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Abstract

We consider an application to the discrete log problem using completely
regular semigroups which may provide a more secure symmetric cryptosy-
stem than the classic system based on groups. In particular we describe
a scheme that would appear to offer protection to a standard trial multi-
plication attack.
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1 Introduction and Preliminaries

We refer the reader to [2] for basic results and terminology in semigroups and
in particular for the necessary background in completely regular semigroups.
See also [3] for the some background in applications of semigroup actions to the
discrete log problem.

Let G = Up−1, the group of units of the ring Zp−1 and let X = Up the group of
units of Zp where p is a prime. An algebraic description of the classic discrete log
cipher involves defining a free action of G on X as G×X → X by (n, x) 7→ xn.
By Fermat’s little theorem, since x is a unit modulo p, then xp−1 ≡ 1 mod p
and since n is coprime to p−1 then there is a positive integer m such that mn ≡ 1
mod p − 1. Hence xmn ≡ x mod p and so xmn = x in X. Consequently m is
a ‘decrypt’ key for the ‘encrypt’ key n. In practice, of course we can use Zp
instead of X as only 0 ∈ Zp \X.

More generally, we can let X be a finite group of order r and let G = Ur, the
group of units of the ring Zr. Then the action G×X → X given by (n, x) 7→ xn

is the basis of a cryptosystem, in which the inverse of any key n ∈ G can easily
be computed using the extended Euclidean algorithm.
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We shall consider the problem of replacing the group X by a semigroup, on
the grounds that a semigroup should in principle be more complicated and
potentially offer more security over a group. We note however, that in [1] the
authors show that the discrete log problem over a semigroup can be reduced, in
polynomial time, to the discrete log problem over a subgroup of the semigroup.
Not withstanding this, we describe a scheme involving a semigroup which, by
hiding part of the information relating to the semigroup multiplication, seems to
exclude the possibility of computing this polynomial reduction. In addition, the
scheme seems to offer some protection against a standard trial multiplication
attack.

2 Completely Regular Semigroups

In the classic discrete log cipher, we can view the cryptosystem as a group acting
freely on a group by exponentiation. We now briefly consider a group acting
freely on a semigroup by exponentiation. It is clear that the semigroup needs
to be periodic as every element will need to have finite order.

A semigroup S is called completely regular if every element of S belongs to
a subgroup of S. A particular example of such a semigroup is a completely
simple semigroup, which by Rees’ Theorem ([2, Theorem 3.2.3]), can be shown
to be isomorphic to what is commonly referred to as a Rees Matrix Semigroup.
Indeed a semigroup is completely regular if and only if it is isomorphic to a
semilattice of completely simple semigoups ([2, Theorem 4.1.3]). A semigroup
S =M[G; I,Λ;P ] is called a Rees Matrix Semigroup over the group G if for sets
I and Λ,

S = I ×G× Λ

and P = (pλi) is a Λ×I matrix, referred to as the sandwich matrix, with entries
in the group G, and where multiplication is given by

(i, g, λ)(j, h, µ) = (i, gpλjh, µ).

If follows that for n ∈ N, (i, g, λ)n = (i, (gpλi)
n−1g, λ). Notice that S is not in

general commutative, even if G is abelian.

It is worth noting that a group G is an example of a completely simple semigroup
in which |I| = |Λ| = 1 and P = (1G)1×1.

3 Completely Simple Cryptosystems

Suppose now that S is a completely simple semigroup, considered as a Rees
matrix semigroup M[G; I,Λ;P ] and suppose also that G is finite, of order r so
that gr = 1 for all g ∈ G. Define an action of Ur, the group of units in Zr, on
S by n · x = xn, so that if x = (i, g, λ) then n · x = (i, (gpλi)

n−1g, λ). Notice
that |Ur| = φ(r).
Suppose now that n ∈ Ur so that n is coprime to r, and hence there exists
m ∈ Ur such that mn ≡ 1 mod r. Then

xmn = (i, (gpλi)
mn−1g, λ) = (i, (gpλi)

mnp−1λi , λ) = (i, (gpλi)p
−1
λi , λ) = (i, g, λ) = x.
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Consequently if we know n, xn and P , then we can compute xmn and so recover
x. We can in fact compute xmn in an efficient manner, as we can deduce the
values of i and λ from xn and so we can deduce the value of pλi. Then

(gpλi)
mn−1g = (gpλi)

mnp−1λi =
((

(gpλi)
n−1g

)
pλi

)m
p−1λi .

Suppose now we know x, xn and G. Can we compute n and therefore solve the
discrete log problem over S? If we also know P then we know pλi and so (gpλi)

n.
Consequently, the discrete log problem in this case is equivalent to that in the
classic discrete log problem over the group G and we are no better off using the
completely simple semigroup rather than a group. Suppose however that P is
kept secret and that it is hard to deduce the value of pλi from that of i and λ.
We know (gpλi)

n−1g and we know g and hence we can compute (gpλi)
n−1 but

we don’t know pλi and so can’t obviously recover the classic discrete log problem
from this. According to [1], the discrete log problem over a semigroup, can be
reduced, in polynomial time, to the classic discrete log problem in a subgroup
of S, namely the kernel of the element x. However this assumes that we can
compute with the semigroup S and in order to do that with a Rees Matrix
Semigroup, we would require knowledge of the sandwich matrix P .

In this application of Rees matrix semigroups, the sets I and Λ are being used as
index sets to point at the value pλi ∈ P , and as such we clearly don’t require both
of these indices. Let us therefore assume, without loss of generality, that |Λ| = 1
so that S = I×G,P = (pi)i∈I with multiplication given by (i, g)(j, h) = (i, gpjh)
and so (i, g)n = (gpi)

n−1g. We will also assume from now on that G is abelian.

3.1 Chosen plaintext attack

Although we keep the values of P secret, if the size of I is small then we
can consider the following chosen plaintext attack based on the existence of an
oracle for solving the classic discrete log problem over the group G. Suppose
that |I| = m and let g1, . . . , gm+1 be distinct elements of G. Suppose we encrypt
the values (i, gi) as (i, gni p

n−1
i ). By the pigeon hole principle there exists i 6= j

such that pi = pj and hence

(gni p
n−1
i )(gnj p

n−1
j )−1 = (gig

−1
j )n.

Consequently we can reduce the semigroup discrete log problem over S to the
group discrete log problem over G. However, we do not know the values of i
and j and so have to compute this quantity for each pair 1 ≤ i, j ≤ m+ 1, and

there are

(
m+ 1

2

)
= O(m2) of these. If m is relatively small, then running

m2 versions of the group oracle in parallel is probably feasible and consequently
we need to ensure that m is sufficiently large, say comparable to the size of the
group G.

This clearly imposes some issues with storing the matrix P . If P is part of
the secret key then a large value of m means that, in practical terms, we must
compute the entries pi ∈ P , dynamically.

3.2 Brute Force

At first sight, having P both secret and large would seem to indicate that
S will be difficult to work with. However, the discrete log problem over S
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seems to be effectively immune to a standard trial multiplication attack. To
see this, suppose we are given (i, g) and (i, gnpn−1i ). Computing n using a trial
multiplication attack would consists of computing gmqm−1 for 1 ≤ m ≤ φ(|G|)
and q ∈ G in order to find the relevant pair with (m, q) = (n, pi). In principle
there are a maximum of φ(|G|)|G| such computations. However, notice that if
gcd(m− 1, |G|) = 1 then there exists k such that k(m− 1) ≡ 1 mod |G| and so
for any q ∈ G, qk(m−1) = q. Consequently

gnpn−1i = gm
((
gn−mpn−1i

)k)m−1
and so there is no unique pair (m, q) = (n, pi) that can be computed by a simple
trial multiplication attack alone. In fact the number of such solutions is at least
φ(|G|)− 1.

It seems clear therefore that some other information much be gained and used
in order to execute a successful trial multiplication attack.

3.3 The Proposed Completely Simple Scheme

Technically the value of pi is only dependant on i and not on g. This may cause a
problem, as if we could encrypt the data (i, g) and (i, g−1) then we would obtain
the values (i, (gpi)

n−1g) and (i, (g−1pi)
n−1g−1). If, as we are assuming, G is

abelian then we can calculate (pn−1i )2 and hence possibly pn−1i . Consequently
we can deduce the value of gn and so again reduce the semigroup discrete log
problem to the corresponding group discrete log problem. We could avert this
problem if the value of i was chosen in a random fashion.

Alice wants to sent Bob a secret message. Let G be a finite (abelian) group
and let I = G. Let n ∈ U|G|, the group of units mod |G|, and s ∈ I be two
secret keys known only to Alice and Bob. Suppose also that f : I × I → G is a
function, perhaps based on a cryptographically secure hash. We encrypt g ∈ G
as follows: choose a random value i ∈ I and let pi = f(i, s). Clearly f must
have the property that it is difficult to compute f(i, s) from the value of i alone.
In addition it should be hard to calculate s given f(i, s) and i. For example
the function f(i, j) = H(i ⊕ j) where H is a suitable hash and where i ⊕ j is
the bitwise xor of i and j might suffice. Alice computes (i, (gpi)

n−1g) as her
encrypted value of g to send to Bob. Bob calculates pi = f(i, s) and m ∈ U|G|
such that mn ≡ 1 mod |G| and then computes

g =
((

(gpi)
n−1g

)
pi
)m

p−1i .

However, as we have seen an attacker can’t easily compute (n, pi) by trial mul-
tiplication attack alone and as long as pi is hard to deduce from the value of
i, and I is large then the two chosen plaintext attacks detailed above would
appear to be infeasible.

In taking I = G the ciphertext would be twice the length of the plaintext, but
a smaller value of |I|, but still large enough to withstand the limitations set by
the chosen plaintext attack above, could reduce this by a significant amount.

One other possible chosen plaintext attack comes to mind. Suppose we encrypt
the value g twice. The first time we obtain the encrypted value (i, (gpi)

n−1g) =
(i, gnpn−1i ) and the second time the value (j, (gpj)

n−1g) = (j, gnpn−1j ). We can
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then deduce the value of (pip
−1
j )n−1, but as we know neither n nor pip

−1
j then

it is hard to see what advantage we have gained. In fact even if we could deduce
the value of n, perhaps using a different attack or some oracle, we would still
need to factorise pip

−1
j to deduce that values of pi and pj . But in addition, this

still wouldn’t allow us to deduce the value of the secret key s unless the function
f is cryptographically insecure.

As a possible variant of this scheme, let 1 ≤ k < n be a value known only to
Alice and Bob. Alice encrypts her value of g as the value (i, gnpn−ki ). Bob then
calculates, as before, m such that mn ≡ 1 mod |G| and recovers g from

g = ((gnpn−ki )pki )mp−1i .

For values of k > 1, this is however no longer a (free) group action on the
completely simple semigroup and so it is not clear if this decrypt key is unique.
It is also not clear whether any increase in security will actually be achieved by
choosing k > 1.

The major drawback of this scheme is of course that the security would be
dependant on the security of the key exchange system used to exchange the key
(n, s).
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