thermalisation
time in the field theory, and is important for character-
ising and understanding this instability. For energies F
much smaller than the AdS length L = 1, early evolu-
tion is well-described by perturbation theory. However,
irremovable resonances generically cause secular terms to
grow, leading to a breakdown of perturbation theory at
a time ¢ ~ 1/E. Numerical evidence suggests that hori-
zon formation occurs shortly thereafter, i.e. at this same
timescale [9, 12, 13, 27-29, 36, 42, 44]. Tt is not fully
understood why collapse seems to occur at the shortest
timescale allowed by perturbation theory, though see [52]
for some recent progress.

However, all numerical studies have been restricted to
zero angular momentum. Though perturbation theory
breaks down at ¢t ~ 1/E for systems with rotation as
well [10, 53, 64], this only places a lower bound on the
timescale for gravitational collapse. It therefore remains
unclear whether rotational forces could balance the grav-
itational attraction and delay the collapse time.

The inclusion of angular momentum also enriches the
phase diagram of solutions. In addition to the Myers-
Perry (and Kerr) family of rotating black holes, there are
“black resonators” [68] which can be described as black
holes with gravitational hair, and “geons” [10, 35, 61]
which are horizonless gravitational configurations held
together by their own self-gravity. The nonlinear dy-
namics of these solutions remain largely unexplored.

Due to the lack of symmetries, the inclusion of angu-
lar momenta poses a numerical challenge (though see [69]
for recent progress away from spherical symmetry). For
instance, the dynamical problem for pure gravity in four
dimensions requires a full 341 simulation. To reduce nu-
merical cost (see [24, 50, 59, 70] for the use of a similar
strategy), we will rely on the fact that in odd dimensions
(d > 5), black holes have an enhanced symmetry when
all of their angular momenta are equal. This simplifica-
tion alone is insufficient for our purposes since gravitons
that carry angular momenta break these symmetries. We
therefore introduce a complex scalar doublet II given by
the action
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As we shall see, this theory admits an ansatz with which
one can study gravitational collapse with angular mo-
mentum using a 141 numerical simulation.

Moreover, this ansatz has a phase diagram of station-
ary solutions that is similar to that of pure gravity [71].
In particular, this theory contains hairy black holes and



boson stars, which are somewhat analogous to black res-
onators and geons, respectively. Consequently, in addi-
tion to gravitational collapse, we are also able to investi-
gate the dynamics of hairy black holes and boson stars.

Again, in this context, hairy black holes are much like
black resonators, only with scalar hair instead of gravi-
tational hair. Both the hairy black holes and boson stars
exist for energies and angular momenta where Myers-
Perry black holes are super-extremal and singular. For
these conserved quantities, the weak cosmic censorship
conjecture therefore implies that the final state follow-
ing gravitational collapse cannot be a Myers-Perry black
hole. For evolution respecting the symmetries of our
ansatz, we wish to test cosmic censorship by identifying
the endpoint of collapse.

Boson stars are horizonless solutions with a station-
ary metric and harmonically oscillating scalar field [13,
71, 72]. They are important objects for the study of the
AdS instability since, like geons (and oscillons [14, 40] for
a real scalar field), they can be generated as nonlinear
extensions of normal modes of AdS. Such solutions can
avoid the resonance phenomenon that leads to perturba-
tive breakdown. Indeed, simulations of some of these so-
lutions indicate stability well past t ~ 1/F [11, 13, 14, 27—
29, 43, 44]. Initial data near these solutions therefore lie
within an “island of stability”. We wish to investigate
whether this stability applies for rotating boson stars.

However, boson stars far from AdS (i.e., past a turning
point in their phase diagram) are expected to be unsta-
ble. We aim to determine the endpoint of this instability.

Method — We describe our ansatz and equations of
motion schematically here; a full account is given in the
Supplemental Material. Our metric and scalar are
1 2
e R e K

4ap dp?
+ u pdtdp + a2 - p2)+

+p%(2 - p?) {;2 (dw + cos?($)de — th)2+

ds® =

+ Z (62 + sin® 0 d¢2)} } . (2a)

e sin(9) }

‘ 2b
e’ (V*9) cos(£) (2b)

H:(Hm—i—iﬂj){

where «, 3, a, , b, IIx, and II5, are real functions of ¢
and p only. This ansatz has SU(2) rather than U(1) x
U(1) symmetry due to the equal rotation in the v and
1 + ¢ angles in orthogonal planes. This symmetry is
preserved by II. Without the scalar field, one finds that
horizonless solutions have {2 = 0 and hence do not rotate.
Gauge freedom is fixed by maximal slicing, where the
trace of the extrinsic curvature K = 0 [73]. Unlike the
choice 8 = 0 in other studies, this gauge allows for evo-
lution beyond the formation of an apparent horizon.

In first-order form, our equations of motion contain 15
variables. 7 of these variables, namely s, ¢, @i, ug,
Ug,Ve, and v, are defined by removing known boundary
behaviour from b, Iy, I3, 8, a, a, and €2, respectively.
The remaining 8 variables qy, ¢, ¢i, Db, Pr, Pi, Uw, and
vg, are first-order variables. Henceforth, we may drop
subscripts to represent vectors (each of rank 3), so that
{¢,p,q,u,v} contain our 15 dynamical functions. p and
q are related to p and t derivatives of ¢ as
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where the A’s B’s and C’s are matrices containing ex-
pressions that may involve {ug,uq, Vo, v, p}. Uy, and
vg are defined by
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for some expressions F(®) and F(),

The equations of motion, including the definitions
above and the gauge condition K = 0, consists of 21
equations. With only 15 variables, 6 of the 21 equations
are not solved directly and used only for initial data,
post-excision boundary conditions, and numerical checks.
These equations are (3a), and evolution equations for u

8tu = fu s (5)

where f, can depend on all the variables.

The 15 equations we solve directly can be expressed
as a set of 9 evolution equations and 6 nondynamical
equations (i.e. equations without time derivatives). The
evolution equations take the advection form
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where the A’s are matrices that do not depend on ¢,

q, or p; and the f’s are vectors that can depend on all

variables. We have incorporated (3a) into these equations

as damping terms with v acting as a damping coefficient.
The 6 nondynamical equations take the form
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where A’s and B’s are matrices and the ¢g’s are vectors.
Though (7) is a nonlinear system, given ¢, ¢, and p, one
can find v and v by solving a sequence of linear problems
(see Supplemental Material for details.)

Initial data is supplied as a choice of ¢ and p. The re-
maining functions can be obtained by solving the nonlin-
ear system (3a) and (7) using Newton-Raphson iteration.



We evolve the system with a fourth order Runge-Kutta
method. At each step, ¢, p, and ¢ are evolved through
(6), and uw and v are obtained by solving (7) as a sequence
of linear problems. We compute expansion coefficients
from the metric to determine if a horizon has formed.
We also monitor (5) and (3a) as a check on numerics.

At infinity (p = 1), we fix the boundary metric to be
that of global AdS and require II = 0. The energy E
and angular momentum J are read from the metric at
infinity, and are conserved by (5). The response of the
scalar field (IT) is obtained by

I = (1= p*)"I) + O[(1 - p*)7] . (®)

Prior to horizon formation, we require regularity at the
origin p = 0. After horizon formation, most points inside
the horizon are excised, and boundary conditions at the
excision surface are supplied for u through (5), and the
value of vs is held fixed [86].

We use a spectral element mesh with Legendre-Gauss-
Lobatto nodes, and inter-element coupling handled by a
discontinuous Galerkin method with Lax-Friedrichs flux.
Adaptive mesh refinement for splitting elements and in-
creasing/decreasing polynomial order is decided by mon-
itoring the Legendre spectrum within each element. Lin-
ear systems are solved via sparse LU decomposition.
Data presented here violate relative energy and momen-
tum, and (3a) to within or below 1078. See the Supple-
mental Material for more numerical checks.

Gaussian Data — Consider Gaussian initial data
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with the other functions within ¢ and p vanishing. This
data is parametrised by € and A. At fixed A and small
varying e, we have E « €2 and J oc E. This is a natural
choice since individual normal modes of AdS that carry
angular momentum also obey J o« E at small E. We take
two families of initial data: one with fixed A = 0 where
J =0, and another with A = 1, where J ~ 0.155F.

Let us describe the stationary black holes that can
serve as final states of gravitational collapse. These black
holes must fall within the symmetry class of our ansatz
and have the same conserved quantities as our initial
data. For A\ = 0, we have J = 0 so the only station-
ary black holes are Schwarzschild-Tangherlini solutions.

For A =1, there are two competing families of regular
black hole solutions. Myers-Perry black holes have the
most entropy where they exist, i.e. for £ > Feyy =
0.0691. For all energies ¥ < Feyxtr, hairy black holes have
the most entropy (by being the only existing solution).
We wish to verify that gravitational collapse for the A = 1
family will eventually settle into one of these black holes
in accord with their respective energy ranges. This can
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FIG. 1: Evolution of scalar response, averaged in a 27 time
window, for Gaussian initial data. Top: Collapse occurs at
t ~ 30.1 and settles to a Myers-Perry black hole. Bottom:
Collapse occurs at ¢t ~ 55.4 and settles to a hairy black hole.
The red dashed line is the hairy black hole value from [71].

be viewed as a test of cosmic censorship, since Myers-
Perry would be superextremal for E < Feyt,.

A hairy black hole can be distinguished from the
Myers-Perry case by the presence of the scalar field. In
Fig. 1, we show the evolution of the normed square of
the scalar response |(IT)|? for two cases. In the first case,
E =~ 0.0873 > Foxtr, so the Myers-Perry configuration is
the preferred solution. Indeed, we find that the scalar
field vanishes at late times.

In the second case, E =~ 0.0560 < Fextr, so the Myers-
Perry black hole is superextremal, and we find that the
scalar field approaches a constant non-zero value at late
times, indicative of a hairy black hole. We have also
matched this value to that of the expected final hairy
black hole solution which was first obtained in [71].

In both cases, we have also matched the final entropy
and angular frequency to their respective final stationary
solutions [71]. In the subextremal case, we have matched
quasinormal modes as well. (See Supplemental Material.)

Now we compare the timescale for horizon formation
between the A = 0 (J = 0) and A = 1 (J = 0.155E)
families of initial data. In Fig. 2, we show a log-log plot of
the collapse time versus the energy. We see that at fixed
energy, the initial data with nonzero angular momentum
takes a longer time to collapse. However, the collapse
times for both sets of initial data exhibit a power-law that
is consistent with a ¢t ~ 1/FE scaling. We conclude that in
this case, angular momentum increases the collapse time
but does not affect the timescale.

Boson Star Data — Boson stars within our ansatz
have been constructed in [71], and can be found by setting
the metric to be time-independent and the scalar field
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FIG. 2: Collapse times versus energy for Gaussian initial data.
The power-law is consistent with a ¢ ~ 1/F scaling. The two
longest runs collapse at ¢t =~ 1721.12 and ¢ ~ 1944.19.
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FIG. 3: Evolution of scalar response, scaled by its initial
value, for perturbed boson stars near the turning point. Top:
Boson star with w = 4.3 (E = 0.392) collapses into a Myers-
Perry black hole. Middle: Boson star with w = 4.3 evolves
to a stable oscillon. The perturbations for the top and mid-
dle plots differ by a sign. Bottom: Boson star with w = 4.4
(E &~ 0.394) remains stable.

to have a harmonically oscillating complex phase. They
can be parametrised by their harmonic frequency w. For
small energies, w is close to a normal mode frequency of
AdS. We focus on the lowest frequency mode with w =5
near AdS. For small energies, these particular boson stars
have angular momentum J ~ 0.2F.

As one increases the energy of the boson star, w de-
creases until a turning point is reached around w = 4.35,
where F and J are both maximal. Boson stars that lie
on the AdS side of this turning point are expected to
be nonlinearly stable (at least up to t ~ 1/FE), and are
otherwise expected to be unstable [87].

We perturb boson stars near the turning point with fre-
quencies w = 4.3 (in the ‘unstable’ branch) and w = 4.4
(in the ‘stable’ branch) with a Gaussian profile similar

o (9a). Their scalar response |(II)|? is shown in Fig. 3.
Note that though the scalar field oscillates with frequency
w, these oscillations are canceled out in |II]?, and conse-
quently are not seen in Fig. 3 nor in the metric.

Indeed, the w = 4.3 boson star is unstable, but the
endpoint of its evolution depends on the perturbation.
For one perturbation (top panel of Fig. 3), evolution pro-
ceeds rapidly towards gravitational collapse, and eventu-
ally settles to a Myers-Perry black hole. While a compet-
ing hairy black hole also exists, it has less entropy than
Myers-Perry in this region of parameter space.

Perturbing the same boson star with the opposite sign
yields drastically different results. As one can see from
the middle panel of Fig. 3, large O(1) deformations de-
velop in [(IT)|? (and the metric) that oscillate for long
times. The frequency of these oscillations is much smaller
than the boson star frequency w. The metric and scalar
both oscillate, so the final state (assuming continued sta-
bility) might be characterised as an oscillon. Since the
frequency w is still present in the scalar, this solution is,
in a sense, a multi-frequency oscillon.

In contrast to the above, the lower panel of Fig. 3 shows
that the perturbed boson with w = 4.4 remains stable at
long times, with no large deviations from the initial data.

We have repeated this study for different perturbations
and boson stars, and also for oscillons (where II7 = 0, see
also [40]). We find no qualitative difference to the above.

Conclusions — Our numerical results suggest that
much of our understanding of the instability of AdS car-
ries over to situations with angular momenta as well. In
particular, for generic data, the timescale for gravita-
tional collapse ¢ ~ 1/FE is preserved in the presence of
rotation. Additionally, like oscillons in spherical symme-
try, there are solutions that are nonlinear extensions of
normal modes of AdS that are stable past t ~ 1/E.

We have also found that, depending on the pertur-
bation, unstable boson stars will either collapse or os-
cillate. A comparison can be made to situations in
flat space where the endpoint of unstable solutions can
also depend upon the perturbation (see, e.g. [72, 74—
78]). In flat space, energy and angular momentum can
be carried away, and the non-collapsing evolution is
well-approximated by a perturbation of a stable boson
star, presumably settling towards a stable boson star at
asymptotically late time. By analogy, we suspect that the
oscillating solution we find in AdS can be described as a
nonlinear extension of a perturbed stable boson star. In
AdS, however, there is a reflecting boundary which may
cause the oscillations to persist indefinitely.

Finally, let us comment on interesting regions of pa-
rameter space that we have not studied. There is a range
of energies and angular momenta where hairy black holes
have more entropy than Myers-Perry black holes. This
happens to be where Myers-Perry black holes are unsta-
ble to superradiance. In fact, hairy black holes branch off
from Myers-Perry configurations precisely at the onset of



this instability, for particular perturbations [71].

This region is therefore a natural place to study the ro-
tational superradiant instability [68, 79-85] for which lit-
tle is known fully dynamically. However, typical growth
rates for this instability are around 10~ [71], which re-
quires a longer simulation than we can feasibly perform
with our methods. Furthermore, our ansatz implies that
such a study will necessarily be incomplete. High angu-
lar wavenumbers are expected to play an important role
in this instability [68, 83-85], but our ansatz is restricted
to only the m = 1 azimuthal wavenumbers.
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Supplemental Material

Equations of Motion

Here, we describe the equations of motion in full. The ansatz, as we have presented it, is reproduced here:

1 ﬁ2 ﬁ dp?
T 22— p?) [12 (du) +cos2(2)dg — th)2 n Z(cw? + sin? 9d¢2)] } ,

. e sin(9)
H:(Hm+lnj)|: @7‘(7’[}+¢)C0:(g) .

We first perform a number of function redefinitions as follows:

b:1*02(2*P2)(1*P2)4<Pb7
My = p\/2 = p2(1 = p*) e,

I = pyv/2 — p2(1 = p*) i
B=p"(2-p")(1—p") ugs,
a=1-p*2-p")1-p") U,
a=1-(1-p,,
Q=(1-p)"q .

(S.1a)

With these redefinitions, the finiteness of the new functions will ensure that the boundary conditions are satisfied.

Vacuum global AdS is recovered when all of the new functions vanish.

From here, we introduce a number of functions that will put the equations of motion into first-order form. These
are qp, qr, Gi, Pbs Pr, Pi, Uy and vs. We will give the definitions of these functions when presenting the equations of
motion. gy, ¢, and ¢; will be defined in (S.4); py, pr, and p; in (S.5); uy in (S.15f); and vs in (S.15e). We therefore
have a total of 15 functions which can expressed as ¢ = {vp, r, vi}, ¢ = {@: @ @i}, P = {Dbs PrsDi }s U = {Uw, Ug, Ug }s

and v = {vg, Vo, Vo }-
For ease of presentation, let us also define a number of auxiliary expressions:
3p*(2 - p?)
P3O e
W? = b2 + 24u% ,

1
[PW]? = aP? + Z,02(2 — P yW?

Q= w [p(2 —p%)ap +2(1 - p2)2wb] g
[p(2 P2)ar + (1~ 92)2<pr]2 + [9(2 —pP)ai + (1 - pz)%} g
QP = W [0(2 — gy +2(1 — /)2)2<Pb]pb+
+ [ﬂ(2 = ")ar + (1= p*)er |pr + [p(2 —pP)ai + (1 - p2)2<pz}pi :
52 — p?(2 — p2)(;4+ 2b + 3b2)@g L2 Zbg (G402 |
[QP]* = Q*+ (1 - p?)*0?

2(1 - Pz)%) ,

A2—a<[3+p2(2p2)}ua+ 7

(S.3a)
(S.3b)
(S.3¢c)

(S.3d)

(S.3h)

(Bou) 20%(2 - pH)(1 —p2)2{(1 —p2)4<[6+p2(2 _pz)} (PW]? + [Q<I>]2> +3[3_p2(2 —p2)}ua} ’ (S.30)

3va



S, =

Q|

(1= 2P (22 - ) [P+ JPC - W] Qe (5.3)

S5 = (1- p2)2{p2(2 D) <2 +p22-p) (1= p?)! [3 +p%(2 - pQ)} ua> [PW]?~
- (2= - P02 s re- ) ek
=P f1- 0= 22 (320 AL 22 )] o (5.3K)
Now we present the equations of motion. The full set of equations of motion are all generated from a combination of
the Einstein equation, the Klein-Gordon equation for the scalar doublet, the maximal slicing gauge condition K = 0,
and definitions of first-order functions. There are a total of 21 equations, some of which are evolution equations, and

the remaining of which are nondynamical equations that do not contain time derivatives.
The first three equations are linear nondynamical equations for ¢ that define the functions in g:

2 6U
(1= Pon =80 |14 5 =0 = 2 (S 4a)
42 6U
(1= P0por =0 |14 4 =] o =2 (S.4D)
(1= p*)0ppi — 8p [1 + W} pi = f/qé : (S.4c)

Note that the coefficient of the derivative term vanishes only at p = 1. There is therefore a natural direction of
integration for these equations, which is from the boundary p = 1 towards the origin p = 0. No external boundary
conditions are required for these equations.

The next nine equations are evolution equations for ¢, ¢, and p. The evolution equations for ¢ are given by the
definition of p:

Drpn = o (flfp + %m = )1 = p)?us|p(2 — p)as +2(1 — ﬁ%}) , (S.5)
Dpr = a <\/51 Pt %f@ = )1 = p)Pup|p(2 = p)ar + (1 - p%r}) + (=) 'vapi,  (S.5b)
i = a (ﬁlfiPQ + %pz@ —p*)(1 = p*)’ug :0(2 —p*)gi+ (1 - 02)2%}) — (1= p*)vap, . (S.5¢)

Note that finiteness of ¢ requires that p = 0 at p = 1. We must enforce this condition in our numerical evolution.
The evolution equations for ¢ come from the commutation of time and spatial derivatives:

a 1
Orqy = a{appb +2p°(2 = p*)?(1 = p*) 'updpqe — 3p

Po
2 2 1—p?

- ) [lu — o[22 = o) PW + Q)] + (1 o2 ) - 2o ”Q)Q)ua} P

3 1+va
- %p(l —p)’up (p(2 — (1 +13p%) g + 4(1 — p*)? {4 +p°(2— pQ)} wb) } + %p(l — p?)? APpy+
o [ oum 1o (va+ G2l Y- (560
e = a{;appr + %pi“’(‘z ="V = ") usdya: — 3py prQ -
—p(1=p?)° B(l - %) [p2(2 - p*)[PW]* + [Qfﬁﬂ - (502(2 - %)+ m>ua] pr—
—p(1=p?)?° {UB <;p(2 - ) [4 +p%(21 - 11p2)} a4 + (1= p?)? [4 +p%(2 - pz)] w) +(1- pz)bQwaz} }+
+ (1= %) S A% + (1= p)vaa] +19 {\f(l — )0 — 4p (ﬁ+ m> or — qr} : (S.6b)



Ohas = a{‘;apm + 303(2 — (L= p*) usdyq — 3p5 fz‘pz _
— oL =) B(l — )[R - PP + [QO)2] — (5p2<2 ~ )+ W)u] pie
_pu_p%ﬂw(;MQ_fw4+f@1‘”fﬂ%*wl—fVP+P%?—fﬂ%>—ﬂ—w%§%@4}+
+(1-p%)? [gAQPi —(1- pQ)qu} + {?(1 — )i — 4p (\/a+ (i(;f\)jg)a) ot qz} - (560

As in the evolution equations for ¢ (S.5), these equations require p = 0 at p = 1. We have included damping terms
with a non-negative constant 7 acting as a damping coefficient. These damping terms help ensure that (S.4) is
satisfied.

As an aside, let us describe how damping terms are incorporated. Suppose we have the first-order definitions
Dpp = 0P oo = 0 | (S.7)
where the ®’s are some expressions. Then first-order evolution equations contain
dhp=00 900 =9,00 (S.8)
and we have the constraint
C=d,p— 0 (S.9)

which must vanish on a valid solution. Taking a time derivative of C and using the equations of motion (S.8), one
arrives at 0,C = 0, demonstrating that the constraints, along with any violations of it, are preserved in time. However,
if we modify the second equation in (S.8) to

9,0 = 9,061 1 4C, (S.10)

one instead finds 9;C = —+C, which causes the constraints to be exponentially damped in time.
Continuing with the equations of motion, the evolution equations for p are

(14 — 15p%)

2

1 1
dipp = a{2(2 — )0y + 503(2 =) (1= p*) ugdppy +

qb
e 4(1 = p*)pp+

+022-p")(1-p?)° <§(1 — ) [QP] + 2[1 - 3p°(2 - pZ)} up — fpz:)pw
(1-p%)?°
\/E

1 1 2
[31)2(2 - PPy, + 5 {0(2 —pP)ap +2(1 - pQ)QsOb] -
2(1 — p?)?uq,

1++a

- =22 (F )+ (L D04 PG ) )] b

+

+ (p(2 —p*)agp — 2 [1 +07(2 - pz)} %) -

(1-p%)?
* 2a

1 1
depy = a{2(2 = P")0p0r + 50°(2 = p*)* (1= p*) upOppr +

[p“(? — p*)? (1= p*) ugpy + p(2 — p*) g + 2(1 — p2)290b} A% (S.11a)

= _211p Lo (1 )t
2 2 2\3 2 2\4 2 2
+p°(2-p7)(1—p%) <3(1—p) [QP]+[1—5P (2—p)}w)pr+

(1_p2)5|: Uq
Va |1+

+(1=p)? <21a (012 = %21 = 0 uspr + p(2 = p2)ap + (1= p)%0, | A% + (1 = pQ)mm) ;. (S11b)

+

<P(2 = 0")ar - [2 +p%(2 - pQ)} %) P2 A1 — g2 Z bcpi%] }+



(10 — 11p?) 4

1 1
i = a{2(2 = 0")0pti + 5p°(2 = p*)* (1 = p*) ugdppi + 5 (1—p*)pit

# =)0 2P (50 QP+ [L =522 = )]s

e f” [1 e <p<2 - 24002 —pﬂw) - —p2>42§%§%} }+
+(1-p%)? (; (012 = 221 = 0?) uspi + p(2 = )i + (1= p)%0| A2 = (1= p%pT) . (S110)

Finiteness of p requires that ¢ = 0 at p = 0. This condition is enforced during numerical evolution.
This collection of nine evolution equations (S.5), (S.6), and (S.11) take the form of an advection system

Ou=Ad,u+f, (5.12)

for some vector of functions u, advection operator A, and nonlinear terms f. The advection operator A has eigenvalues

0, S[P@— R - s £ V2=Vl (S.13)
each with a three-fold degeneracy. These eigenvalues define the characteristics of this system. The two signs give
velocities to the ingoing and outgoing characteristics. A computation of expansion coefficients indicates that an
apparent horizon forms when

2
u
L= (1=p*)* -2 <0, (S.14)

which also corresponds to a situation where the outgoing characteristics switch sign. These eigenvalues are also used
in our implementation of spectral element methods to determine flux across elements.
The next six equations are nondynamical equations for u and v:

p(2 = p*)Bpuw + 12(1 = p*)uy = —8(1 = p*)* (¢rpi — @ipr) , (S.15a)

p(2— )y 11201 — P = 5 (1 - 2 [QP] (S.15D)

o2~ ) 0pua + 5 (1= ) [64 92— 221~ 2P = S (S.15¢)
p(2 — p?)0,vs +8(1 — p?)vs + [Bsalva = %55 : (S.15d)

(1= p*)0)v0 — 8pva + QP({/ELPQ)U(; =—p[3+0°2-p*)] ta, (S.15¢)

(1= p*)9pva — 8pvg = —Q’Jjguw , (S.15f)

where the last two equations (S.15e) and (S.15f) define vs and wu,, respectively. Each of these equations has a
derivative term with a coefficient that vanishes only at p = 0 or p = 1. These determine the direction of integration
for these equations. Namely, the first four are integrated from the interior out, and the last two are integrated from
the boundary in. Prior to horizon formation, the origin is part of the numerical grid, and no external boundary
conditions are required. After horizon formation, the numerical grid interior to the horizon will be excised, and
boundary conditions will need to be supplied for the first four equations.

This set of nondynamical equations (S.15) is a nonlinear system, but can be solved as a series of linear systems.
Suppose ¢, ¢, and p are known at a particular time slice. Then (S.15a) and (S.15b) can each be solved independently
as a linear differential equation, obtaining u,, and ug. These functions enter into the source term S, and u, can
then be obtained by solving (S.15c). Then uy,, ug, and u, are placed in [Bss] and Ss, and the coupled linear system
(S.15d) and (S.15€¢) can be solved for vs and ve. Finally, u.,, ue, and v, enter into (S.15f) whose solution yields vg.



Finally, the remaining three equations are evolution equations for u:
POty = —4(1 = p*) e [0rgi — igr + p*(2 = p*) (1 = p*) ug(@rpi — 0inr)] (S.16a)
P2(2 — p)Byup = (;{(1 e <p2(2 ) [aP2 _ ip2(2 _ p2)W2} FQr-(1- p2)2<1>2>Jr
#2012 (0= ) uslQP] -

- %(1 ) [1 - (1-p"? (p2(2 ) [3 +p%(2 - 92)}% - 2{1 +p%(2 - ,02)}0(1)}% —Vavs ,
(S.16b)

Dy = (1 p2>3{23°‘ [p2<2 ~ P ((1 )[R - AP + [Q0)2] —3[1 + 22 - pﬂua) n 2a[QP]}
+p3(2 - p2)u5A2} . (S.16¢)

These are degenerate evolution equations. That is, they do not contain spatial derivatives (or equivalently, their
advection operator has only zero eigenvalues). Since the energy F o u,(t,p = 1) and angular momentum J o
Uy (t, p = 1), the vanishing of the equations (S.16a) and (S.16¢) at p = 1 imply that F and J are conserved.

After excision, these equations supply boundary conditions for u,,, ug, and u, in the first three nondynamical
equations of (S.15). The remaining boundary condition is determined by keeping vs fixed. One can show that this
last condition just fixes an integration constant in the maximal slicing gauge condition K = 0.

To summarise, we have 21 equations of motion in 15 variables, which we have collected into rank-3 vectors ¢, ¢,
p, u, and v. 9 of these equations are nondynamical equations (i.e. without time derivatives), where (S.4) contains
spatial derivatives of ¢, and (S.15) contains spatial derivatives of u and v. The remaining 12 of these equations
are evolution equations for ¢, ¢, p, and u given by (S.5), (S.6), (S.11), and (S.16), respectively. Of these, only the
evolution equations for ¢ and p are nondegenerate. That is, their advection operator has nonzero eigenvalues.

We solve the equations of motion as follows. First, initial data is provided as a choice of ¢ and p. For completeness,
we express our Gaussian initial data in terms of the variables in this section:

Y = T A (S.17a)
2

Py = dAe (1 — p2)e 420077 1" (S.17b)

with the remaining functions in ¢ and p vanishing. The remaining functions can be obtained by solving the nonlinear
system (S.4) and (S.15) using Newton-Raphson iteration. With all functions in hand, we step ¢, ¢, and p in time
using (S.5), (S.6), and (S.11). We then obtain the remaining functions by solving (S.15) as a series of linear problems.
For boundary conditions, we enforce ¢ =0 at p =0 and p = 0 at p = 1. Post-excision, the value of vs at the excision
surface is held fixed, and boundary conditions for w,,, ug, and u, at the excision surface are supplied by (S.16). The
equations (S.4) and (S.15) are not directly solved in this algorithm and monitored as numerical checks.

Having described our equations of motion and evolution scheme, let us conclude this section by providing some
guiding principles to our choice of ansatz and variables. We arrived at this choice through three considerations. First,
for efficiency, we wish for the nondynamical equations (S.15) to be solvable as a series of linear problems. Second,
for stability, the nonzero eigenvalues in the advection operator (S.13) should be nonsingular and contain roots only
at apparent horizons. Third, for accuracy, the known boundary behaviour of the variables should be subtracted or
factored out (as we have done in (S.2)). There is an exception to this last criterion. Though we know that ¢ = 0 at
p=0and p=0at p =1, factoring out this behaviour would introduce zeros or singularities in the eigenvalues (S.13).

Numerical Validation

In this section, we present a number of additional numerical checks. Recall that we evolve the system by stepping
©, ¢, and p in time using (S.5), (S.6), and (S.11), then obtain u and v by solving the nondynamical equations (S.15).
There are two sets of equations that we do not solve directly: the nondynamical equations for ¢ given in (S.4), and
the evolution equations for w in (S.16). We can use these equations for numerical checks.

We verify (S.4) by solving it for ¢ and comparing the result to what we obtained through our main evolution. We
call the difference of these quantities Agyo1¢p. Similarly, given the numerical functions at a time slice, we take a single
time step of the left hand side of (S.16) using (S.16) directly, and compare that result to what we obtain using our
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FIG. S.1: Relative energy violation, momentum violation, and differences between our main evolution code and (S.4), (S.16).
For the latter two, we show the running maximum of the infinity norm. Left: Our longest collapsing run with A = 0 (We do
not show momentum violation since J = 0). Right: Our longest collapsing run with A = 1.
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FIG. S.2: Left: Independent residual test using fourth-order finite differences on uniform grids with values interpolated from
our spectral element mesh. We have chosen a late time slice of a A = 0 run and a A = 1 run, and divided the 21 equations
of motion into nondynamical equations and evolution equations. The power-law is consistent with fourth-order convergence.
Right: Convergence of residuals at horizon formation for a perturbed boson star with w = 4.3. We compute the evolution to
horizon formation on a series of fixed meshes with 16 elements. We see exponential convergence by increasing the number of
nodes within each element.

main evolution code. We call the difference of these Agyou. Finally, we monitor the relative violation of energy and
angular momentum which are quantities conserved though (S.16).

In Fig. S.1, we show these various measures of error as a function of time. The differences Agyo1p and Agyou
fluctuate erratically, so we only show the running maximum. All of these errors are within or below 1078,

Next, we perform an independent residual test on our solution. That is, we evaluate the residuals of all equations
of motion using finite differences and demonstrate convergence with increasing resolution. By using spectral inter-
polation, we replace our spectral element mesh with uniform meshes at various resolutions, and we compute spatial
derivatives via fourth-order finite differences. Time derivatives are also computed using fourth-order finite differences,
but we fix the time step.

We take a time step near collapse and compute the residuals of all 21 equations as described. The results are
shown as a log-log plot in the left panel of Fig. S.2. We have divided the equations into nondynamical equations and
evolution equations, and have taken the infinity norm of these sets of equations. We find that the residuals converge
with a fourth-order power law, as expected.

Finally, we test convergence of our code on a perturbed unstable boson star that leads to gravitational collapse.
We carry out this computation from start to horizon formation on a series of fixed meshes, each with 16 elements and
varying numbers of (Legendre-Gauss-Lobatto) nodes within each element. At the formation of an apparent horizon,
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FIG. S.3: Evolution of pressure (B) (averaged in a 27 time window), horizon entropy Su, and horizon angular frequency Qu
in units of their respective final stationary solutions. Left: Evolution for subextremal Gaussian initial data with A =1, ¢ = 0.5
(with J =~ 0.0136, FE ~ 0.0873) that settles into a Myers-Perry black hole. Right: Evolution for superextremal Gaussian initial
data with A =1, e = 0.4 (with J & 0.00873, E = 0.0560) that settles into a hairy black hole. The large oscillations in the top
panel for (B) are a consequence of the small value for the corresponding hairy black hole solution (B)upm =~ 3.314 x 107°.

QNM Prony Analysis Perturbation Theory
(B) /5.829 — 5.263 x 1072 |5.828 — 5.303 x 10724
(Ily) || 4.7528 — 0.03130 4.7523 — 0.03127
(I3) || 4.7522 — 0.031264 4.7523 — 0.03127

TABLE I: Comparison of quasinormal modes (QNM) extracted using Prony analysis from late-time evolution of Gaussian
initial data with A = 1, ¢ = 0.5 (J ~ 0.0136, F ~ 0.0873) and from linear perturbation theory of the Myers-Perry black hole
with the same E and J.

we compute residuals as before. The right panel of Fig. S.2 shows that the convergence is exponential, as expected of
spectral methods.

Matching of Final States
In Fig. 1 of the main paper, we presented the evolution of the scalar response |(IT)|? from two sets of collapsing
initial data. The scalar response |(II)|? in one of these vanishes at late times, which suggests that the final state is a
Myers-Perry black hole. In the other, |(IT)|? approaches a constant at late times, suggesting that the final state is a
hairy black hole [1]. In this section, we present further evidence of the final states by matching other quantities.
One of these quantities is a pressure (B) extracted from the boundary stress tensor [2, 3] defined as

(B) = 2065 (T + (V) =t p = 1) (5.18)

where ¢, is defined in (S.2a), and we have chosen a conformal frame where the boundary metric is R®) x S%. For
solutions within the symmetry class of our ansatz, the boundary stress tensor is fully specified by (B), E, and J.

Once a horizon forms, we can also compute the entropy Sy and angular frequency € of the apparent horizon.
Though these are not gauge-invariant quantities during time evolution, they must approach that of a stationary
solution at late times.

The evolution of these quantities is shown in Fig. S.3, expressed in units of a stationary black hole solution [1] with
the same E and J as the initial data. We see that, at late times, these quantities approach that of the stationary black
hole solution. The final value for (B) in the superextremal case is the least conclusive of these since the remaining
oscillations are still large compared to the hairy black hole value (B)gpy ~ 3.314 x 1075, The smallness of this value
in this case makes matching difficult.

For the simulation that shares conserved quantities with a Myers-Perry black hole, we have also compared quasinor-
mal modes. The late-time behaviour of these simulations should be well-approximated by linear perturbation theory
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FIG. S.4: Top: Phase diagram of boson stars. Vacuum AdS lies at the origin with £ = J = 0. Bottom: Unstable mode for
upper branch of boson stars.

of the final stationary state. Using Prony analysis, we can extract quasinormal modes from the time evolution of the
scalar response (Ily), (II5), as well as the pressure (B). These can be compared to quasinormal modes computed
directly from linear analysis of a stationary solution, which we have performed for Myers-Perry black holes. The
comparison is made in Table I, from which we see that the agreement is quite good.

Linear Perturbations of Boson Stars

In this section, we demonstrate the linear instability of boson stars that lie beyond the turning point (see [1] for
details on this turning point, and the top panel of Fig. S.4 for a phase diagram). One can typically prove that the
existence of a turning point in the phase diagram implies an instability on at least one side of that point. Studies of
boson stars and related solutions in situations different from ours suggests that the side connected to AdS should be
stable, and the other side unstable. Nevertheless, for completeness, we perform a linear stability analysis to confirm
this expectation.

For this purpose, we have decided to work in a different gauge than the rest of this paper. We choose a Schwarzschild-
like gauge with 8 = 0 in the ansatz . Boson stars are found in this ansatz by setting the metric to be time independent,
and the scalar field to have a harmonic time dependence II(t, p) = e™“'II(p). The coupled gravity-matter equations
for the boson stars are solved by Newton-Raphson iteration using pseudospectral methods on a Chebyshev grid (see
[4] for a review on these methods). A seed is provided by perturbation theory about AdS.

The functions are perturbed by choosing the form

f(t,p) = fop) + 0fe(p) cosh(At) + 6 fs(p) sinh(Xt) , (S.19)

where f stands for any metric or scalar field function, fy is the function on the boson star background solution, and
the  f’s are their perturbations. The equations of motion are expanded to linear order, yielding an eigenvalue problem
with eigenvalue . For the form we have chosen, real ) is indicative of an instability. There is a symmetry fs <> —fs,
X < — A, so without loss of generality, we take ) to be positive. Each eigenvalue will have a multiplicity of two. This
degeneracy arises because one can shift time by a phase t — t + ¢¢ and preserve the form of the functions (S.19)
above.

We again employ pseudospectral methods to solve the eigenvalue problem [4]. We first solve the resulting matrix
(generalized) eigenvalue problem by QZ factorization. We find no unstable modes in the branch of boson stars
connected to AdS. Past the turning point, we identify an unstable mode. We track this mode in parameter space
using Newton-Raphson iteration. To eliminate the degeneracy, we demand (in addition to a normalisation condition)
that one of the perturbation functions takes a certain value at a spatial point. Since the resulting matrix problem is
overconstrained, we solve it by linear least squares. We have checked that the solutions remain the same with different
numerical resolutions.

In Fig. S.4, we show the phase diagram of boson stars and the eigenvalue corresponding to the unstable mode. We
see that the eigenvalue approaches zero near the turning point (around J = 0.083), suggesting that the turning point
is indeed the onset of this instability.



Interestingly, this eigenvalue also decreases rapidly near the edge of our numerics around J ~ 0.045. Near this
region of parameter space, the phase diagram has a number of further turning points (and plots of F and J versus the
boson star frequency w produce spirals). This opens the possibility that boson stars may stabilize again past another
turning point. Similar behaviour has been conjectured in [5] in the context of non-uniform black strings. However, it
is difficult to proceed further since the solution approaches a singularity.
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