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Abstract—In this paper, we propose the robust fairness-based
energy efficiency (EE) optimization of the dual-polarized multius-
er multiple-input multiple-output (MIMO) downlink. Exploiting
the special dual-polarized antenna structure, the polarization-
based subgrouping technique is adopted which enjoys low
implementation complexity, low feedback overhead, and good
performance. Based on this, the proposed robust fairness-based
EE precoding design aims at maximizing the minimum EE, i.e.,
the worst-case EE, achieved among all users with the norm
bounded channel errors. Further, the formulated nonconvex EE
optimization problem is transformed into a series of standard
semidefinite programming (SDP) problems, which can be effec-
tively solved by the convex optimization technique. Simulation
results demonstrate the robust EE performance advantages of
the proposed polarization-based subgrouping precoding scheme
over the existing schemes.

Index Terms—Dual-polarized MIMO downlink, polarization-
based subgrouping, energy efficiency, robust optimization

I. INTRODUCTION

Multiple-input multiple-output (MIMO), characterised by
its spatial multiplexing gain and diversity gain, is a highly
successful wireless technology that offers many meritorious
achievements [1]. However, space limitations usually introduce
correlations between adjacent antennas, which degrades the
achievable performance of MIMO systems [2]. To address
this issue, a space and cost effective solution is to deploy
dual-polarized antenna arrays at both communication termi-
nals. With the dual-polarized antenna array structure, multiple
antennas are grouped in pairs with two orthogonally polarized
antenna elements. Moreover, to further reduce implementa-
tion complexity and feedback overhead, a polarization based
subgrouping technique was proposed for the dual-polarized
MIMO system in [3].

In future wireless communication systems, facing with the
exponential growth of multimedia traffics and the limited
energy supply for mobile devices, there is an urgent need to
improve the energy efficiency (EE) of wireless communication
systems [4]. In particular, EE has been widely accepted as an
important performance metric for beamforming and precoding

optimization, and there already exists a rich body of literature
addressing this issue. Generally, the perfect CSI is assumed to
be available in these literature. Unfortunately, this assumption
is difficult to realize in real systems because of many practical
factors, e.g., feedback errors. As a result, abundant works
aiming to improve the robust EE performance of wireless
communication systems spring up [5]. It is noted that most
of these work concentrate on the statistical EE robustness or
worst-case EE robustness.

However, to the best knowledge of the authors, the energy-
efficient multiuser precoding design for the dual-polarized
MIMO downlink with imperfect CSI has not been carried
out in the existing literature. This motivates us to take a
further step to investigate the robust EE performance of the
dual-polarized multiuser MIMO downlink. Specifically, in our
work, the polarization based subgrouping technique is applied
to realize the robust fairness-based EE optimization for the
dual-polarized multiuser MIMO downlink, which can further
reduce the system CSI feedback overhead and implementation
complexity. Based on this, the linear precoding matrix is opti-
mized by exploiting the equivalent relationship between the
signal-to-interference-plus-noise ratio (SINR) and the mean
square error (MSE) [6], the Dinkeblach’s method [7] and
the sign-definiteness lemma [8]. Finally, the corresponding
nonconvex EE optimization problem is solved by a series of
standard semidefinite programming (SDP) optimization.

II. DUAL-POLARIZED DOWNLINK MULTIUSER MIMO
SYSTEM

We study the multiuser MIMO downlink communication
scenario depicted in Fig. 1, in which the base station (BS)
equipped with Nt polarized antennas serves M mobile users
(MUs) each equipped with a single horizontally or vertically
polarized antenna. Here, Nt is set to be an even number, thus
the BS is equipped with Nt/2 pairs of co-located horizontally
and vertically polarized antennas [3]. Besides, the serving M
MUs are clustered into K groups each composed of Nu = M

K
MUs. Generally, Nt > Nu is assumed and each MU group



Fig. 1. The downlink of dual-polarized MU-MIMO system [3].

consists of the same number of vertically and horizontally
polarized MUs. Then the received signal yk ∈ CNu of the kth
MU group can be expressed as
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2 , ∀p ∈ {v, h} is the precoding matrix for the jth MU
group with p polarization, and Hk ∈ CNt×Nu represents the
channel matrix linking the BS to Nu MUs of the kth group,
where Hmn
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2 , ∀m,n ∈ {h, v} is the channel ma-
trix between the n-polarized BS antennas and the m-polarized
MUs in the kth group. nk =
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)T]T ∈ CNu is the
corresponding additive white Gaussian noise (AWGN) vector,
whose elements obey the Gaussian distribution with zero mean
and power σ2

n. Particularly, according to [3], the dual-polarized
MIMO channel is modeled as
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where ⊗ and ⊙ denote the Kronecker product and Hadamard
product, respectively, while Tr(·) denotes the matrix trace
operator. Besides, γp ≈ 0 reflects the correlation between the
horizontally and vertically polarized antennas. Gk ∈ C2rk×Nu

and X ∈ R2×2 are defined respectively as
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Here Gk is the short-term channel fading matrix with Gmn
k ∈

Crk×Nu
2 , ∀m,n ∈ {h, v}, and X with 0 ≤ χ ≤ 1 indicates the

channel ability to separate vertical and horizontal polarizations
[9]. In our work, the ideal case of χ ≈ 0 is considered,
which means the orthogonally polarized signals are perfectly
distinguished from each other. Generally, the feedback of
Gk to the BS is imperfect due to many factors, such as
quantization and feedback errors. Therefore, the short-term

CSI can be expressed as

Gk =Ĝk +∆k, ∥∆k∥F ≤ σk, (4)

∀k ∈ K, where Ĝk denotes the estimated nominal channel,
and ∆k is the norm bounded CSI error by σk. In our work,
the ideal case χ ≈ 0 is considered, which means the polarized
signals are perfectly orthogonal, and the interference signals
from the cross-polarized channels can be perfectly canceled
out. Specifically, when χ ≈ 0, the channel matrix Hk is

block diagonal, i.e., Hk ≈
[
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k 0
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k

]
. Moreover, with

the subgrouping technique of separating the vertically and
horizontally polarized MUs into two subgroups, the linear
precoding matrix Pk ∈ CNt×Nu can be re-expressed as
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P v
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]
, where P p

k ∈ C
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2 for p ∈ {v, h}
denotes the p-polarization related precoding matrix. Therefore,
the design of Pk, ∀k ∈ K, is transformed into the designs
of the polarization related P p

k for p ∈ {h, v} utilizing the
reduced-dimensional instantaneous CSI.

Further, based on (1), the received signal of each MU can
be expressed as
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where hp
kj,i denotes the ith row of the virtual channel

(
Hpp

k

)H
and pp,i
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for p ∈ {h, v}. Hence, the achievable user rate is given by
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and the related user power consumption is re-expressed as
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achievable EE of the ith MU with p-polarization in the kth
group is reformulated as
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We now apply the imperfect instantaneous CSI model with the
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where ĥp
kj,i and ∆p

kj,i denote the estimated nominal channel
and the corresponding CSI error for hp

kj,i ∈ C1×L
2 , respective-

ly, and the error threshold τpkj,i satisfies τpkj,i =
√

Tr(Rk)
2rkNu

σk.
Based on (8) and (9), the robust fairness-based EE optimiza-
tion problem is formulated as
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where ∆K =
{
∆p

kj,i : ∀i, k, j, p
}

denotes the set of all CSI
uncertainties in the dual-polarized MIMO downlink. Clearly,
the problem (10) indicates that the minimum EE among all
MUs is maximized considering the imperfect CSI. However,
the non-convex fractional problem (10) is difficult to solve due
to the intractable objective function. To address this issue, we
utilize the Dinkeblach’s method [7] and propose an iterative
optimization algorithm in the following Section.

III. PROPOSED ITERATIVE EE OPTIMIZATION

In order to tackle the optimization problem (10) effectively,
we first transform (10) into the following equivalent problem
utilizing the Dinkeblach’s method [7], which leads to
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where the objective function Gp
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which is monotonically decreasing with respect to the auxiliary
variable η. Following the similar logic given in [5], it is con-
cluded that the optimal precoding matrix of problem (11) is ob-
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Refer to [7], the optimal η can be found via a one-dimensional
search. However, even with η fixed, the optimization (11) is
nonconvex due to the nonlinear optimization objective. To
overcome this difficulty, Gp

k,i(η) is further reformulated by
exploiting the equivalent relationship between the achievable
SINR and the MSE of the desired signal [6]. More specifically,
let fp

k,i denote the equalizer for the ith MU with p-polarization
in the kth group. Then the MSE of the desired signal sp,ik is
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rest elements are zero. Particularly, for the imperfect dual-
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Based on this, the optimization (11) is relaxed to the following
one
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Unfortunately, to tackle this nonconvex problem, some nec-
essary mathematical transformations are needed. Specifically,
we first introduce an auxiliary function Up
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Besides, combining (16) with (17), the optimization problem
(15) can be rewritten as
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Further substituting MSEp
k,i in (13) into (18), we obtain the

robust EE optimization problem (19) at the top of next page,
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is worth noting that the optimization problem (19) is actually
an epigraph form of the problem (18). To solve this problem
effectively, we propose a suboptimal algorithm to decompose
the problem (19) into a series of iterative subproblems. The
detailed iterative optimization procedure for solving the prob-
lem (19) is presented as follows.
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To transform this optimization into a standard SDP problem,
we introduce some auxiliary variables, i.e., bpkj,i and dp,ik , to
simplify its constraints so that the problem is reformulated as
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Then jointly based on the Schur complement lemma [10] and
the sign-definiteness lemma [8], the first two sets of constraints
in (20) are equivalent to the following finite linear matrix
inequalities (LMIs)
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where the related parameters are given in (22) at the top of
next page. Then we can also reexpress the problem (20) as (23)
at the top of next page. where P = [P h

1 ,P
v
1 , · · · ,P h

K ,P v
K ] ∈
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2 ×KNu Clearly, the problem (23) is a standard SDP problem

for the linear precoding P p
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solved with an interior point method.
3) Optimizing fp

k,i: It is noted that the optimization of
fp
k,i can also be cast to an SDP problem, which is similar to

the the optimization of P p
k . For space limitation, the detailed

derivation process is omitted here.
In a nutshell, to solve the optimization problem (19) effec-

tively when η is given, an iterative optimization is performed
among the optimization variables

{
αp
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. Furthermore, combining

with the bisection method to optimize η, the optimal η⋆ for
the original robust EE problem (11) is available.

IV. SIMULATION RESULTS

In this section, numerical simulations are conducted to
assess the performance of the proposed robust dual-structured
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subgrouping precoding scheme. At the beginning, the fol-
lowing one-ring model [3] is used to calculate the spatial
covariance matrix Rk for the MUs in the kth group

[Rk]m,n =
1

2∆a
k

∫ ∆a
k

−∆a
k

e−jπλ−1
0 Ω(α+θk)(rm−rn)dα (24)

where ∆a
k ≈ tan−1(sk/dk) is the angular spread of the

departure radio frequency (RF) signal to the kth group and
∆a

1 = · · · = ∆a
K = 4π

180 is set. Besides, the considered
system consists of one BS with Nt = 18 polarized antennas
and K = 3 MU groups each with Nu = 4 MUs. The CSI
error threshold σk = 0.2, ∀k ∈ K is set. To solve the SDP
problems (14) effectively, the famous matlab toolbox CVX
[10] is utilized. Note that the non-robust algorithm is adopted
as a benchmark scheme, where the EE precoder is designed
by simply taking the nominal CSI as the perfect one.

In the polarization-based subgrouping precoding, the linear
precoder P p

k , p = {h, v} is optimized by solving (18) via the
proposed iterative algorithm. Hence, we firstly investigate the
convergence of the proposed algorithm in Fig. 2. From this
figure, it is clear that the proposed algorithm converges after
almost 10 iterations with different initial values. Here, two
kinds of initials for P p

k , p = {h, v} are given by

P p,1
k =2

√
Pmax

NuNt
1Nt

2 ×Nu
2
, P p,2

k =

√
8Pmax

NuNt
[0Nt

2 ×Nu
4
,1Nt

2 ×Nu
4
]

(25)



∀k, j ∈ K, j ̸= k, i ∈
{
1, · · · , Nu

2

}
, p ∈ {h, v} : X=−[1 0] ∈ R1×

(
1+Nu

2

)
, Y p

k =
[
0 P p

k

]
∈C

L
2 ×
(
1+Nu

2

)
, Qp

kj,i=∆p
kj,i,

Zp
kk,i=


bpkk,i√
lpk,i

ĥp
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ĥp
kk,i

)H− 1(
fp
k,i

)∗ eHi bpkk,i√
lpk,i

INu
2

∈C
(
1+Nu

2

)
×
(
1+Nu

2

)
, Zp

kj,i=

 bpkj,i√
lpk,i

ĥp
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Fig. 3. The achievable minimum worst case EE versus the total transmit
power Pmax for different system scales, when Nt = 18/24, Nu = 4,K = 3
and Pc = 1dBW.

Fig. 3 illustrates the achievable minimum worst case EE
among MUs versus the total transmit power Pmax under
different system scales. From this figure, it can be concluded
that under the arbitrary array scale, the minimum worst case
EE among MUs rises and becomes statured with the increase
of Pmax for both algorithms. In addition, compared with the
non-robust scheme, the higher minimum worst case EE can
be obtained using the proposed algorithm.

V. CONCLUSIONS

In this paper, we proposed a polarization-based subgrouping
precoding scheme to realize the robust fairness-based EE opti-
mization of the dual-polarized MU-MIMO downlink scenario,
which can reduce system instantaneous CSI feedback overhead
and complexity significantly. To be specific, the minimum EE

among all MUs in the dual-polarized MU-MIMO downlink
system was maximized considering the imperfect system CSI.
Finally, numerical experiments demonstrated the good robust
EE performance realized by the proposed algorithm.
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