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Abstract
Intelligence, or general cognitive function, is phenotypically and genetically correlated with many traits, including a wide
range of physical, and mental health variables. Education is strongly genetically correlated with intelligence (rg= 0.70). We
used these findings as foundations for our use of a novel approach—multi-trait analysis of genome-wide association studies
(MTAG; Turley et al. 2017)—to combine two large genome-wide association studies (GWASs) of education and
intelligence, increasing statistical power and resulting in the largest GWAS of intelligence yet reported. Our study had four
goals: first, to facilitate the discovery of new genetic loci associated with intelligence; second, to add to our understanding of
the biology of intelligence differences; third, to examine whether combining genetically correlated traits in this way produces
results consistent with the primary phenotype of intelligence; and, finally, to test how well this new meta-analytic data
sample on intelligence predicts phenotypic intelligence in an independent sample. By combining datasets using MTAG, our
functional sample size increased from 199,242 participants to 248,482. We found 187 independent loci associated with
intelligence, implicating 538 genes, using both SNP-based and gene-based GWAS. We found evidence that neurogenesis
and myelination—as well as genes expressed in the synapse, and those involved in the regulation of the nervous system—

may explain some of the biological differences in intelligence. The results of our combined analysis demonstrated the same
pattern of genetic correlations as those from previous GWASs of intelligence, providing support for the meta-analysis of
these genetically-related phenotypes.

Intelligence, also known as general cognitive function or
simply g, describes the shared variance that exists between
diverse measures of cognitive ability [1]. In a population

with a range of cognitive ability, intelligence accounts for
around 40% of the variation between individuals in scores
on diverse cognitive tests [2]. Intelligence is predictive of
health states, including mortality; [3, 4] a lower level of
cognitive function in youth is associated with earlier death
over the next several decades [5]. Intelligence is a heritable
trait, with twin- and family-based estimates of heritability
indicating that between 50–80% of differences in intelli-
gence can be explained by genetic factors [6]. These genetic
factors make a greater contribution to phenotypic differ-
ences as age increases from childhood to adulthood [7].

C.R. Gale, G. Davies and I. J. Deary contributed equally to this work.

* W.D. Hill
david.hill@ed.ac.uk

1 Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, UK

2 Department of Psychology, University of Edinburgh,
Edinburgh, UK

3 Queensland Brain Institute, The University of Queensland,
Brisbane 4072 QLD, Australia

4 Department of Economics, Harvard University, Littauer Center,
1805 Cambridge Street Cambridge, Cambridge, MA 02138, USA

5 MRC Social, Genetic and Developmental Psychiatry Centre,
Institute of Psychiatry, King’s College London, Camberwell,
London SE5 8AF, UK

6 Division of Psychiatry, University of Edinburgh, Edinburgh EH8
9YL, UK

7 MRC Lifecourse Epidemiology Unit, University of Southampton,
Southampton, UK

Electronic supplementary material The online version of this article
(https://doi.org/10.1038/s41380-017-0001-5) contains supplementary
material, which is available to authorized users.

Publisher's note: Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

12
34

56
78

90

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-017-0001-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-017-0001-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-017-0001-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-017-0001-5&domain=pdf
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
https://doi.org/10.1038/s41380-017-0001-5


Heritability estimates derived from molecular genetic data
using the GREML-SC [8, 9] method indicate that around
20–30% of variation can be explained by variants in linkage
disequilibrium (LD) with genotyped single nucleotide
polymorphisms (SNPs) [10]. Some of the association
between intelligence and health is due to genetic variants
that act across traits [11, 12]. More recent methods to
measure heritability, such as GREML-KIN [13], and
GREML-MS [14] using imputed SNPs, have found that
some of the heritability of intelligence can be found in
variants that are in poor LD with genotyped variants; by
taking these into consideration, SNP heritability estimates
of 0.54 (GREML-KIN) and 0.50 (GREML-MS) [15] have
been found.

Relatively few genetic variants have reliably been asso-
ciated with intelligence differences [16]. The sparsity of
genome-wide significant SNPs discovered so far, combined
with the substantial heritability estimate, suggests a phe-
notype with a highly polygenic architecture, where the total
effect of all associated variants is substantial, but in which
each individual variant exerts only a small influence. This is
compelling evidence that the number of uncovered genome-
wide significant loci associated with intelligence can be
increased by raising the sample size—and thus the statistical
power—of GWASs, as has been the case for other pheno-
types such as height [17] and schizophrenia [18].

Two strategies have emerged in order to maximise power
by increasing the sample size for loci discovery in intelli-
gence research. The first involves the meta-analysis of many
GWASs conducted on intelligence [19–21]. However, these
studies are hampered by the fact that each individual sample
tends to use different cognitive tests, and these individual
sample sizes are often small; thus, even the resulting meta-
analysis is underpowered to detect loci associated with
intelligence with very small effect sizes [19–21]. This
problem is ameliorated in studies like UK Biobank, which
contain a large number of individuals who have supplied
genetic data and taken the same cognitive test [22]. In the
case of UK Biobank, a test of verbal and numerical
reasoning shows a high genetic correlation with intelligence
[23] as derived from psychometrically validated test
batteries [16].

The second method is to use a “proxy” phenotype [24]
that shows high phenotypic and genetic correlations with
intelligence, and should therefore have a similar genetic
architecture. Educational attainment has been successfully
used as a proxy phenotype for intelligence [24], owing in
part to the phenotypic and genetic correlation between the
traits [7], and to the ease with which it can be measured
relatively consistently, facilitating the larger sample sizes
required for loci discovery [25]. Such methods have led to
sample sizes of 293,723 for educational attainment, and the
discovery of 74 loci attaining genome-wide significance

[25]. The genetic correlation between the largest GWAS
on intelligence and the largest GWAS on education was
0.70 [16].

In the present study, we combined these two approaches
by using MTAG [26], a newly-developed technique that
allows the meta-analysis of summary statistics from
genetically-related traits. This enabled us effectively to
increase the sample size (to add power) to GWASs of
intelligence by adding in the genetic variance that is shared
with proxy phenotypes. We used summary results from the
largest available GWAS on intelligence (n= 78,308) [16].
We performed a meta-analysis using these data, and those
from the latest release of the genetic data from UK Biobank
to maximise power in our GWAS of intelligence. Finally,
we added the Social Science Genetic Association Con-
sortium (SSGAC) GWAS summary results for years of
education [25] (n= 329,417, which include individuals
from UK Biobank).

By combining our meta-analytic dataset on intelligence
with the education dataset from the SSGAC, we increased
the power to discover loci associated with intelligence. The
estimated effective sample size increased from 199,242 to
248,482 participants. We then used bivariate linkage dis-
equilibrium score regression [12] to test whether these
meta-analytic results have the same genetic architecture as
other measures of intelligence. We used both SNP-based
and gene-based GWAS to maximise our ability to discover
loci and genes associated with intelligence, before predict-
ing phenotypic intelligence in an independent sample using
polygenic profile scoring. We used functional mapping and
annotation of genetic associations (FUMA) to identify and
annotate independent associations within our data. Finally,
we applied gene-set analysis, using 10,891 gene sets
sourced from Gene Ontology [27], Reactome [28], and
MSigDB [29] to derive biological meaning from our data.
Our results indicated that, by drawing on multiple large
GWAS datasets all measuring intelligence-related traits, we
could attain greater statistical power to detect genetic var-
iants associated with intelligence, facilitate our under-
standing of the underlying biology of intelligence
differences, and make substantial phenotypic predictions of
intelligence using SNP data.

Method

Samples

Summary statistics were obtained from GWAS meta-
analyses of intelligence (n= 78,308) [16], and education
(n= 329,417) [25]. To maximise sample size in our intel-
ligence dataset, four additional GWASs were performed on
the verbal-numerical reasoning (VNR) test in UK Biobank.
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The VNR test consists of 13 items, 6 verbal and 7 numerical
questions, all of which are multiple choice. An individual’s
verbal numerical reasoning score was measured by sum-
ming the number of correct responses given within a 2
minute time period. Participants performed the VNR test
either online or at a UK Biobank assessment centre, with
some participants taking the VNR test at multiple time
points. If participants took the VNR test at multiple time
points, only the earliest was used, leading to four GWASs
being performed on VNR (time 1, N= 76,051, time 2, N=
9266, time 3, N= 2552, online, N= 33,065). UK Biobank
participants who were included in the GWAS from Sniekers
et al. [16]. were omitted from the current GWASs. Fol-
lowing quality control, a total of 120,934 new UK Biobank
participants were available for GWAS. Ethical approval for
UK Biobank was received from the Research Ethics Com-
mittee (REC reference 11/NW/0382). This work was con-
ducted under UK Biobank application 10279.

In order to derive genetic correlations between intelli-
gence (and the proxy phenotype of education, as well as the
final meta-analytic sample) and health-related and other
traits, we used summary statistics from 29 GWAS datasets.
Supplementary Table 1 shows the datasets used and pro-
vides a reference and sample size for each dataset used.

UK biobank genotyping

Full details of the UK Biobank genotyping procedure are
available elsewhere [30]. Briefly, two custom genotyping
arrays were used to genotype 49,950 participants (UK
BiLEVE Axiom Array) and 438,427 participants (UK
Biobank Axiom Array) [30]. Genotype data on 805,426
markers were available for 488,377 of the individuals in UK
Biobank. Imputation was carried out using a combination of
the Haplotype Reference Consortium (HRC) reference
panel, 1000 genomes, and UK10k. Here, we restrict the
analysis to the HRC panel, as advised by UK Biobank. This
led to 39,131,578 autosomal SNPs being available for the
120,934 participants who had taken the VNR test [30].
Allele frequency checks [31] were performed against the
HRC [32] and 1000G [33] site lists, and variants were
removed if the allele frequencies differed from the reference
set by more than ±0.2.

Additional quality control steps were implemented in the
present study and included the removal of participants with
non-British ancestry (identified by Bycroft et al. [30]. by
performing a principal component analysis on the genotyped
SNP data to remove ethnic outliers from a subset of the UK
Biobank participants who self-identified as White British) as
well as those with extreme scores based on heterozygosity
(extreme scores were defined as those with a principal
component-adjusted heterozygosity score above 0.19 as
shown by Bycroft et al. [30].) and>5% missingness.

Individuals whose reported sex was inconsistent with
genetically inferred sex were also removed, as well as indi-
viduals with neither XX nor XY chromosomes. Finally, those
individuals with>10 putative third degree relatives, identi-
fied by Bycroft et al. [30] by estimating the kinship coeffi-
cients for all pairs of samples using the software KING [34],
were removed. This left 408,095 individuals. Using GCTA
[9] on 131,790 reportedly-related participants one from each
pair of related individuals was removed, based on a genetic
relationship threshold of 0.025, leaving 332,050 individuals.
Finally, individuals whose genetic and VNR data were
available for analysis in the first wave of genetic data release
from UK Biobank were removed as these individuals were
already a part of the Sniekers et al. [16] dataset. Following
these quality control steps, a sample size of 120,934 indivi-
duals was available for the VNR test. SNPs with a minor
allele frequency (MAF)< 0.0005, and an imputation quality
score< 0.1 were removed along with non-bi-allelic SNPs,
resulting in 18,485,882 autosomal SNPs.

Statistical analysis

Association analysis

VNR was analysed separately at one of four time points:
three of these were at an assessment centre, VNR 1, VNR 2,
VNR MRI, and one was online, VNR Online. All VNR
scores were adjusted for age, sex, assessment centre, gen-
otype batch, array, and 40 principal components. Associa-
tion analysis was performed using an additive model
implemented using BGENIE [30].

Meta-analysis

MTAG results are susceptible to bias and a large false
discovery rate when analyzing sets of GWAS summary
statistics where some sets are much more highly-powered
than others [26]. In order to improve the statistical power to
detect association in the Sniekers [16] data, we first meta-
analysed the Sniekers dataset with the four GWASs per-
formed on UK Biobank’s VNR test. This lead to the
inclusion of 120,934 new participants. The summary sta-
tistics from the four UK Biobank VNR GWASs were meta-
analysed with the summary statistics available from Snie-
kers et al. [16] using a sample size weighted meta-analysis
conducted with METAL [35]. This resulted in an intelli-
gence dataset containing 199,242 participants.

Multi-trait analysis of genome-wide association studies
(MTAG)

MTAG [26] allows the meta-analysis of different traits that
are genetically correlated with each other in order to
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increase power to detect loci in any one of the traits. Only
summary data are required in order to carry out MTAG and,
as bivariate LD score regression is carried out as part of an
MTAG analysis to account for (possibly unknown) sample
overlap between the GWAS results, these summary statis-
tics need not come from independent samples. Our goal was
to increase the power to detect loci associated with intelli-
gence, and so the meta-analytic results of the GWAS on
intelligence by Sniekers et al. [16] and the new participants
from UK Biobank were used as our primary GWAS data
sets. In order to add power to this combined intelligence
dataset, the genetically-correlated proxy phenotype of years
of education [25] (n= 329,417) was included. MTAG was
run using the default settings.

Identification of independent genomic loci and functional
annotation

Using the meta-analytic dataset produced by MTAG,
genetic loci related to intelligence were identified using
FUMA [36]. First, independent significant SNPs were
identified. Independent significant SNPs were selected on
the basis of their P-value being genome wide significant
(P< 5× 10−8) and being independent from each other
(r2< 0.6) within a 1 mb window. Secondly, SNPs that were
in LD of the independent lead SNPs (r2 ≥ 0.6) within a 1 mb
window, and within 1000 genomes reference panel with a
MAF of greater than 0.01 were included for further anno-
tation. Thirdly, lead SNPs were identified as a subset of the
independent significant SNPs (defined as above). Lead
SNPs were defined as independent significant SNPs that
were in LD with each other at r2< 0.1, again with a 1 mb
window. Fourthly, genomic risk loci were identified by
merging lead SNPs if they were closer than 250 kb apart,
meaning that a genomic risk locus could contain multiple
independent significant SNPs and multiple lead SNPs.
Finally, all SNPs in LD of r2 ≥ 0.6 with one of the inde-
pendent significant SNPs formed the border or edge of the
genomic risk loci. To map LD, the 1000 genomes phase
3 was used [33].

Functional annotation was carried out in FUMA [36]
using all SNPs found within the independent genomic loci
which were in LD of r2 ≥ 0.6, were nominally significant,
and had a MAF of 0.01. To gauge the functional con-
sequences of genetic variation at these SNPs they were first
matched based on chromosome, base pair position, refer-
ence, and non-reference alleles to a database containing
functional annotations including the ANNOVAR categories
[37], combined annotation dependent depletion (CADD)
scores [38], Regulome DB (RDB) scores [39], and chro-
matin states [40–42].

The ANNOVAR [37] categories were used to identify
the function of the SNP, and to locate its position within the

genome. CADD scores are a continuous measurement used
to determine how deleterious genetic variation at the SNP is
to protein structure and function. Higher scores are indica-
tive of a more deleterious variant, with scores of greater
than 12.37 providing evidence of pathogenicity [38]. A
Regulome DB score is a categorical measurement based on
data from expression quantitative trait loci (eQTLs) as well
as chromatin marks. The RDB score ranges from 1a to 7
with lower scores given to the variants with the greatest
evidence for having regulatory function.

Chromatin states indicate the level of accessibility of
genomic regions. This level of accessibility was described
using a 15 point scale predicated for each variant using a
hidden Markov model based on five chromatin marks for
127 epigenomes in the Roadmap Epigenomics Project [41].
The lower the chromatin score the greater the level of
accessibility to the genome at this site, with scores of less
than 8 indicative of an open chromatin region. The mini-
mum chromatic state across tissues was used.

Gene-based GWAS

Gene-based analysis was conducted using multi-marker
analysis of genomic annotation (MAGMA) [43]. SNPs that
were located within protein coding genes were used to
derive a P-value describing the association found with
intelligence. Gene locations and boundaries were used from
the NCBI build 37 and LD was controlled for using the
1000 genomes phase 3 release [44]. A Bonferroni correction
was applied to control for the multiple tests performed on
the 18,199 autosomal genes available for analysis.

Tissue type gene expression

In order to identify the importance of particular tissue types
relevant to individual differences in intelligence, a gene
property analysis was conducted using MAGMA. The goal
of this analysis was to determine if, in 30 broad tissue types,
and 53 specific tissues, tissue-specific differential expres-
sion levels were predictive of the association of a gene with
intelligence. Tissue types were taken from the GTEx v6
RNA-seq database [45] with expression values being log2
transformed with a pseudocount of 1 after winsorising at 50
with the average expression value being taken from each
tissue. Multiple testing was controlled for using Bonferroni
correction for 30, and 53 tests.

Gene-set analysis

Gene-set analysis was conducted using MAGMA [43] using
competitive testing. A total of 10,891 gene-sets (sourced
from Gene Ontology [27], Reactome [28], and, MSigDB
[29]) were examined for enrichment in intelligence.
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A Bonferroni correction was applied to control for the
multiple tests performed on the 10,891 gene sets available
for analysis.

Genetic correlations

In order to address whether the genetic architecture of the
meta-analysis of correlated traits conducted here produced a
phenotype with the same genetic architecture as intelli-
gence, we derived genetic correlations across 29 cognitive,
socio-economic status (SES), mental health, metabolic,
anthropometric, reproductive, and health and wellbeing
phenotypes. We used linkage disequilibrium score regres-
sion [12] to test whether each dataset had sufficient evi-
dence of a polygenic signal, indicated by a heritability
Z-score [12] of>4 and a mean χ2 statistic of>1.02 [12]. A
minor allele frequency cut-off of <0.01 was applied. Only
SNPs that were in HapMap 3 with MAF> 0.05 in the 1000
Genomes EUR reference sample were included. Next,
Indels and structural variants were removed as were strand
ambiguous variants. SNPs whose alleles did not match
those in the 1000 Genomes were also removed. The pre-
sence of outliers can increase the standard error in LD score
regression [12], and so SNPs where χ2> 80 were removed.
LD scores and weights for use with European populations
were downloaded from (http://www.broadinstitute.org/
~bulik/eur_ldscores/). False discovery rate (FDR) was
controlled for using Benjamini-Hochberg [46] procedure to
control for the 30 tests performed (Alzheimer’s disease was
included twice) against each phenotype. The corrected
alpha level corresponding to an FDR of 5% was 0.0374 for
education, 0.0305 for intelligence in the Sniekers et al. [16].
dataset, and 0.0168 for the final meta-analytic dataset on
intelligence [46]. In the case of Alzheimer’s disease, a
region encompassing 500 kb on each side of APOE was
removed and the analysis re-run in order to ensure that the
large effects in this region did not bias the regression.

Partitioned heritability

Partitioned heritability was carried out using stratified
linkage disequilibrium score regression [47]. The goal of
the partitioned heritability analysis was to determine if
SNPs that explain variance in intelligence cluster in func-
tional regions of the genome. A full description of how this
method works can be found in Finucane et al. [47]. Firstly,
heritability for each of the functional groupings is derived.
Secondly, this heritability estimate is used to derive an
enrichment metric defined as the proportion (Pr) of herit-
ability captured by the functional annotation, over the
proportion of SNPs contained within it (Pr(h2)/Pr(SNPs)).
This ratio describes whether a functional annotation con-
tains a greater or lesser proportion of the heritability than

would be predicted by the proportion of SNPs it contains, Pr
(h2)/Pr(SNPs)= 1. The proportion of the heritability of each
category is used as the numerator, rather than the herit-
ability of each category. Stratified LD Scores were calcu-
lated from the European-ancestry samples in the 1000
Genomes project (1000G) and only included the HapMap 3
SNPs with a minor allele frequency (MAF) of >0.05. A
model was derived using 52 overlapping, functional
categories. Correction for multiple testing was performed
using a Bonferroni test on the 52 functional categories
(α= 0.00096).

Genetic prediction

The three smaller samples of individuals who performed the
VNR test and had their genetic data released in the second
release of the UK Biobank genetic data were used. The
METAL meta-analysis and MTAG meta-analysis with
education were re-run leaving out one of the groups who
performed the VNR test. The group that was left out were
then used as the target sample for polygenic prediction.
Using our meta-analytic dataset on intelligence, polygenic
risk scores were derived for intelligence in each of the VNR
groups using PRSice [48]. SNPs that were strand ambig-
uous and those with a MAF of <0.01 were removed prior to
deriving the polygenic risk scores. SNPs were clumped
using the binary.ped files from the participants in the UK
Biobank as a reference (r2< 0.25, 250 kb window). Poly-
genic scores were then derived for each participant as the
sum of alleles associated with intelligence, weighted by the
effect size from our meta-analytic intelligence dataset. A
total of five polygenic risk scores were derived using the
following P-value cut offs: 0.01, 0.05, 0.1, 0.5, and 1.

Results

Genetic correlations performed for each of the four VNR
groups whose genetic data were released in the second release
of the UK Biobank genetic data against the Sniekers dataset
[16] indicated no evidence of sample overlap; this is shown by
there being an intercept of around zero for each comparison.
By meta-analysing the four VNR groups with the Sniekers
data we were able to increase the mean χ2 of the Sniekers
dataset from to 1.30 to 1.59, making it similar in statistical
power to the Okbay education dataset [25] (mean χ2= 1.65).

Using MTAG to combine our GWAS of intelligence
with those of education [25], we were able to increase the
mean χ2 in the intelligence dataset from 1.59 to 1.73. This
corresponds to an increase in the sample size from 199,242
to 248,482. The maxFDR was calculated using the same
procedure as Turley et al. [26] whereby assuming that at
least 10% of SNPs were causal for each trait, an FDR of
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0.0004 was derived for intelligence. The MTAG analysis
that combined these two GWASs found 11,930 genome
wide significant SNPs associated with intelligence (Fig. 1a).
These SNPs were found in 187 independent loci, identified
using FUMA (Supplementary Table 2); [49, 36] this
represents an increase of 169 loci compared to those
reported in the Sniekers et al. GWAS alone [16]. In order to
determine if differences in loci construction were influen-
cing the difference across the intelligence (Sniekers), edu-
cation (Okbay), and present study, we performed FUMA
(using the same parameters as in the current study) on the
Sniekers and Okbay datasets and compared the loci found
across phenotypes. Within the publically available Okbay
dataset, 77 genome wide significant loci were identified
and, 25 of these 77 loci were not associated in our meta-
analytic dataset (Supplementary Table 3) and are unique to
education, providing evidence that MTAG does not simply

find the genetic average between two traits. Upon exam-
ination of the Sniekers dataset, only 16 loci were found
rather than the 18 reported, a difference most likely caused
by the use of the unusually small window (300 kb) used for
clumping by Sniekers.

Comparing the genomic loci identified using FUMA in
the current study to the 16 loci identified from Sniekers et al.
[16] using FUMA, only one locus on chromosome 15 was
found in Sniekers that was not present in the current study. A
total of 130 of the 187 loci reported in the current study are
novel and not reported previously with intelligence or edu-
cation (Supplementary Table 3). By comparing the genomic
loci found in the present study with the same SNPs in the
intelligence and education data sets used in its construction,
we see low P-values across each of the three, consistent with
the finding of a strong genetic correlation between each of
the three phenotypes (Supplementary Table 4).

Fig. 1 a. The results of our MTAG analysis. SNP-based GWAS
Manhattan plot; negative log10 transformed P-values for each SNP are
plotted against chromosomal location. The red line indicates genome-
wide significance and the black line indicates suggestive associations.
b. Functional annotation carried out using FUMA on the independent
genomic loci identified. The percentage of SNPs found in each of the
nine functional categories is listed. c. The percentage of SNPs from the

independent genomic loci that fell into each of the Regulome DB
scores categories. A lower score indicates greater evidence for that
SNPs involvement in gene regulation. d. The percentage of SNPs
within the independent genomic loci plotted against the minimum
chromatic state for 127 tissue/cell types
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Using LD Score regression [50], a heritability estimate of
25.44% (SE= 0.84%) was found for our MTAG analysis of
intelligence. There was no evidence of residual stratification
or confounding leading to an inflation of test statistics (LD
Score regression intercept= 0.98).

Functional annotation conducted in FUMA indicated
that, across the independent genomic loci associated with
intelligence, there was an overrepresentation of SNPs found
in introns (50%), as well as SNPs found in intergenic
regions (28%) (Fig. 1b, Supplementary Table 2). There was
also evidence that these loci contained regulatory regions of
the genome, indicated by 28% of the SNPs in the genomic
loci having Regulome DB scores with less than 2 providing
evidence that genetic variation at this SNP is likely to affect
gene expression (Fig. 1c, Supplementary Table 2). Finally,
a total of 83% of the SNPs within the genomic loci had a
minimum chromatin state of <8 indicating that they are

located in an open chromatin state, providing additional
evidence that they are located within regulatory regions
(Fig. 1d, Supplementary Table 2). Finally, 65% of the SNPs
within the genomic loci showed evidence of being an
eQTL, and 3.79% had a CADD score of greater than 12.37
indicating that variation at these SNPs is deleterious (Sup-
plementary Table 2).

A gene-based GWAS was conducted using MAGMA.
Gene based analysis can increase power to detect significant
associations as the signal across many SNPs (all within a
gene) is combined [51]. A total of 538 (Fig. 2a, Supple-
mentary Table 5) genes attained genome-wide significance
using a gene-based GWAS.

The results of the gene property analysis, conducted using
MAGMA and linking transcription differences in 30 broad
tissues with intelligence differences, found a significant rela-
tionship between intelligence and expression changes in the

Fig. 2 a. Gene based Manhattan plot; negative log10 transformed P-
values for each gene (derived using MAGMA) are plotted against
chromosomal location. The red line indicates genome wide sig-
nificance. b gene property analysis linking transcription differences in
30 broad tissue types (y-axis) with the gene based statistics produced

from MAGMA. Red line indicates significance following Bonferroni
correction for the 53 tests performed. c gene property analysis linking
transcription differences in 53 tissue types (y-axis) with the gene based
statistics produced from MAGMA. Red line indicates significance
following Bonferroni correction for the 53 tests performed
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brain (P= 3.39× 10−15), and the pituitary (P= 1.23× 10−7)
(Fig. 2b, Supplementary Table 6). An examination of 53
tissue specific gene sets showed that this relationship between
transcription changes in the brain and intelligence was evident
across cortical tissue types including cerebellar hemisphere
(P= 2.76× 10−16), the cerebellum (P= 1.00× 10−15), the
frontal cortex (P= 5.47× 10−14), the anterior cingulate
cortex (P= 4.61× 10−12), the nucleus accumbens of
the basal ganglia (P= 1.50× 10−9), hippocampus
(P= 2.77× 10−9), amygdala (P= 9.80× 10−9), hypothala-
mus (P= 2.51× 10−8), caudate nucleus (P= 4.35× 10−8),
putamen (P= 1.69× 10−7), and the substantia nigra
(P= 6.46× 10−4) (Fig. 2c, Supplementary Table 7). These
results are the first to report that transcription differences in
cortical tissues are linked with individual differences in
intelligence.

In order to obtain information on the biological systems
involved in intelligence differences that are influenced by
genetic variation, we conducted gene-set analysis using all
genes available irrespective of their level of association.
Using a competitive test of enrichment implemented in
MAGMA, we identified seven novel biological systems
associated with intelligence differences (Table 1, Supple-
mentary Table 8). Firstly, we identify a role for neurogen-
esis (gene-set size= 1,355 genes, P-value= 5.59× 10−10),
the process by which neurons are generated from neural
stem cells. Secondly, a role was also found for genes
expressed in the synapse (gene-set size= 717 genes, P-
value= 1.43× 10−6), consistent with previous studies
showing a role for synaptic plasticity [52]. Thirdly,
enrichment was found for the regulation of nervous system
development (gene-set size= 722 genes, P-value= 4.02×
10−8). Fourthly, we find evidence for enrichment for
neuron projection (gene-set size= 898 genes, P-value=
2.07× 10−7), neuron differentiation (gene-set size= 842
genes, P-value= 1.62× 10−6), and central nervous system
neuron differentiation (gene-set size= 160 genes, P-value
= 5.33× 10−7). Finally, we identify a role for

oligodendrocyte differentiation (gene-set size= 1037 genes,
P-value= 1.75× 10−6). In addition to these novel results,
the finding that regulation of cell development (gene-set
size= 808 genes, P-value 9.71× 10−7) is enriched for
intelligence was replicated [16].

Partitioned heritability analysis indicated the functional
regions of the genome that make a greater contribution to
intelligence differences than would be expected based on
the proportion of SNPs captured by the groupings. We
find, for the first time, that coding regions were signi-
ficantly enriched for the heritability of intelligence
(P= 1.59× 10−5), as were transcriptional start sites (P=
9.19× 10−4). We also find enrichment of heritability for the
histone marks of H3K9ac (P= 7.81× 10−6), H3K4me1 (P
= 1.43× 10−5), H3K27ac PGC2 (P= 9.16× 10−4), and
H3K27ac Hnisz (P= 3.09× 10−5). We also replicate the
finding that regions of the genome that have undergone
purifying selection are enriched for intelligence [23]
(P= 7.77× 10−16) (Fig. 3, Supplementary Table 9).

Using our meta-analytic dataset on intelligence we car-
ried out polygenic prediction into UK Biobank subsamples
following their removal from the meta-analysis. Between
3.64 and 6.84% of phenotypic intelligence (as measured by
the VNR Test in UK Biobank) could be predicted (Sup-
plementary Table 10); the upper limit is an improvement of
~43% on the largest reported estimate to date, of 4.8% [16].
The polygenic risk scores that predicted the greatest amount
of variance were those composed of the P< 0.05, and P<
0.1 cut off in the VNR MRI group. However, a highly
similar r2 was also evident at higher P-value thresholds
indicating that, despite our increase in power, many of the
genetic variants associated with intelligence can still be
found across the full distribution of P-values.

We next derived genetic correlations with 29 phenotypes
both to obtain evidence suggesting that the results of our
meta-analysis produced a phenotype with the same genetic
architecture as intelligence, and to examine additional
phenotypes that might be genetically correlated with

Table 1 Gene-sets attaining
statistical significance following
Bonferroni control for multiple
tests

Gene-set Name Number of genes
in gene set

Beta SE of Beta P-value

Neurogenesis 1355 0.20 0.05 5.59× 10−10

Regulation of nervous system development 722 0.23 0.05 4.02× 10−8

Regulation of cell development 808 0.22 0.04 7.38× 10−8

Neuron projection 898 0.20 0.04 2.07× 10−7

Central nervous system neuron
differentiation

160 0.47 0.04 5.33× 10−7

Synapse 717 0.21 0.04 1.43× 10−6

Neuron differentiation 842 0.19 0.04 1.62× 10−6

Oligodendrocyte differentiation 1037 0.17 0.04 1.75× 10−6
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intelligence (Fig. 4, Supplementary Table 11). Many of
these have been shown before using intelligence phenotypes
[11, 12], and replicated using the verbal-numerical reason-
ing phenotype from UK Biobank; [53] however, we include
them to show the similarities and differences between the
genetic architecture found in our meta-analytic intelligence
dataset and the three datasets used in its construction. A
heritability Z-score of 30.29 was found for our meta-
analytic intelligence dataset and a mean χ2 of 1.73 indi-
cating a sufficient level of polygenicity within the dataset
for use with LD regression [12]. We find a novel genetic
correlation between intelligence and parental longevity; this
is found using the intelligence [16] GWAS (rg= 0.33, SE
= 0.08) and our meta-analytic sample (rg= 0.37, SE=
0.07). This indicates that the polygenic load for greater
intelligence is associated with greater longevity, using
parental longevity as a proxy phenotype.

When compared with previous GWASs, our meta-
analytic dataset showed strong positive genetic correla-
tions with each of the two variables measured: intelligence
(Sniekers, rg= 1.00, SE= 0.01); and years of education (rg
= 0.81, SE= 0.009). The genetic correlation of 1 between
our intelligence dataset and that of Sniekers further indi-
cates that the underlying polygenic signal in our meta-
analytic dataset is highly similar to that of intelligence,
rather than being an average between education and intel-
ligence (Fig. 4). For the SES variables the point estimate of
the genetic correlation with our meta-analytic intelligence
dataset fell between that of the intelligence [16] GWAS and
the education GWAS [25] which is a trend seen across some
of the traits assessed.

For the mental health variables, our meta-analytic intel-
ligence dataset showed a pattern of genetic correlations
more similar to Sniekers [16] GWAS on intelligence than

Fig. 3 Enrichment analysis for intelligence using the 52 functional
categories. This analysis differs from that performed by FUMA as all
SNPs are used whereas, in FUMA, only those in the independent
genomic loci are annotated. The enrichment statistic is the proportion

of heritability found in each functional group divided by the proportion
of SNPS in each group (Pr(h2)/Pr(SNPs)). The dashed line indicates no
enrichment found when Pr(h2)/Pr(SNPs)= 1. Statistical significance is
indicated by asterisk

Fig. 4 Heat map showing the genetic correlations between the meta-
analytic intelligence phenotype, intelligence, education with 29 cog-
nitive, SES, mental health, metabolic, health and wellbeing, anthro-
pometric, and reproductive traits. Positive genetic correlations are

shown in green and negative genetic correlations are shown in red.
Statistical significance following FDR (using Benjamini-Hochberg
procedure [51]) correction is indicated by an asterisk

A combined analysis of genetically correlated traits identifies 187 loci for intelligence



the Okbay [25] GWAS on education. For bipolar disorder,
no genetic correlation was found using our meta-analytic
dataset or with the Sniekers dataset; however, a genetic
correlation was found with education (rg= 0.28, SE=
0.04). For bipolar disorder, previous results have indicated a
negative genetic correlation using established measures of
intelligence, although after correcting for multiple tests this
estimate was not statistically significant [11]. Similar results
were also found when examining schizophrenia, where
a positive genetic correlation was found with education
(rg= 0.10, SE= 0.02), and a negative genetic correlation
was found with both intelligence datasets (Sniekers, rg=
−0.20, SE= 0.03, current study rg=−0.14, SE= 0.02).

Differences between the previous GWAS on intelligence
[16] and our meta-analysis were also evident for tiredness,
anorexia nervosa, and type 2 diabetes. For these pheno-
types, the point estimate of the genetic correlation is
indistinguishable from zero for the intelligence [16] GWAS
but significant and in the same direction for both education
and intelligence in our meta-analytic sample.

Discussion

People with a higher level of cognitive function have been
observed to have better physical and mental health, and to
have longer lives [3, 7]. This paper exploited the high
genetic correlations found between intelligence and educa-
tion, increased the statistical power of a GWAS on intelli-
gence, and attempted to find the loci and biological
mechanisms that help explain intelligence differences, and
the health differences with which they are associated.
Through the use of summary statistics drawn from a large
GWAS on intelligence and education, and the latest release
of the UK Biobank genetic data used in conjunction with a
recently-developed method, MTAG [26], we were able to
assemble the sample sizes required to achieve the high
levels of statistical power needed to detect loci of small
effect that explain differences in intelligence. These ana-
lyses produced a number of novel findings.

First, we found 187 independent associations for intel-
ligence in our GWAS, and highlighted the role of 538 genes
being involved in intelligence, a substantial advance on the
18 loci previously reported [16]. Within the 187 loci, we
found clear evidence of functionality, indicated by our
ability to link these SNPs to open chromatin states and
regulatory elements of the genome, and by the finding that
many of the loci contained regions where genetic variation
was deleterious.

Second, using two strategies, we uncovered additional
functional elements of the genome associated with intelli-
gence differences. Both of these methods used the whole
polygenic signal in our final dataset rather than only the

most significant regions as used in FUMA. Using
MAGMA, we found that transcription differences in the
brain and pituitary gland were associated with intelligence.
This relationship with cortical tissues was found across the
cortex and in multiple cortical tissues (Fig. 2b and c). Using
stratified linkage disequilibrium score regression, we repli-
cated the finding that regions of the genome that have
undergone purifying selection were the most strongly
associated with intelligence differences [23]. We also found
that coding regions and histone marks are enriched for
intelligence-associated regions of the genome.

Third, we used our meta-analytic GWAS data to predict
almost 7% of the variation in intelligence in one of three
independent samples. The range of similar estimates across
the three independent samples was 3.6 to 6.8%. Previous
estimates of prediction have been ∼5% at most; [16] our
results thus indicate that prediction accuracy can be
improved by drawing on existing data sets of proxy phe-
notypes for intelligence, as we did here. Additionally,
polygenic profile scores derived using the MTAG method
can be used to make meaningful predictions regarding an
individual level of intelligence.

Fourth, we report the novel finding that the polygenic
signal across our GWAS dataset clusters in genes involved
in the process of neurogenesis, genes expressed in the
synapse, and genes involved in the development of the
nervous system, as well as those involved in myelination
within the central nervous system due to their role in oli-
godendrocyte differentiation. This provides a rationale for a
theory of how genetic differences, via their influence on
physiological differences, contribute to variation in
intelligence.

The finding of neurogenesis gene-set enrichment for
intelligence is persuasive, because neurogenesis has been
linked to cognitive processes—particularly pattern separa-
tion and cognitive flexibility—in rodent models. New
neurons are continually made in humans in the subgranular
zone of the hippocampus and in the striatum; [54] in rodent
studies, experimentally reducing analogous neurogenesis
results in a poorer ability to discriminate between highly
similar patterns [55], whereas increasing the number of new
neurons produced results in an increased ability to suc-
cessfully discriminate between highly similar stimuli [56].
Additionally, neurogenesis appears to be involved in cog-
nitive flexibility by serving to avoid interference between
novel and previously formed memories in a spatial navi-
gation task [57, 58]. Such findings have been expanded to
include touch-screen discrimination tasks [59], as well as
active place avoidance [60]. Across these experiments, the
common finding was that neurogenesis was not required for
the learning of the task, but rather for the reversal of the rule
once the formally correct response had changed, suggesting
that neurogenesis is an important mechanism in cognitive
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flexibility. Replication of this finding of enrichment of
neurogenesis in intelligence GWAS data—in an indepen-
dent sample—is required to confirm our finding of a bio-
logical mechanism associated with intelligence differences
in humans.

Oligodendrocyte differentiation was also identified by
gene-set analysis as being involved in intelligence differ-
ences. The central nervous system of humans contains a
very high percentage (~50%) of white matter, which is
maintained by the action of oligodendrocytes [61].
Abnormalities in white matter are also associated with
psychiatric disorders such as schizophrenia and autism [60],
conditions that have previously been shown to be geneti-
cally linked to differences in intelligence. By finding that
genes involved in the myelination of the central nervous
system are associated with cognitive variation, we provide a
molecular genetic basis for the link between white matter
tract structure and intelligence [62].

Finally, we showed, using genetic correlations with 29
other traits, that our meta-analytic intelligence GWAS had a
highly similar genetic architecture to that of intelligence
alone. The genetic correlations that were produced using the
meta-analytic intelligence GWAS did differ for some traits;
this was most evident for schizophrenia, for which positive
genetic correlations have been observed with education
[12], but negative associations with intelligence [11]. Our
new findings provide evidence that the previously-
discovered differences in genetic correlations between
traits such as schizophrenia and intelligence and education
[11, 57, 12] are due to the fact that genetic effects acting
solely on intelligence are those that are negatively geneti-
cally correlated with schizophrenia, indicating they are
protective against the disorder. However, the genetic var-
iants that act on both education and intelligence are those
that show positive genetic correlations with schizophrenia.
By meta-analysing intelligence with the genetic component
of education that overlaps with intelligence, the relative
contribution of variance that is unique to intelligence les-
sens, and so too does the magnitude of the genetic corre-
lation with schizophrenia.

This limitation—a greater proportion of variance that is
common across education and intelligence in our results—
has implications for the results of our GWAS, since those
variants that gain the most signal from meta-analysis across
genetically correlated traits will, by definition, show asso-
ciation with each trait in our meta-analysis. Whereas the
final results of our GWAS did indicate the loci that are
likely to be involved in intelligence differences, our GWAS
may be overrepresented by effects that are also associated
with education. Nevertheless, we did find associations on
each chromosome that were not found in the most recent
GWAS of education [25], and peaks that were identified as
being associated with education on chromosomes 1, 2, 3, 4,

5, 6, 7, 9, 11, 12, 13, 14, 15, 16, and 18 [25] were not found
to be genome-wide significant in our meta-analytic dataset
(Supplementary Table 2). These differences cannot be
explained by using different criteria for loci discovery, as
we used the same software (FUMA) with the same para-
meters. It should also be noted that, whereas the genetic
correlation of our meta-analytic dataset with education did
increase from rg= 0.70 to rg= 0.80, the genetic correlation
with intelligence from the Sniekers dataset remained at rg=
1.00, showing that the MTAG procedure produces a phe-
notype with a highly similar genetic architecture to the trait
of interest.

Future work using large GWAS that are exclusively
based on established tests of intelligence [21] will provide
valuable samples in which to attempt replication of these
findings. The strength of the MTAG approach used here,
drawing power from related phenotypes, lies in the accu-
mulation of additional power to detect loci, make more
accurate predictions based on SNP data, and the ability to
identify the biological significance behind the polygenic
signal in such data sets.
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