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 Indoor optical wireless communication with optical beamsteering capability is currently attracting a lot of attention. One major two dimensional (2D) optical beamsteering scheme is realized by 2D grating or its active counterpart which is usually based on spatial light modulator (SLM). However, there is a fundamental trade-off between the field-of-view (FoV) and power efficiency due to the inherent feature of gratings. In this paper, we propose a new class of 2D beamsteering, named cyclically arranged optical beamsteering (CAO-BS) which can break such trade-off. Traditional 2D gratings extend the optical beam in Cartesian coordinate (1D grating in horizontal + 1D grating in vertical), while CAO-BS extend optical beam in polar coordinate (1D grating + angular rotation). Since only 1D grating is engaged, the power efficiency increases with the number of grating lobes reduced. In polar coordinate, the angle rotation tuning in a SLM is quasi-continuous in a full 2π range. The CAO-BS is demonstrated at the receiving end in an indoor experimental system. The FoV is 18° by 360° in polar coordinate without any additional mechanical part. Based on the CAO-BS, 40 Gbit/s On-Off Keying (OOK) data is also successfully transmitted over 1km single mode fibre and 0.5 m free space. © 2017 Optical Society of America 
OCIS codes: (060.2605) Free-space optical communication; (070.1170) 
Analog optical signal processing; (070.6110) Spatial filtering; 
(070.6120) Spatial light modulators.  
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Recently, indoor optical wireless communication (OWC) technology is widely recognised as a popular access method due to its prominent bandwidth advantage [1]. Nowadays, fibre-to-the-home unlocks unlimited bandwidth in the fibre end, however, the 

amount of bandwidth accessible to the end user is still limited by the radio frequency in the air. For example, mm-wave radio-over-fibre (RoF) techniques can largely reduce the complexity but the available bandwidth is still limited to a few GHz at the mm-wave band.  [3-4]. With the available fibre links of FTTH, OWC at 1550 nm band is complementary to radio for high-speed short-range communication in the Fifth Generation (5G) networks [2]. Next to the 5G radio communication, OWC can boost the aggregate capacity to Tb/s level [5]. In order to track the mobile terminal users indoor, precise alignment between the transmitter and receiver is of demand. Therefore, beam reconfigurable receiver with a large total field-of-view (FoV) is interesting. Moreover, the allowed infrared power is limited due to the safety regulation, such receiver should be power efficient. To this end, beamsteering is of demand.  Spatial light modulator (SLM) is applied for beamsteering in indoor OWC systems [6-10]. The SLM could steer optical beam without mechanical movement. Comparing other means, the SLM has highly repeatable performance, high tolerance towards environment variance (e.g. vibration). The SLM also does not limit the signal’s bandwidth [7] and is robust to laser wavelength drifts. F. Feng et al. have demonstrated a maximum 3° beam shifting in free space link by using an SLM [7]. Later, A. Gomez et al. extend the FoV to 60° by introducing an extra lens system as an angle magnifier (AM) [8]. Such AM concept is attractive since it can directly increase the FoV of all kinds of systems. However, so far, these SLM-based methods merely demonstrate two-dimensional (2D) beamsteering by using the 2D grating in Cartesian coordinate. For one-dimensional (1D) gratings, if we assume its number of grating lobes is N, when extending it to 2D, the number of grating lobes is N×N. As the number increase, its power efficiency decreases. The covered range of grating lobes, or in other word, the Field-of-View (FoV) is traded off with the power efficiency. Additionally, it is difficult to implement beamsteering at (quasi-) 
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