Magnetically gated accretion in an accreting “non-magnetic” white dwarf

Simone Scaringi,1* Thomas J. Maccarone,2 Caroline D’Angelo,3 Christian Knigge,4 Paul J. Groot.5

1School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
2Department of Physics and Astronomy, Texas Tech University, Box 41051, Lubbock, TX 794091051, USA.
3Leiden Observatory, Leiden University, Leiden 2300RA, The Netherlands
4School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
5Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands

*Corresponding author. E-mail: simone.scaringi@canterbury.ac.nz

White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15% of these binaries, the magnetic field of the white dwarf is strong enough (≥10⁶ Gauss) to channel the accreted matter along field lines onto the magnetic poles1,2. The remaining systems are referred to as “non-magnetic”, since to date there has been no evidence that they have a dynamically significant magnetic field. Here we report an analysis of archival optical observations of the “non-magnetic” accreting white dwarf in the binary system MV Lyrae (hereafter MV Lyr), whose lightcurve displayed quasi-periodic bursts of ≈30 minutes duration every ≈2 hours. The observations indicate the presence of an unstable magnetically-regulated accretion mode, revealing the existence of magnetically gated accretion3–5, where disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyr between 2×10⁴ ≤ B ≤ 10⁶ Gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified6–9.

MV Lyr spends most of its time in an optically bright (mᵥ ≈ 12) luminosity state. Occasionally and sporadically (typically about once every few years) it drops by more than a factor 250 in brightness for short durations (weeks to months), sometimes fading to mᵥ ≈ 18 (Fig 1a). Other accreting white dwarfs show similar optical brightness variations, and fall under the class of so-called nova-like variables10–13. The physical mechanism for these sudden drops in brightness is not well established14–16. As the luminosity of these systems is dominated by the release of gravitational potential energy of the gas in the disk, it is clear that the brightness variations are a direct consequence of changes in the mass-transfer rate through the accretion disk in these systems: during the bright phases (“high states”), the mass-transfer rate can be as high as ≥10⁻⁸ M☉/yr, whilst during the faint phases (“low states”), the mass transfer rate can drop as low as ≤10⁻¹¹ M☉/yr (refs 12, 13).

MV Lyr was continuously monitored during the original Kepler mission in short cadence mode (58.8 seconds) for nearly 4 years, displaying both high and low states during this interval (Fig 1a). Although its orbital period has been determined to be 3.19 hours via phase-resolved spectroscopy, the Kepler lightcurve does not display any coherent periodicity during the full observation, possibly due to the very low system inclination18,19 (i = 10° ± 3°). Instead the Kepler data displays all the usual aperiodic variability patterns that have been associated with mass-transferring accretion disks20–22. During an observed low state, MV Lyr displayed quasi-periodic “bursts” of ≈30 minutes duration every ≈2 hours, which on occasion can increase the brightness of the system by a factor 6.5 (Δmᵥ ≈ 2, Fig. 1c). This phenomenon is only observed during the very faintest period of time when the lightcurve reaches a roughly constant minimum brightness level, which we refer to as the deep low state. The bursts are observed only once the brightness of MV Lyr has reached the deep low state, disappearing as soon as the lowest brightness level rises again.

To understand the constant minimum brightness level exhibited in the deep low state, the Kepler lightcurve of MV Lyr has been transformed into V-band magnitudes using archival simultaneous observations obtained by the American Association of Variable Star Observers (AAVSO). This allows us to estimate the deep low state brightness level of MV Lyr to be mᵥ ≈ 17.5, which is compatible with emission only originating from the white dwarf and secondary star component, with negligible accretion disk contribution. Our estimate is also consistent with previous Far Ultraviolet Spectroscopic Explorer (FUSE) observations of MV Lyr during a previously detected deep low state19,23 which did not appear to display any bursting behaviour. The time-averaged magnitude during which MV Lyr reaches the deep low state observed with Kepler is mᵥ ≈ 16.7. This includes the observed quasi-periodic bursts, and translates to a time-averaged mass accretion rate onto the white dwarf of ≥10⁻¹¹ M☉/yr (see Methods).

The combination of the duration, the recurrence time, the large amplitude, and the lack of coherence associated with the quasi-periodic bursts (Fig. 2) exclude an origin of either rotation or pulsation in either the donor star or the white dwarf. One possibility are the simulated Papaloizou-Pringle instabil-
Optical brightness variations in MV Lyrae. a. 3.89 year-long Kepler lightcurve (58.8 second cadence; red points) overlaid onto the long term V-band and visual lightcurve (black points) obtained through the AAVSO. b. 60-day portion of the Kepler lightcurve entering the deep low state, visible between day 20-35 (BJD - 2455743). c. Further zoom of the Kepler lightcurve during the deep low state showing the clear ≈ 30 minute bursts every ≈ 2 hours overlaid onto a constant (flat) luminosity level.

ologies generated within the boundary layers of accreting white dwarfs. However, the observed burst recurrence behaviour and the similar burst luminosities cannot be reconciled with current simulations. The most likely mechanism are magnetically-gated accretion bursts, arising from the interaction between the inner edge of the accretion disk and a dynamically important white dwarf magnetic field. Such bursts can occur when the magnetic field is strong enough to disrupt the disk close to the star, moving the inner edge of the accretion disk outside the “co-rotation radius” – the point where the Keplerian frequency of the disk matches the white dwarf rotation rate. This creates a centrifugal barrier that inhibits accretion onto the white dwarf (Fig. 3). In some cases, the magnetic field is not strong enough to expel most of the accreting gas from the system (as is the case for a “magnetic propeller”; e.g. AE Aquarii), and as a result, gas in the disk piles up and gradually pushes against the magnetic field (the so-called trapped disk scenario). Once a critical amount of mass has accumulated, the centrifugal barrier induced by the rotating magnetosphere can be overcome and material accretes onto the white dwarf, releasing a burst of energy through accretion.

The critical mass transfer rate required for triggering magnetically-gated accretion burst cycles depends on both the spin period of the white dwarf (and thus the co-rotation radius) and its magnetic field strength. In the case of MV Lyr, we can constrain the mass transfer rate to be between \(10^{-11} \lesssim \dot{M} \lesssim 2 \times 10^{-10} M_\odot/\text{yr} \). The lower limit arises from the observed time-averaged luminosity in the deep low state. The upper limit arises from the total low state duration of \(\approx 300 \) days, during which no thermal-viscous outburst was observed (see Methods). Given the inferred mass transfer constraint, we are able to place very conservative constraints on both white dwarf spin period and magnetic field strength by requiring the disk truncation radius to lie between the disk circularisation radius and the white dwarf surface. For a system like MV Lyr (\(M_{WD} = 0.73 \pm 0.1 M_\odot \) and \(R_{WD} = 0.0125 \pm 0.0025 R_\odot \)), with a 3.19 hour orbital period, the inferred magnetic field of the white dwarf is then constrained to be between 22kG and 130kG. The exact value of the field strength depends primarily on the white dwarf rotation period (Fig. 4).

Because MV Lyr is seen nearly face-on, and the white dwarf spin axis is most likely nearly perpendicular to the orbital plane, measurements of the projected white dwarf rotational velocity at the surface are bound to be small, even for a rapid white dwarf spin. High resolution spectra obtained with FUSE during a previous low state have been used to infer a projected white dwarf rotational velocity in the range 150 - 250 km/s. Together with the observed system inclination (\(i = 10^\circ \pm 3^\circ \)), this translates to a white dwarf spin period in the range 19-98 seconds, and associate magnetic field strength between 22kG and 130kG.

The observation of magnetic gating in MV Lyr connects this source to other magnetic accretors, such as young stellar objects and neutron stars, where similar bursts have been seen. For example, EX Lupi, an accreting young star, is the prototype of the “EXor” stellar class, which undergo large-amplitude accretion variations that have been attributed to magnetic gating. In
EX Lupi, the burst recurrence time of several years corresponds well with viscous timescales in the inner disk region and implies a magnetic field of $\approx 10^8$ Gauss. Observations comparing the inner disk during the accretion burst and post-burst also revealed a depleted inner accretion disk after the burst. Magnetic gating is also thought to be responsible for very large-amplitude accretion bursts with a ≈ 1 second recurrence time seen in two different accreting neutron stars with magnetic fields of $\approx 10^8$ Gauss. As in MV Lyr, the recurrence time observed in these other accretors is similar to the viscous timescale of the inner disk. The identification of magnetically gated accretion bursts, together with the combination of accretion rate and rotation rate, suggests that the disk is truncated very close to the co-rotation radius at $0.014R_\odot < R_{\text{in}} < 0.043R_\odot$ (see Methods). By establishing the presence of dynamically important magnetic fields in “non-magnetic” white dwarfs, this discovery opens a new route for the study of the strength and evolution of magnetic fields in white dwarfs. Furthermore, the new observation of accretion bursts in MV Lyr fills the gap in the magnetic field strength distribution of systems displaying magnetic gating and thus underscores the universality of magnetospheric accretion across an enormous range of stellar parameters.

METHODS

Data Sources

The *Kepler* data for MV Lyr was obtained from The Barbara A. Mikulski Archive for Space Telescopes (MAST) in reduced and calibrated format. The *Kepler* telescope/detector combination is sensitive to light across a wide range of wavelengths (400 nm - 900 nm). This maximizes the signal-to-noise and gives robust relative brightnesses over time for the sources, but also makes it difficult to calibrate *Kepler* photometry, either in absolute terms or against other observations obtained in standard (narrower) passbands. In the case of MV Lyr, we are fortunate to have access to the extensive historical data set on this system obtained by amateur observers that is curated by the AAVSO (see Fig. 1a). This data set includes V-band observations spanning nearly 50 years, including the entire period over which *Kepler* observed the source. We have exploited this overlap to establish an approximate transformation of *Kepler’s* count rates for MV Lyr into standard V-band magnitudes. In order to achieve this, we first excluded outliers from the AAVSO data set and removed all observations separated by more than 2 minutes in time from the nearest *Kepler* data point. We then linearly interpolated the *Kepler* light curve onto the timestamps of the remaining AAVSO data and fitted a 6th-order polynomial to the relationship $m_V = f(m_{\text{inst}})$, where $m_{\text{inst}} = -2.5\log_{10}(\text{count rate}) + 12$ and $f(x) = 13.34 + 1.097x + 0.05851x^2 - 0.08269x^3 + 0.01745x^4 - 0.003327x^5$. By allowing for a higher-order polynomial transformation, we are implicitly correcting for colour terms arising from the difference between the two bandpasses, under the assumption that the colour of the system primarily tracks its luminosity. The root-mean-square scatter about our transformation is 0.07 magnitudes across the entire dynamic range, which spans $12 < m_V < 18$. Due to the increase in noise at the faint end of this range ($m_V > 15.5$), the scatter is slightly higher in this limit (0.14 magnitudes).

Power Spectrum

We visually identified the deep low state of MV Lyr in the *Kepler* light curve to fall between 930-944 (BJD - 2454833). During this interval a ≈ 20 hour data gap is present in the *Kepler* data. We thus split the deep low state into two 6.2-day uninterrupted segments (thus avoiding the data gap), and interpolate both on the same 58.8 second time grid. We then perform a Discrete Fourier Transform (DFT) on each independently. For comparison, we performed the same segmentation and analysis to *Kepler* data of MV Lyr just after the deep low state, selecting the segment between 955-969 (BJD - 2454833). Fig. 2a shows the result of averaging the individual deep low state DFTs with the black line, and the comparison DFTs with the red line. We point out that no coherent periodicity is observed in any DFT, with the exception of a known recurrent artefact at ≈ 390 cycles/day, present in many other *Kepler* targets, and particularly strong during Campaign 10 when MV Lyr entered the deep low state. The fact that no coherent periodicity has been found in nearly 4 years of *Kepler* observation of MV Lyr is also ascertained by numerous other analyses.

Luminosity

During the period in which MV Lyr displays the quasi-periodic bursts we interpret as a signature of magnetically gated accretion, the minimum count rate between the bursts is approxi-
Figure 3. Schematic depiction of the accretion flow in MV Lyrae during phases of magnetically gated accretion cycles. a. During the deep low state accreting gas around MV Lyrae is not able to penetrate the centrifugal barrier created by the interaction between the fast-rotating white dwarf magnetic field and the inner accretion disk. The inner disk is thus truncated just outside the co-rotation radius, preventing the launching of a strong propeller outflow. Consequently, material gradually piles up around the truncation radius, exerting more pressure against the magnetic barrier. b. The gas disk eventually pushes inside the co-rotation radius, removing the centrifugal barrier and allowing a burst of accretion onto the white dwarf surface. When the reservoir is depleted, the magnetosphere again pushes outwards and the cycle repeats on timescales comparable to the viscous timescales of the variable disk truncation radius.

Accretion Rate

In the absence of information about the spectral shape of the radiation produced by the bursts, we assume that most of this radiation emerges in the optical region and estimate the burst-related accretion luminosity as \(L_{\text{acc}} \approx L_V \), i.e. without making a bolometric correction. We then convert this luminosity into an estimate of the accretion rate onto the white dwarf via

\[
L_{\text{acc}} = \frac{GM M_{\text{WD}}}{R_{\text{WD}}} \left[1 - \frac{1}{2} r - \left(\frac{\Omega_*}{\Omega_{\text{in}}} \right) r + \frac{1}{2} \left(\frac{\Omega_*}{\Omega_{\text{in}}} \right)^2 r^3 \right],
\]

where we defined \(r = \frac{R_{\text{WD}}}{R_{\text{in}}} \), \(\Omega_* \) is the stellar rotation angular frequency, and \(\Omega_{\text{in}} = \sqrt{\frac{GM_{\text{WD}}}{R_{\text{in}}^3}} \) as the inner disk angular frequency. This estimate assumes that \(L_{\text{acc}} \) represents the gravitational potential energy release associated with material falling from \(R_{\text{in}} \) to \(R_{\text{WD}} \) (the surface of the white dwarf).
The mass accretion rate can be expressed as a function of the spin period \(P_s \) of the accretor. This expression is derived from the mass transfer rate \(\dot{M} \) and the spin period \(P_s \) of the accretor. The expression is:

\[
\dot{M} = \frac{\eta \mu^2 P_s}{8\pi R_{in}^5},
\]

where \(\mu = B R_{WD}^3 \) is the magnetic moment of the white dwarf, \(P_s \) is the spin period of the white dwarf, and \(R_{in} \) is the inner disk truncation radius. The time-averaged strength of the toroidal field component, \(\eta = \frac{B_z}{P_s} \), is set to a constant of 0.1. Adopting the standard stellar parameters for MV Lyr, we infer \(15 < P_s < 907 \) seconds, \(-11.1 < \log_{10} \left(\frac{M}{\dot{M}} \right) \) < -9.7, \(4.3 < \log_{10} \left(\frac{B}{\text{Gauss}} \right) < 6.1 \) and \(0.012 < R_{in} < 0.189 R_\odot \), displayed in Fig. 4 as the light grey shaded area. This includes the additional constraint on the outer disk circularisation radius, the inner disk truncation radius and the allowed maximum mass transfer rate. We can further constrain these parameters through the observed white dwarf projected velocity \(v_{\text{proj}} \) of 150-250 km/s and the inferred system inclination of \(i = 10^\circ \pm 3^\circ \), somewhat increasing the estimate.

![Figure 4. Magnetically gated accretion instability plane](image)

Figure 4: Magnetically gated accretion instability plane. Magnetically gated accretion burst cycles occur when the mass transfer rate through an accretion disk drops to, and is sustained at, a critical value. The critical mass transfer rate \(\dot{M}_{\text{crit}} \) depends on both the magnetic field strength \(B \) and the spin period \(P_s \). The expression is derived from the mass transfer rate \(\dot{M} \) and the spin period \(P_s \) of the accretor. The expression is:

\[
\dot{M}_{\text{crit}} = \frac{B R_{WD}^3}{8\pi R_{in}^5},
\]

where \(\mu = B R_{WD}^3 \) is the magnetic moment of the white dwarf, \(P_s \) is the spin period of the white dwarf, and \(R_{in} \) is the inner disk truncation radius. The time-averaged strength of the toroidal field component, \(\eta = \frac{B_z}{P_s} \), is set to a constant of 0.1. Adopting the standard stellar parameters for MV Lyr, we infer \(15 < P_s < 907 \) seconds, \(-11.1 < \log_{10} \left(\frac{M}{\dot{M}} \right) \) < -9.7, \(4.3 < \log_{10} \left(\frac{B}{\text{Gauss}} \right) < 6.1 \) and \(0.012 < R_{in} < 0.189 R_\odot \), displayed in Fig. 4 as the light grey shaded area. This includes the additional constraint on the outer disk circularisation radius, the inner disk truncation radius and the allowed maximum mass transfer rate. We can further constrain these parameters through the observed white dwarf projected velocity \(v_{\text{proj}} \) of 150-250 km/s and the inferred system inclination of \(i = 10^\circ \pm 3^\circ \), somewhat increasing the estimate.

Additional Constraints

We can set independent limits on the white dwarf spin period, accretion rate and magnetic field strength by setting the magnetic radius (where the disk is truncated) equal to the corotation radius. When the disk is truncated close to co-rotation, the mass accretion rate can be expressed as:

\[
\dot{M} = \frac{\eta \mu^2 P_s}{8\pi R_{in}^5},
\]

where \(\mu = B R_{WD}^3 \) is the magnetic moment of the white dwarf, \(P_s \) is the spin period of the white dwarf, and \(R_{in} \) is the inner disk truncation radius. The time-averaged strength of the toroidal field component, \(\eta = \frac{B_z}{P_s} \), is set to a constant of 0.1. Adopting the standard stellar parameters for MV Lyr, we infer \(15 < P_s < 907 \) seconds, \(-11.1 < \log_{10} \left(\frac{M}{\dot{M}} \right) \) < -9.7, \(4.3 < \log_{10} \left(\frac{B}{\text{Gauss}} \right) < 6.1 \) and \(0.012 < R_{in} < 0.189 R_\odot \), displayed in Fig. 4 as the light grey shaded area.

Burst Recurrence Timescales

In the magnetic gating model, the instability occurs in the inner regions of the accretion disk and the recurrence time...
is typically similar to the viscous timescale in this region, (the time it takes matter to travel R_{in}; a characteristic evolution timescale):
\begin{equation}
\tau_{\text{disc}} \approx \frac{R_{in}^2}{\nu},
\end{equation}
where ν is the viscosity of a typical α-disk, and can be estimated as:
\begin{equation}
\nu \approx \alpha \frac{H}{R} \sqrt{GM_{WD}R_{in}},
\end{equation}
Assuming that the disk is truncated at the co-rotation radius, $R_{co} = \left(\frac{GM_{WD}P^2}{4\pi^2} \right)^{1/3}$, a white dwarf with $M_{WD} = 0.73 \pm 0.1 M_{\odot}$ and a spin period $19 < P_s < 98$ seconds has a characteristic viscous accretion time in the range 0.8-4.4 hours. This is consistent with the bursts recurrence timescale observed with Kepler, and possibly with other reports of bursts observed in previous low states. The viscous timescale is calculated assuming a viscous parameter $\alpha \approx 0.1$ and disk aspect ratio $H/R \approx 0.1$, which is plausible if the inner regions of the disk are no longer geometrically thin as is seen at low accretion rates in neutron stars and black holes. Theoretical models of accretion disks around white dwarfs predict a much lower value for both H/R and α. However, several observational results suggest a much higher value of H/R than α. The H/R parameter is thus somewhat arbitrary, as long as it is not greater than 1.

REFERENCES AND NOTES

Acknowledgments: This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. P. J. G. acknowledges support from the Erskine program run by the University of Canterbury.