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by Beining SHANG

Social insects can achieve remarkable outcomes, various examples can be found in ants, bees,

etc. Inspired by social insects, swarm robotic research considers coordinating a group of rela-

tively simple and autonomous robots to finish tasks collaboratively based on direct or indirect

interactions. Such systems can offer advantages of robustness, flexibility and scalability, just

like social insects.

For many years, various researchers have endeavoured to design intelligent artificial swarms

and many hardware-based swarm robots have been implemented. One assumption that made

by a majority of swarm robotic researchers, particularly in software simulation is that a robotic

swarm is a group of identical robots, there is no difference between any two of them. However,

differences among hardware robots are unavoidable, which exist in robotic sensors, actuators,

etc. These hardware differences, albeit small, can affect the robots’ response to the environment.

Moreover, hardware differences can provoke robots’ heterogeneity which then profoundly influ-

ence swarm performance due to the non-linearity in the controller and uncertainty in the envi-

ronment. Nevertheless, questions about how hardware differences influence swarm performance

and how to make use of them remain a research challenge.

In this work, the issue of hardware variation in swarm robots is investigated. Specifically swarm

robots with hardware variations are modelled and simulated in a line following scenario. It is

found that even small hardware variations can result in behavioural heterogeneity. Although the

variations can be compensated by the software controller in training, the hardware variations

and resulting differences in training are amplified in the interactions between the robot and the

environment.

To know how exactly hardware variation influence robotic behaviours, a novel approach, in-

spired by the chromatography method in chemistry, is proposed to sort swarm robots according

to their hardware circumstances. This method is based on a large number of interactions be-

tween robots and the environment. Individual robot’s unique hardware circumstance determines

its unique decision making and reaction during each robotic controlling step, and these unique

mailto:bs3g10@ecs.soton.ac.uk


iv

microscopic reactions accumulate and contribute to the robot’s macroscopic behaviour. The be-

havioural sorting results show that the behaviour of an individual robot is not determined by a

single parameter but by the combination of multiple hardware factors. Different combinations

of hardware parameters can help robots achieve similar behaviours.

The efficiency of the behavioural sorting method is investigated, particularly the influence of

the robot’s controller and environmental factor. By simulating various combinations of robots

with different integration lengths of the controller and arenas with different pattern densities, it

is discovered that if the robots’ ability to memorise previous events is coupled with the density

of the sorting arena, better sorting results can be achieved.

This work is regarded as an initial investigation into the issue of unavoidable hardware differ-

ences between swarm robots. Given the research outcome and that real swarms will necessarily

show hardware variations, it is therefore necessary to contemplate current swarm algorithms in

the context of diverse robot populations. In addition, a new research field of swarm chromatog-

raphy for sorting robotic behaviours to improve swarm efficiency is initiated.
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Chapter 1

Introduction

Within the natural world, insects can achieve remarkable results, for example, termites can build

large and complex mounds (Lüscher, 1961), army ants organise impressive foraging raids (Ret-

tenmeyer, 1963), or honey bees build a series of parallel combs. These insects can collectively

accomplish complex tasks beyond individual capabilities. Inspirations are drawn to swarm robot

research which considers how to design a group of robots which can work collectively to fin-

ish specific tasks. Adopting a group of relatively simple, collectively working robots may offer

many advantages in efficiency, fault-tolerance and cost per system (Bonabeau et al., 1999). Be-

cause of these advantages, numerous attempts have been seen (Valdastri et al., 2006; Hauert

et al., 2008a; Spears et al., 2009; Zhang et al., 2013; Hilder et al., 2016; Patil et al., 2016;

Novischi and Florea, 2016) to develop robotic swarms.

One of the important concepts in designing swarm robot is the heterogeneity and homogeneity

of the swarm. In nature, heterogeneity is discussed by Beshers and Fewell (2001):

• Each worker specialises in a subset of the complete repertoire of tasks per-

formed by the colony

• This subset varies across individual workers in the colony.

Many examples can be found in nature: in a bee colony, some bees specialise various specific

tasks, like food foraging, building, attending to offspring, and so on (Bonabeau et al., 1999).

This is often because that specialists consume less time and energy and are therefore more

proficient in specific tasks comparing with generalists, thus improving the performance of the

whole colony. Such examples inspire robotic research, especially robotic swarms, because both

social insects and swarm robots are controlled in a decentralised manor and individual decisions

are made based on local perceptions. In robotic swarms, different robots’ allocating themselves

in different tasks can result in benefits like increasing energy efficiency, higher parallelism and

reduction of interference between workers (Şahin, 2005).

1
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In robotic swarms, heterogeneity describes the scenario that difference or diversity can be found

between any two robots in a swarm (Potter et al., 2001). Homogeneity means robots in the

swarm are identical. To study this systematically, current research of collaborative robots is

firstly categorised in Fig 1.1. Based on whether robots are made intentionally different, collabo-

rative robots can be separated into robot ecosystems1 and swarms. In a robot ecosystem, robots

which usually are different in their size, functions, etc. are adopted. Successful implementations

have been reported in Parker (1994) and Dorigo et al. (2013).

collaborative
robots

robot
ecosystems swarm robots

heterogeneous

software
difference

hardware
difference

homogeneous

rarely exist
in reality

exist in
simulation

intentionally different?

different in?

different?

yes no

yes no

Figure 1.1: Collaborative Robots Categorization: Based on whether robots are made
intentionally different, collaborative robots can be separated into robot ecosystems (in-
tentionally different) and swarms (intentionally similar). For swarm robots, heteroge-
neous robots are the ones which are different in either software (for instance, different
control or software strategies or just different parameters in the software controller) or
hardware (variation in their hardware. For example, two robots’ motors have different
driving characteristics.). If all robots in a swarm are identical, they are homogeneous.
In simulations a large group of homogeneous swarm robots can be created easily. How-
ever, homogeneous robots are hardly found in reality because hardware differences are
unavoidable.

In typical swarm systems, robots are usually made to the same design and similar in their shapes,

functions and abilities. To be specific, robots in a swarm are usually made of same type of mod-

ules including sensors, actuators, batteries, platforms, etc. According to whether differences

exist between any two robots in the swarm, swarm robots can be separated into heterogeneous

and homogeneous swarms. For instance, robots can have different software procedures compar-

ing with others (Bongard, 2007; Pugh and Martinoli, 2007). On the other hand, they can use the

same software procedure, but values of the parameters in the software are different.

In addition, there is another factor which can also differentiate robots in a swarm: the hardware

differences. The hardware differences refer to components variations, uncertainty generated

from the assembly process and different wear and tear conditions during using. In practice it is

impossible to avoid these differences. Therefore except in simulations where identical robots can

be duplicated, it is very difficult to find homogeneous robots in reality because of the hardware

differences like component variations, assembly uncertainty, wear and tear, etc.

1Although in some research, this type of robots with different shapes and functions is called swarm robot. How-
ever it is more accurate to categorise them as robot ecosystem.
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1.1 Shortcomings of Existing Swarm Robot Research

In the current research of robotic swarms, one assumption made by majority of the researchers is

that individuals in swarm robotic system are identical and the existence of hardware difference

has been neglected. To be specific, in simulation-based research, simulated robots in a swarm

has no difference comparing with their kins in terms of the hardware. In addition, in hardware-

based research, robots in a swarm are used with the assumption that their hardware are exactly

the same.

The assumption is contradictory to the problem that researchers face in practice. In the field of

general robots, hardware differences such as sensors’ different sensitivities, actuators’ different

driving characteristics, etc. cause problems (Koestler and Bräunl, 2004; Malheiros et al., 2009).

To ensure robotic system running smoothly, efforts of compensating the hardware differences

have to be made (Roth et al., 1987; Lobo and Dias, 2007; Alici and Shirinzadeh, 2006). There-

fore in swarm robotic swarms, it can not be denied that hardware differences will influence

robotic behaviours.

On the other hand, one should admitted that if the software controller of the swarm robots is

robust enough to allow robots to cope with the types of hardware difference, swarm robots

with homogeneous behaviour can still be created. However, it is rather difficult and takes time

and efforts to design such software controller or algorithm (Elliott and Shadbolt, 2003). Thus,

compensating hardware difference using software approach is not a viable solution in robotic

swarms.

Additionally, hardware variation is intrinsic and within current manufacture technology, it is

almost impossible to get rid of it completely, while compensating hardware difference would

cost an unwarranted amount of effort and time. Thus for a period of time, it will continuously

influence the design, implementation and practical use of robot swarms.

1.2 Motivations and Challenges

The highlighted shortcoming of the current swarm robotic research acts as a motivation for this

research. It is important to investigate the issue of hardware difference in the course of swarm

robots and understand more of the role which hardware difference plays in terms of robotic

behaviours. This is beneficial to the current swarm robotic research as hardware difference

commonly exists. If hardware difference indeed influences the behaviour of robot to a level that

the hardware difference can not be ignored, it would be necessary to improve current swarm

algorithm, as it is assumed that all robots in a swarm are identical.

Additionally, if the behaviour of robot is diverse due to hardware difference, resulting heteroge-

neous behaviours of the robot, algorithms can be designed to make use of such diverse behaviour

by allocating task accordingly, which will further improve the task efficiency of the swarm.
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This work is an initial investigation into the issue of unavoidable hardware difference between

swarm robots, which will provide not only a better understanding of the issue itself, but also a

possible starting point of a new research field.

1.3 Research Scope and Aims

According to the previous discussion, hardware differences can be categorised into three types

in Figure 1.2. This work will only focus on the first two parts, thus hardware variation. There

are two reasons for neglecting the damage and deterioration part: firstly hardware variation is

the first problem encountered after production, therefore it should be solved first. Secondly

damage and deterioration can be considered as hardware variation which arises when the robot

is used, and once the first two problems are solved, the problem of hardware difference caused

by damage and variation could be solved using the same approach.

hardware difference

assembly
variation

component
variation

damage
deteriation

hardware
variation

Figure 1.2: Categorization of Hardware Difference: Hardware difference generally
originates: when components are manufactured (components variation), when robots
are assembled (assembly variation) and when robots are used (damage and deteriora-
tion). This work will focus on the first two phases (the dashed area), namely hardware
variation.

Therefore this work mainly focuses on heterogeneous swarm robots with identical hardware

modules, among which some hardware variation could be found between different swarm mem-

bers.

The aim of this research is:

1. Investigate how much the behaviours of swarm robots are influenced by hardware
variation.

2. Understand how hardware variation influences robotic behaviours.

3. Design a technique which sorts robots according to their unique behaviours caused
by hardware variation.
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1.4 Research Contributions

Against the research aims identified above, this work makes the following contributions:

• Hardware variations and its influence: Hardware variations do exist in hardware-based

robotic swarms, which is however ignored by most of swarm robotic researchers. This is

the first time that the issue of hardware variation is addressed and it is found out that hard-

ware variation of swarm robots can influence robotic behaviours. It is also the first time

that the idea of making use of hardware variation to select favourable robotic behaviours

in order to improve robots’ performance is brought.

• Simulation of hardware variations: By utilising the approach of simulating a typical

swarm robot in a line-following task, it is demonstrated that these intrinsic hardware vari-

ations did influence behaviours of an individual robot in the swarm. It is also investigated

that how robotic behaviours were influenced under different magnitudes of hardware vari-

ation, what type of effect could be caused by the variation of an individual component,

and the relationship between robotic hardware circumstance and its behaviours.

• Swarm chromatography: A novel behavioural sorting technique called swarm chro-

matography was proposed. The method of differentiating the robots through the accu-

mulated effect of numerous interactions with the environment is analogous to separating

chemical mixtures by chromatography. This method is robust that the sorting of the robots

does not depend on other parameters but only on the hardware characteristics of individual

robots. In addition, the sorting efficiency was investigated in related with the configuration

of robot’s memory and sorting arena.

1.5 Thesis Structure

The rest of the thesis is organised as follows:

The current literature of swarm robotic research was reviewed in Chapter 2 with particular focus

on three important aspects: the systematic modelling, behavioural design and robotic inter-

actions. In addition, the concept of heterogeneity of swarm robots was addressed and major

features which cause swarm robots heterogeneous were identified as well as how researchers

make use of this phenomenon. Based on the review of previous research, the gap in the cur-

rent research was identified that most of the researchers concentrate on the software procedures

which cause robotic swarm heterogeneous, however the intrinsic hardware variation can not be

ignored.

Based on the findings, the existence of hardware variation in swarm robots was firstly consol-

idated in Chapter 3, and the argument was then laid out that although hardware variations are



6 Chapter 1 Introduction

small, they can still influence robotic behaviours. In order to test the argument, the methodol-

ogy was proposed which utilises a typical swarm robot with varied parameters for modelling the

hardware variation to accomplish a simple line-following task. The detailed modelling of the

robotic system, task configuration and how the simulation is organised were also presented.

In order to find out if hardware difference influence robotic behaviours, robots with difference

circumstances of hardware variation was simulated in a line-following scenario and robots’ tra-

jectories were compared in Chapter 4. Results showed that hardware variation indeed influences

robotic behaviours. A number of scenarios with decreased magnitude of hardware variation

were also tested, it was found that tiny hardware variation could still make an impact in terms

of trajectories generated by the robots.

To understand how exactly hardware variation influence robotic behaviours, the relationship be-

tween robotic behaviours and its hardware circumstance was investigated in Chapter 5 with the

proposed swarm chromatography technique. The efficiency of the technique was further inves-

tigated in relation to the configuration of robot’s controller and the sorting arena in Chapter 6.

The conclusion was drawn in Chapter 7.

1.6 Publications

The contributions of the research lead to the following publications:

• Beining Shang, Richard Crowder and Klaus-Peter Zauner. (2013). Simulation of Hard-

ware Variations in Swarm Robots. In IEEE International Conference on Systems, Man,

and Cybernetics, pages 4066-4071, Manchester, UK

• Beining Shang, Richard Crowder and Klaus-Peter Zauner. (2014). Swarm Behavioral

Sorting based on Robotic Hardware Variation. In The 5th International Conference on

Simulation and Modeling Methodologies, Technologies and Application, pages 631-636,

Wien, Austria.

• Beining Shang, Richard, Crowder and Klaus-Peter Zauner. (2016). An Approach to Sort-

ing Swarm Robots to Optimize Performance. In Proceedings of ASME 2016 International

Design Engineering Technical Conferences, pages 1-8, Charlotte, North Carolina.



Chapter 2

Related Work

In this chapter, related work for swarm robots is discussed. To avoid misunderstanding of the

main topic, collaborative robots is firstly categorized and the area of this research is restricted

within the field of swarm robot (Section 2.1). The current research of swarm robot is then de-

scribed (Section 2.2) and topics covered here are three essential aspects: systematic modelling,

robotic behavioural design and the robotic interactions, which serves as the foundations of this

research.

In Section 2.3, heterogeneous swarm robots are discussed. By identifying the origins of be-

havioural heterogeneity, it is found out that heterogeneity for swarm robots generally emerge

due to either software or hardware. Limited studies concentrate on the hardware aspects which

trigger behavioural heterogeneity. Finally, Section 2.4 summarizes.

2.1 Collaborative Robots and Research Scope

collaborative
robots

robot
ecosystems swarm robotsintentionally different?

yes no

Figure 2.1: Collaborative Robots Categorization: Based on that whether robots are
made intentionally different, collaborative robots can be separated into robot ecosys-
tems and swarms, where the former are made intentionally different in the size, func-
tionalities, etc.; the latter are made intentionally similar and made to the same design.

The categorization of current collaborative robotic research is illustrated in Figure 2.1. Based on

that whether robots are made intentionally different, collaborative robots can be separated into

robot ecosystems and swarms. In a robot ecosystem, robots which usually are different in their

size, functions are used. For instance, Dorigo et al. (2013) adopted three types of robot illustrated

in Fig 2.2 to create a system called the swarmanoid to explore the physical and behavioural

interactions between different robot types. These collaborative robots can take advantage of

7
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different functionalities to accomplish complex tasks. In Dorigo et al. (2013)’s case, mapping of

the environment is easily done by the eye-bot, a smaller size quad-copter, which can fly above the

ground. Anther example would be that Parker (1994) used two types of mobile robots different

in their mechanical structure, sensors and actuators, illustrated in Fig 2.3 to achieve fault tolerant

cooperation.

(a) Three footbots and One Handbot (b) One Eyebot

Figure 2.2: Dorigo’s Heterogeneous Robots (Dorigo et al., 2013): In (a), a hand-bot in
the middle is surrounded by three foot-bots. The hand-bot is equipped with two arms,
and there is a clamp at each end, which makes it capable of holding objects. Lacking in
mobility, the hand-bot can only move with help from three footbots. In (b), an eye-bot
is attached to the ceiling. It is equipped with a camera pointing below, which makes it
capable of retrieving information from the ground.

Figure 2.3: Parker’s Heterogeneous Robots (Parker, 1994): There are two types of
robots, three R-2 robots at the rear and one Genghis-II in the front.

Different from the robotic ecosystem, swarm robots are similar as they are made to the same

design. As robotic swarms are usually mass-produced for cost consideration, it is normal that the

number of robots in a swarm can reach up to hundreds or thousands, showing Figure 2.4. Such

system offers many advantages in task efficiency, fault tolerance, cost per system (Bonabeau

et al., 1999).

In this work, we will concentrate on the swarm robotic systems. In such systems, robots are

usually similar regarding their shapes, functions and abilities. To be specific, all robots in the
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Figure 2.4: The Robotic Swarm Consisting Hundreds of Individuals (Rubenstein et al.,
2014)

same swarm are usually made of same types of modules including sensors, actuators, batteries,

platforms, etc.

2.2 Current Research Picture in Swarm Robots

The research for swarm robots is about designing a decentralised robotic system consisting a

number of similar individuals which can accomplish task collectively. As it is decentralised

controlled, the functioning of the system relies largely on the interactions between individuals

and the environment. Therefore, the following review of currently swarm robotic research will

be conducted in three aspects: systematic modelling, robotic behavioural design and interaction

methods.

2.2.1 Modelling Swarm Robotic Systems

Modelling helps the researchers to gain a better understanding of the system and simulation is

just another word for modelling. There are two advantages for using simulation in swarm robot

research:

• Different behaviours can be applied or tested on simulated swarm robots easily and result

can be obtained quickly.

• Simulated swarm robots can be created and managed easily without worrying about the

hardware issues (device malfunction, battery recharge, etc.) which can become very

timing-consuming in hardware-based swarm robotic research if a large number of robots

are used.
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However it can not be ignored that there are differences between simulation and actual ex-

periments which are caused by random or systematic differences that exist in hardware-based

experiments, robot entities are abstractly modelled in simulation etc. (Jacobi, 1997).

Depending on how detailed a robotic system is modelled, modelling approach in swarm robotic

research can be categorized into the following three types: sensor-based, microscopic and

macroscopic modelling, which will be discussed in the following. Figure 2.5 summarizes these

three types of simulation methods.

Macroscopic Modelling

Microscopic Modelling

Non-physical Simulation

Physical Simulation

Sensor-based Modelling

Abstraction Level

High

Low

Calculation

Few

Many

Figure 2.5: Summary of Modelling Methods: Macroscopic model models robotic
swarm at high level and physical simulation uses the lowest-level model. Calculations
of macroscopic model are very few and physical simulation needs many calculations.

Sensor-based Modelling

Sensor-based modelling is a modelling method, in which sensors and actuators of each robot,

usually as well as objects in the simulated environment are all modelled. The sensor’s output

is generated according to the environment which robot is currently in. Generated output data

is then sent to controller which then outputs commands to be executed by actuators. Thus,

interactions are modelled. Depending on whether physical properties of objects are described or

not, simulations based on this kind of modelling method can be categorized in to physical and

non-physical simulations.

• Physical Simulation
Physical simulation using sensor-based models models the interactions of the robots and

the environment based on physical rules of our actual world by assigning physical proper-

ties to the objects including the mass and the motor torque required to move the robots. It

is obvious that this simulation process is much complex, which often requires high com-

putation capacity (Bahçeci and Sa̧hin, 2005; Soysal and Sa̧hin, 2005). It is worth noting

that parallel simulation methods are used over multiple computers which are connected by

local area network (LAN) to overcome the complexity of simulations in this kind (Trianni

and Dorigo, 2005; Trianni et al., 2005).

• Non-physical Simulation
Non-physical simulation uses a rather simple model for interactions. Since physical prop-

erties are not assigned to objects in this simulation, the dynamics of the robots and the
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objects in the environment are ignored and they are considered as objects without physical

properties, for instance, adding just some logic values to eliminate collisions. Examples

can be found in Balch and Hybinette (2000); Howard et al. (2002a,b); Hayes and Dormi-

ani Tabatabaei (2002); Trianni et al. (2002). Comparing with physical simulation, high

computation capacity is not required.

Microscopic Modelling

Microscopic modelling method models each robot and their interactions mathematically. In

this kind, robots are defined to have different states. Robot’s state can be changed to another,

according to both internal and external events inside the robots and in the environment. Prob-

abilities are assigned to transitions of their states. Thus, the system behaviour and the noise in

the environment are easily integrated into these probabilistic models.

At each simulation step, the probabilities of the state transitions are calculated. If a generated

random numbers between 0 and 1 are lower than calculated probability, this transition is likely

to occur at this time and the state of robot changes. However extra attention is needed while

designing probabilities of the state transition. A well-designed set of probabilities indicates

better behaviours of each robot and better behaviours of the whole swarm system. Examples can

be seen in Jeanson et al. (2005); Martinoli and Easton (2002); Ijspeert et al. (2001); Martinoli

et al. (2004).

Macroscopic Modelling

In macroscopic model, system behaviour is defined with differential equations. The average

number of robots in a particular state at a certain time step is represented by variables of the

differential equation.

Comparing with the microscopic model which models each robot, macroscopic models the

whole behaviour of the system directly. Therefore system behaviour is obtained once after

the model is solved. However system behaviour can not be obtained until all robots’ states are

obtained in microscopic model.

In Martinoli et al. (2004); Lerman et al. (2004), probabilities are applied to the system state

transitions which can handle noise in a simple way which is very similar to that in microscopic

models.

2.2.2 Behavioural Design for Swarm Robots

Adaptation is any change in the structure of an object or its function in order to survive more

effectively in the environment (Bayindir and Şahin, 2007) which is one of important character-

istics for robots behaviour design. In the research of swarm robots, adaptation not only refers to
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behaviour of individual robot but also refers to behaviour of the whole swarm robots for accom-

plishing a task collectively. Based on robots’ adaptation ability and time scale, behaviours can

be categorized into the following three kinds: non-adaptive (manual), learning and evolution.

Both learning and evolution behaviours have adaptation ability, manual does not. The difference

between learning and evolution is length of period which the whole swarm has used to adapt

itself to different circumstances. This is the same in biology. Evolution often takes generations,

however learning based behaviours can be fine-tuned as soon as new knowledge is obtained.

Non-adaptive Behaviour

This category of robot’s behaviour is rather simple, which usually features following character-

istics:

• Robot’s states are finite and predefined.

• Either one or both of “state changing sequences” and “state changing conditions” are

predefined or fixed.

Most non-adaptive behaviours can be implemented using the following three architectures in-

cluding subsumption, probabilistic finite state automata and distributed potential field approach,

which will be discussed in the following.

• Subsumption
Brooks (1985) firstly published the subsumption approach, actions of robot is defined into

different layers from lowest to the highest. All layers can access to its sensor data and

generate commands for actuators. Under such circumstances, low layer actions always

have high priorities than high layer actions. In other words the low layer outputs are

always been executed first and high layer outputs are inhibited if generated commands are

contradictory with low layer outputs. This architecture ensures that overall goal can be

achieved while low layer action can still function timely and correctly.

Examples can be found in Hristoskova et al. (2011), in the scenarios of modern computer

game, player can lead a squad consisting of several unintelligent robots which are just

capable of navigation and shooting. Complex squad commands (overall goal) can be

decomposed into several commands (output from each layer), of which one and only one

command is selected by an ‘Arbitrator’ to executed by actuators (layer priorities).

• Probabilistic Finite State Automata
In this method, robot’s behaviours are defined as several discrete states. Different state

have different probabilities for robot to switch into. State transition is triggered by either

internal/external events or randomly. At each unit of time, a random number is gener-

ated and compared with this probabilities. If generated number is smaller than certain

probability, this state is the one that robot needs to switch into.
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These probabilities can change based on robot task finishing situation. For instance, if

robot is instructed to perform searching-then-homing tasks. Initially probability for robot

to return home is very low. If robot can not find specified target, this probability of homing

will increase as time goes by, which means there might be no target nearby and it is

unnecessary to search more and consume powers. Then at beginning of next unit of time,

if homing probability is larger than the generated random number, robot will return home

(Labella et al., 2004). Applications using similar approach can also be found in Liu et al.

(2007).

• Distributed Potential Field
This approach is mainly about adopting virtual forces into a group of robot functioning as

a swarm. The area in which such forces are effective is called potential field. Each robot

has its own fields, namely distributed potential field. An attraction force is generated to

an object if it is far and a repulsion force is generated if it is too near to the robots. The

ultimate goal of the swarm also generates an attraction force which applies to each of the

swarm members. Output of each robot will be obtained through the calculation of these

forces.

In Hashimoto et al. (2008), the swarm consisting several robots can follow, surround a

human and maintain stability while the human moves in obstacle environment. Each

robot calculates its own virtual force from attraction and repulsion from its neighbouring

robots. In addition a surrounding force is generated based on distance to the human to be

maintained, which can be regarded as the ultimate goal of the swarm.

Behaviour with Learning Ability

Based on whether an external supervisor exists or not, learning algorithms can be categorized

into supervised learning and unsupervised learning. In the research of swarm robots, it is difficult

to have a human as a supervisor while robots are out in the field to finish tasks. Therefore most

of learning algorithm in swarm robotic research are unsupervised learning algorithms.

On the other hand, there are two type of learning signals: local reinforcement signal and global

reinforcement signal. The former signal is only effective within the robot itself while the latter

is usually applied to the whole swarm. Both Mataric̀ (1997) and Li et al. (2004) explicitly

studied how these two types of signals influence the swarm performance. Furthermore, there are

also variations like combining reinforcement learning method with neural network controller

(Kuremoto and M. Obayashi, 2009; Conforth and Meng, 2010).

Evolutionary Behaviour

In this approach, suitable controller of swarm robots are selected through a process which is

similar to that how genes have been selected in biology. Such process is often implemented as
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genetic algorithm, in which least-fit solutions/robot controllers are eliminated through cycles of

crossover and mutation operation, leaving only the best-fit ones. Genetic algorithm consists of

several steps (Jakobi et al., 1995), as illustrated in Fig. 2.6:

Generating Initial Populations Randomly

Selecting High-fitness Populations

Produce New Generations
from Previous Selected Populations

Meet Conditions?

End

No

Yes

Step.1:

Step.2:

Step.3:

Figure 2.6: Genetic Algorithm Process: Typical Process consists of three steps. Firstly,
the first generation of population is randomly generated. Those which have high fitness
scores will be selected at Step.2. New generations will be produced at Step.3 from
these selected populations by the means of genetic operations such as crossover or
mutation. Conditions (for example, number of iterations, fitness etc.) will be checked
to terminate the process. If not, the process will move to Step.2, populations will be
selected again for high-fitness ones. In the end, only individuals with highest fitness
scores will survive.

In swarm robotic research, initially a large amount of number sequences are randomly generated

which can be considered as an abstract expression of robots’ controller. A fitness function is de-

signed to be able to select expressions of best-fit controllers. These expressions are then crossed

over and mutated to generate new generations which often share characteristics of their parent

controllers. These steps are repeated until best-fit expressions are found. While implementing,

the following points are critical:

• Transformations between controller and abstracted expressions.

• How fitness functions which select good-fit controller are designed.

• Qualities of mutation and crossover operations

One of the problems that evolutionary algorithm has is that at initial stage, a large amount of

data is often needed to train the algorithm. And normally, this process is often computation-

intensive (Jakobi, 1998), in which CPUs of individual swarm robots can not handle. This re-

quires that evolutionary algorithm are usually trained well on devices with higher processing

speed such as a personal computer or mainframe before downloading to swarm robots. Another

problem is that since training process usually uses simulations which is not as accurate as phys-

ical experiments, trained evolutionary algorithm may behave differently when downloaded to

hardware-based robots.
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2.2.3 Interactions of Swarm Robots

One of common tasks for swarm robot is to finish activities collaboratively, in which interactions

have to happen and information has to be exchanged. The interaction at this point is only limited

to that happens between one robot and another.

Based on their information exchange medium and robot’s intention for information exchange,

such interactions of robotic swarm can be classified into the following three kinds listed in the

following:

• Interaction via communication (type 1)

• Interaction via sensing (type 2)

• Interaction via the environment (type 3)

Environment

Robot A Robot B

1: Direct Communication

2: Sensed

Information
Diffused

3: Information
Detected

Figure 2.7: Three Interaction Approaches. The solid line means direct communication,
usually implemented using radio broadcasting. The dotted lines refer to information in-
terception using sensors which is not capable of direct communication between robots.
The red dashed line means information diffusion. Numbers 1, 2, 3 refer to the type of
the interaction.

In Fig. 2.7, the scenario is that robot B’s information should be transferred to robot A. Robot

A can get these information though direct communication from B (approach 1: interaction via

communication), or Robot A uses its sensors to obtain such information directly coming from

B (approach 2: interaction via sensing), or this information are diffused to the environment and

Robot A sensed this information from the environment (approach 3: interaction via environ-

ment).

Interaction via Communication (type 1)

In the scenarios of type 1, as numbered in Fig. 2.7, robot shows its information positively to

others in order to form a collaboratively-working group. It is different from both “interaction

via sensing, type 2” and “interaction via environment, type 3”, since robot B positively gives
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out information to A by direct communication. Robot B does have the intention to send its

information out, where in both approaches 2 and 3, robot does not.

Comparing with “interaction via sensing” and “interaction via environment”, this type of infor-

mation spreading approach is more straight-forward and efficient since information is given out

positively to allowed other robot to act accordingly.

This approach is usually implemented using broadcasting or one-to-one communication mech-

anism. However the latter one requires an unique ID code for each of robots in the swarm,

therefore one-to-one communication is not efficient which is almost abandoned due to its reduc-

ing the scalability and flexibility of the system. Thus the approach of one-to-one communication

will not be discussed.

Broadcasting mechanism can be implemented in different ways. The following are typical:

• Short-range wireless transmission: Hauert et al. (2008b) used radio to maintain distance

and communication between nearby micro air vehicles

• Infra-red broadcasting communication Rubenstein et al. (2012) used infra-red light to

broadcast information to nearby robots.

• LED light on the robot for indicating information: Mondada et al. (2003) used 24 LEDs

to express the state of the robot.

Interaction via Sensing (type 2)

Using approach of type 2, robot’s information (like speed, path, distance etc.) is sensed by other

robots. In Fig. 2.7, robot A is able to measure through its own sensors information regarding

Robot B. At no time does Robot A directly communicate with Robot B. For example, robots

which are equipped with sonar sensors are able to detect relative speed and direction of others

without direct communication. Once Robot B’s information is sensed, A will act accordingly.

A typical example is sonar.

In this approach, it is vital that robot must have the ability to discriminate environment and robot,

which is also called as kin recognition (Hamilton, 1963).It is an important feature of animals in

nature. Animal can act either the same with or different from the behaviour of their kins. This

natural process enables the perfect cooperative behaviours. A flock of sardines are chased by

shark under the sea. Each one turns to the direction almost the same with that of its nearby kins

to hide itself in the flock, resulting in decreasing the probability of being caught (Ward and Hart,

2003). Examples based on kin recognition in swarm robotics are Spears et al. (2004); Turgut

et al. (2008); Li et al. (2004); Hayes and Dormiani Tabatabaei (2002); Trianni et al. (2003).
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Interaction via the Environment (type 3)

Approach of Type 3 includes the robot swarm, in which direct communication or sensing does

not exist between any two robots. Instead, environment acts as the transmitting medium in the

information spreading process. Another important factor is added into this standard that the

environment must hold or have the ability to maintain the information for a period of time. For

example, the environment ”memorises” the passage of robot B, while robot A is able to interpret

the environment and gain knowledge of the presence of B. A typical example is pheromone-

based swarm robots.

The factor of memorization emphasizes the effect of environment during the information spread-

ing process. This category excludes the studies in which information is transmitted instantly by

the means of the environment (like infra-red reflection etc.). Since effect of infra-red light emit-

ting is more straight-forward and the environment does not retain the transmitted information

for some time, it is more accurate to put these studies into either of the previous two categories.

This category is important because that it is widely used in the nature like pheromone-based

ants etc. Pheromones are left by previous ant after finding a food source which serves as the

guideline for following ants leading to the food source, known as stigmergy (Deneubourg et al.,

1989). Although the communication approach is rather simple, it is difficult to create such an

environment in which allows this communication.

However some studies using this approach do exits. In Hauert et al. (2008a), pheromone-based

position information is maintained using MAVs (Micro Air Vehicles) via wireless communica-

tions. Such virtual pheromone information helps the rest of MAV to maintain a stable commu-

nication tunnel between two points. Similar virtual pheromone approach can also be found in

Payton et al. (2001).

2.3 Heterogeneous Swarm Robots

As discussed in Chapter 1, heterogeneity in swarm robots can emerge due to either robots’

software controller or hardware characteristics. The following review of literatures will be

separated into two categories: software-based heterogeneity and hardware-based heterogene-

ity, particularly it will be focused on the emergence of heterogeneity and its influence to robotic

behaviours.

2.3.1 Software-based heterogeneity

Most of researchers have been working on swarm robots with heterogeneous behaviours which

are triggered by software approaches. We have categorized current literature relating to swarm

robotic behavioural heterogeneity in Fig. 2.8.
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Figure 2.8: Previous research of swarm robotic behavioural heterogeneity: “Why”
refers to the reasons which cause robots specialized. They can be their experiences
in terms of goal achieving time, number of goal achieved times or object which they
have encountered. It can also be the task demands, resources, their social rankings
or hardware differences. “What” refers to how robots are specialized. For example,
robots specialized in certain task will insist on choosing that type of task. Robots insist
in particular working state or robot have different sensitivity or threshold. ‘Method’
refers to the approaches to achieve behavioural heterogeneity in robotic swarms.

Heterogeneity Emergence

Li et al. (2002, 2004) examines the emergence of heterogeneity and studies the relationship be-

tween heterogeneity and swarm efficiency in the stick pulling experiment shown in Fig. 2.9. It

is shown that heterogeneity can achieve similar or better performance. A robot pulls an unoccu-

Figure 2.9: Stick Pulling Experiment (Li et al., 2004): Each robot is equipped with a
gripper. A number of sticks are placed in the holes randomly located in the arena. The
sticks are selected to be long enough that two robots have to work collaboratively to
pull it out.

pied stick and waits for a certain period which is defined as the gripping time parameter (GTP).

Either a successful collaboration could be achieved for that another robot engages before GTP

is over; or GTP times out and the first robot quits pulling and continues to search for new sticks.

Therefore GTP is the most important parameter which is strongly related to the stick pulling

rate (number of sticks that has been successfully pulled out during a specific period.) GTP is

initially set to a predefined number for all robots and is subject to change afterwards. In the first

round, each robot randomly choose to either decrease or increase its GTP parameter value. If it
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is a successful collaboration in this round, the robot further decrease or increase its maximum

waiting time depending on how that robot’s GTP changed previously.

Simulation results show that at end of the simulation, robots forms into two cluster: some with

large GTP and others have small GTP. Robots in the first cluster specialize to keep holding the

stick for a long time and others are rather impatient and keep shifting around, with which the

group performance is improved.

1: yellow

2: red

3: purple

4: blue

Figure 2.10: Arena of Colour Sensing Heterogeneity (Arena et al., 2012): Number 1,
2, 3, 4 indicate the order of the targets which robots visit. In this scenario, a blue target
will appear first. Only after it has been approached by any of the two robots, a yellow
target appears in the arena and simultaneously the blue target disappears.

In Arena et al. (2012), heterogeneity can also occurs owing to robots’ previous experiences.

Robots are set to visit targets in different colours one by one. Whenever a target is visited and

no matter what colour the target is, a global signal is broadcast to all members in the swarm, re-

sulting a reward for each robot, which biases robots’ reactions upon its previous visited colours.

Since robots have visited different colours, robots specialized in finding different colours. This

work is done through simulation in an arena in Fig. 2.10.

Task Allocation and Partition

Murciano and Millán (1996); Murciano et al. (1997) present an approach to select optimal dis-

tribution of assigning robots to different tasks, illustrated in Fig. 2.11. Robots need to gather a
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number of different types of objects in order to assemble complete pieces. Robots adaptively ad-

just its preference in gathering certain type of objects according to team/individual performance

in the past trails. In order to maximize number of complete set of gathered objects which consists

one of each type, distribution of robots’ preference should be the same or similar to the distri-

bution of different types of objects in the environment. In Zhang et al. (2007), a dynamically

Figure 2.11: Objects Gathering Task (Murciano et al., 1997): Three types of objects,
represented by square, circle and triangle, are to be collected and transported to the
warehouse located in the middle of the arena. Robots are indicated by ‘A’. Black lines
in the middle represent obstacles.

adjusted threshold is adopted to evolve specialists for different tasks illustrated in Fig. 2.12.

When a particular task is demanded, the threshold for this task decreases, and robots’ prefer-

ences differentiate. According to task efficiency information on the local blackboard among

robots which are doing the same task , the threshold is then re-evaluated: if efficiency is low,

some robots will be moved out by increasing task-threshold.

Brutschy et al. (2011) studied the cost and benefit of behavioural heterogeneity. His assump-

tion is that a robot working repeatedly on the same type of task improves its task performance

due to learning. Robots prefer to improve more by repeating the same task and probability of

choosing this task becomes higher. Since longer distance might be used to search for the same

task, robot forgets and efficiency in that task decreases, and probability of choosing that task

becomes lower. The robot’s state machine for the work is shown in Fig. 2.13. In Brutschy et al.

(2011)’s scenario, there are two types of tasks for a group of non-communication robots with

this characteristics. Simulation results show that selective strategy helps to achieve better swarm

performance for most of the times. By varying the portions of two types of tasks, a decrease is

found in swarm performance. It is concluded that “specialization is not a good choice in highly

dynamic environments, as specialists may not be able to adapt to changes fast enough”.

In Pini et al. (2011), non-communication robots are required to move sufficient amount of ob-

jects from source to nest illustrated in Fig. 2.15. Between source area and nest area, there is a

cache, in which objects can be dropped by robots on the source side. Objects dropped in the

cache can be taken by other robots from nest side and moved to nest. This cache is designed
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Figure 2.12: Objects Organization Zhang et al. (2007), robots are separated into differ-
ent groups according to the tasks they have been assigned (TASK 1, TASK 2 and TASK
3). Each task consists of several sub-tasks, for example, TASK 1 can be separated in to
task 11, task 12 ... task 1u. A local blackboard system is adopted, on which robots that
has been assigned to the same task can exchange their information. ‘AS’ refers to ant
system algorithm.

Search Tasks Forget all
over time

Finish task i
p i increase

Learn task i
Forget others

p i Task i
complete

Figure 2.13: State Transition (Brutschy et al., 2011): p i is robot’s probability of choos-
ing task i. The white rectangles represent actions executed by the robot, dark rectan-
gles show the effect of learning and forgetting on the robot.

that robot can not pass through. There is a corridor which links the source side and nest side for

robots to pass through, however extra time must be spent. Each robot’s way-selecting process

is probabilistic based on time which it previously recorded. Specific timing information is only

updated once after the robot finishes the un-partitioned task or sub-task.

This concept is validated through simulation. Performance of the swarm is improved comparing

with results of that robots adopt either ‘always-partition’ or ‘never-partition’ strategies. By com-

paring results from experiments using different environment conditions, the author concludes

that the swarm robots using this strategy is able to respond to both environment and swarms size

changes.
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Figure 2.14: Representation of the Sequential Task Partition Problem (Pini et al., 2011)

Figure 2.15: Testing Scenario of Task Partition Problem (Pini et al., 2011)

2.3.2 Hardware-based Heterogeneity

Although most of researchers concentrate on the software approaches which make swarm robots

behave heterogeneously, some people do realize that hardware variation exist in swarm robots,

which can also trigger diverse behaviours. However the number of literatures are limited.

Pugh and Martinoli (2007) study the impact of hardware variation to robotic learning process

when using different software controller. In their work, the hardware variation is limited to sen-

sor offsets and scaling factors. It is found in their simulation that in the case of evolving obstacle

avoidance, both genetic algorithms and particle swarm optimization are able to withstand small

variations in sensor offsets and large variations in sensor scaling factors, while showing poor

performance with high offset variations. By observing population diversity throughout evolu-

tion, it was discovered that PSO (Particle Swarm Optimization) maintains much higher diversity.

The diversity is not caused by the variations of the hardware, it is the intrinsic property of the

algorithm.

Elliott and Shadbolt (2003) argue from developmental robotics’ point of view that like humans,

none of two robots are the same, either due to inter-individual variation or that no two robots

experience the same environmental inputs. It is argued that behavioural homogeneous robots can

possibly be made which hardware needs to be fine-tuned to reduce the variation to a level which

it can be ignored, however this is infeasible in practice and might bring undesirable results.
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2.4 Summary

In this chapter, related work in the field of swarm robots was discussed. The current literatures

was reviewed through three aspects including system modelling, robotic behavioural design

and robotic interactions. Then heterogeneous swarm robots were discussed. By identifying

the origins of behavioural heterogeneity, it was found out that heterogeneity for swarm robots

generally emerge due to either software or hardware.

The research gap was then identified: the majority of the researchers concentrated on the het-

erogeneity which is caused by the software and limited research addressed the hardware issue.

Therefore in the following chapters, the issue of hardware variation in swarm robots will be

systematically investigated, particularly how the hardware variation influences the robotic be-

haviours.
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Methodology

In this chapter, the model of a typical mobile robot suitable for a swarm undertaking a range of

simple tasks is described. The task selected for this research is proposed for investigating the

relationships between the robot’s hardware variations and the robot’s behaviour.

In Section 3.1, hardware variations found in various components at difference stages are iden-

tified. It is hypothesized that these hardware variations can affect the behaviour of robots. The

model of the robot is described in Section 3.2. Following this, the method of simulating hard-

ware variations on the proposed robotic model is explained in Section 3.3. The line-following

task is proposed in Section 3.4 and the arguments for using this type of task are also provided.

Finally, simulations challenges for this research and how they are solved are described in Sec-

tion 3.5.

3.1 Problem Description

In swarms implemented in real-world applications, physical robots are built either by hand or

through an automated mass production process. Although they are built to the same design

and are often regarded as identical in practice, they are not truly identical because hardware

differences exists. Figure 3.1 illustrates some of the reasons which cause variations at hardware

level in these robotic swarms.

Differences among swarm robots can emerge when components are manufactured, when robots

are assembled and when they are used. An example of components variation would be that

the same type of sensors from two robots have different sensitivity (Pugh and Martinoli, 2007).

Actuators and batteries can have individual characteristics. For mobile robots, the tyres for the

wheels are often made from rubber to improve traction, which makes it rather difficult to man-

ufacture with exactly the same diameter. Furthermore asymmetric load distribution will make

tyre compress differently, resulting different wheel diameters in practice (Roth et al., 1987).

25
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Components Variations

Assembly Variations

Wear and Tear

Sensor Sensitivity

Motor Characteristics

Mechanical Tolerance

Components Position

Soldering

Deterioration

Damage

Manufacture In Use

Figure 3.1: The causes of hardware differences: reasons which can cause robots dif-
ferent in their hardware are listed. They are categorized based on robot’s life span:
when components are manufactured, when the robot is assembled and when it is used.
During manufacture, variations exist in sensor sensitivity, motor driving ability, toler-
ance of mechanical parts, etc. ‘Mechanical Tolerance’ refers to the permissible limits
in a measured value of a manufactured item, such as the length of the axle for robot’s
wheel. The mechanical tolerance is typically expressed as X =±Y , where X is the no-
mial value and Y is the allowable deviation. During assembly, components’ placement
and soldering parameters varies. When using swarm robots, different damage and de-
terioration situations are encountered by robots. All of these circumstances are applied
to robots’ hardware, which differentiate them. This list is not exhausted.

In the assembly phase, positions of components and soldering parameters vary. For instance,

sensors can be placed with slightly different orientations during soldering, or the quality of sol-

dered joint may inference the peak current from the drive, and hence limit the motor’s output

torque. In addition, motor parameters may vary significantly due to temperature, supply fre-

quency and magnetic saturation (Toliyat et al., 2003).

In use, the robots experience different circumstances of wear and tear, such as sensor ageing,

battery draining, mechanic deterioration, or even damage. In summary, hardware robots which

are manufactured to the same design are not identical in many aspects. The hardware variations

are unavoidable.

Of all these differences, variations in the sensors and actuators stand at the centre of the process

in terms of influencing robot behaviours (Fig 3.2). Variations in robotic sensors can cause a

robot to perceive different information which is then sent to the controller. Depending on the

design, the controller of a robot can be linear or non-linear. A linear controller, which usualy

consists of an amplifier, amplifies the difference of the sensory information. If the controller

is non-linear, such as a controller with learning ability, the control strategy may vary as the

learning process progresses, the difference in the sensory information can be further amplified

and reflects on the actuation command. As a consequence of the actuation, the sensory input

changes lead to another cycle through the interaction loops between robot and environment.
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Different Sensing
Information

Controller
Actuating
Differently

Environment

Other Robots

Inside Robot

Outside Robot

Figure 3.2: Sensors and actuators variations influence robotic behaviour: The thin
dash-dotted line distinguishes between actions which happen inside and outside the
robot. Variations in the robotic sensors can cause the robot to perceive different in-
formations. Based on the varied sensory information, the robotic controller outputs
different actuation commands to the actuators. Since the robot’s actuators are also dif-
ferent, takes the robot to different environments and may even influence other robots in
the environment. Then again, different sensory information is perceived from the envi-
ronment. Thus variations on the sensors and actuators may influence the behaviour of
a robot.

Sensors are the only source of gathering information, based on which the controller acts. Ac-

tuators are the components in a robotic system which act according to the output of robot’s

controller. Comparing with other components, differences generated by actuators are typically

larger. Thus, variations of both the robot’s sensors and actuators may directly influence its be-

haviours. In order to simplify the problem, it is assumed in this research that other parts of the

hardware of the robots are identical and hardware variations only refer to those which can be

found in their sensors and actuators.

Although it is difficult to find identical robots in terms of hardware in a swarm, identical be-

haviour of hardware robots in a swarm can still be achieved with costly means. This was reported

by Elliott and Shadbolt (2003), where particular software needs to be fine-tuned to compensate

the inherent hardware differences. This approach is very difficult and not cost-effective. This is

because compensating and accurate calibration needs extra equipments and measuring process.

It is very difficult to get accurate values for each parameter within a complex robotic system. In

addition, such measuring process has to be taken on each of the robots within the swarm. Fur-

thermore, due to the constant wear and tear, such process have to be repeated at regular intervals.

Therefore compensating them with software is not a viable solution and the issue of hardware

variations should not be ignored.

3.2 The Model of the Swarm Robot

The model of a typical swarm robot with minimal mechanical, electronic and computing ele-

ments used for this research is discussed in this section. It is assumed that the robot can follow

a highly reflective track, which requires the robot being fitted with two IR photoelectric sensors.

The basic features of the robot being simulated are shown in Fig 3.3, here the robot is based on

a conventional, differentially steered, two wheeled robot fitted with a caster in the front and rear.
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This robotic system is not modelled in every detail, only the essential parts of the robot are

considered. For instance, the physical dynamics of the system is not modelled, such as the

rolling friction of the wheels. Although modelling such details only involves a further set of

parameters, detailed modelling would add one more layer of complexity to the problem, which

makes it difficult to draw the conclusion of the relationship between hardware variations and

robotic behaviours.

leftwheelWheel

rmotor

Motor and gearbox

lsensor

Sensor

10

10 5

Figure 3.3: Plan view of the robot, showing the two motors used for the differential
steering and the two IR sensors which are fitted in the front of the robot and point to
the ground. Dimensions are in arbitrary unit. The dimensions shown are fixed and
identical in all robots, but subject to manufacture variance.

3.2.1 IR Sensors

The two downward-pointing IR sensors are located at the front of the robot. To model the

sensor’s response, the reflective line is considered to be multiple consecutive points, which can

reflect light (Fig 3.4). The magnitude of the IR sensor output can therefore be obtained by

summing the response of individual reflective point within sensor’s viewing range (Benet et al.,

2002).

The sensor’s response to an individual reflective point is modelled using Equ. 3.1,

S(x,θ) =
α
x2 cos(θ) Within ]v (3.1)

where

S(x) is the IR sensor’s response to an individual reflective point.

θ is the incidence angle of the reflective light (Fig 3.5(b)).

x is the distance between the sensor and the reflecting point on the ground (Fig. 3.5(b)).

]v is the IR sensor’s viewing angle (Fig 3.5(b)).
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viewing area

reflective line

Figure 3.4: Top View of the Reflective line from the IR sensor: The dashed circle is the
viewing area on the ground projected by the sensor’s viewing angle. The reflective line
(the wide grey line on the left) is considered as multiple consecutive reflective points
(black dots on the right). The output voltage of the IR sensor is considered as the sum
of sensor’s response to individual dot within its viewing area.

α is the gain of the amplifier and determines the sensitivity of the sensor (Fig 3.5(a)).

Power
Supply

photodiode

IR Light

voltage
offset β

GND

amplifier α

VIR

output

(a) Parameters for IR Sensor’s Electrical Characteris-
tics

θ

x

Ground

]v

(b) This is a side view of the sensor. x is the
distance from the reflective point on the ground
to the sensor.

Figure 3.5: Modelling of IR Sensor

The output voltage of the IR sensor VIR can be considered as Eq. 3.2.

VIR =
n

∑
1

S(xn,θn)+β Within ]v (3.2)

where

n is the number of dots within IR sensor’s viewing angle (Fig 3.4)

β models the sensor’s output offset and the effect of ambient light (Fig 3.5).

The IR sensors are installed in the front of the robot with a certain height above the ground.

The IR sensor arrangement (the direction which the sensor points to) is also modelled, showing
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Fig 3.6. The parameters lateral offset angle Ol and saggital offset angle Os are illustrated in

Fig 3.7 and Fig 3.8.

Os Ol

Front View Side View

h

Figure 3.6: Sensor Arrangement. h represents the vertical distance from the IR to the
ground. The direction which the IR sensor points to is modelling with Ol and Os. To
be specific, the sensors can be individually angled toward either the front or rear of the
robot (parameter Os), and either left or right of the robot (parameter Ol).

(a) As both values of lateral offset for the two
sensor are positive, both sensors point away
from the centre of the robot.

(b) As the value of the lateral offset for the right
sensor is positive, right sensor points away from
the centre of the robot; as the value of the lat-
eral offset for the left sensor is negative, the left
sensor’s orientation is offset to the centre of the
robot.

(c) As the value of the lateral offset for the right
sensor is negative, the orientation of the right
sensor is offset to the centre of the robot; As
the value of the lateral offset for the left sensor
is positive, the left sensor orientates away from
the centre of the robot.

(d) As both values of the left and right sensors
are negative, the orientations of both sensors are
offset to the centre of the robot.

Figure 3.7: This is the front view of the robot. There are two IR sensors on the robot.
Each sensor have a lateral offset angle parameter. The parameter lateral offset angle Ol
determines the direction of the IR sensor to be near to or away from the centre of the
robot only on the left and right basic. Depending on the values of the parameter, the
arrangement of the IR sensors can have different combinations.

The parameters of IR sensor which are used to model both component and assembly variation

are summarized in Tab 3.1.
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(a) As both values of saggital offset for the two
sensor are positive, both sensors point forward
away from the centre of the robot.

(b) As both values of saggital offset for the two
sensor are negative, both sensors point back-
wards to the centre of the robot.

Figure 3.8: This is the right view of the robot. The parameter saggital offset angle Os

determines the directions which the IR sensor points to, either the front or the rear of
the robot.

Table 3.1: Hardware Variation Types for IR Sensor Parameters

Component Assembly
sensitivity α h height

viewing angle ]v Os saggital offset
Ol lateral offset

For component variation, α will be varied to model the variation of sensor sensitivity; ]v will

also be varied to model variation of the viewing angle. During assembly, the sensor alignment

can be different. For instance, IR sensor can be slightly placed either pointing to the left or right,

to the front or back of the direction to which the sensor should point to. In addition, the position

of IR sensor can be slightly higher or lower, resulting different sensor heights.

Hardware variation can also be found on the parameter sensor voltage offset β . However this

type of variation can be eliminated if the output voltage of the IR sensor is subtracted with the

output voltage when the IR sensor is completely blocked. Normally this process has to be done

when using with IR sensors as only the change of the voltage reflects features of the environment.

In addition, sensor voltage offset in rare circumstances will deteriorate unlike wheel radius or

motor gain. Therefore sensor voltage offset will not be considered in the rest of this research.

3.2.2 Controller

In a line-following scenario, the robot’s controller will try to keep the output of left and right

IR sensors identical, if not the robot will change its relative position to the reflective line. The

controller used for the robot is a PI controller and the control system of the robot is shown in

Fig 3.9, where the difference of the IR sensor output (Equ 3.3) is fed to a PI (proportional,

integral) amplifier (Equ 3.4), obtaining VPI .

δ (t) =VIR L(t)−VIR R(t) (3.3)

VPI(t) = Kpδ (t)+Ki

∫ t

−∞
δ (τ)dτ (3.4)
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VIR L

VIR R

δ
VPI

Vmr

Vml
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Sensor L

Sensor R

Drive L

Drive R

Figure 3.9: Controller of the Robot

where

VIR L(t) is the left IR sensor output voltage at time t,

VIR R(t) is the right IR sensor output voltage at time t,

δ (t) is the voltage difference between left and right IR sensor at time t,

Kp is the proportional coefficient of the PI controller,

Ki is the integral coefficient of the PI controller,

VPI(t) is the output of the PI controller at time t.

Generally the integral term accumulates all errors in the past and gives the accumulated offset

that should have been corrected previously. In practice, PI controller used in robotic systems

normally accumlates errors of a limited number of control steps. In this research, the errors of

previous 300 control steps are integrated.

The controller output VPI(t) is then used to differentiate the rotation of the two motor drives. A

constant voltage V0 is added to both motor drives to keep the robot moving forward at all times.

Otherwise, if the output voltages of the two IR sensors remain the same for a period of time,

VPI(t) would be zero and the supply voltage to the motors is zero, thus robot will not move.

Vml(t) =V0−VPI(t)

Vmr(t) =V0 +VPI(t)
(3.5)

where

Vml(t) is the supply voltage to the left drive train,

Vmr(t) is the supply voltage to the right drive train.

3.2.3 Motor Drives

In this model of the robot, a conventional, differential-steering approach was used, where the

two drive wheels are powered by brushed D.C. (direct current) motors and gearbox. The model

of a D.C. motor can be expressed with Equ 3.6.

Vm = kA φ ω + Ia Ra + La
dIa

dt
(3.6)
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where

Vm is the voltage supplied to the motor terminal,

kA is the geometry constant of the motor,

φ is the flux per pole,

ω is the speed of rotation,

Ia is the current through the armature of the motor,

Ra is the resistance of the armature,

La is the inductance of the armature.

In this research a number of assumptions are made (i) the motor drive is considered to be lin-

ear, and (ii) the torque requirements are effectively constant, hence to a first approximation the

motor can be modelled as a pure gain. The gearbox between D.C. motor and the wheel is also

considered as a pure gain. Effectively the motor drive of the robot refers to any modules after the

output of the controller and before the wheel and it is modelled with Equ 3.7. The parameters

mR and mL is used to describe the gain of the motor and any gearbox connected.

ωR(t) =Vmr(t) mR

ωL(t) =Vml(t) mL

(3.7)

where

ωR(t) is the speed of rotation for the right wheel,

ωL(t) is the speed of rotation for the left wheel,

mR is the gain of the right motor drive,

mL is the gain of the left motor drive.

Based on the speed of rotation for individual wheel, the linear velocity of the robot can deter-

mined using the radius of the individual wheels rR and rL, hence the robot linear (ẋ and ẏ) and

turning φ̇ speeds can be calculated:




ẋ

ẏ

φ̇


=



− rLsinφ̇

2 − rRsinφ̇
2

rLcosφ̇
2

rRcosφ̇
2

− rL
b

rR
b





 ωL(t)

ωR(t)


 (3.8)

where

b is the distance between the two wheels, knows as wheel separation,

ẋ is the change of x coordinate for the robot,

ẏ is the change of y coordinate for the robot,

φ̇ is the change of orientation for the robot,

rL is the radius of the left wheel,

rR is the radius of the right wheel,

Typical variations found on a motor drive is the gain (mR and mL). In addition, variation can also

be found on the wheel radius (rL and rR) and the wheel separation b. For instance, rubber tyres
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often used in mobile robots are difficult to manufacture to exactly the same diameters. Asymmet-

ric load distribution can also lead to different diameters due to different compression(Borenstein,

1996).

3.3 Hardware Variations Design

A number of parameters in the model are used to describe the hardware characteristics of the

robot. The hardware variation of the robot is modelled by altering the values of these parameters.

3.3.1 Parameters for Hardware Variation

The objective of this research is to investigate how individual robot’s behaviours are influenced

by hardware variations originating from either components or assembly. The prototype of a

conventional line-following robot is created with a number of parameters, which can be altered

accordingly to model such variations.

• Component Variations: IR sensitivity α , IR viewing angle ]v, drive train gain mR mL, the

wheel radius rR rL.

• Assembly Variations: IR height h, IR lateral offset Ol , IR saggital offset Os, wheel seper-

ation b.

The robot is equipped with two IR sensors, two motor drives and two wheels. Hardware differ-

ence can be found on all of the components. All the parameters on the robot which are used to

model hardware variations are showing in Fig 3.10 and summarized in Table 3.2.

Table 3.2: The Parameters to Model Hardware Variations: Nine parameters are used
to model the hardware variations of the robot’s sensors (six variables) and actuators
(three variables). In the Type column, “A” means variations emerge during assembly
and “C” means components variations (discussed in Fig 3.1). In the Existence column,
“LR” means this parameter exists both on the specific right and left components on the
robot, and “1” means the number of this parameter which the robot has is only one. All
the parameters to be varied are illustrated in Figure 3.10.

Components Symbol Description Type Existence

IR Sensor

α sensitivity C LR
]v field of view C LR
h height A LR

Ol lateral offset A LR
Os sagittal offset A LR

Actuator
m motor drive gain C LR
r wheel radius C LR
b wheel separation A 1
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Figure 3.10: All Parameters Used to Model Hardware Variation

3.3.2 Generating Robots with Hardware Variation

To model a group of robots with hardware variations, a control robot is firstly designed with

values of all its parameters being set. These values are obtained from a realistic line-following

robot with similar hardware settings. Other robots within the group are then derived from this

control robot with its parameter values being varied model hardware variation among the group.

This process is illustrated in Table 3.3.

Table 3.3: Generating robots with hardware variations: Firstly, the control robot R0
is generated and the values of its parameters are obtained from a realistic robots with
similar hardware settings. To model hardware variations in the swarm, other robots R1,
R2, ... Rn are then generated with parameters which are varied from those of the control
robots R0 by multiplying with 1+ rn,m. rn,m is a randomly generated number whose
value is between −0.2 6 rn,m 6 +0.2. For the sensor orientation offset parameters
(sensor lateral and saggital offset), a maximum angle of 3◦ is used.

Device Parameter R0 R1 R2 ... Rn

left IR

sensitivity αl αl(1+ r1,1) αl(1+ r2,1) ... αl(1+ rn,1)

field of view ]vl ]vl(1+ r1,3) ]vl(1+ r2,3) ... ]vl(1+ rn,3)

height hl hl(1+ r1,4) hl(1+ r2,4) ... hl(1+ rn,4)

lateral offset oll = 0 3◦× r1,5 3◦× r2,5 ... 3◦× rn,5

sagittal offset osl = 0 3◦× r1,6 3◦× r2,6 ... 3◦× rn,6

right IR

sensitivity αr αr(1+ r1,7) αr(1+ r2,7) ... αr(1+ rn,7)

field of view ]vr ]vr(1+ r1,9) ]vr(1+ r2,9) ... ]vr(1+ rn,9)

height hr hr(1+ r1,10) hr(1+ r2,10) ... hr(1+ rn,10)

lateral offset olr = 0 3◦× r1,11 3◦× r2,11 ... 3◦× rn,11

saggital offset osr = 0 3◦× r1,12 3◦× r2,12 ... 3◦× rn,12

left motor gain ml ml(1+ r1,13) ml(1+ r2,13) ... ml(1+ rn,13)

actuator wheel radius rl rl(1+ r1,14) rl(1+ r2,14) ... rl(1+ rn,14)

right motor gain mr mr(1+ r1,15) mr(1+ r2,15) ... mr(1+ rn,15)

actuator wheel radius rr rr(1+ r1,16) rr(1+ r2,16) ... rr(1+ rn,16)

wheel distance d d(1+ r1,17) d(1+ r2,17) ... d(1+ rn,17)
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For instance, the height of left sensor of the control robot R0 is 5. When deriving R1, the

generated random number for left sensor height r1,4 is −0.01, the height of its left sensor is

calculated as

hl,R0 = 5

r1,4 =−0.01

hl,R1 = hl,R0× (1+ r1,4)

= 5× (1−0.01)

= 4.75

Therefore, the height of left sensor of the varied robot R1 is 4.75.

In practice, the hardware variations of each parameter typically follow a Gaussian distribution

within a large number of similar robots (Lyon, 2013). As the rest of robots in a group is generated

based on the control robot, therefore {r1,1,r2,1, ...,rn,1}, {r1,2,r2,2, ...,rn,2}, {r1,3,r2,3, ...,rn,3},
..., {r1,17,r2,17, ...,rn,17} should follow Gaussian distribution and the mean of the distribution is

considered as 0 for simplified the model of hardware variation. Effectively the modelling of

the hardware variation for the group of robots is to use series of Gaussian-distributed random

numbers to vary the parameters of the control robot.

Each type of components have their own working principle and their own manufacture process,

the values of their parameters generally follows different Gaussian distributions. To be specific,

different groups of rn,m have different variances. For instance, variance of the sensor parameter

values are generally small; variance of motor parameter values are generally large, illustrated in

Table 3.4.

3.4 Experimental Design

To test the behaviour of the hardware-varied robot, the typical line-following task is used. The

testing process involves two stages: the selection of the controller parameters and testing of the

robot with the line-following tasks.

3.4.1 Controller Parameter Selection

The parameter selecting process is to select the PI controller parameters proportional coeffi-

cient and integral coefficient, with which robot can follow a trajectory with minimal difference

comparing with the target reflective line, known as parameter selecting line. The black line il-

lustrated in Fig 3.11 is the reflective target line to be followed and consists of a single period of

sinusoid with two straight elements at both beginning and end.
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Table 3.4: Different parameters are varied by adding Gaussian-distributed random
numbers with different variances. Due to strict quality control, sensor embedded pa-
rameters including sensitivity, view angle are usually within a small range. Therefore
when simulating hardware variation with these three parameters, Guassian-distributed
random numbers with small variance are used. When sensors are being installed on
the robot, their orientation and position (related with height, lateral and saggital offset
parameters) can be different from the ones installed on other robots. In this case ran-
dom numbers with medium variance are used. Parameters with the robotic actuators
(motors/wheels) usually have large variances.

Parameters Variance Gaussian Distribution
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This particular pattern of the target line is chosen for several reasons: firstly, the sinusoid con-

tains both right and left curves so that robot’s ability of steering to both directions can be tuned;

secondly, the straight lines at the beginning and end help to guide the robot correctly to the

sinusoid part. Otherwise, robot with large magnitude of hardware difference from certain com-

ponents might not be able to reach the most important part of parameter selecting route, the

sinusoid part specifically.

Another type of parameter selecting arena (Appendix Figure B.1) was tried during the exper-

iments, results did not show much difference. Therefore the simple parameter selecting arena

(Figure 3.11) was used throughout the rest of the research.

During parameter selecting process, robots start from the starting point on the left of the arena

with the orientation to to the right. The robot is required to reach the end point on the right

of the arena by following the reflective target. All robots, even if they have different hardware

variation settings, will start the parameter selecting process with exactly same initial condition

including the position and orientation at the starting point to satisfy the requirement of controlled

experiments. The target of the parameter selecting process is to find a set of parameters which

helps robot to follow the line as accurately as possible.
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Figure 3.11: The controller parameters selecting arena’s dimension is 500 × 500 in
arbitrary units, comparing with the size of the robot in Figure 3.3. The line to be
followed is a sinusoid with two straight elements. The robot’s start and end points are
shown.
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Figure 3.12: Analysing Robot’s Trajectory for Controller Parameters Selection: The
curved line is the target line to be followed. The dots represent locations of the robot at
each simulation step which form into the trajectory of the robot. Trajectory of the robot
is analysed for each step by calculating the minimum distance di between the robot and
the target line.

To measure the accuracy of the robot’s following the target line, a variable of average position

error (Eavg) is defined and calculated as the following. The positional error (ei) at each simu-

lation step (i) is defined to be the minimum distance (di) from robot’s current location to the

target line (Figure 3.12). Upon completion of the line following, the positional error at every

simulation step are accumulated and averaged by the total number of steps (n) for the robot to

finish the whole target line, thus the average positional error (Eavg) is obtained (Equ 3.9).

ei = di

Eavg =
1
n

i=n

∑
0

ei
(3.9)
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Effectively the average position error (Eavg) is the average distance between the location of the

robot and the target line over all steps taken by the robot when following the target line.

In order to obtain a satisfactory set of PI controller parameters, the simulation used in this

research searches exhaustedly in the parameter space. The parameter space is two dimensional

space as there are only two parameters to be selected: the proportional coefficient Kp and the

integral coefficient Ki. The searchable region for is 0≤Kp≤ 150 and 0≤Ki≤ 100, equivalently

an area of 150×100. At the beginning of this research, a much larger search space was defined,

however in practice, it was found that all of the selected controller parameters falls within this

smaller region.

A Sobol sequence is used to select the initial values for the controller parameters within the

parameter search space. Sobol sequence, firstly introduced by Sobol (1976), is an example of

quasi-random low-discrepancy number generator. In other words, numbers from Sobol sequence

not only have uniform distribution over the search space, but also cover the search space more

evenly comparing with other randomly generated numbers (Sobol and Levitan, 1976). As for

the case of selecting controller parameters of the robot, the set of parameter can be found with

relatively fewer number of trials. In this research, the number of trials to select the controller

parameter was set to be 105 for each robot, which is adequate for the parameter space of 150×
100.

The Matlab code for generating required sobol number is showing in the following.

p=sobolset(2,‘Skip’,1e3,‘Leap’,1e5)

What the code does is generating a 2-D Sobol sequence, skip the first 1000 values, and then

retain every 101st point. The numbers in the sequence are all within (0,1). Therefore in the nth

trial, the controller parameter can be obtained as:

kp = p(1,n) × 150

ki = p(2,n) × 100
(3.10)

During each trial, a set of controller parameters which is selected by the Sobol number from the

controller parameter space is assigned to the parameters of the robot’s controller. The robot is

then tested in the parameter selecting arena (Fig 3.11) to follow the target line. Upon completing

the simulation, trajectory of the robot is analysed according to Equ 3.9, thus the average position

error (Eavg) is obtained. With large number of trials, the set of parameters with which the robot

achieves the smallest average position error is selected as the controller parameters for the robot.

It is admitted that the set of parameters selected may not be the optimal parameter for the robot,

however finding the optimal set will cost an unreasonable amount of time and effort. In fact, a

robot is normally used after adequate training in reality. In addition, an experiment was con-

ducted in which the controller parameter were searched excessively (The number of trials was

107). It was found that the set of parameters obtained in the excessive parameter search did not

reduce the average positional error (Eavg) by a significant amount.
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3.4.2 Testing

After parameter selecting process, robots were then tested in the testing arenas, from which

trajectories of the tested robots will be analysed to evaluate their behavioural characteristics.

Various types of testing arenas will be used in this research. One example of the testing arenas

are illustrated in Fig 3.13.

0 50 100 150 200 250 300 350

200

250

300

Figure 3.13: Arena used to test the behaviours of robots. The black lines are the
reflective lines that robots have to follow. The arena is symmetrical around y = 250.
The robots start at (0,250) with the orientation to the right. After sufficient period of
time for the simulation, trajectories of the robots are analysed.

The aim of this research is to investigate how hardware variation influences the behaviour of

swarm robots. Therefore it is important to find out the suitable comparison metrics which can

be used to evaluate characteristics of the robotic behaviours.

If multiple robots with minor difference in their hardware parameters are tested in the same

line-following arena with exactly the same initial condition, the difference in their trajectories is

only cause by the difference in their hardware parameters. Thus one can discover the relationship

between hardware parameters and the trajectory generated, and possibly which type of hardware

leads to which trajectory. In other word, the behaviour characteristics of a robot caused by the

hardware variation can be identified.

Therefore in this research, trajectories generated by the robots will be metrics to evaluate char-

acteristics of the robotic behaviours.

3.5 Approach to Simulations

This research is conducted through simulation. The investigation of hardware variation in swarm

robots requires a massive number of computation-extensive simulations. The challenges en-

countered when conducting the simulations are described as well as the the techniques used to

tackle them.

3.5.1 Simulations Challenges

As discussed in the previous chapter, a number of robots which are all derived from the con-

trol robot, will be initiated at the beginning of the simulation with variations added to their
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parameters to model hardware variations. These robots need to be tuned for optimal controller

parameter individually in the parameter selecting arena. Then the robots are tested in the testing

arena to get the behaviours. During this process, a number of difficulties are encountered:

• The number of parameter settings of the robots are very large. Firstly, there are 15 param-

eters in the model and difference(s) can be added to the individual parameter or multiple

parameters at the same time. Secondly, the difference is an quantified percentage value

and different parameters of a particular robot can have different percentages. How to

manage the parameter setting for each simulation and its result remain a challenge.

• Computational requirement for the simulation is very high due to the method of exhausted

search for selecting the controller parameters. It takes some time for one robot to follow-

ing the parameter selection line and additional time for evaluating the trajectory. The line

following and trajectory evaluation have to be repeat for 105 times with different con-

trollers parameters from the parameter search space. This process has to be conducted for

every robot in the group.

• Scientific evaluation of the simulation results is very difficult because the number of sim-

ulations is large and each simulation have different parameter settings.

In order to solve the challenges, a number of techniques have been applied including: version

control system Git, use of Iridis supercomputer for parallel computing, and automatic simulation

report generation.

3.5.2 Simulation File Management and Git

As a large number of simulations will be undertaken, it is necessary to keep a recording of

everything for reference. To do this, a unique name is give to each simulation, and the name

starts to date as one of the specifiers. A snapshot of experiments are shown in the following.

dir:data........................................Directory contains all simulations

......

dir:20140527-Chromato4-LongMemory-Arena1

dir:......

dir:20141025 ml450-MemABS Xcos-orient testRt0.7 R

dir:20141026 ml450-MemABS Xcos-bDoub-orient testRt0.7

......

In each simulation, there are several basic elements: configuration of the experiment, arena

used, robots participated in the simulation, simulation results, post-simulation data processing

scripts and most importantly version file stores the version number of the codes for experiment

configuration, generating arenas, robots and running simulations. Particularly, ‘configuration’
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includes robot’s hardware parameter setting, basic simulation parameters like initial condition,

simulation time etc. which are the required parameters to start the simulation. A snapshot of the

directory containing one simulation is shown.

dir:20140527-Chromato4-LongMemory-Arena1 .................. experiment name

file:config................................................ configuration file

dir:arena

dir:robot

dir:results................................................simulation results

dir:script.................................for post-simulation data processing

file:VERSION .................... version number for codes, configuration, arena

A common way to keep the track of files would be saving a hardware copy of the files in the

directory for each simulation. However as the number of simulation is large, the stored hard

copy may be modified by mistake, it is safe to use version control software such as Git which

is widely used in industries to maintain project files. To be specific, git repositories are created

both for ‘configuration’ and ‘codes’. Before simulation starts, modifications which have been

made to each files will be committed, which are then saved to each repository. By committing

the changes, an unique version number will be obtained. For instance,

config version: 10.0-4-g1b288

codes version: 4.0-29-g79e5b

This version number is used as the index to track the ‘configuration’ or ‘codes’. During simula-

tion, both the version numbers for currently ‘configuration’ and ‘data’ will be stored automati-

cally in the VERSION file for every simulation .

Git version control system does not record the related files directly but keep tracking of what

changes have been made to the files, which circumvents unnecessary disk occupancy and more

importantly this is particularly useful for the simulation ‘codes’ since a clearly path of modifi-

cations can be perceived and this prevents mistakes from happening during data analysis phase.

With help of the aforesaid version number, ‘configuration’ and ‘codes’ can be easily traced and

reverted to that version easily for conducting further simulation.

3.5.3 Parallel Computing and Iridis

The computational requirement for the simulation is large. In each simulation, there are several

robots and each robot has to be tested in the parameter selecting arena extensively. Specifically,

during parameter selecting process, it takes 0.36 second to test and evaluate one set of controller

parameters for one robot. The selection of the controller parameters requires at least 105 samples

in the 2-dimensional parameter space. To select the controller parameters for one robot, it
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requires

0.36×100000÷60÷60≈ 10 hours

In one experiment, a swarm consists at lease 32 individuals. In total, the tuning of the swarm

needs

32×10 = 320 hours

For a swarm consisting of 32 individual robots, it requires at least 320 hours just for choose

the parameters of the robots in the swarm. In addition, a swarm of 32 robots is a relatively

small group. In this work, the swarm have more than 200 robots. Therefore if the simulation is

conducted on a conventional PC platform, it will take weeks to finish one experiment.

To address this problem, the parallel computing approach was used. It utilizes multiple pro-

cessors to run the simulation simultaneously to decrease the simulation time. The simulation is

separated in a way that the computation of each robot is separated as individual process. One

process is allocated to one processor core. With multiple processor cores, several robots can be

simulated simultaneously.

For this research the supercomputer Iridis at University of Southampton was used. According

to Wolton (2012), a maximum number of 384 processor cores can be utilized at the same time.

In other words, a maximum number of 384 robots can be prepared within 10-hour time.

With the parallel computing technique, the time spent on each simulation is dramatically reduced

compared with the conventional technique with a PC platform.

A script is included in Appendix C which illustrates how simulation jobs are submitted to the

Iridis 3 supercomputer.

3.5.4 Automatic Report Generation

As the number of simulations is large, it is convenient to have a summary of the simulation

results for data analyse. To do this, an automatic report generation script is design, which can

generate a pdf file containing crucial information from simulation such as ‘configuration’ (in-

cluding its version number), ‘codes’ version number, parameter selecting results, testing graph

etc.

Firstly, a latex template for simulation report is created, in which some blanks is to be filled

with informations from the simulation. A Bash script is used to fetch required data from each

simulation folder to replace the specified keywords. After this, the latex file is compiled and pdf

file is generated. An example of the automatic generated report can be seen in Appendix D.
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3.6 Summary

In this chapter, the hardware variation problems in swarm robotics, especially the sources of

hardware variation were firstly identified. It was found that hardware variations could emerge

from the component manufacture process, robot assembly process and the use of the robots. Of

all types of hardware variations on the robotic components, sensors and actuators can influence

the behaviours most as it controls the input and output of the robotic system. It was hypothesized

that hardware variations, which are though small, might still influence robotic behaviours since

the amplification impact of the software controller and the environment.

In order to prove the hypothesis, the model of a typical line-following robot and the methods of

generating hardware variations for the robotic sensors, actuators and mechanical structure were

presented. The approach of using Gaussian-distributed random numbers to model hardware

variations in a swarm consisting a large number of robots were also described, as well as the

method of selecting parameters for the robot PI controller.

Following this, an example of the testing arena used to analyse robot’s behaviour was presented.

It was argued that difference in the hardware is the only cause for difference in the trajectories if

the robots are tested in the same environment with exactly the same initial condition. Therefore

robot’s trajectories can be used to investigate the relationship between hardware variation and

robot’s behaviour caused by hardware variations.

In the end, the techniques used in this work to solve the challenges encountered during the

simulations was described.

In the next chapter, hardware-varied robots and the control robot will be simulated and their

trajectories will be compared to see if any difference can be found in their trajectories.
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The Effect of Hardware Variation on
Robots’ Trajectories

The model of a typical swarm robot and the method of selection the controller parameters were

described in the last chapter for investigating the issue of hardware variation. In this chapter the

effect of hardware variation on robots’ trajectories will be investigated. Specifically, a number

of robot with minor hardware difference will be tested to see if different trajectories can be

generated as the result of the hardware difference.

Section 4.1 explains the effects of robotic components, software controller and environment dur-

ing the amplification process for hardware variations. The design of the experiment is discussed

in Section 4.2. The simulation results are presented in Section 4.3 and 4.4. Finally Section 4.5

summarized the investigation of this chapter.

4.1 Methodology

As discussed in Section 3.1, hardware variation can be found in the construction of swarm

robots. To investigate if hardware variation can influence robotic behaviours which, to be spe-

cific, refers to the robots’ trajectories in the line-following task, a group of robots with minor

difference in their hardware parameters are simulated to see if different trajectories are taken by

the robots.

To ensure that the experiment is well constructed, the only difference between individual robots

is the values of their hardware parameters. To be specific, the same method for selecting the

controller parameter will be used for all robots in the group. In addition, the robots will be

tested in a line-following arena with exactly the same initial conditions (starting position and

orientation). In this case, if robots takes different trajectories during the line-following task, this

is only triggered by the hardware difference of the robots.

45
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With this control experiment, one can find out if hardware difference influence the trajectories

or the behaviours of robots in the line-following task. By gradually reducing the magnitude

of hardware difference, one can further identify how small the hardware difference is so that

robotic trajectories will no longer be influenced.

The control robot described in Section 3.3 was used to create a group of robot with minor

hardware difference by varying values the parameters. In the experiment of this chapter, rather

than creating a group of robots with every parameters being varied, it is better to use the robots

with one parameter is different from the control robot. And different parameters are varied in

different robots. (In this case, the number of robots in the group will be equal to the number of

parameters which is chosen to model hardware variation.) Thus one can find out what type of

trajectory the robot takes if certain parameter is varied.

In addition, fixed magnitude of hardware variation will be applied to the robots. This implies

that the hardware varied robots will be generated by applying a fixed percentage value to the

parameters of the control robot.

4.2 Experimental Design

The experiment consists of three steps: preparing robots, selecting controller parameters for the

robots and testing them using line-following task.

4.2.1 Preparing the Robots

As discussed in Section 4.1, for each of the robots in the group, only one parameter will be

different from the control robot and the rest parameters of the robot will remain the same. All

parameters used to model hardware variation are listed in Table 3.2 and Fig 3.10. As there are 15

parameters to model hardware variation, the group of robots used in this experiment consists of

16 individuals. One of them is the control robot and 15 of them are the robots whose parameters

are varied from the control one. The naming scheme of the 16 robots is described in Fig 4.1. And

explanations of the identifier for individual robot can be found in the last column of Table 4.1.

For the 15 robots whose hardware parameters are to be varied, the same magnitude of hardware

difference will be applied. To be specific, the selected parameter value of the individual robot in

the group will be decreased by a reasonable and determined value of 1%.

There are exemptions for the parameters including saggital offset Os, lateral offset Ol . As values

of these two parameters of the control robot is 0 and 1% less is still zero. Therefore a maximum

value of 3◦ for the offset angle is given to these two parameters. 1% means the offset of the

sensor alignment angle is 1%×3◦. The direction of sensor alignment is referred to Fig 3.8 and

3.7. The above process is summarized in Table 4.1.
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Figure 4.1: The Naming Scheme for Robots Used in this Experiment: The control
robot is R0. The rest robots in the group is generated from the control one. And only
one parameter is different for each robot. The descriptions of the parameters can be
found in Table 3.2. 15 robots are generated from the control one. If the parameters are
related with the IR sensor, the identifier of the robot starts with S, M refers to motor
drive and W refers to wheel.

Table 4.1: Robots and Their Hardware Differences Comparing with the Controlled
One: Only the parameter identified is varied and the rest of the parameters of the
individual robot remain the same with the control robot.

Robot Identifier Hardware Difference Explanation

R0 N/A control robot
SgL αSgL = αl,R0× (1−0.01) left sensor gain
SgR αSgR = αr,R0× (1−0.01) right sensor gain
S fL ]vS fL = ]vl,R0× (1−0.01) left field of view (viewing angle)
S fR ]vS fR = ]vr,R0× (1−0.01) right field of view (viewing angle)

SphL hSphL = hl,R0× (1−0.01) left sensor height
SphR hSphR = hr,R0× (1−0.01) right sensor height
SplL oSplL = 3◦× (−0.01) left sensor lateral offset
SplR oSplR = 3◦× (−0.01) right sensor lateral offset
SpsL oSpsL = 3◦× (−0.01) left sensor saggital offset
SpsR oSpsR = 3◦× (−0.01) right sensor saggital offset
MgL mMgL = ml,R0× (1−0.01) left motor gain
MgR mMgR = mr,R0× (1−0.01) right motor gain
WrL rWrL = rl,R0× (1−0.01) left wheel radius
WrR rWrR = rr.R0× (1−0.01) right wheel radius
Wd dWd = dR0× (1−0.01) wheel separation

4.2.2 Robotic Controller Parameter Selection

After the group of 16 robots are prepared, the controller parameters for each robot are to be

selected using the method explained in Section 3.4.1. The controller parameters to be selected

are listed Table 4.2.
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Table 4.2: Controller Parameters to be Selected

Parameter Explanation

Kp proportional coefficient
Ki integral coefficient

As described in Section 3.4.1, during controller parameter selection, each of the 16 robots in

the group is required to follow the parameter selection line (Fig 3.11) with different sets of

controller parameters which is picked by the Sobol sequence within the parameter space. 105

sets of controller parameters are tested. The set which helps the robot achieve the smallest

average position error Eavg (Equ. 3.9) in terms of following the target line is selected as the

controller parameter for the robot.

After the sets of parameter are determined for all robots in the group, the average positional

errors Eavg of all 16 robots in the group are shown in Figure 4.2. The average positional er-

ror Eavg describes how accurate a robot follows the parameter selection line with the selected

controller parameters. To be specific, the average position error Eavg is a measurement of the

average distance between the location of a robot and the parameter selection line over all the

steps throughout the parameter selection line. Comparing with the size of robot in Fig 3.3, the

distance between robots’ trajectories and the target line is small and all robots in the group fol-

lowed the parameter selection line closely. While the robots have different hardware parameter

values, they all took similar trajectories with the selected controller parameters in the parameter

selecting arena.
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Figure 4.2: The Average Positional Error of the Robots with 1% Hardware Variations:
The average position error for all robots are within a small range ∈ [0.003,0.004].
Comparing with the size of the robot (10× 10 Fig 3.3), the trajectories taken by all
robots are almost the same with the parameter selection line.

As this is a rather simple parameter selecting method and the same method is applied to every

robot in the group, it is not expected that robots will be tuned to a state that they all take exactly

the same trajectory, without showing any average position error at all. However with this pa-

rameter selecting method, all robots were able to follow the parameter selecting line accurately

and follow almost the same trajectory. In other words, the robots’ hardware differences were

partially compensated by the controller parameters selected.
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On the other hand, although the selected controller parameters help a robot to achieve the best

accuracy for following the parameter selecting line, difference between the trajectories of the

robots and the parameter selecting line still exist. By evaluating such difference, one can per-

ceive that how well the robot is tuned, how diverse the group of robots behave, which can be

regarded as a preliminary review of how hardware variation influences robot’s behaviours.

4.2.3 Testing

After selecting the controller parameters, all the robots were tested in the testing arena showing

in Figure 4.3. In the arena, all the robots start from the location (0,250), with the same orienta-

tion to the right. The robots are tested individually and not as a swarm, so the robots were not

required to interact with anything, except the lines.

0 50 100 150 200 250 300 350

200

250

300

Figure 4.3: The Testing Arenas: The black lines are the lines to be followed. They
are symmetrical about y=250 and these lines have gaps. Robots start at the coordinate
(0,250) with the orientation to the right.

The testing arena provides a structured environment with three key features.

• The arena is symmetrical around y = 250. The control robot whose right and left compo-

nents are identical will always follow a straight trajectory as long as the lines are symmet-

ric, regardless of how other sections of the lines are placed. However this is not the case

for robots with variations on its either left or right component, who can be easily distracted

by other sections of the lines and generate different trajectories. In addition, straight tra-

jectory from the control robot is a good reference for comparing with trajectories from

other robots.

• The lines are not consecutive. Due to the design of the robot PI controller, if no reflective

lines are perceived by the IR sensors, the robot will maintain its orientation and continue to

move forward (due to the constant voltage applied to the controller, which was explained

in Section 3.2.2). In this case, if the orientation of the robot is not strictly to the right, robot

will slowly move away from the symmetric line y=250, thus generate different trajectories

against the control robot.

• Several branching sections are created with the reflective lines which are placed along and

near y=250. The lines can trigger different robots to move away from the symmetrical line

so that one can figure out the power of influence to the trajectories which are caused by

different types of hardware variation.
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The environment of this type can show not only the different behaviours of the robots, but also

how the varied parameter influence robotic behaviours and the influential power of different

types of hardware difference.

4.3 Results and Discussion

The simulated robots used in this experiment are all variants of the control robot, with a single

parameter being reduced by a fixed and small percentage (1%) for each robot, as shown in

Table 4.1. Even though these difference are very small, it was shown that robots still took

different trajectories in the testing arena (Figure 4.4).

The trajectories of the robots with varied hardware parameters are different comparing with the

control robot R0. R0 is distracted neither to the left nor to the right and takes a trajectories which

is exactly the symmetrical line y=250. This is because there is no difference between its left and

right sensor or actuators. Other robots except Robot Wd go to either the upper or lower side of

the arena.

0 100 200 300 400
100

200

300

400

R0

SgL

SgR S fL

S fR

SphL

SphR

SplL

SplR

SpsL

SpsR

MgL

MgR

WrL

WrR

Wd

Figure 4.4: Robots’ Trajectories in the Testing Arena: The thick lines are the reflective
lines to be followed. The thin lines are robots’ trajectories which are labelled with
robots’ identifiers (Table 4.1). All robots start at the coordinate (0,250) with the orien-
tation to the right. The direction of travel for all robots is from left to right. All robots
reached the boundary of the arena.

The effect of hardware difference applied on individual parameter of the robot is discussed in

the following.

4.3.1 Wheel Distance

The difference between the robot Wd and the control robot R0 is that Wd’s wheel separation is

1% smaller than that of R0.
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According to Equ 3.8, the parameter wheel separation d is only related to the orientation change

of the robot. To be specific, the orientation change can be expressed with Equ 4.1.

dθ =
1
d
(ωRrR − ωLrL) dt (4.1)

where

dθ is the change of orientation for the robot,

ωL is the speed of rotation for the left wheel,

ωR is the speed of rotation for the right wheel,

rR is the radius of the right wheel,

rL is the radius of the left wheel,

d is the separation of the two wheels.

When d decreases by 1%, dθ increases, meaning that the robot can change its orientation more

quickly. In other words, the robot has a smaller turning radius. However as robot Wd does

not have any difference between its left parameters of either IR sensor, motor drive or wheels

and the corresponding parameters on the right, it was not distracted from the symmetrical line

y=250, therefore robot Wd did not have to change it orientations and robots Wd and R0 generate

the same trajectory and behave similarly in this testing arena.

4.3.2 Motor Gain and Wheel Radius

A variable speed of the wheel Velocity is defined as the velocity of the point on the wheel which

directly contacts with the ground. For either left and right wheel, the speed of the wheel can be

expressed in Equ 4.2.

Velocity = ω × r (4.2)

where

Velocity is the wheel speed defined,

ω is the speed of rotation for the wheel,

r is the radius of the wheel.

As discussed in Section 3.2.3, both left and right robotic motor drives are modelled as two

individual pure gains which cover any module exists after output of PI controller and before the

wheel. Therefore according to Equ 3.7, the wheel velocity can be expressed as Equ 4.3

Velocity =Vm×m× r (4.3)

where

Vm is the voltage supplied to the motor terminal,

m is the gain of motor drive.

Therefore any change made to the gain of the motor drive have the same effect when the same

change are made to the wheel radius. These two types of variations founded on the actuator
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gain and wheel radius is considered as the same type. This explains that robots MgL and WrL

generated the same trajectory, and robots MgR and WrR followed the same path.

4.3.3 Sensor Viewing Angle and Height

The robots with these two types of variation took similar path in this testing arena: S fL and SphL

almost have the same trajectory until they pass x=300 where they slowly diverge; and the same

trend can be found in the trajectories of robots S fR and SphR.

This finding can be explained that lowering sensor height has almost the same effect of reducing

the field of view of the sensor, showing Figure 4.5. White reducing sensor height, the perception

area of the sensor is also reduced. However both actions are not exactly the same, lowing the

height of the sensor also reduce the distance from the reflective point on the ground to the sensor.

This explains that why their trajectories are not exactly the same.

The modelling of the IR sensor mentioned in Section 3.2.1 repeated in Equ 4.4.

VIR =
n

∑
1

α
x2 cos(θ)+β Within ]v (4.4)

x1 x2
x1

]v1
]v2
]v1 ]v2

∆h

Figure 4.5: Lowering Sensor Height and Reducing Sensor Field of View: An IR sensor
with the viewing angle of ]v1 and normal height is shown on the left. Supposing there
is an reflective dot on the ground and the distance from the dot to the sensor is x1. If
the height of the sensor is reduced (showing in the middle), its viewing angle would
be reduced to ]v2, the number of reflective dots within the IR sensor’s viewing arena
would decrease, and distance which the reflective light travels would also be reduced
to x2. According to Equ 4.4, reduced reflective light travel distance will counteract the
effect of reduced viewing angle. For comparison, the third figure shows the IR sensor
with normal installing height but reduced the viewing angle ]v2. The distance which
the reflective light travels remain the same as x1.

.

4.3.4 Sensor Offset and Sensor Gain

SplL, SplR are the robots whose lateral offset angle for the IR sensor is different from the control

robot. This parameter is described in Figure 3.7, which determines if the IR sensor points away

from the centre of the Robot (either left or right).
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SpsL, SpsR are the robots whose saggital offset angle for the IR sensor is different from the

control robot. This parameter is described in Figure 3.8, which determines if the IR sensor

points to either the front or the back of the robot.

SgL, SgR are the robots whose sensor gain parameter is different from the control robot. This

parameter is described in Figure 3.5(a).

The trajectories which is taken by these six robots are different from the one taken by the control

robot.

4.3.5 Summary

In this experiment, the starting point of all robots are on the symmetric line y=250, and the

orientation of all robots are aligned with the symmetric line. For any robot, as long as there is

no difference between any of the parameters on the left and the corresponding parameter on the

right, it was not distracted from the path taken by the control robot. Examples can be found on

the control robot R0 and Wd .

Secondly, the testing arena is designed to distract the robots from the symmetric line y=250. For

the robots which were distracted early, the type of hardware difference found on the robot have

large influence on the path it took. On the other hand, for robots which were later distracted

away from the symmetric line, the type of hardware difference found on the robot have small

influence on the path it took. In other words, the influence of the parameters (whose values are

varied with a fixed percentage) to the trajectory in the testing arena can be ranked from large to

small as:

1. gain of motor drive and wheel radius

2. IR sensor saggital offset angle

3. IR sensor gain

4. IR sensor lateral offset angle

5. IR sensor viewing angle

6. IR sensor height

The parameter of wheel separation is not in the list, as its influence to the path of the robot can

not be explored by this type of testing arena.
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4.4 Further Experimental Results and Discussion

It is discovered from the previous experiment that when the magnitude of the hardware differ-

ence was 1%, robots took different trajectories comparing with the control robot. However it is

not known how small the magnitude is, so that the robot’s trajectory will no longer be influenced.

Therefore several additional experiments are carried out to discover the smallest magnitude of

hardware variation which can influence trajectories taken by the robots in the testing arena.

4.4.1 Robots

Five additional experiments are simulated, in which different magnitudes (in percentage) of

hardware difference are applied to the robots, which are summarized in Table 4.3. In each

experiment, there are 16 robots and one of them is the control robot. For each of the rest 15

robots, only one particular parameter is varied by a certain percent comparing with the control

robot. Different parameters are varied among the rest 15 robots.

Table 4.3: Different Magnitudes of Hardware Difference: In each simulation, hardware
variations of the robot have different magnitudes. For instance in No.1, the value of
each parameters of the robot is 1% smaller than that of the control robot. And robots
in experiment No.6 are more similar to the control robot since there is only 1e−5%
difference in terms of the values of the selected parameters.

Simulation No. 1 2 3 4 5 6
Magnitude (%) 1 0.1 0.01 1e−3 1e−4 1e−5

4.4.2 Controller Parameter Selecting

During each experiment, after the robots are prepared, the controller parameters of the robots

are selected and applied. The average positional error Eavg (defined in Section 3.4.1) during the

parameter selecting process for the robots in all experiments are shown in Figure 4.6.

When the magnitude of the hardware difference is 1%, the points in Figure 4.6(a) which refer to

robots’ positional error are scattered in the region y∈ (0.003,0.004). As the variation magnitude

decreases in the rest experiments (Figure 4.6(a) - 4.6(f)), these points slowly converge to the

same horizontal position where the point of the control robot locates. This can be interpreted as

that the trajectories taken by the robots in the controller parameter selection arena became more

similar to that of the control robot. In other words, the behaviours of robots in the parameter

selection arena are almost homogeneous. The variance of the average position errors Eavg for

the robots in each experiment is calculated and shown in Figure 4.7.
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(a) Average Position Error for Robots with 1% Hardware Difference
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(b) Average Position Error for Robots with 0.1% Hardware Difference
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(c) Average Position Error for Robots with 0.01% Hardware Difference
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(d) Average Position Error for Robots with 1e−3% Hardware Difference
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(e) Average Position Error for Robots with 1e−4% Hardware Difference
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(f) Average Position Error for Robots with 1e−5% Hardware Difference

Figure 4.6: Average Position Error of Robotic Groups with Different Magnitude of Hardware Variation
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Figure 4.7: The variances of the tuning errors of robots in each group decrease when
the magnitude of hardware variation decreases.

It is discovered that When the magnitude of hardware variation decreases, the trajectories taken

by the robots become more and more similar to that taken by the control robot.

4.4.3 Results and Discussions

After the controller parameters for each robot were selected, the robots were then simulated in

the testing arena (Figure 4.3). The trajectories of all robots are in Figure 4.8, which shows an

consistency with the change of the average position errors. Robots with different magnitudes of

hardware variations generate different trajectory patterns in the parameter selecting arena and as

the magnitude of hardware difference decreases, robotic trajectories become more convergent

to that of the control robot.

For instance, when the magnitude of the hardware variation is 1%, 16 robots, including the

control one, end up in 12 different locations when they reached the border of the testing arena,

showing in Figure 4.8(a). When the hardware variations decrease from 0.1%, 0.01%, 1e−3%,

1e−4% to 1e−5% gradually, the number of aforesaid locations also decreased, from 12, 5, 3, 3 to

1. The divergence of the trajectories is closely related with the magnitude of hardware variation.

The larger the magnitude is, the more diverse the trajectories are and vice versa.

Secondly, the divergence of the robots’ trajectories can still emerge even when the magnitude

of hardware variation is as small as 1e−4%. Although the majority of the robots in the group

generate the same trajectory with the control robot, some of them can still diverge at the last

bifurcation point, showing in Figure 4.8(e). This consolidates the hypothesis that even though

hardware variation is small, it can still influence robotic trajectories.

Lastly, it is found that the strength of behavioural influence is different when same magnitude

of hardware variation is applied to different parameters. In other words, some parameters can

withstand a comparably high magnitude of variation without showing difference in the trajec-

tories; while for others, even if the hardware variation are very small, the robot can still take

different trajectories.
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(d) Robots’ (1e−3% Difference) Trajectories
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(f) Robots’ (1e−5% Difference) Trajectories

Figure 4.8: Trajectories of the Robots with Different Magnitudes of Hardware Vari-
ations: For all experiment, all robots started at the same coordinate (0,250) with the
orientation to the right. The direction of travel is to the right. When 1% of hardware
difference is applied, the robots took different trajectories. When the magnitude of the
variation decreases, less difference is found in their trajectories. Even 1e−4% differ-
ence is added to the robotic hardware parameters, difference in their trajectories can
still be observed in Figure 4.8(e). Until the hardware difference is further reduced to
1e−5%, the robots took almost the same trajectories showing in Figure 4.8(f).

4.5 Conclusion

In this chapter, a group of robots with minor hardware difference were tested in a line-following

task. Robots are all derived from the control robot by applying a fixed percentage value to

a particular hardware parameter for each of them. The trajectories taken by the robots are

compared with that of the control robot.

All robots were firstly required to follow a continuous reflective line to select the parameters

for the PI controller which can help the robot achieve minimal average positional error when

following the controller parameter line. It is found that when each of the hardware parameter

values was reduced by 1% in turn, the robot could still take a trajectories which is very similar to

the target line and the average position error is very small comparing with the size of the robot.



58 Chapter 4 The Effect of Hardware Variation on Robots’ Trajectories

As all robots with the selected controller parameters were able to follow the parameter selecting

line accurately and follow almost the same trajectory, the robots hardware differences were

partially compensated by the controller parameters selected and showed almost homogeneous

behaviours in the parameter selection arena.

After the controller parameters were selected, all robots were tested in the testing arena. The

testing arena is designed to be symmetric in order to differentiate the trajectories of the robots.

It is discovered that as long as difference exists between left parameter of a robot and the cor-

responding parameter on the right, the robot can be distracted from the symmetric line which is

the trajectory taken by the control robot.

To be specific, this testing arena requires the symmetric values for all left and right parameters.

Therefore any difference between the left parameter can corresponding parameters on the right

will cause the robot takes a path which is different from the control one. If the robot was

distracted from the centre early, the hardware difference of the robot has large influence to the

trajectory in this arena.

Therefore it is discovered that when the parameters of the robot are individually varied with a

fixed percentage value, different parameters influence the trajectories of the robot differently.

Some parameters such as gain of motor drive, wheel radius, IR sensor saggital offset angle, etc.

have large influence over the trajectory taken in this testing arena. Others have a smaller amount

of influence.

Additional experiments were conducted in which the fix percentage of hardware difference was

reduced gradually for the varied robots. It is revealed that the divergence of the trajectories of

the robots in the group was lessened as the magnitude of hardware difference was decreased.

Robots’ trajectories was different comparing with the control robot, even when the magnitude

of hardware variation is as small as 1e−4%.



Chapter 5

The Mechanism of Robot
Chromatography

In the previous chapter, a group of robots with minor hardware difference were tested using a

line-following task. It was found that minute hardware difference could result in robots taking

different trajectories comparing that of the control robot and showing different behaviours in the

testing arenas. The investigation in the previous chapter was conducted on the robots that each

robot has only one type of hardware differences.

In practice, a robot used in a swarm may be different from others in the group in multiple

parameters. Therefore in this chapter, a group of robots, varing hardware parameters determined

randomly to model realistic scenario of hardware variations, will be used.

A method of sorting robots according to their behaviours, which is adapted from the chro-

matography experiment in chemistry, is used to investigate how hardware variation influences

behaviour of a swarm.

The structure of this chapter is: chemistry chromatography is introduced in Section 5.1 as well as

the reason for using this approach. The experimental design is described in Section 5.2 and 5.3.

The results are presented and discussed in Section 5.4, with the conclusions in Section 5.5.

5.1 Methodology

5.1.1 Chromatography in Chemistry

Chromatography is a general term of the chemistry techniques used to separate a mixture of

substances for both preparative and analytical purposes. One example is the column chromatog-

raphy, in which the separation of a mixture of substances happens in a vertical column. Usually

the mixture of substances is dissolved in a liquid solvent such as ether, hexane, etc. The solvent

59
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containing the mixture is called mobile phase. The mobile phase will flow through the stationary

phase under gravity. The most common stationary phase for column chromatography is silica

gel, alumina, etc. As the mixture of substances in the mobile phase have different travelling

speeds in the stationary phase due to different characteristics of the substances in the mixture,

for instance molecule size, thus the mixture is separated over time (Ettre, 1993).

Figure 5.1 illustrates the process of a column chromatography experiment. Figure 5.2 are series

of photos taken at different times during a column chromatography experiment (Zlatich, 2013).

In column chromatography, the pressure applied to the mobile phase is effectively caused by

gravity which continuously forces the mobile phase to move downwards through the stationary

phase.

the mixture to
be seperated

Solvent is added
throughout the process

stationary
phase

chromato-
graphy column

Each component is collected
as it reaches the bottom.

Figure 5.1: Column Chromatography Experiment in Chemistry (adapted from
http://www.m2c3.com/chemistry/VLI/M4 Topic2/la 16 07.jpg): The mobile phase
contains the mixture of substances to be separated. The mobile phase is then added
to the vertically-placed chromatography column which contains the stationary phase.
Due to gravity, the substances in the mixture travel downwards. As different substances
in the mixture have different travelling speeds, different substances in the mixture reach
the end of the column at different time, allowing separation.

The separation is based on differential partitioning between the mobile and the stationary phases (Har-

wood and Moody, 1989). For instance, substances in the mixture have different molecular sizes.

Compound with small molecular sizes can go through the substance in the stationary phase very

fast while large ones have difficulties or can not go through at all; in some cases the non-covalent

force such as hydrogen bond between molecules in the mixture and the substances in the sta-

tionary phase slows down the travelling speed, and the mixture is separated over time (Snyder

and Dolan, 2010).
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Figure 5.2: Examples of a Column Chromatography Experiment (Zlatich, 2013):
These five photos are taken at different times of a column chromatography experi-
ments (starting from left to right). Substances in the mixture have different colours.
They are poured into the column from the top at the beginning. After some time, the
substances slowly separate into different layers in the column.

Apart from the difference in the interaction between the mobile phase and the stationary phase,

successful separation also relies on the pressure (in the column chromatography case, pressure

is caused by gravity) which consistently pushes the mixture to go downwards through the sta-

tionary phase (Miller, 2009). Without the pressure, the mixture may just stay at the top of the

column and interactions would never happen. Sometimes, in order to get higher resolution for

the separation, additional pressure with the help of a pump, is applied to the mobile phase,

known as ‘High Performance Liquid Chromatography’ (Dong, 2009). The additional pressure

helps the mobile phase interact at higher rate with the stationary phase, resulting higher resolu-

tion of separation. The pressure which forces the mobile phase to interact with the stationary

phase is essential to the separation.

Figure 5.3 summarizes the important factors of chemistry chromatography: unique chemical

behavioural characteristics, pressure and the required time and space. The separation of the

mixture in the chromatography experiment relies on the interaction between the substances in

the mixture and the stationary phase. Given enough time, space and pressure, subtle difference

of the interactions between substances is accumulated, hence the substances separate.

unique chemical
behavioural

characteristics

pressure separation
time

space

Figure 5.3: The Process in Chromatography in Chemistry

5.1.2 Chromatography for Swarm Robots

In chemistry, only when the substances in the mixtures have different characteristics or be-

haviours when interacting with the stationary phase, their minor behavioural difference can

be accumulated and shown at the global level. If there is no behavioural difference or the

behavioural difference can not be explored by the stationary phase, no separation will occur.

Robots in a swarm are subject to hardware variations, and each of them have a unique hardware
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circumstance which triggers unique behavioural characteristic. Given this, robots are quite sim-

ilar to the substances in the mixture which have different behaviours when interacting with the

stationary phase.

In addition, it is discovered in Chapter 4 that robots with minor hardware difference took differ-

ent trajectories in the line-following scenario and their unique behaviours were observed. If the

unique interaction between the robots and the reflective lines can be accumulated and shown on

the global level, robots can be separated according their behaviours. Therefore a special arena

needs to be designed so that not only robotic behaviours can be explored but also the interaction

can be accumulated for a large quantity.

Pressure is also important to the process as it pushes the mobile phase through the stationary

phase and makes the interaction between the mixture and stationary phase happen. Without the

pressure, no interaction will happen. In order to separate the robots in a swarm, some form of

pressure should be implemented in order to force the robots to interact with the arena.

To ensure satisfactory separation, the simulation time and the size of the arena should be as large

as required. In this case, the arena need to be big enough and the simulation time should be long.

In general, to separate robots in a swarm, the experiment for swarm robots should have similar

factors and the same process that the column chromatography experiment in chemistry has,

showing Figure 5.4 and Table 5.1.

unique robotic
behavioural

characteristics

pressure separation

time

space

arena
simulated
pressure

simulation
time

Figure 5.4: From Chemistry Chromatography to Robotic Chromatography: There are
four essential factors for chromatography in Chemistry. In order to implement chro-
matography for robots, these four essential factors are realized. A special arena is de-
signed to explore robots’ unique behavioural characteristics and the arena will be big
enough to accommodate the lengthy separation process during simulation. The effect
of pressure will be simulated in order to push the robots to go through the arena. The
time needed to accumulate the minor behavioural characteristic during each interaction
will realized by the lengthy simulation time.

If the conditions of time and space are fulfilled, the robot’s minor behavioural characteristic

during the interaction with the environment can be accumulated, shown on a global level, which

possibly leads to a separation. Therefore it is believed that the idea of chemistry chromatography

techniques can be adopted to implement a method which can sort or separate robots in a swarm

according to their behaviours. In the next section, the implementation of the four factors are

discussed.
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Factors Chemistry
Chromatography

Chromatography
for Swarm Robots

1 Unique physical
characteristics of the chemicals

Unique behavioural
characteristics of the robots

2 Pressure
(caused by gravity or pressured gas)

Simulated
pressure

3 Space Arena
4 Time Simulation time

Table 5.1: Comparison between Chromatography Experiment in Chemistry and Swarm
Robots

5.2 Experimental Design for Robotic Chromatography

To implement chromatography experiment for swarm robot, the experimental design consists of

the arena design, and the design of the applied pressure.

5.2.1 Arena Design

A special type of arena was designed to fulfil the following requirements:

1. The arena can explore robots’ unique behavioural characteristics.

2. The arena should encourage many interactions for the robots, so that the behavioural

differences can be accumulated.

3. The arena should be large enough to accommodate the lengthy accumulation process.

A portion of the arena is shown in Figure 5.5. It is covered with reflective lines with fixed length

and random orientation. The middle point of the lines are aligned to the grid of the arena.

The line pattern was chosen as the pattern of the arena. When robots encounter a reflective line,

some robot will follow the line and others will be directed to other directions depending on the

hardware circumstance as well as the position and orientation of the robot. During the interac-

tion, the robot changes its speed and direction of movement based on information perceived by

the sensors. Most importantly the behavioural characteristics of the robot can be explored.

The grid used to determine the location of the line is illustrated in Figure 5.6. Firstly the arena is

divided into many identical hexagon-shape cells which are adjacent to each other. The hexagon

cell is chosen because hexagon shape utilizes the arena area fully without any uncovered space.

Secondly, the centre point of individual line is aligned with the centre of the hexagon cell which

offers a better spread of the line all over individual cell. The length of the line is proportional

to the size of the hexagon cell. Lastly, the orientation of the line is randomly determined by a

uniformly distributed random number generator. In other words, the arena is fully utilized by
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Figure 5.5: A Portion of the Arena for Robotic Chromatography Experiment: Com-
paring with the size of robot (10×10) in arbitrary size, the size of the area shown is
150×150 also in arbitrary unit. The arena is covered with the reflective lines. The lines
have a fixed length of 10. The centre point of the lines are located on the grid of the
arena. The orientations of the lines are randomly determined.

Figure 5.6: Arena Grid and Location of the Reflective Lines: The arena grid is deter-
mined by the hexagon cells which fully cover the whole arena. In each cell, the centre
points of the reflective line is aligned with the centre point of the cell. The length of
the line shown is 10 in arbitrary unit, comparing to the size of the robot 10×10. The
orientation of the line is determined by a uniformly distributed, randomly generated
numbers. Only the reflective lines can be seen by the robot.

hexagon-shape cells with a randomly orientated reflective line at the centre of each cell, thus

the arena is fully utilized to maximize the number of interactions between the robots and the

environment.

Only the reflective lines can be seen by the robot and the hexgon cells are used just for placing

the lines correctly.
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The last requirement for the arena design is that the arena should be large enough to accommo-

date the behavioural accumulation process. Due to the fact that MAT file in Matlab which is

used to store the arena information has a limited size, it is impossible to create an arena with

very large size. An approach of shuffling a number of smaller arenas to form a much bigger

arena is adopted. These smaller arenas are used in a loop: once all arenas have been used, the

first one is reused and so on. This process is illustrated in Figure 5.7. Effectively, the arena

which robots run in is a seamless combination of a number of smaller arenas.

arena1 arena2 arena3 arena4

arena1 arena2 arena3 arena4 arena1 arena2

Figure 5.7: Constructing the Arena with a Large x Axis: Firstly a number of smaller
arenas (arena1, arena2, arena3 and arena4) are created. During the simulation, once
a robot reaches the right boundary of arena1, then it automatically enter arena2 from
the left side. Effectively, the arena which robots run in is a seamless combination of a
number of smaller arenas.

To ensure that the arena, effectively a significant larger y axis, can be modelled, a mechanism

illustrated in Figure 5.8 was designed for the simulation. Once a robot reaches the bottom or top

boundary of the arena, it automatically reappears on the other side of the arena with maintained

orientation.

arena

p1

p2

p4

p3

Figure 5.8: Top and Bottom Boundary Re-entering Mechanism: Once a robot reaches
the top or bottom boundary of the arena (for instance from the coordinate p1 or p3), the
robot will reappear on the other side of the arena (from the coordinate p2 or p4) with
the same orientation.

To have a better understanding of the top and bottom boundary re-entering mechanism, it can be

considered that the arena is wrapped on the surface of a pipe, then the top and bottom boundary

of the arena is connected to each other. As a result, the robot runs on the surface of the pipe,

equivalently the robot is able to re-enter the top boundary of the arena with the same orientation

which it has when reaching the bottom boundary of the arena.
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In this case, an arena with both large x and y axis is obtained. In addition because of the arena

top and bottom boundary re-entering mechanism, only the x coordinate of the robot is of more

importance comparing with the y coordinate.

5.2.2 Simulation of the Chromatography Pressure

In chemical chromatography, the pressure is used in order to force the substance to pass through

the stationary phase and encourage the interactions. As in chemical chromatography the simu-

lated pressure will be applied along the direction of travel, hence the x axis.

As the orientation of the robot will also change due to the robot’s interaction with the environ-

ment using the two IR sensors which are located in the front of the robot, if the direction of

the pressure is aligned with the direction of the IR sensors, the number of interaction can be

increased.

While orientating the robot to the right is the necessary to the separation of the robots, the

influence of the pressure affecting the robot’s orientation should be applied in a way that the

interaction between robot and reflective line pattern will not be significantly influenced. Other-

wise, the dominant factor is the pressure and the behavioural characteristics of robots will not

explored and accumulated. Therefore any change of the robot’s orientation should be relative to

the current orientation of the robot.

arena

arena x axis
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y
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Figure 5.9: Robot’s Orientation and Corresponding Direction in the Arena: The arrows
refer to the direction of the arena which the robot is facing to. if the robot faces to the
right of the arena, the orientation of the robot is 0. If the robot faces the positive y axis
of the arena, its orientation is π/2. If the robot faces the negative y axis of the arena,
its orientation is −π/2.

The effect of the simulated pressure applied to the robots is expressed in Equ 5.1 and 5.2. The

robot’s orientation and the corresponding direction in the arena are illustrated in Figure: 5.9

dx = Fa ·
∣∣∣sin(ori t−1)

∣∣∣

d(ori) =−Fb · tan(ori t−1)
(5.1)
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x t = x t−1 +dx

ori t
j = ori t−1

j +d(ori)
(5.2)

where

dx is the change of x coordinate which should be applied to the robot at simulation time t

d(ori) is the change of orientation which should be made to the robot at simulation time t

x t is the x coordinate of the robot at simulation time t,

x t−1 is the x coordinate of the robot at simulation time t−1,

ori t and ori t−1is the orientation of the robot at simulation time t and t−1,

Fa is the simulated pressure influencing the robot’s x coordinate,

Fb is the simulated pressure affecting the orientation of the robot.

From the equation, dx is always a positive number showing in Figure 5.10(a). d(ori) can be

either positive or negative depending on the orientation of the robot, showing in Figure 5.10(b).

−π/2 −π/4 π/4 π/2

0.5

1

ori

dx/Fa

(a) If the difference between the robot’s orientation and the
right direction of the arena exists, the x coordinate of the
robot will be increased since Fa is a positive constant. If the
difference is large, the increment is large, and vise versa.

−π/2 −π/4 π/4 π/2

−∞

∞

ori

d(ori)/Fb

(b) The direction which the robot is facing in the arena is
illustrated with arrows when its orientation is equal to the
value of the point on the x axis of this figure. For instance,
when the robot’s orientation is 0, it is facing the right direc-
tion of the arena. If the orientation is π/4, the robot is facing
to the right upwards of the arena.
Since Fb is a positive constant, if the orientation of the robot
is positive, meaning the robot is facing upwards to the posi-
tive y axis of the arena, its orientation will be reduced by a
number proportional to the absolute value of the tangent of
the orientation. If the orientation is negative, the orientation
will be increased.

Figure 5.10: Simulated Pressure Impacts Robot’s x Coordinate and Orientation: Ori-
entation of the robot in relation to its direction in the arena is explained in the figure
below.

For the change of robot’s x coordinate, the equation can be interpreted as that as long as the

robot’s orientation and direction of the simulated pressure is different, a positive number is

added to the x coordinate of the robot. In other words, the speed of each swarm robot at each

simulation step is the vector addition of the swarm robot’s speed and a subcomponent of speed

due to the simulated pressure.
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For the change of robot’s orientation, the equation can be interpreted as that as long as the robot’s

orientation and direction of the simulated pressure is different, an angular speed is added to the

swarm robot which force the swarm robot to orientate to the right.

The implementation of the simulated pressure which is similar to the pressure applied in chem-

istry chromatography experiment was described. The simulated pressure will not only increase

the swarm robot’s x coordinate but also ensures that the swarm robots continue to face the right-

hand side of the arena by altering the orientation of the robot.

5.3 Design of the Robotic Swarm

During the experiments in Chapter 4, each of the varied robots has only one type of hardware

variation. Specifically, comparing with the control robot, one of the parameters on each of the

varied robot is different from the control one. Whereas in reality, multiple hardware parameters

of one robot are different from those of others and hardware variation across all robots in a

swarm are different. Hence for robots used in this experiment, all parameters of individual robot

will be randomly varied.

The deviations for individual parameters of all robots in a swarm can be different in practice.

Sensor gain and viewing angle usually have small sigma value due to more strict quality control

during the manufacture. Sensor assembly variation (sensor height, lateral offset and sagittal

offset) are comparably small comparing with variations on the motor and gearbox gain, and

wheel separation. Thus the random numbers used to vary individual parameter of all robots

will follow Gaussian distributions with different deviation, equivalently the sigma values for

the distributions will be different. As listed in Table 5.2, three sigma values (large deviation

σ = 0.05, medium deviation σ = 0.03, small deviation σ = 0.01) are used to generate random

number sequences with different distributions.

Table 5.2: There are 13 parameters to be varied on each robot (two IR sensors and two
wheels). The parameters of the robot were varied with Gaussian-distributed random
numbers which have different deviations, equivalently different sigma values.

Component Parameter Description Sigma

IR sensor

α gain σ = 0.01
]v view angle σ = 0.01
h height σ = 0.03

Ol lateral σ = 0.03
Os sagittal σ = 0.03

Motor drive m gain σ = 0.05
Wheel d separation σ = 0.05

With the method described, 210 robots were generated for this experiment. Individual parameter

of all robots were varied with a sequence of Gaussian-distributed random numbers with specific

sigma value. The parameters α , ]v used sequences of random numbers with σ = 0.01. The
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parameters h, Ol , Os used sequences of random numbers with σ = 0.03. And the parameters m

and d used sequences of random numbers with σ = 0.05.

The controller parameters of all robots were selected using the method described in Section 3.4.1.

5.4 Results and Discussion

The group of the robots were simulated in two arenas (Arena1 and Arena2) which were gener-

ated using the method described in Section 5.2.1. The location of all robots are shown in Fig-

ure 5.11. All robots started at the coordination (0, 500) individually. As discussed previously,

no interaction between robots were modelled at this stage of the research. After they travelled

from x = 0 to x = 1.65e7, their final positions were scattered in the range 1.15e7≤ x≤ 1.65e7.
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(a) Robots’ Location in Arena1
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(b) These Robots’ Location in Arena2

Figure 5.11: Robots’ location in Arena 1 and 2 with full view of x axis. Dots in
both figures denote the location of 210 robots after same period of simulation time.
In both experiments, all robots set off from the same coordination (0,500) and they
moved towards right. When the simulations ended, robots scattered within the range
1.15e7 < x < 1.65e7.

5.4.1 Similar Orders of Robots in Two Arenas

The difference between the two arenas is the orientations of reflective lines as discussed in

Section 5.2.1. A sequence of uniformly distributed random numbers was used to determine the

orientation of every lines in the arena. Due to different sequences used for the two arenas, the

orientation of individual lines in these arenas are different.
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Additionally, only the x coordinate matters when comparing locations of the robots. Thanks

to the arena re-enter mechanism defined in Section 5.2.1, if the robot reaches either upper or

bottom boundary of the arena, it will re-enter the arena from either bottom or upper boundary

of the arena with the same x coordinates and orientation.

The locations of the robots in two experiment are shown in Figure 5.12 with magnified view

of the x axis. The first five robots located on the right of the robot separation in Arena1 are

analysed. It is found that the same five robot can also be found on the right of the robot separation

in Arena2 (marked with squares in Figure 5.12). In other words, robots which have large x

coordinates in Arena1 also have large x coordinates in Arena2. It is the same situation for the

five robots tailed in the separation of the robots (marked with circles in Figure 5.12).
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(a) Farthest and Nearest 5 Robots’ Location in Arena1
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(b) These Robots’ Location in Arena2

Figure 5.12: Magnified View of the Two Arenas. Dots in both figures denote the
locations of robots. Dots with square markers (in top figure) are the five robots with
large x coordinates. These robots also ranked in the top five in Arena2 (square markers
in bottom figure) in terms of their x coordinate. Robots with small x coordinates in
Arena1 (marked with circle) also tailed in Arena2 (circle markers).

The order of all robots in the separation is analysed by comparing the x coordinates of all robots

in Arena1 and Arena2, showing Figure 5.13. As the order of robots in terms of x coordinates

of their locations after a fixed simulation time are almost consistent in both arenas (showing

in Fig 5.13). Although there are some outliers which do not comply with this consistency, the

order of all robots are generally similar in the two arenas. As a result this approach is able to

separate hardware-varied robots with an almost the same order regardless of the orientations of

reflective elements in the arenas.

Results from Arena1 will be used for the following investigation on the relationship between the

x coordinate of robot’s location and its hardware parameters.
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Figure 5.13: Comparison of Robots’ x Coordinates in Arena1 and Arena2: The x
coordinates (in arbitrary unit) of the robots’ locations in Arena1 (showing in the x axis
of this figure) are compared to those in Arena2 (on the y axis). The line patten shows
the order of the robots in terms of their x coordinates almost the same between the two
arenas. For instance, robots which were far away from the starting point (0,500) were
also far away from the starting point in Arena2. There are exception for robots the
middle and tail part of the separation. But the order of all robots are generally similar
in the two arenas.

5.4.2 The Effect of Motor Drive Gain

To investigate the effect of motor drive gain, a variable Smgain, motor drive gain sum, is defined

for measuring the left and right motor drive for the robot. For instance, the motor drive gain sum

for robot Rm is defined in Equ 5.3.

Smgain,m = rm,11 + rm,12 (5.3)

where

Smgain,m is the motor drive gain sum for robot Rm

rm,11 is the random number (in percentage) used to determine the value of the left motor

drive gain parameter of robot Rm. The left motor drive gain is the 11th parameter of the robot.

rm,12 is the random number (in percentage) used to determine the value of the left motor

drive gain parameter of robot Rm. The right motor drive gain is the 12th parameter of the robot.

If this variable is large, the specific robot has the left and right motor drives with increased speed

for a specific input values from the control system as discussed in Section 3.2.3.

It is evident that all robots which have travelled far away from the starting point had better drive

train system on both the left and right, in Fig 5.14. For the robots which have powerful left and

right motor drive, they are able to run fast on a straight line comparing with other robots with

less powerful motor drive. During the experiment, all robots have the tendency of moving to the
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right due to the simulated pressure. Therefore robots with powerful left and right motor drive

have large x coordinates comparing with others and can be located on the right of the arena.

Although enhanced drive train system is the necessary condition for robots with large x coordi-

nates, not all robots which have large gain on their drive train system travelled far.
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Figure 5.14: Robots’ Locations and Their Drive Train: The x axis shows the x coor-
dinates of robots’ locations in the Arena1. The y axis shows the sum of left and right
motor gain variation (in percentage) of individual robot, equivalently motor drive gain
sum Smgain,m. The robots which travelled far (which are on the right side of the solid
line) have large gain on both left and right drive train system. Not all robots with large
gain (which are above the dashed line) have large x coordinate.

After analysing the hardware parameters of all robots with high gain on both their left and right

drive train system, there is no clear pattern on other robotic parameters. In other words, the

distance between robotic end points and the starting point does not depend on one or two pa-

rameters of the robots, instead it may be determined by the combination of multiple parameters

of each robot.

5.4.3 Robot Clusters

To identify if the robot’s location is determined by a combination of multiple hardware param-

eters, the clustering approach is used. A variable dpara, namely parameter distance, is defined.

For instance, the parameter distance between the robot Rm and Rn can be defined using Equ 5.4.

dpara =

√
13

∑
i=1

(rm,i− rn,i)2 (5.4)

where

r is the random number used to vary the parameter value of the control robot when gener-

ating hardware-varied robots

there are 13 parameters which need to be varied (defined in Table 5.2)

rm,i is the random number which are used to determine the ith parameter of robot Rm

rn,i is the random number which are used to determine the ith parameter of robot Rn



Chapter 5 The Mechanism of Robot Chromatography 73

Hence dpara, parameter distance, measures the distance between two robots in their parameter

space, hence dpara tells how different one robot is from the other one.

There are 13 parameters which are varied for every robot in the group. Considering a 13-

dimensional space, each parameter represents a dimension in that space. So each robot can be

represented by a point in the multi-dimensional space. The variable parameter distance dpara

calculates the Euclidean distance between two robots in the parameter space.

The clustering method is as follows. A robot is firstly selected, and the distance between this

robot and the rest in the group are calculated and sorted from small to large. As a result, robots

with similar hardware parameters are identified. The locations of these robots in the chromatog-

raphy experiment are compared. As the Euclidean distances is used as the metric, therefore the

cluster area will be an area with equal radius in all dimensions. The robot selected firstly lies at

the centre of the cluster area.
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(a) The parameter distance dpara to the robot R067 of
all robots in the group are calculated and sorted from
small to large, showing on the y axis. The parameter
distance for R067 and itself is zero.
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(b) Locations of those robots in Arena1.

Figure 5.15: Location of robot R067 and similar ones and the parameter distance be-
tween them: The left figure shows the parameter distance between robot R067 and
those robots which are similar to R067. The right figure shows their locations in the
experiment. The same marker is used for the same robot in both figures. Starting from
the most similar robot to the least similar robot of robot R067, R023, R150, etc. until
R018 all have similar x coordinates with that of R067. However the distance on the x
coordinate between R067 and R021 is very large.

The parameter distance between R067 and the test robots in the group are calculated and sorted

from small to large. Robots with similar hardware circumstances are listed on the x axis of

Fig 5.15(a). R023 have the smallest parameter distance to R067 and is the most similar robot

to R067 in terms of its parameters. R015 is the second most similar robot in the group. The

location from the chromatography experiment of robot R067 and those which are similar to

R067, showing in Figure 5.15(b).
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As the parameter distance between robot R067 and each of other robots in the group are sorted,

the selected robots showing on the x axis of Figure 5.15(a) all have similar hardware parameters.

It is shown that the most similar ones (R023, R150, R006, R088, R079, R094, R184, R009,

R018) have similar x coordinates in the experiment comparing with the x coordinate of R067.

Although R201 marked with 10-point star is very near to R067 in the parameter space comparing

with the majority of robots in the group, R201’s x coordinate in the chromatography experiment

is much larger than those similar robots (to R067). Therefore R201 is not in the same cluster of

R067. Since R201 does not belong the cluster, the robots afterwards (which are less similar to

R067 in their hardware parameters) are also not in the same cluster. For instance although the

robot R126 is just after R201 and it is x coordinate is very similar to the x coordinate of R067,

it is still not within the same cluster of R067.

Robot R023’s Cluster

From Figure 5.15, R023, which is the second most similar robot to R067, belongs to R067’s

cluster. If this clustering method is robust, R067 should belong to R023’s cluster if it is analysed

from R023’s perspective. Hence the parameter distance between R023 and similar robots are

calculated and sorted in Figure 5.16(a) and locations of these robots are shown in Figure 5.16(b).
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(a) The parameter distance dpara to the robot R023 of
all robots in the group are calculated and sorted from
small to large, showing on the y axis. The parameter
distance for R023 and itself is zero.
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(b) Locations of those robots in Arena1.

Figure 5.16: Location of robot R023 and similar ones and the parameter distance be-
tween them: The left figure shows the parameter distance between robot R023 and
those robots which are similar to R023. The right figure shows their locations in the
experiment. The same marker is used for the same robot in both figures. The robots
showing in the x axis of the left figure have similar x coordinates to R023 until R006.

In this case, the robots which are similar to R023 in terms of the hardware parameters are

sorted according to their parameter distance to R023. However although R009 is similar to

R023’s hardware circumstance comparing with the majority of robots in the group, it does not

belong to R023’s cluster due to the large difference between R009 and R023’s x coordinates in

chromatography experiment. Thus R009 does not belong to R023’s cluster.



Chapter 5 The Mechanism of Robot Chromatography 75

After all robots within R023’s cluster are identified, it is confirmed that R067 belongs to R023’s

cluster. Therefore this is a robust clustering method.

In addition, it is found that robots in R067’s cluster also appears in R023’s cluster and vice versa.

However some robots appeared in R067’s cluster does not appear in R023’s cluster, illustrated

in Figure 5.17. It is evident that the two clusters are partially overlapping with each other in the

multi-dimensional parameter space.

cluster1:

cluster2:

R067 R023 R150 R006 R088 R079 R094 R184 R009 R018

R023 R067 R094 R150 R079 R184 R148 R088 R006

Figure 5.17: Partial Overlapping of R067 and R023’s Clusters: The first line lists
all robots in R067’s cluster. The second line lists all robots in R023’s cluster. The
robots with grey background appear in both clusters. The robots identified with white
background only appear in one cluster.

Robot R169’s Cluster

The same clustering approach is used to analyse R169 and similar robots in terms of the hard-

ware parameters, results are showing in Figure 5.18. Again the parameter distance between

R169 and rest robots in the group were calculated and sorted from small to large. These robots

are listed on the x axis of Figure 5.18(a). R112 is the most similar robot comparing with R169

in terms of their hardware circumstances. Both robots have similar x coordinates in the chro-

matography experiment. Therefore R169 and R112 belong to the same cluster.
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(a) Parameter distance between the robot R169 and
similar ones
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(b) Location of robot R169 and similar ones

Figure 5.18: Location of robot R169 and similar ones and the parameter distance be-
tween them: The parameter distance between R169 and rest robots in the group are
calculated and sorted from small to large. Similar robots are listed on the x axis of
the left figure. Locations of these robots are marked in the right figure with the same
marker.
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Although R033, R075 and R046 are very similar to R169 in the hardware parameters, they are

not belong to the same cluster since the difference between the x coordinates of these robots and

that of R169 is large. Although R003 has both similar hardware parameters and x coordinates

in the experiment, R003 does not belong to the R169’s cluster since the robots which are even

closer (R033, R075, R046) to R169 are not within the cluster.

Robot R003’s Cluster

Even though R003 does not belong to R169’s cluster, the investigation of the similarity between

R169 and R003 was conducted from R003’s perspective, showing Figure 5.19.
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(a) Parameter distance between the robot R003 and
similar ones: As the limits of y axis is the same as
the previous figures, some robots are beyong the max-
imum of y axis and not shown.
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(b) Location of robot R003 and similar ones

Figure 5.19: Location of robot R003 and similar ones and the parameter distance be-
tween them: The most similar robot in the group to R003 is R169. R003 and R169 have
similar x coordinate in the Arena1. However the parameter distance between these two
robots is large.

The parameter distance between R003 and others in the group are calculated and sorted from

small to large. The most similar robot to R003 in terms of the hardware parameters is R169.

And their locations in the Arena1 in the experiment are near. However the parameter distance

between R003 and R169 is large comparing with the parameter distance in the clusters which

are analysed previously. Thus R003 and R169 do not belong to the same cluster. This result is

coherent with the result in Figure 5.18.

To interpret this in another way, in the multi-dimensional parameter space, from the previous

discussion, R169 is surrounded by R112, R033, R075, R046 and R003 (listed along the x axis

of Figure 5.18(a)). If viewing from R003’s perspective, R169 is the nearest one to R003 and

some other robots are even further. Hence R003 is the only robot in its nearby space.

As the results of that R003 and R169 have similar performance in terms of their x coordinate

in the chromatography experiment, they does not belong to the same cluster. In other words,

robots located in different regions in the multi-dimensional parameter space can obtain similar
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x coordinates in the chromatography experiment, thus have similar performance/behaviours in

that particular task.

A similar example can be found with Robot R010 and R163, which can be found in Appendix G.

Robots R144 and R100’s Clusters

One might argue that although R169 and R003 do not belong to the same cluster, they still are

quite near to each other in the parameter space comparing with other robots. Therefore two

clusters are found in which robots have similar performance in the chromatography experiment,

but they are not near to each other in the parameter space. These clusters are R144’s cluster and

R100’s cluster, showing in Figure 5.20 and 5.21.
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(a) Parameter distance between the robot R144 and
similar ones
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(b) Location of robot R144 and similar ones

Figure 5.20: Location of robot R144 and similar ones and the parameter distance be-
tween them
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(a) Parameter distance between the robot R100 and
similar ones
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(b) Location of robot R100 and similar ones

Figure 5.21: Location of robot R100 and similar ones and the parameter distance be-
tween them
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The robots R114 and R100 have quite similar x coordinates in the chromatography experiment.

However they are comparably far from each other in the parameter space. The parameter dis-

tance between them is 0.033 which is large comparing with the parameter distance in previous

clusters discussed.

Thus robots located in different regions in the multi-dimensional parameter space can still

achieve similar behaviours in terms of their x coordinates in the chromatography experiment.

Clusters in Chromatography Experiment

According to the clustering method described above, all clusters among the group of robots

located in the centre part of the sorting arena (1.25e7≤ x≤ 1.55e7) were identified. The centre

part of the arena is manually separated into five segments. Only clusters in which multiple robots

can be found are marked and coloured, showing in Figure 5.22.

1.15e7 1.25e7 1.31e7 1.37e7 1.43e7 1.49e7 1.55e7 1.65e7
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1000 Segment 1 Segment 2 Segment 3 Segment 4 Segment 5

Figure 5.22: Clusters of Robots Located in the Middle of the Separation: The size
of the arena is in arbitrary unit. The area (1.25e7 ≤ x ≤ 1.55e7) with the majority
of robots is separated equally into five segments by the red vertical lines. In each
segments, multiple clusters of robots were identified. Only the clusters with multiple
robots are represented with markers. And the cluster which have only one robot are still
illustrated with small dot. The same colour are given to the markers within the same
segment. Robots in the same cluster have similar hardware parameters and achieve
similar x coordinate in the chromatography experiment. Different clusters of robots
can achieve similar x coordinates in the chromatography experiment.

5.5 Conclusion

In this chapter, a novel approach for sorting robot in a swarm according to their hardware varia-

tions was proposed. A set of robots is derived from a standard robot by adding minor variations

in their parameters to model the intrinsic hardware difference that exists in real robotic swarms

and they are then simulated in performing a line following task in the arenas covered with ran-

domly oriented IR-reflective patterns.

Results show that this approach is able to sort the group of robots according to their hard-

ware differences. The method of differentiating the robots through the accumulated effect of

numerous interactions with the environment is analogous to separating chemical mixtures by

chromatography.
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To prove that both the sorting arena and the simulated pressure are indispensable to success-

ful separation, two experiments was conducted. In Appendix E, robots were simulated in two

arenas either fully covered by reflective materials (totally black arena) or blank arena which is

not reflective at all(totally white arena). In the second experiment(Appendix F), robots were

simulated in a normal arena without the pulling force.

This sorting method is robust that the sorting of the robots does not depend on the orientations

of the reflective patterns in the arena, but on the hardware characteristics of individual robots.

It is discovered that the robots which are located on the right of the separation have powerful

motor drives both on the left and right, however not all robots with such hardware characteristic

located in the same region of the arena.

Instead it is found out that the location of individual robot in the chromatography experiment

is not determined by a single parameter but by the combinations of multiple hardware factors.

Different combinations of hardware parameters can help robots achieve similar behaviours.

With the help of the newly-defined variable parameter distance and a robust clustering method,

robots with similar hardware circumstances are identified, and their x coordinates in the chro-

matography experiment are compared. Results reveals that robots form into different clusters

depending on their hardware parameters. Different clusters may contain different number of

robots and some clusters may even overlap with each other. Most importantly it is found that

different clusters of robots can achieve similar x coordinates in the experiment.

Further investigate will be undertook in the next chapter in order to improve the sorting effi-

ciency of the swarm chromatography technique.





Chapter 6

Controller’s Integration Length and
Chromatography Arena Density

In the previous chapter, a novel method of sorting a group of swarm robots according to their

unique behaviours caused by hardware variations was proposed. This chapter extends the previ-

ous research to improve the sorting efficiency of the swarm chromatography technique.

In this chapter several arenas which have different numbers of reflective lines per unit area are

used in chromatography experiments for separating robots with different controller settings, par-

ticularly the length for integration. The methodology is discussed in Section 6.1 with the exper-

imental design in Section 6.2 and 6.3. Results are discussed in Section 6.4, with the conclusions

in Section 6.5.

6.1 Hypothesis and Methodology

As the robotic chromatography relies on a large number of interaction between the robot and

the environment, it is hypothesized that increasing the number of interactions can result in a

quicker separation of the robots. However if there are too many reflective lines in the arena, it

is unlikely that the separation of robots will occur as expected. To find a good configuration of

the chromatography experiment, a number of arenas in which the number of reflective lines per

unit area is used for separating robots with different number of interactions.

In addition, the separation of robots with chromatography approach relies on the robots’ unique

behavioural characteristics. It is also hypothesized that prolonging robots’ unique reaction in the

arena may benefit the sorting efficiency. To be specific, each robot, due to its unique hardware

circumstance, reacts differently when encountering a reflective line. If the robot can somehow

continue to perform such reactions even after it has left the reflective line, the location of the

robot would be different comparing with one whose reaction is not prolonged. Hence through

81
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the accumulating process of the chromatography, observable difference in terms of robots’ lo-

cations can happen earlier, resulting in a quicker separation.

The integral term of the robot’s PI controller (described in Section 3.2.2) stores and integrates

the difference in the voltages output by the two IR sensors from the past in order to correct

accumulated errors. In other words, the robot is able to memorized the its experiences in the

past which continuously affects instantaneous reaction of the robot. In this case, the robot’s

reaction is prolonged due to the integration of the PI controller. To investigate if increasing the

number of errors to be integrated in the controller can benefit the separation of robots in the

chromatography experiment, robots with different lengths for integration of the controller will

be used.

Hence in this experiment, several groups of robots with different requirements for integration

are used for behavioural sorting in the chromatography experiment with the arena which have

different numbers of reflective lines per unit area.

The experimental design is similar to the design in the previous chapter. Minor difference can

be found on the arena which is described as follows. The pressure in chemical chromatography

was simulated with the same method described in Section 5.2.2.

6.2 Chromatography Arenas

Like the arenas used in the previous chapter, the ones used here were produced with the same

method described in Section 5.2.1. Specifically the arena is divided into many hexagon cells

which fully cover the arena. Reflective lines locate at the centre of the hexagon cell. The

orientation of the line are determined randomly.

As there is one reflective line in each hexagon cell, the number of lines in a arena is equal to

the number of hexagon cells. Instead of using a hexagon cell with fix size, different sizes of the

hexagon cells are adopted for the experiments of this chapter in order to change the number of

reflective lines per unit area.

Although the size of the hexagon cells changes, the length of the reflective line is 10 in arbi-

trary unit for all arenas used in the experiment of this chapter. (This length of the line can be

comparing with the size of robot showing in Figure 3.3.)

In order to measuring the number of reflective lines per unit area, a variable arena pattern density

dp is define, showing Equ 6.1. The variables involved are illustrated in Figure 6.1.

dp =
l
h

(6.1)

where

dp is the variable defined to measure the number of reflective lines per unit area in the arena
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h is the distance between two opposite edges of a hexagon cell

l is the length of the reflective line and equals to 10 in arbitrary unit.

h

l = 10

Figure 6.1: As the length of the reflective line is 10 in arbitrary unit, h refers to the
distance between two opposite edges of the hexagon, which can be used to determine
the size of the hexagon.

As a result, h, the distance between two opposite hexagon edges, can be calculated once the dp

is specified, hence the size of the hexagon can be determined. Figure 6.2 compares the size of

hexagon with different dp arena pattern densities. It is evident that the arena pattern density dp

also determines the gap around the reflective line.

dp = 0.8

dp = 0.4

Figure 6.2: The length of the reflection lines in both hexagon cells is 10 in arbitrary
unit. With different pattern densities dp, the hexagon cells show different sizes. Since
the length of the reflective line does not change, the gap between the reflective line and
the hexagon edge changes with dp.

In this experiment, nine arenas were used and their pattern densities dp are 0.1, 0.2, ..., 0.9

specifically. Part of the arenas with pattern density of 0.1, 0.2, 0.4, 0.6 and 0.8 are shown in

Figure 6.3. The rest arenas with pattern densities of 0.3, 0.5, 0.7 and 0.9 are shown in Figure H.1.

There were two mechanism used in Section 5.2.1 in order to construct a large arena to fulfil

the space required by the chromatography experiment. Specifically the mechanism of reusing

several arenas in a row ensures the robot never move out of the testing environment from the right

boundary of the arena. With the help of the top and bottom boundary re-entering mechanism,

the robot never move out of the testing environment from either top or bottom boundary of the

arena. These two mechanisms were also used in this experiment.
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(a) dp = 0.1 (b) dp = 0.2 (c) dp = 0.4

(d) dp = 0.6 (e) dp = 0.8

Figure 6.3: Arenas with Different Pattern Densities. Only an area of 300x300 of the
arenas is shown to illustrate the different densities of the reflective lines.

Additionally, it is designed that chromatography experiment separates robots along the x axis of

the arena. Hence the only x coordinate of the robot is used for experimental result analysis.

6.3 Design of Swarm Robots

There are multiple groups of robots in this experiment. Each group consists of 32 individuals

which were generated using the method described in Section 5.3. Specifically individual param-

eter of all 32 robots were varied with a sequence of Gaussian distributed random numbers with

specific sigma values. The hardware parameters of the robots in a group are identical to the ones

in the rest groups.

The controllers of all robots in a group have the same integration length. Different groups have

different lengths for the integral term as discussed in Section 6.1. The design of the robot’s

controller is described as follows.

6.3.1 Robot’s Controller

The controller of the robots used in this experiment is the PI controller described in Section 3.2.2.

A variable ml, which denotes the integration length was incorporated into the controller. The
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controller output is defined by Equ 6.2.

VPI(t) = Kp δ (t) + Ki

τ=t

∑
t−ml

δ (τ) (6.2)

where

VPI(t) is the output of the PI controller at time t.

Kp is the proportional coefficient of the PI controller,

δ (t) is the error for PI controller which refers to the difference between the outputs of the

two IR sensors at time step t.

Ki is the integral coefficient of the PI controller,

ml is the number of errors in the past which needs to be integrated.

The integral term of this controller only accumulates ml number of δ (t) in the past.

While ml = 300 for the robots used in the experiments of Chapter 4 and 5, ml was set to 0, 50,

100, ..., 900 specifically for the groups of robots. In total, there were 19 groups of robots.

The controller parameter Kp and Ki were selected with the method described in Section 3.4.1.

6.4 Results and Discussion

After the controller parameters for the robots were selected, they were tested in the chromatog-

raphy experiment using the arenas described in Section 6.2. During this experiment, each group

of 32 robots were simulated individually in each of the nine arenas which have different pattern

densities dp.

At the end of the simulation, the locations of 32 robots in a group were recorded. And the

distribution of the robots’ x coordinates in a group can be illustrated with a violin plot. The

associated R script used to produce the violin plot based on the x coordinates of 32 robots is in

Appendix I with an example of the 32 robots’ x coordinates.

6.4.1 Violin Plot

To understand how the violin plot illustrates the distribution of 32 robots’ x coordinates from

the chromatography experiment, four examples of 32 robots’ x coordinates in different scenarios

are provided, the robots’ locations and the corresponding violin plots are showing in Figure 6.4,

6.5, 6.6 and 6.7.
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(a) The black dots denote the location of 32 robots in the arena (in arbitrary
unit). The robots’ x coordinates are generated linearly between 5.5e6≤ x≤ 6e6.
Therefore x coordinates of all robots are evenly scattered in the range 8.5e6 ≤
x≤ 9e6.

(b) The black area is the violin plot illustrat-
ing the distribution of the x coordinates of the
robots. The y axis refers to the x coordinates of
the robots. The x axis refers to the percentage
of robots with specific x coordinates in all 32
robots.

Figure 6.4: Example of Violin Plot and Robots’ Locations: The left figure shows loca-
tions of 32 robots in the arena. The right figure shows the violin plot according to the
distribution of the robots’ x coordinates. As all 32 robots have similar x coordinates
within a narrow range from the chromatography experiment, the violin shape has only
one peak. Along the y axis, the violin shape covers the range of x coordinates of all
robots.
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(a) The black dots denote the location of 32 robots in the arena (in arbitrary
unit). The robots’ x coordinates are generated linearly between 5.5e6≤ x≤ 6e6.
Therefore the x coordinates of all robots are evenly scattered in the range 5.5e6≤
x≤ 6e6.

(b) Violin plot for the distribution of the robots’
x coordinates

Figure 6.5: Example of Violin Plot and Robots’ Locations: The left figure shows loca-
tions of 32 robots in the arena. The right figures shows the violin shape according to the
distribution of the robots’ x coordinates. The locations of all 32 robots in the arena are
within the range 5.5e6≤ x≤ 6e6, hence the violin shape is covering the corresponding
range along the y axis. Only the location of the violin shape is altered, the violin shape
remains the same comparing with the example showing in Figure 6.4.
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(a) The x coordinates of the 32 robots in the arena (in arbitrary unit) are evenly
scattered in the range 5.5e6≤ x≤ 8.5e6.

(b) Violin plot for the distribution of the robots’
x coordinates

Figure 6.6: Example of Violin Plot and Robots’ Locations: The left figure shows lo-
cations of 32 robots in the arena. The right figures shows the violin shape according
to the distribution of the robots’ x coordinates. Due the uniform distribution of robots
on the x axis of the arena, the violin shape has only one peak. Since the robots are lo-
cated within a large range in the arena, along the y axis the shape covers a large range.
Comparing with previous examples in Figure 6.4 and 6.5, the same number of robots
are sparsely located in a much large range, therefore the violin shape is narrow.
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(a) The locations of 32 robots in the arena (in arbitrary unit) are equally sep-
arated into two groups. The first 16 robots is located within the range of
5.5e6≤ x≤ 6e6, the other 16 robots are located within the range 8.5e6≤ x≤ 9e6

(b) Violin plot for the distribution of the robots’
x coordinates

Figure 6.7: Example of Violin Plot and Robots’ Locations: The left figure shows lo-
cations of 32 robots in the arena. The right figures shows the violin shape according
to the distribution of the robots’ x coordinates. Since the 32 robots are located in two
different areas in the arena, the violin shape has two peaks.

The violin plot is always symmetric on the left and right side. The y axis of the violin plot

describes the x coordinates of the robots’ locations in the chromatography experiment. If the

violin plot at certain point of the y axis is wide, the number of robots is large with specific x

coordinates from the chromatography experiment and vice versa. The peak of the violin plot

shows the x coordinate of the chromatography arena where a majority of robots can be found.

The simulation results for the separation of the swarm robots are shown in Figure 6.8.

In general, the instantaneous movement of the robot is influenced by both the PI controller output

and the simulated pressure. If the robot is on the reflective line, the robot will try to follow the

line to the direction which the line points to. However the simulated pressure has an impact
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Figure 6.8: Violin plots illustrating the results of nineteen groups of robots with various
integration lengths ml (along the x axis) for the PI controller performed chromatogra-
phy experiments in 9 arenas with different pattern densities dp (along the x axis). This
figure was constructed by vertically concatenating 9 figures which shows the results
of all groups in each arena: the figure on the bottom shows the results of all groups
in the arena with pattern density dp = 0.1. In each figure, there are nineteen groups
of robots. The 32 robots in each group have the same integration length ml. The
ml starts from 0 and increases by 50 steps per group until 900 steps. The y axis in
each of the 9 figures have the same range, showing the x coordinates of robots upon
completion of the experiment. The separation result for each group in each arena is
illustrated with a violin plot. For each experiment, the width of the violin plot shows
the number of robots converging at certain x coordinate. For instance, in the experi-
ment ml = 0 and dp = 0.1, the violin plot is wide and its centre is located at y = 9e6,
this means that the controller of the 32 robots do not have an integral term, the robots
are located in the arena with their x coordinates around 9e6, thus they do not separate.
However when ml = 450 and dp = 0.5, the violin plot is narrow and long, it means that
the 32 robots with 450 integration length separate almost evenly on the x coordinates
of the dp = 0.5 chromatography arena with the range of (5e6,8.5e6).

on the orientation and x coordinates of the robot. Depending on the current orientation of the

robot, the additional change caused by the simulated pressure to the robot’s x coordinates and

orientation can be either small or large (illustrated in Figure 5.10). If the direction of the line

is not largely different from the right direction of the arena, the impact caused of the simulated

pressure can be counteracted by the robot, the robot would follow the line. However if the

difference between the direction of the line and the right direction of the arena is large, the robot

might be shifted away from the line before reaching the end of the line.
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When the robot is located in the gap between the reflective lines and its IR sensors do not

perceive any reflective line at all, due to the simulated pressure the robot would be orientated to

the right direction of the arena. However according to Equ 6.2 the integral term would still have

an impact over the controller output and alter the orientation of the robot to the direction other

than the right as long as the integral term is not zero. The longer the integration length is, the

longer the period is that the robot does not orientate to the right direction.

6.4.2 Robots’ Separation and Controller Integration Length

The robots with zero integration length (first column of Figure 6.8) did not separated in any of

the arenas. During simulation, when the robots were on the reflective lines, the swarm robots

would try to follow the lines. The impact caused by the simulated pressure would be counter-

acted by the robot itself subject to the behaviour of the robot. When the robot were in the gap

between the reflective lines, the robot would quickly change its orientation to the right without

any counteraction as the integral term was zero and the controller output was also zero. When

the arena density dp were increased, the robot frequently encountered reflective lines, due to

individual robot’s unique hardware circumstance and controller parameters, the robot counter-

acted the impact of the simulated pressure differently, some robots appeared to be left behind

the majority in the group. Hence when ml = 0 and dp ≥ 0.5, some robots appeared at the end of

the separation.

As the integration length ml was increased, apart from the counteraction while the robot was on

the lines, the stored difference from the two IR sensors’ output in the integral term also made

the robot counteract with the simulated pressure when the robot was not following any lines. As

swarm robots in a groups have different hardware and software configurations, the swarm robots

counteract against the simulated pressure differently: some swarm robots are able to maintain

their previous orientation for sometime while some swarm robots can be easily influenced by the

simulated pressure and conform to orientate to the right direction. The speed of swarm robots

moving towards the right is slightly faster when the swarm robot faces straightly right than when

it orientates to any other direction, causing the swarm robots begin to separate.

However when ml of the swarm robots further increase to 750, swarm robots in each group

begin to converge. This is because that the integration length ml is too long, swarm robots

always counteract to the simulated pressure when they are off the line. Given a lengthy period

of time, swarm robots in a group have equal chances of orientating to any direction, thus the

speed of every swarm robot have no large difference on average which makes the separation

of swarm robots in a group with large ml not as good as that of swarm robots with smaller ml

values.
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6.4.3 Robots’ Separation and Arena Density

Along the y axis of Figure 6.8, the arena pattern density dp increases. When the integration

length of the robots’ controller was small, the group of robots did not separate well. Every

robot in the group were located at the far end of the arena at the conclusion of a run. This is

because that when the pattern density of the arena dp was small, the robots did not encounter the

reflective line very often. Evidently the robots’ behavioural difference while they were on the

line can not be accumulated for a large quantity. Even though some groups of robots have a large

integration length, the integral term can not counteract with the simulated pressure since the IR

output difference was zero when the robots are in the gaps between reflective lines. Hence, if

the pattern density dp is small, no separation happens for all groups of robots.

As the pattern density dp of the arena increases until 750 steps, more interactions happened. In

the case, the integral term of the controller which stores its previous difference between the two

IR sensors began to counteract with simulated pressure which orientates the swarm robots to the

right. The longer integration length was, for the more time it kept the swarm robots orientating to

the direction other than the right, during which swarm robot’s right-forward speed was reduced.

However when the arena density further increase to dp > 0.6, a tendency of convergence for

the swarm robots’ end locations can be seen, especially when ml > 750. This is because that

as the density of the arena patterns became large and all swarm robots constantly encountered

the line; the frequent interactions between swarm robots and arena patterns made swarm robots’

orientations change constantly and there was limited time left for swarm robots to to counteract

the orientating effect differently. Hence the group of robots did not separated well.

6.5 Conclusion

In this chapter, the influence of swarm robot’s integration length and the arena pattern density to

the behaviour sorting results was investigated in the context of swarm chromatography. Nineteen

groups of hardware-varied swarm robots with different integration lengths perform chromatog-

raphy experiment in each of the nine arenas with different pattern densities. Results show that

both controller integration length and arena pattern density are the keys to successful separation

of the robots.

The chromatography experiment separates robots according to their ability of counteracting with

the simulated pressure. Robots’ behavioural differences can be explored either when they are

on the line or when they are off the line which requires long integration length for the robot’s

controller. If the robot is on the line, robot’s unique hardware and software circumstance leads to

different ability of counteracting the simulated pressure (on-line behavioural difference). When

the robot is off the line, the integral term which stores sensor output differences prolongs the

robot’s behaviour in terms of counteracting the simulated pressure (off-line behavioural differ-

ence).
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The density of the arena patterns determines the number of interactions between swarm robots

and the environment. If the number is low, robots’ counteracting the simulated pressure do not

happen very frequently. And for most of the time all robots orientate to the right, cause no

large difference in right-forward speed, resulting unsuccessful separation. If the interaction is

too often, the reflective lines consistently change the swarm robots’ orientation and the robots

can not show their differences in terms of the ability to counteract with the simulated pressure,

thus sufficient separation can not occur. Hence the accumulation of the on-line behavioural

difference the related with the density of the arena patterns.

The integration length of the robot’s controller determines the number of the previous output

differences between the two IR sensors. Particularly large integration length helps the robot to

show its off-line behavioural difference. With short integration length, robot’s orientation can

be easily influenced by the simulated pressure when the robot is off the line. And the on-line

behavioural difference is not enough for full separation of the robot even with a large number of

interactions.

Both integration length and the arena density, determining the number of interactions with the

reflective, line are the keys for separating robots with chromatography approach. If the integra-

tion length and the arena density matches with each other, robots can be separated with smaller

distance along the x axis of the arena and less simulation time.

Furthermore, the integral term of the controller stores the differences between two IR sensors’

output and affecting the instantaneous response of the robot. This is very similar to the learning

ability implemented for some robots which enables individuals to learn from its past experience.

Hence the result indicates that the difference of robots caused by hardware variation can be

further amplified through a controller with the high-level capabilities.





Chapter 7

Conclusions

The work reported in this thesis investigated the issue of hardware variation in the context

of swarm robots, particularly the existence of hardware variation, its influence on robotic be-

haviours. In addition, a novel behavioural sorting technique which can select robots according

their behaviours caused by hardware variations.

Firstly, the literature on swarm robotic literature was reviewed. It was found that a majority

of the researchers ignored the existence of hardware variation and assumed that individuals in a

swarm are the same in both hardware-based and simulation-based swarm robotics. However this

is not true as in practice robots in a swarm are different in term of the hardware. Not to mention

the damage and deterioration caused when robot are used, the hardware variations occur during

the component manufacture and robot assembly process can not be avoided. Following this the

sources of hardware variations along the life span of a typical swarm robot was analysed, it was

discovered that during component manufacturing the values of various parameters of sensors,

actuators, mechanical subsystems can be different due to poor quality control, limitations of

current manufacture technology. In addition, when components are assembled to construct a

functional robot, more variations will occur such as sensor positioning, soldering quality etc.

Given the fact that hardware variation commonly exists in reality, the hypothesis was proposed

that minute difference caused by hardware variation can influence components’ performance

and robot’s reaction. For instance, robot’s sensory capability depends on not only the sensitivity

characteristics (component level) but also the positioning, alignment (assembly level). Any dif-

ferences in sensor electrical characteristics or installation circumstances will result in different

sensory ability for the robot. It is the same case for actuators. In addition, it was argued that if

the robot was considered as an information processing system, sensors and actuators function as

the input and output of such system, any difference occurred on the sensors and actuators would

be amplified by the controller and the environment.

To test the hypothesis, a series of experiments was conducted involving a conventional swarm

robot with standard hardware parameter values as the control robot and a number of robots
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whose hardware parameters are individually varied from the control one. After the PI controller

parameters were set with the exhausted search method, all robots were required to perform a

line-following task. Results showed although the difference of the hardware parameters between

the varied and the control robot are small, robots took different paths during the line-following

task. Further experiments proved that difference in robots’ trajectories can still be seen when

the magnitude of the hardware variation is as low as 0.0001%. Thus it was demonstrated that

although hardware variation is small, robotic behaviours in that particular task are still influ-

enced as different trajectories were taken. Although the uniform tuning method for selecting

the controller parameters helped robots achieve homogeneous behaviours in terms of following

the parameter selecting line with robots’ diverse hardware difference being compensated by the

obtained controller parameters, the hardware variation and resulting differences in controller

settings are amplified in the interactions between robot and environment. Thus the behaviour of

the identically tuned robots in the same environment are subject to divergence.

To this point, it has been demonstrated that the commonly existed hardware variation, albeit

small, can influence the behaviours of swarm robots and should not be ignored in swarm robotic

research. However the question of how hardware variation influence the behaviour of individ-

ual robot remains. To answer this, the swarm robot chromatography technique was proposed

to sort robots according to their behaviours caused by hardware variations, from which the re-

lationship between behaviours and hardware can be drawn. The method of differentiating the

robots through the accumulated effect of numerous interactions with the environment is analo-

gous to separating chemical mixtures by chromatography. With this technique, robots’ different

response styles against the simulated pressure due to the unique hardware circumstance can be

accumulated with the help of a special arena designed to encourage the number of interactions.

Thus robots can be sorted according to distinct behaviours triggered by individual hardware cir-

cumstances. By comparing the sorting results to the hardware variation of individual robot, it

was found that the behaviours of individual robot is not determined by a single parameter but by

the combinations of multiple hardware factors. Different combinations of hardware parameters

can help robots achieve similar behaviours.

Although the swarm chromatography technique gives robust behavioural sorting results, it does

require a large arena and lengthy simulation time. To improve this, the influence of the inte-

gration length of the robot’s controller and the arena pattern density to the sorting efficiency

was investigated. Nineteen groups of hardware-varied swarm robots with different lengths for

controller integral term perform chromatography experiments in each of the nine arenas with dif-

ferent pattern densities. It was found that if the arena pattern density matches with the memory

length, robots can be sorted efficiently according to their behaviours. With the help of the con-

troller integral term which stores the output difference of the two IR sensors, robot’s response

determined by its behavioural characteristics is prolonged while counteracting the simulated

pressure which drives the robot towards right. However if the arena pattern is too dense, robot

constantly encounters a line and there will be too much distractions constantly changing its ori-

entation without letting the robot show its unique capability of counteracting with the simulated
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pressure. Therefore integration length of the swarm robots and the arena pattern density has

to match with each other in the swarm chromatography experiments for better sorting results,

resulting a coupling effect of the integration length and the arena density.

This work can be viewed as an initial investigation into the issue of unavoidable hardware differ-

ences between swarm robots. Given the research outcome and that real swarms will necessarily

show hardware variations, it is therefore necessary to contemplate current swarm algorithms in

the context of diverse robot populations. In addition, a new research field of swarm chromatog-

raphy for sorting robotic behaviours to improve swarm efficiency is initiated.

7.1 Future Work

Practical Implementation of Swarm Chromatography

The effectiveness of swarm chromatography technique to select robots with favoured behaviours

is proved with simulation in this work. While long the domain of simulations, swarms of hun-

dreds of robots are now becoming also feasible in hardware. It is, therefore, necessary to move

this technique from scientific simulation to practical implementation. Specific apparatus and

mechanism need to be created to have the same effect of the sorting arena as well as the simu-

lated pressure.

To tackle the challenge of having a sorting arena of significant length, a belt conveyor system

can be used. The belt will be covered with the patterns designed in Chapter 5. Driven by the

pulley, the belt can move towards one direction with constant speed. In addition, to mimic the

effect of the simulated pressure, a sail can be put on top of each robot with an identical angle.

A fan is positioned on one side of the arena and constantly blowing wind towards to the belt.

With this setup, robots could be sorted. Although the implementation proposed is feasible, its

effectiveness still need to be proved with experiments.

Selectively Behavioural Sorting

It is demonstrated that the proposed swarm robot chromatography technique is able to sort the

robot according to robots’ behaviours. Based on the sorting results, robots which are likely to

wonder around the environment and the ones which are reluctant to move and stay within a

small area can be identified. These capabilities or preferences are robot’s intrinsic behavioural

characteristics triggered by robots’ unique hardware circumstances. This sorting result is quite

useful. For instance, in the task demanding a quick and rough scan of the environment, robots

which like wondering around the environment can be chosen for this particular task, and the

efficiency can be improved.
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However in some tasks, robots with other types of behavioural characteristics might be preferred.

For instance, robots which are likely to cooperate with other members are preferred for the

task of moving object cooperatively. As the current proposed sorting technique with the line-

following task can only sort the robots along their moving preference, improvement can be made

to the sorting technique so that more types of behavioural characteristics can be emphasised,

possibly with new sorting tasks other than following the lines.



Appendix A

Typical Tasks for Swarm Robots

In the literature, it is clear that a considerable number of scenarios have been, and are being

used by researchers. This section considers those that are most commonly used to explore the

structure and capabilities of swarm robots.

A.1 Obstacle Avoidance

Avoiding obstacles is the basic abilities that creature should have. This scenario remains the

most widely used testing scenarios for swarm robots. In swarm robotic research, obstacle avoid-

ance is expanded into two scenarios:

• At individual level, any robot should pass or avoid obstacles successfully.

• At system level, the whole swarm should be able to pass obstacles with formation main-

tained or to be recovered.

For the first level, normally when a obstacle is encountered by a swarm robot, no matter how

big the obstacle is, robot will have to find alternative way to pass because that it is less cost-

effective to equip extra sensors to detect obstacle’s dimension than have the robot move around

and choose another path leading to the same target. However implementation do exist by using

vision-based approach Ahmed et al. (2012), where a camera is used and a light-weight vision

algorithm is also developed due to limited capabilities of swarm robot CPUs.

More Commonly, infra-red emitters and sensors are used to detect obstacles and selecting an-

other way to pass. In such circumstance, the particle swarm optimization (Chyan and Ponnam-

balam, 2012) and virtual potential field (Song et al., 2009) approaches are often adopted, which

can also work well for maintaining and recovering formation of numbers of robots functioning

as a swarm.
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A.2 Self-Deployment

In swarm robotic research, the scenario of self-deployment is about instructing robots to deploy

themselves in unknown environment to achieve maximum coverage of the environment based

on their limited perception without global communication.

This scenario is widely discussed in the telecommunication field, in which a group of robot are

sent out to initialize a communication path between points. Robots have to rely on themselves

to achieve this without help of global viewer.

Standard to evaluate swarm robots’ performance are area coverage by the robots and total de-

ployment time. In such applications, communication between neighbouring robots and local-

ization should be maintained. Common solutions to this kind of problem are particle swarm

optimization and virtual force method.

Howard et al. (2002b) adopted potential field approach to explore the self-deployment of swarm-

like mobile sensor network. Coverage can be maximized by the means of the mechanism that

each individual in the swarm can be repelled by other robots or obstacles.Ren and Tse (2012)

studied that adopting minimal number of robots to obtain complete monitoring coverage over

an arbitrary 3D terrain.

A.3 Foraging

Foraging is one of the common phenomena in nature, in which worker ants are sent out for food

searching and bringing it back to net if food is found. In swarm robotic research, robots are sent

out for attractors. This is one of the common phenomena in nature, which is widely used to test

robots functioning as a swarm.

Typically foraging consists of three different sub-functions including finding, grabbing and hom-

ing. The following issues should be considered:

• Environment coverage and covering rate

• Object handling (Robots are not required to move objects in some cases.)

• Energy management

• Robotic homing

Campo and Dorigo (2007) introduced a decision algorithm for robots to decide when to search

for object and which objects (different objects have different energy yield and consumption to

be carried to nest.) to be retrieved in order to maximize the energy accumulated by the group.

Kernbach et al. (2012) studied the energy-constraint scenario where only a limited number of
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recharging docks are provided. A threshold model has been provided in order to maximize

energy efficient.

A.4 Aggregation

In nature, fishes joints together to form into schools, which can be regarded as aggregation.

Swarm robots aggregation is often referred to that a number of swarm robots randomly scattered

in the environment aggregate at certain point, which is the opposite of robots’ dispersion.

For swarm robot, simply making them go to the direction where density of other robots is the

largest is not a good solution since they may initially separated into several small groups.

Common approaches include probabilistic controller, evolutionary algorithms. And it is no-

ticeable that Jeanson et al. (2005) used probabilistic controller with parameters measured from

real cockroach larvae and successful proved that aggregation can be achieved based on local

information obtained from interaction.

A.5 Pattern Formation

Pattern formation can be defined as that robots functioning as a swarm form certain patterns

using decentralized control. This is one of the phenomena widely adopted in nature, like fishes

and wild geese which also feature a decentralized control.

Generally, there are two methods to achieve this:

• Predefined motion strategies

• Virtual force strategies (also known as distributed potential field)

Both of the approaches require that each robot should be capable of sensing the distances and

directions of nearby robots.

The former approach is implemented as that motion strategies of the robots are predefined and

fixed. Each robot’s moving direction and moving distance is well-defined and their motion be-

haviour should be the same under different circumstances. Furthermore, usually each robot can

only move according to one specified robot. Thus formation can fail if one robot is surrounded

by multiple robots unless each of them is assigned an unique identity code. However this will

reduce flexibility and scalability.

In Fredslund and Mataric (2002b,a), the authors developed an algorithm for robot formation

using local sensing and minimal communication, which requires that each robot has a unique

identity code and “friend” sensor. When pattern formation is ordered, robot turns only to the
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robot with lowest ID when more than one robot exist. The friend sensor is used to track the dis-

tance and angle between itself and friend robots to form a specific formation. Another example

can also be found in Rubenstein et al. (2012).

The latter approach is implemented by adopting virtual forces into the motion control model. A

repulsion force is generated if the distance between any two robots is less that a specified range.

Both two robots will try to move away from each other. An attraction force is generated if the

distance between any two robots are larger that a specified range. Both two robots will try to

move near to each other. Bearing these two forces, formation of the robot will maintain stable

dynamically.

This method is very flexible and functions well when the number of robots in the swarm goes

large. However it is difficult to form specified shape when viewed globally. Implementations of

this method can be found in Hashimoto et al. (2008).

A.6 Self-assembly

Self-assembly (self-reconfigurable robots) can be defined as creating more complex structures

from large numbers of relatively simple units only with local interactions. Comparing with fix-

structure robots, self-assembly robots have the advantages in versatility, robustness, adaptability,

scale extensibility and even self-repair.

Not all robots are tested in this scenario because robots in this case are required to be equipped

with one or several specially designed joints which are capable of attaching and detaching from

other robots.

According to geometric arrangement of the units, self-assembly robots system can be classified

into the following three groups Mohan and Ponnambalam (2009):

• Lattice Architecture: Units are arranged and connected in regular three-dimensional pat-

tern.

• Chain Architecture: Units are arranged and connected in chain or tree pattern, which can

later be folded up to form any other structures with help of their articulations.

• Hybrid Architecture: This architecture takes advantages of the previous two architectures.

Parts of the whole can either be in chain or lattice pattern, which enables the whole struc-

ture more complex.

Other than the hardware part, there are two points in term of software which needs to be ad-

dressed here while designing self-assembly swarm robots.

• Control of locomotion of multi-unit structure
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• Control of self-configuration





Appendix B

Another Training Arena
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Figure B.1: Another Training Arena: This training arena was also tried to train the
robots. The training results did not show much difference compared with the training
arena showing in Figure 3.11.
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Appendix C

Simulation Jobs Submission Script

1 #!/ bin/bash

2
3 #PBS -S /bin/bash

4 #PBS -N MX01

5 #PBS -l nodes =1: ppn =16

6 #PBS -l walltime =11:40:00

7
8 matlabroot="/local/software/matlab /2013a"

9
10 function test_MX01 {

11 pid =()

12
13 for (( i=0; i <=15; i++ )); do

14
15 profname="R$(printf ’%06d’ $(( $i + 1 )))"

16
17 ( ~/ iridis_20150527_MixedMl_NoForward_3Ori_Rt0 .6/mcc/

run_simulator_robottraindraw_test.sh \

18 $matlabroot 20150527 _MixedMl_NoForward_3Ori_Rt0 .6 $profname iridis\

19 >~/ iridis_20150527_MixedMl_NoForward_3Ori_Rt0 .6/ job_out/$profname.out ) &

20
21 pid[$i]=$!

22
23 done

24
25
26 for (( i=0; i <=15; i++ )); do

27 wait ${pid[$i]}

28 done

29 }

30 test_MX01
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Appendix D

Simulation Report Example

Version 2.0 P9900000000 08:29 10-Jul-2013

Version Information:

PID p PID i Trajectories
config p 2.0 2.0

config i 2.0

codes 2.0-6-g8b35d 2.0-10-gec4b9 3.0-12-gfb4f7

1 Basic

Config p:

start_point= 0;

end_point= 1500;

percent= 0.9900;

step= 200;

bias= 2;

var_device_sp= 0;

var_device_ep= 7;

walltime= 40;

Config i:

start_point= -300;

end_point= 300;

step= 100;

walltime= 40;

2 Result

variable color left right
left right P I P I

0ideal black black 237.60 -26.00 237.60 -26.00
1alpha red-dot red 228.00 -23.00 225.60 -22.00
2angle blue-dot blue 246.00 -26.00 260.40 -35.00

3h green-dot green 234.00 -22.00 228.00 -23.00
4offset h gray-dot gray 238.80 -28.00 231.60 -25.00
5offset f yellow-dot yellow 226.80 -20.00 232.80 -23.00

6wf purple-dot purplr 210.00 -17.00 253.20 -29.00
7radius purple-dot purple 210.00 -17.00 253.20 -29.00

1

Figure D.1: An Example of Automatically Generated Simulation Report Page 1
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Version 2.0 P9900000000 08:29 10-Jul-2013
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Figure D.2: An Example of Automatically Generated Simulation Report Page 2



Appendix E

Swarm Chromatography Experiment
with Empty Arenas

In this experiment, the same group of robots in Chapter 5 are simulated in two specific arenas.

One arena is completely covered with reflective materials. The other one is completely blank.

In other words, the arena does not have any reflective material at all.

(a) The Arena Fully Covered with Reflective Materials (b) The Arena Covered with No Reflective Material at all

Figure E.1: The Arenas with and without Reflective Materials
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(a) Robots’ Location in the Arena Fully Covered with Reflective Materials

(b) Robots’ Location in the Arena Covered with No Reflective Material at all

Figure E.2: Robots’ Location in the Arenas with and without Reflective Materials: The
results showed that successful behavioural sorting can not be done without the sorting
arena with correct configuration specified in Chapter 5.



Appendix F

Swarm Chromatography Experiment
without Simulated Pressure

The chromatography experiment in Chapter 5 was conducted without simulated pressure. The

arena used in this experiment is the same with the chromatography experiment, showing in

Figure 5.5. The same group of robots used in Chapter 5 were used in this experiment. All robots

started at the coordinate (5000, 5000) in the arena with the same orientation to the right.

Only the first six robots’ trajectories are listed in the following. Trajectories of the robots were

sampled every 400 steps. Therefore the sparse points in the figures show that robots went

through that part of the trajectory for a limited of times. The thick consecutive lines mean

that robots went through that part of trajectory for a large number of times.

According to the figures, all robot set off from the starting point and left sparse dots in the arena,

meaning that at the beginning robots run in the arena without repeating the trajectories. After the

sparse point part, one can find a thick consecutive lines, which meaning that the robots repeatly

run through that trajectories.

In other words, at the beginning, all robots was able to run freely in the arena. However after

some time, robots constantly went through part of the trajectories over and over again.
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(a) Trajectory of Robot 01 (b) Trajectory of Robot 02

(c) Trajectory of Robot 03 (d) Trajectory of Robot 04

(e) Trajectory of Robot 05 (f) Trajectory of Robot 06
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Clustering for R010 and R163
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(b) Locations of robot R010 and similar ones

Figure G.1: Locations of robot R010 and similar ones and the parameter distance be-
tween them:
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(b) Locations of robot R163 and similar ones

Figure G.2: Locations of robot R163 and similar ones and the parameter distance be-
tween them:
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Appendix H

Chromatography Arena with Different
Density

(a) dp = 0.3 (b) dp = 0.5

(c) dp = 0.7 (d) dp = 0.9

Figure H.1: Arenas with Different Pattern Densities. Only an area of 300x300 of the
arenas is shown to illustrated the different densities of the reflective lines.
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Appendix I

The Drawing of Violin-shape Figure

Each of the bell shape illustarted the distribution of the robots’ location in the arena.

(a) Robots’ memory length 0 and arena density 0.1

(b) Robots’ memory length 600 and arena density 0.5

(c) Robots’ memory length 600 and arena density 0.8

Figure I.1: Robots’ Location with memory length of 0 and arena density=0.1
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An example of the robots’ location data are shown in the following. The data on each line is the

x and y coordinates of the robot at specific simulation time step. In total, there are 32 robots.

1 1760511.5 2091.7

2 1615347 6117.4

3 1807051.3 2555.9

4 1892291.9 3887.4

5 1721292.3 3430.8

6 1663751.4 610.7

7 1648044.6 6592.8

8 1622264.5 7413.1

9 1592680.9 5349.9

10 1713105.8 2341.9

11 1675545.3 5505.1

12 1620274.4 8223

13 1664559.8 2695.1

14 1574774.1 593.3

15 1637949.3 785.5

16 1625473.1 1188.7

17 1575124.7 9808.5

18 1668672.2 6313.9

19 1579832.7 8195.6

20 1729993.4 7324.4

21 1631972.2 3533.6

22 1597286.1 6937.3

23 1682043.2 8874

24 1620722.6 5060.1

25 1666074.3 9904.3

26 1689767.7 1890.2

27 1945685.7 6261.6

28 1705738.7 6664.1

29 1594031.4 9936.8

30 1812102.5 905.5

31 1679487.8 9795.4

32 1620187 1505.7

R is used to generate the bell shape to illustarted the distribution of the robots’ location. The R

code is in the following.

1 library(ggplot2)

2
3 ratio_count =1

4
5 ep =1400000

6
7 r = seq(0.1, 0.9, by=0.1)

8 m = seq(000, 900, by=050)

9
10
11 df = data.frame(matrix(vector (), 0, 2, dimnames=list(c(), c("V1", "V2"))),

stringsAsFactors=F)

12
13 for (rt in ratio_count:ratio_count){

14 sessionname=sprintf("rt%.1f-ep%.0f",r[rt],ep);

15 for (ml in 1:19){

16 filename=sprintf("m%03.0f-ep%.0f.txt",m[ml],ep);

17 file=sprintf("../../20141024_ml000 -50 -900_NegativeNoABS_testRt %.1f/temp/%s",r

[rt],filename);
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18 cat(sprintf("%s\n",file));

19 data <- read.table(file)

20 data <- data [,1:2]

21 data[,2] <-sprintf("%03.0f",m[ml]);

22 df<-rbind(df,data)

23
24 }

25 #data <- read.table (’./f_RViolinplot .R.temp ’)

26 #data <- data [ ,1:2]

27 #data [,2] <-’ref ’;

28 #df <-rbind(df ,data)

29
30 dev.new(width=20, height =2)

31
32 p<- qplot(factor(V2), V1 , data = df,xlab=’Memory Length ’,ylab=’Arena Ratio ’)

33 # p<- qplot(factor(V2), V1 , data = df , geom = "violin",ylim=c(4e6 ,10 e6))

34 p<- p + geom_violin(scale=’area’,fill = "blue", colour = "black",trim=TRUE)

35 p<- p + annotate("text", y = 5e6 , x = 1.5, label = sessionname)

36 print(p)

37
38 imgfilename=sprintf("%s.png",sessionname);

39 imgfile=sprintf("../figure/violinbasic/%s",imgfilename);

40 ggsave(filename=imgfile);

41 dev.off();

42 }
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Bayindir, L. and Şahin, E. (2007). A Review of Studies in Swarm Robotics. Turkish Journal of

Electrical Engineering, 15(2):115–147.
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Turgut, A., Çelikkanat, H., Gökçe, F., and Şahin, E. (2008). Self-organized Flocking in Mobile

Robot Swarms. Swarm Intelligence, 2(2-4):97–120.

Valdastri, P., Corradi, P., Menciassi, A., Schmickl, T., Crailsheim, K., Seyfried, J., and Dario,

P. (2006). Micromanipulation, Communication and Swarm Intelligence Issues in A Swarm

Microrobotic Platform. Robotics and Autonomous Systems, 54(10):789–804.

Ward, A. and Hart, P. (2003). The Effects of Kin and Familiarity on Interactions between Fish.

Fish and Fisheries, 4(4):348–358.

Wolton, I. (2012). Iridis 3 Wiki: Job Submission and Scheduling on Iridis 3. https://cmg.

soton.ac.uk/community/wiki/iridis/Job_Submission.

Zhang, D., Xie, G., Yu, J., and Wang, L. (2007). Adaptive task assignment for multiple mobile

robots via swarm intelligence approach. Robotics and Autonomous Systems, 55(7):572–588.

Zhang, G., Fricke, G., and Garg, D. (2013). Spill Detection and Perimeter Surveillance via

Distributed Swarming Agents. IEEE/ASME Transacation on Mechatronics, 18(1):121–129.

Zlatich, A. (2013). Photograpgic sequence of a chromatographic column. Technical report.

urlhttps://commons.wikimedia.org/wiki/File:Cromatografia su colonna.jpg.

https://cmg.soton.ac.uk/community/wiki/iridis/Job_Submission
https://cmg.soton.ac.uk/community/wiki/iridis/Job_Submission

	Declaration of Authorship
	Acknowledgements
	1 Introduction
	1.1 Shortcomings of Existing Swarm Robot Research
	1.2 Motivations and Challenges
	1.3 Research Scope and Aims
	1.4 Research Contributions
	1.5 Thesis Structure
	1.6 Publications

	2 Related Work
	2.1 Collaborative Robots and Research Scope
	2.2 Current Research Picture in Swarm Robots
	2.2.1 Modelling Swarm Robotic Systems
	2.2.2 Behavioural Design for Swarm Robots
	2.2.3 Interactions of Swarm Robots

	2.3 Heterogeneous Swarm Robots
	2.3.1 Software-based heterogeneity
	2.3.2 Hardware-based Heterogeneity

	2.4 Summary

	3 Methodology
	3.1 Problem Description
	3.2 The Model of the Swarm Robot
	3.2.1 IR Sensors
	3.2.2 Controller
	3.2.3 Motor Drives

	3.3 Hardware Variations Design
	3.3.1 Parameters for Hardware Variation
	3.3.2 Generating Robots with Hardware Variation

	3.4 Experimental Design
	3.4.1 Controller Parameter Selection
	3.4.2 Testing

	3.5 Approach to Simulations
	3.5.1 Simulations Challenges
	3.5.2 Simulation File Management and Git
	3.5.3 Parallel Computing and Iridis
	3.5.4 Automatic Report Generation

	3.6 Summary

	4 The Effect of Hardware Variation on Robots' Trajectories
	4.1 Methodology
	4.2 Experimental Design
	4.2.1 Preparing the Robots
	4.2.2 Robotic Controller Parameter Selection
	4.2.3 Testing

	4.3 Results and Discussion
	4.3.1 Wheel Distance
	4.3.2 Motor Gain and Wheel Radius
	4.3.3 Sensor Viewing Angle and Height
	4.3.4 Sensor Offset and Sensor Gain
	4.3.5 Summary

	4.4 Further Experimental Results and Discussion
	4.4.1 Robots
	4.4.2 Controller Parameter Selecting
	4.4.3 Results and Discussions

	4.5 Conclusion

	5 The Mechanism of Robot Chromatography
	5.1 Methodology
	5.1.1 Chromatography in Chemistry
	5.1.2 Chromatography for Swarm Robots

	5.2 Experimental Design for Robotic Chromatography
	5.2.1 Arena Design
	5.2.2 Simulation of the Chromatography Pressure

	5.3 Design of the Robotic Swarm
	5.4 Results and Discussion
	5.4.1 Similar Orders of Robots in Two Arenas
	5.4.2 The Effect of Motor Drive Gain
	5.4.3 Robot Clusters

	5.5 Conclusion

	6 Controller's Integration Length and Chromatography Arena Density
	6.1 Hypothesis and Methodology
	6.2 Chromatography Arenas
	6.3 Design of Swarm Robots
	6.3.1 Robot's Controller

	6.4 Results and Discussion
	6.4.1 Violin Plot
	6.4.2 Robots' Separation and Controller Integration Length
	6.4.3 Robots' Separation and Arena Density

	6.5 Conclusion

	7 Conclusions
	7.1 Future Work

	A Typical Tasks for Swarm Robots
	A.1 Obstacle Avoidance
	A.2 Self-Deployment
	A.3 Foraging
	A.4 Aggregation
	A.5 Pattern Formation
	A.6 Self-assembly

	B Another Training Arena
	C Simulation Jobs Submission Script
	D Simulation Report Example
	E Swarm Chromatography Experiment with Empty Arenas
	F Swarm Chromatography Experiment without Simulated Pressure
	G Clustering for R010 and R163
	H Chromatography Arena with Different Density
	I The Drawing of Violin-shape Figure
	Bibliography

