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Abstract: Public perception towards contaminated site management, a not readily 

quantifiable latent parameter, was linked through structural equation modeling in this 

paper to 22 measurable/observable manifest variables associated with the extent of 

information dissemination and public knowledge of soil pollution, attitude towards 

remediation policies, and participation in risk mitigation processes. Data obtained 

through a survey of 412 community residents at four remediation sites in China were 

employed in the model validation. The outcomes showed that public perception 

towards contaminated site management might be explained through selected 

measurable parameters in five categories, namely information disclosure, knowledge 

of soil pollution, expectations of remediation and redevelopment outcomes, public 

participation, and site policy, along with their interactions. Among these, information 

dissemination and attitude towards management policies exhibited significant 

influence in promoting positive public perception. Based on these examples, 

responsible agencies therefore should focus on public accessibility to reliable 

information, and encourage public inputs into policies for contaminated site 

management, in order to gain public confidence during remediation and regeneration 

projects. 

 

Keywords: Questionnaire interview; Structural equation modeling; Public perception; 

Contaminated site; Remediation; China. 
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1. Introduction 

    Contaminated sites need to be restored or managed in a sustainable manner 

which minimizes human health and eco-environmental risks, and (ideally) creates 

social, environmental and economic gains from investment (Bardos et al., 2016; Hou 

et al., 2014a). Risk management can be accomplished through a combination of legal 

mechanisms and/or setting policies, guidelines and strategies (Cundy et al., 2013; 

Ferguson, 1999; Jin, 2012; Johansson et al., 2011; Rodrigues et al., 2009a, 2009b; 

Sousa, 2001; Swartjes et al., 2012; Thornton et al., 2007), employing effective 

remediation technologies or site management strategies (Blanc et al., 2004; Busset et 

al., 2012; Cadotte et al., 2007; Cappuyns, 2013; CLARINET, 2002; Hou et al., 2014b; 

Smith, 2010; USEPA, 2008; Volkwein et al., 1999), and engaging with the public / 

local stakeholders to manage site use, limit exposure pathways and to more 

effectively deliver remediation or management interventions (Alberini et al., 2007; 

Eiser, 2009; Feldman and Hanahan, 1996; Grasmück and Scholz, 2005; Scholz and 

Siegrist, 2010; Tonin et al., 2011; Vandermoere, 2008). In relation to the latter, 

restoration scheme success (in terms of effective risk management, and maximization 

of social, environmental and economic gains) depends not only on how the 

responsible parties implement remediation or management plans, but also on the 

participation and support of local residents whose wellbeing hinges upon the final 

outcomes (Li and Tan, 2012). A number of international groups and projects have 

argued that effective engagement with local stakeholders is key in reducing 

remediation project risks, including failure to gain acceptance and delays due to 
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antagonistic relationships, and also as a means of reducing project management costs 

and timescale (Cappuyns, 2016; Cundy et al., 2013; RESCUE, 2005; REVIT, 2007). 

Such engagement requires early consultation with local groups and the wider public to 

ensure that views are identified, assessed and incorporated (where necessary) into site 

master planning early on, or upstream, in the development process (SU BRIM Project, 

2008), and to ensure wider social, environmental and economic benefits are fully 

realized (Cundy et al., 2013). Understanding public perception toward the local site, 

and to contaminated site management more generally, is essential in this process (e.g. 

Harclerode et al., 2016). Many subjective / emotional perceptions however are not 

directly measurable or easily collected, and so may not be included effectively in the 

planning and development process. 

    Application of structural equation modeling may address this problem. Structural 

equation modeling is founded on statistical methods that test validities of a 

theoretically/conceptually-conceived model linking qualitative perceptive responses 

such as public perception to readily definable and measurable parameters. The method 

has been utilized to answer research questions in psychology (Carpita and Ciavolino, 

2014; Ko and Stewart, 2002; Trzeciakowski et at., 2014), environmental sciences (e.g. 

Eisenhauer et al., 2015; Santibáñez-Andrade et al., 2015; Levêque and Burns, 2017) 

and marketing (Subramanian et al., 2014). For example, in the environmental sciences, 

Eisenhauer et al. 2015 reviewed the application of SEM in the general ecology (and 

soil ecology) literature, modeled multivariate relationships between hypotheses and 

observed data, tested mediation of multiple variables, and gave examples of the 

http://www.sciencedirect.com/science/article/pii/S2212567114008740
http://www.sciencedirect.com/science/article/pii/S2212567114008740
http://www.ncbi.nlm.nih.gov/pubmed/?term=Trzeciakowski%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=24769258
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potential use of SEM in allowing a shift from describing ecological patterns to 

gaining an improved mechanistic understanding of ecological variables. 

Santibanez-Andrade et al. 2015 used SEM to evaluate the direct and indirect causes of 

degradation in the forests of the Magdalena river basin of Mexico City, by linking 

environmental indicators on the structure, composition and function of the ecosystem. 

Few studies however have been carried out in the field of public perceptions toward 

site remediation practices, although Hou et al. (2014a) employed factor analysis (FA) 

in structural equation modeling (SEM) to identify influences of qualitative latent 

factors such as sustainability considerations, benefiting and impeding institutional 

forces, and stakeholders’ influence, in contaminated land remediation.  

 In our research, structural equation modeling is applied to delineate how the 

public perception of actions taken during contaminated site mitigation is driven by 

latent exploratory variables, using brownfield redevelopment sites in China as a test 

case. In turn, each latent variable is represented in a measurement sub-model 

consisting of readily measurable factors. Data were collected through questionnaire 

surveys conducted at four active remediation sites in China, and are used to validate 

the model. Public perception is represented by multivariate relationships among 

exploratory variables including the extent of information disclosure, outreach and 

education, the degree of public participation, satisfaction with the outcomes of 

remediation and redevelopment, understanding of site remediation policies and 

management, and knowledge of soil pollution.  
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2. Methodology 

2.1. Exploratory Variables 

    A four-part questionnaire was designed to measure 22 factors (Table 1) which 

have been previously argued to characterize public perceptions towards contaminated 

site management (Cundy et al., 2013; Eiser et al., 2009; Feldman and Hanahan, 1996; 

Grasmück and Scholz, 2005; Greenberg and Lewis, 2000; Li and Tan, 2012; Scholz 

and Siegrist, 2010; Tonin et al., 2011; Vandermoere, 2008). The first part of the 

questionnaire collected socio-demographic information on the subjects including 

gender, age, education, occupation, household size, income, and duration of residence. 

The second part encompassed factors characterizing exploratory variables related to 

the subjects’ knowledge of soil pollution at the contaminated site (SP), namely 

understanding of soil pollution (X1), hazards of pollutants (X2), severity (X3) and 

causes (X4) of pollution, and willingness for relocation (X5 - symbols inside the 

parentheses denote the abbreviated notation for each factor in the SEM). The third 

part included 11 questions with choices of yes/no/neutral answers, measuring:  

(1) Factors characterizing exploratory variables related to subjects’ satisfaction with 

authorities’ information disclosure (ID), ranging from X6 to X10 (Table 1); 

(2) Factors characterizing exploratory variables related to public outreach and 

education (OE), ranging from X11 to X13 (Table 1); 

(3) Factors characterizing exploratory variables related to public participation, 

ranging from X14 to X16 (Table 1).  

The final part of the questionnaire examined factors characterizing exploratory 
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variables related to: 

(1) Subjects' familiarity with management policies of contaminated site (PS), 

including factors characterizing whether or not to solicit public insight (X17), 

willingness to learn about policies (X18), and satisfaction with policies in damage 

compensation, dissemination of information and sustainable remediation (X19); 

(2) Public desire to support the project (RE), including opinions on willingness to pay 

for contaminated site remediation (X20), satisfaction with alternative reuse 

possibilities (e.g., housing, recreation, agriculture) (X21), and willingness to 

purchase houses built on remediated sites (X22). 

 

Table 1 Factors included in the survey questionnaire 

Module Factor Definition 

Pollution (SP) X1 Understanding of soil pollution 

X2 Soil pollution hazards 

X3 Severity of soil pollution 

X4 Causes of soil pollution 

X5 Willingness to relocate 

Disclosure (ID) X6 Information disclosure 

X7 Attention to information disclosure 

X8 Extent of information disclosure 

X9 Timeliness of information disclosure 

X10 Credibility of information disclosure 

Publicity (OE) X11 Attention to publicity 

X12 Extent of knowledge outreach 

X13 Satisfaction with publicity 

Participation (PP) X14 Soliciting opinions or not 

X15 Attention to public participation 

X16 Satisfaction with public participation 

Policy (PS) X17 Familiarity with policies 

X18 Satisfaction with policies 
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X19 Willingness to learn about policies 

Redevelopment (RE) X20 Willingness to pay for remediation 

X21 Satisfaction with redevelopment 

X22 Willingness to pay for real estate 

 

2.2. Survey Protocols 

    The four sites surveyed were a coking plant in Beijing, a pesticide factory in 

Hangzhou, a nitrogen fertilizer factory in Guangzhou, and the Disney development 

project in Shanghai (all in China). All sites were undergoing active redevelopment or 

remediation at the time of the survey (Table 2). 

 

 

Table 2 Details of surveyed sites 

Site Major 
contaminants 

Remediation 
measures 

Remediation 
size / volume 

Site end-use 

Coking plant, 
Beijing 

PAHs, 
benzene 

In-situ, thermal 
desorption 

342,000 m2 Residence 

Pesticide factory, 
Hangzhou 

VOC, SVOC, 
POPs 

In-situ, soil vapor 
extraction, thermal 
desorption 

50,000 m2 Undeveloped 

Fertilizer factory, 
Guangzhou 

VOC Ex-situ, burning in 
cement kiln 

9,000 m3 Residence 

Disney project, 
Shanghai 

VOC, Heavy 
Metal 

Advanced oxidation 
process, stabilization, 
bio-reactors 

40,000 m3 Entertainment 

 

Those residents living in a radius of 200 m from each contaminated site, 

following findings from our earlier surveys (Li et al. 2016), were more vocal about, 

had stronger opinions toward, and paid more attention to, the progress of the 

remediation projects. Their perceptions would provide the most critical information 

https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=12&cad=rja&uact=8&ved=0ahUKEwjihoGnv_PTAhVDJJQKHX5GBioQFgheMAs&url=http%3A%2F%2Fwww.cpeo.org%2Ftechtree%2Fttdescript%2Fbiorec.htm&usg=AFQjCNG5RVvrjDxXPf8zXpAh5ywfkztZdA
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for establishing the structural equation modeling. At each location, 110 subjects 

residing within the 200 m radius were randomly selected. In total, 412 sets of 

questionnaires (Table 3) were completed through face-to-face interviews. 

Table 3 Distribution of survey questionnaire 

Location Survey Date Conducted Completed Recovery 
Coking plant, Beijing 17 May, 2014 110 105 95% 
Pesticide factory, Hangzhou 6-8 June, 2014 110 103 94% 
Fertilizer factory, Guangzhou 14- 15 June, 2014 110 104 95% 
Disney project, Shanghai 15-16 August, 2014 110 100 91% 
 

The data were pooled for model verification as the respective socio demographic 

characteristics of the four locations were not significantly different. The summary 

statistics (Table 4) showed that the survey subjects were rather evenly divided 

between the male and female genders (47.1% vs. 52.9%). Collectively, the survey 

subjects of the four locations averaged 29 years old, 51.9% had completed high 

school, and 31.9% held baccalaureate or higher academic degrees. The majority of the 

interviewees were gainfully employed (70.2%) with the remainder being unemployed 

(7%), in schools (5.1%), or in retirement (17.7%). An average household consisted of 

3.71 persons and 56% of the subjects had resided at their current address for 5 or 

more years. These were middle-low income neighborhoods, where 67.8% of the 

subjects earned less than 5000 yuan RMB per month.  

Table 4 Socio-demographical profiles of surveyed subjects  

Variable Distribution Percent (%) 
Gender Male 47.1 

Female 52.9 
Age < 23 9.7 

23-35 43.7 
35-50 24.3 
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> 50 22.3 
Education Primary school 20.9 

High school 27.4 
Junior college 20.4 
Bachelor 24.5 
Master or above 6.8 

Household 
size 

1 person 1.7 
2 persons 7.8 
3 persons 43.9 
4 persons 17.5 
5 persons 22.6 
> 5 persons 6.6 

Occupation Unemployed 7.0 
Student 5.1 
Freelancer 10.9 
Worker 41.3 
Self employed 4.6 
Professionals 13.3 
Retiree 17.7 

Income 
(RMB* per 
month) 

<3,000 33.3 
3,000-5,000 34.5 
5,000-8,000 20.9 
>8,000 11.4 

Residence 
duration 

<1 years 16.3 
1-3 years 14.8 
3-5 years 12.9 
5-10 years 17.7 
>10 years 38.3 

* RMB means Chinese currency, approximately, 6.50 yuan exchange for $1.00 US 

2.3. Structural equation modeling 

Structural equation modeling (SEM) involved computer algorithms and 

statistical methods that were used to deduce relationships between unobservable latent 

variables (i.e. SP, ID, OE, PP, PS, and RE) and observable/measurable factors (i.e. Xi 

where i = 1, 2, … 22) consequently detecting the root causes of the interactions 

(Santibáñez-Andrade et al., 2015; Xiong et al., 2015). Relationships between latent 

variables in structural equation modeling can be expressed either by obtaining 
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regression equations of measurable variables (i.e. observed data) or by integrating the 

observed data through linear structural relationships (LISREL) that can be delineated 

from factor analysis, path analysis, covariance structure modeling, and causal models. 

In the SEM, the independent variables were categorized into either latent or manifest 

variables. Latent variables could not be directly observed or measured but might be 

reflected by manifest variables that were indicators containing objective facts and 

whose changes were measureable (Xi). The model was developed to describe the 

hypothetical relationships between latent and manifest variables by examining the 

variances and co-variances of variables and evaluating the model’s goodness of fit 

based on the experimental data (Wu, 2013; Xiong et al., 2015).  

 Compared with other methods, SEM had significant advantages in that: (1) it 

allowed for complex correlations between manifest variables and latent variables 

beyond simple correlations; (2) it produced error variables to represent unexpected 

effects that manifest variables could not explain. The general process of Structural 

equation modeling was applied through iterations of model specifications, model 

fitting, model assessment, and model modification (Fig. 1), until the hypothetical 

model had been modified such that the model outcomes matched the experimental 

data (Levêque and Burns, 2017; Villeneuve et al., 2018).  

https://en.wikipedia.org/wiki/Regression_analysis
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Fig 1. Procedure of establishing the structural equation modeling 

 

(1) Model specification: The SEM contained two components namely the 

structural and measurement models (Fig. 2). The structural model defined the 

interrelationships between the latent variables, schematically, Y1, Y2, Y3, … 

among which the causes-effects might be unidirectional, and the significance 

of the reactions were defined, schematically as r13 and r23 in Fig. 2. The 

two-directional line between Y1 and Y2 denoted that mutual effects were 

allowed between the latent variables. The measurement model consisted of 

linear functions that represent the latent variable with a set of manifest 

variables, i.e. X1 through X6 in Fig. 2. The fact that latent variables might not 
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be fully explained by the manifest variables would lead to the corresponding 

error terms, e1 through e6 and deta 1 through deta 3.  

 

X1

X4

X3

X2

X6

X5

e1

e6

e5

e4

e3

e2

Y1

Y3

Y2

r13

r23

Measurement 
model

Structural 
model

deta
1

deta
2

deta
3

Fig 2. Schematic diagram of structural equation modeling 
The SEM model includes a hypothetical structural model (dashed rectangle) of latent 
variables and their corresponding measurement models (dotted rectangle). The latent 
variables are depicted by Y1 and Y2 (independent) and Y3 (dependent), X1 through X6 
depict measured variables, r depict path coefficients, and e1 through e6 depict the error terms 
for measured variables, while deta 1 through deta 3 depict error terms for latent variables. 
The single direction arrows depict the direction of the reactions and double directional arrows 
depict two-way interactions between two variables. 
 

(2) Model fitting: At this stage, partial least square (PLS) techniques and linear 

structure relationship (LISREL) methods were adopted to maximize the 

variance explained in either the observed data or outcomes of the model 

simulation. PLS was applied due to its predictability with small sample sizes, 

non-normally distributed data, and its exact definition of component scores in 

conjunction with explaining a large percentage of the variances (Anderson and 

Gerbing, 1988; Hou et al., 2014a). LISREL was used to optimize the fitting 

function parameters by establishing a model to estimate fitting functions 
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between the covariance of the model and the data, using the Maximum 

likelihood (ML) method (which allows unbiased, valid, and consistent 

estimations and accommodates missing values and unlimited non-normally 

distributed data). 

(3) Model assessment: First, the legality of estimation was examined in terms 

whether there was negative error variance, >1 standardized coefficient 

parameters, and large standard error. Then the covariance in the established 

model (a priori model) was compared with the covariance of the observed 

data. Subsequently, goodness-of-fit indices were used to confirm how well the 

a priori model fitted the observed data. There were several goodness-of-fit 

indices (GOF) in which the indices associated with the absolute and 

incremental fit measurements were the most fundamental and informative 

(Hooper et al., 2008). In this study, the index for absolute fit measurement was 

the root mean square error of approximation (RMSEA) and the indices of 

incremental fit measurements included the comparative fit index (CFI), 

normed-fit index (NFI), and incremental fit index (IFI). These were evaluated 

to determine if the a priori model was plausible with respect to the data. 

RMSEA was generally the most preferred criterion and a RMSEA < 0.05 

indicated that the a priori model and the observed data were well fitted. CFI > 

0.9 also characterized a well-fitted model. If NFI > 0.9, the model was 

sensitive to sample size, and underestimated model fit when samples size was 

less than 200. Finally, IFI > 0.9 indicated that the model was acceptable 
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(Hooper et al., 2008; Wu, 2013; Xiong et al., 2015). 

(4) Model modification: The hypothesized model needed to be modified if GOF 

indices were not consistent with acceptable thresholds. In this case, 

relationships between the variables were then added, deleted, or changed 

according to modification indices (MI). Larger values of MI indicated that 

there was larger potential for model improvement by changing fixed 

parameters to free parameters. 

2.4. Hypothetical model 

A hypothetical model showing the latent variables and their interactions was 

established (Fig. 3) based on information obtained from the literature and from the 

questionnaire survey investigation. The model included latent variable modules that 

characterized the influences of information dissemination (ID) and outreach and 

education (OE), effects of public participation (PP), knowledge of site remediation 

policy and management (PS), attitudes toward remediation and redevelopment (RE), 

and understanding of soil pollution (SP) (Fig. 3). 

 

Fig. 3 A proposed model with hypothetical relationships 
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3. Result and discussion 

3.1. Reduction of latent and manifest variables 

 The hypothetical model (Fig. 3) was not entirely in agreement with the observed 

survey data. The validated model, with optimized goodness of fit (GOF) to the 

observed data, contained 5 of the original 6 latent variables and their corresponding 

measurement models retained 12 of the original 22 manifest variables (Fig. 4). The 

latent variable representing public outreach and public education (OE) was eliminated. 

Besides the GOF indices (Table 5), the model outcomes provided reasonable 

explanations of variances in ID, SP, RE, PP and PS. The model predicted that PS and 

RE accounted for over 40% of the variance in the observed data. 84.2% of the 

variance of SP was explained by direct and indirect effects of four variables, namely 

ID, RE, PP and PS. The interactions between latent variables ID, SP, RE, PP and PS 

were indicated by the path coefficients shown in Fig. 4 and Table 6.  

 

Table 5 Goodness-of-fit indices 

Goodness of Fit Index Measured Threshold 
Root mean square error of approximation (RMSEA) 0.000 <0.05 
Normed-fit index (NFI) 0.968 >0.9 
Comparative fit index (CFI) 1 >0.9 
Incremental fit index (IFI) 1 >0.9 
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Fig 4. Structural equation modeling of public perception on contaminated site management 

 

3.2. Interactions between latent variables 

    The interactions of SP with PP, ID with RE, and those between OE and other 

latent variables were rejected in the validation process. Of the originally proposed 12 

interactions between latent variables, only 9 appeared in the validated model. Among 

these, 4 were significant (Table 6). Disseminating accurate information (ID) had 

significant and positive impacts on both encouraging public participation (PP, r = 

0.449 at p <0.001) and helping the public understand concepts of soil pollution (SP, r 

= 0.934 at p <0.001), while, the effects on site policies (PS) and redevelopment (RE) 
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issues were not significant (r = -0.761 and -0.621 at p <0.430 and <0.078, 

respectively). This indicates that disclosing site information had little impact on 

understanding of remediation policies, and did not influence (as much as other 

combinations of factors) willingness to pay and satisfaction with redevelopment. 

Active public participation (PP) and knowledge of soil pollution (SP) did 

significantly affect the familiarity and satisfaction with site remediation policies and 

management strategies (PS). Public knowledge on the nature of soil pollution (SP) at 

the relevant site did not, however, significantly impact public participation (PP) and 

stakeholders’ acceptance of outcomes in remediation and redevelopment (RE), yet it 

exerted significant influence on the other latent factors. Public understanding of the 

nature and harmful effects of soil pollution (SP) was significantly enhanced by 

information disclosure (ID) with r = 0.934 at p <0.001, and influenced policy and 

management decisions (PS) with r = 0.739 at p <0.05.  

 

Table 6  Interactive relations of latent variables with their path coefficients (r) and levels of 
significance (p) 

Interaction r p 
Public participation (PP) ← Information dissemination (ID) 0.449 *** 
Soil pollution (SP) ← Information dissemination (ID) 0.934 *** 
Soil pollution (SP)← Public participation (PP) -0.039 0.569 
Site policies (PS) ← Public participation (PP) 0.186 * 
Site policies (PS) ← Information dissemination (ID) -0.621 0.078 
Site policies (PS) ← Soil pollution (SP) 0.739 * 
Site redevelopment (RE) ← Information dissemination (ID) -0.761 0.430 
Site redevelopment (RE) ← Soil pollution (SP) 0.539 0.422 
Site redevelopment (RE) ← Site policies (PS) -0.489 0.453 
*** and * indicate that interactions are significant at the p <0.001 and p <0.05 levels, respectively 
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3.3. Interactions of manifest variables 

The manifest variables that composed the measurement models determined how 

the not readily quantifiable aspects of public perception were linked to parameters that 

were observable and measurable through the questionnaire surveys. The validated 

public perception model outlined in Fig. 4 consisted of five latent variables, whose 

corresponding measurement models were expressed by a set of manifest variables (Xi) 

and error terms (ei). Manifest variables X2, X5, X6, X9, X11, X12, X13, X15, X19, 

and X21 were eliminated during the model validation process. For the remaining 

manifest variables, 20 latent – manifest variable links were established and 14 of these 

showed statistically significant relationships (Table 7).   

The measurement model of ID was characterized by three manifest variables X7, 

X8, and X10. The manifest variables X7 (r = 0.637 at p <0.001) showed that 

stakeholders paid attention to the information being disclosed, X8 (r = 0.605 at p 

<0.05) indicated that the extent of information disclosure efforts counted strongly and 

significantly, while X10 exhibited that the credibility of the disseminated information 

had a weak and non-significant linkage with the effectiveness of information 

dissemination (ID).  
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Table 7 Significant relationships between measurement models and manifest variables 

Measurement model Manifest variables Coefficients (r) p 

ID 
X7 0.637 *** 
X8 0.605 * 

RE X20 0.132 *** 

PS 

X4 -0.149 * 
X10 0.107 * 
X17 0.924 *** 
X18 -0.801 *** 
X20 -0.106 * 

SP 
X1 0.623 *** 
X3 0.586 *** 

PP 

X8 0.272 ** 
X10 0.310 *** 
X14 0.803 *** 
X16 0.584 *** 

  ***, ** and * indicate effects are significant at the p <0.001, p <0.01, and p <0.05 level, respectively. 

     

The public’s attitude toward site mitigation and redevelopment (RE) was 

positively related to their willingness to pay for soil remediation (X20) and negatively 

affected by the public willingness to purchase properties built on reclaimed sites (X22) 

and the public understanding of the site policies and management plans (X17). In 

other words, only stakeholders (i.e. residents) who had confidence on the outcomes of 

remediation were willing to pay for the remediation and showed willingness to 

purchase properties built on reclaimed land. Further, the more stakeholders were 

involved or informed in policy and management of the remediation site, the less likely 

they would be willing to pay for the cost of remediation and to purchase redeveloped 

properties. This result apparently contradicts typical expectations that enhanced 

stakeholder engagement and knowledge sharing reduces project risk and improves 

wider benefits realization (discussed above), and indicates here that the agencies 
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responsible for the remediation failed to win the trust of stakeholders in terms of due 

processes and anticipated outcomes.  

The policies for managing the remediation sites (PS) were affected by five 

variables. Among them, X17 with r = 0.924 and X18 with r = -0.801 had strongly 

significant correlations, indicating stakeholder familiarity with site policies (X17) and 

public dissatisfaction with the remediation policies and management plans (X18). In 

addition, public participation in policy formulation and site management (PS) would 

apparently be enhanced if stakeholders were more knowledgeable about soil pollution 

(X4, r = -0.149) and the information dissemination was credible (X10, r = 0.107). The 

public remained skeptical about paying for the cost of remediation (X20, r = -0.106).  

Stakeholder understanding of soil pollution (SP) was depicted by five 

measurable parameters including knowledge of the existence (X1) and causes (X4) of 

soil pollution, the harmful effects of pollutants (X3), the extent of information 

dissemination (X8), and familiarity with site policies (X17). Among these parameters, 

only X1 and X3 exhibited a significant role in promoting public understanding of soil 

pollution with path coefficients r = 0.623 and 0.586, respectively. Those more 

knowledgeable about soil pollution, from residents residing in the vicinity of seriously 

affected sites, perceptively were better aware of the potential harmful effects of 

pollution. In this circumstance, the public would consciously seek information on soil 

pollution through Internet sources, social media postings, and other transactions if the 

information disclosure was inadequate. The polluters on the other hand could resist 

disclosure of pollution information in order to hide the facts from residents for fear of 
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the liabilities. This causal relationship may drive the two-way links connecting X3 

and X4 with a negative coefficient of -0.607 in Fig. 4.  

The influences of public participation (PP) on public perception were driven by 

the extent of information dissemination (X8), the credibility of the disclosed 

information (X10), solicitation of public opinions (X14) and satisfaction with the 

public participation (X16). It demonstrated that, to promote public participation in 

contaminated site management, the openness in soliciting inputs (X14, r = 0.803) and 

the public satisfaction with participation (X16, r = 0.584) were more important than 

the extent (X8, r = 0.272) and credibility (X10, r = 0.310) of the information. 

However, in these cases the relevant agencies had not provided strong mechanisms for 

the local public to participate in the contaminated site management / redevelopment 

process, thus resulting in poor public perception of the remediation projects. 

 

4. Conclusions 

    Public perception of contaminated site management at these four sites is 

predominantly driven, according to the outcomes of structural equation modeling, by 

four interacting latent variables, namely the extent of information dissemination, 

stakeholder knowledge on the extent of soil pollution, expectations of outcomes in 

site remediation and redevelopment, and public satisfaction with the decision making 

processes (i.e. site policies and management actions). Among these, information 

dissemination was the most influential factor. This will directly affect the conduct, 

and relationships, of other variables. Notably, public perception (in terms of 
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satisfaction with the remediation activities) was affected by information dissemination 

and public knowledge of soil pollution, but not by public participation in the 

decision-making process. This contradicts to some extent earlier literature which 

argues that larger complex sites in urban and sub-urban areas with large local 

populations require more complex stakeholder engagement activities that move 

beyond merely informing stakeholders to consultation and collaboration (e.g. Cundy 

et al., 2013). This may be a consequence of the local socio-cultural and political 

setting and expectations, and highlights the importance of local cultural and other 

factors in stakeholder perception and optimization of remediation / redevelopment 

strategies. The ranking of influences on public perception is as follows: [the extent of 

information dissemination] > [stakeholders’ knowledge on soil pollution] ≈ [public 

satisfaction with the decision making processes] > [expectations of outcomes in site 

remediation and redevelopment].  

    The above outlined latent variables are linked to three measurable/observable 

manifest variables, namely the extent of information disclosure, credibility of 

information disclosure, and public familiarity with policies. The ranking in terms of 

their influences is as follows [extent of information disclosure] ≈ [credibility of 

information disclosure] >> [public familiarity with policies]. Responsible agencies 

therefore should focus on public accessibility to reliable information and encourage 

public inputs into policies for contaminated site management.  

Nonetheless, three aspects should be further focused on in future research. One is 

that the established model cannot fully explain the variances present in public 
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perception as the total underlying mechanisms driving public perception are too 

complicated to simulate and fully quantify. Second, residents’ responses to 

environmental hazards like contaminated sites may be emotional, which may 

exacerbate the uncertainties of model validation. Thirdly, this work applies to four 

specific (although varying context) sites in China. The extent to which the study 

findings can be translated (i.e. are portable) to other socio-economic, cultural and 

political settings requires further analysis.   
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