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Abstract

A range of efficient wireless processes and enabling techniques are put under a magnifier glass in the

quest for exploring different manifestations of correlated processes, where sub-Nyquist sampling may be

invoked as an explicit benefit of having a sparse transform-domain representation. For example, wide-

band next-generation systems require a high Nyquist-sampling rate, but the channel impulse response

(CIR) will be very sparse at the high Nyquist frequency, given the low number of reflected propagation

paths. This motivates the employment of compressive sensing based processing techniques for frugally

exploiting both the limited radio resources and the network infrastructure as efficiently as possible. A

diverse range of sophisticated compressed sampling techniques is surveyed and we conclude with a

variety of promising research ideas related to large-scale antenna arrays, non-orthogonal multiple access

(NOMA), and ultra-dense network (UDN) solutions, just to name a few.
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I. INTRODUCTION

The explosive growth of traffic demand resulted in gradually approaching the system capacity of the

operational cellular networks [1]. It is widely recognized that substantial system capacity improvement is

required for 5G in the next decade [1]. To tackle this challenge, a suite of 5G techniques and proposals

have emerged, accompanied by: i) increased spectral efficiency relying on multi-antenna techniques and

novel multiple access techniques offering more bits/sec/Hz per node; ii) a larger transmission bandwidth

relying on spectrum sharing and extension; iii) improved spectrum reuse relying on network densification

having more nodes per unit area.

Historically speaking, the transmission bandwidth has increased from 200 kHz in the 2G GSM system

to 5 MHz in the 3G, to at most 20 MHz in the 4G. Meanwhile, the number of antennas employed

also increases from 1 in the 2G/3G systems to 8 in 4G, along with the increasing density of both the

base stations (BSs) deployed and users supported. Despite the gradual quantitative increase of bandwidth,

number of antennas, density of BS and users, all previous wireless cellular networks have relied upon the

classic Nyquist sampling theorem, stating that any bandwidth-limited signal can be perfectly reconstructed,

when the sampling rate is higher than twice the signal’s highest frequency. However, the emerging 5G

solutions will require at least 100 MHz bandwidth, hundreds of antennas, and ultra-densely deployed BSs

to support massive users. These qualitative changes indicate that applying Nyquist’s sampling theorem to

5G techniques reminiscent of the previous 2G/3G/4G solutions may result in unprecedented challenges:

prohibitively large overheads, unaffordable complexity, and high cost and/or power consumption due

to the large number of samples required. On the other hand, compressive sensing (CS) offers a sub-

Nyquist sampling approach to the reconstruction of sparse signals of an under-determined linear system

in a computationally efficient manner [2]. Given the large bandwidth of next-generation systems and

the proportionally high Nyquist-frequency, we arrive at an excessive number of resolvable multipath

components, even though only a small fraction of them is non-negligible. This phenomenon inspired

us to sample the resultant sparse channel impulse response (CIR) as well as other signals under the

framework of CS, thus offering us opportunities to tackle the above-mentioned challenges [2].

To be more specific, in Section II, we first introduce the key 5G techniques, while in Section III, we

present the concept of CS, where three fundamental elements, four models, and the associated recovery

algorithms are introduced. Furthermore, in Sections IV, V and VI, we investigate the opportunities and

challenges of applying the CS techniques to those key 5G solutions by exploiting the multifold sparsity

inherent, as briefly presented below:

• We exploit the CIR-sparsity in the context of massive MIMO systems both for reducing the channel-
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sounding overhead required for reliable channel estimation, as well as the spatial modulation (SM)-

based signal sparsity inherent in massive SM-MIMO and the codeword sparsity of non-orthogonal

multiple access (NOMA) in order to reduce the signal detection complexity.

• We exploit the sparse spectrum occupation with the aid of cognitive radio (CR) techniques and

the sparsity of the ultra-wide band (UWB) signal for reducing both the hardware cost as well

as the power consumption. Similarly, we exploit the CIR sparsity in millimeter-wave (mmWave)

communications for improving the transmit precoding performance as well as for reducing the CIR

estimation overhead.

• Finally, we exploit the sparsity of the interfering base stations (BSs) and of the traffic load in

ultra-dense networks (UDN), where sparsity can be capitalized on by reducing the overheads re-

quired for inter-cell-interference (ICI) mitigation, for coordinated multiple points (CoMP) transmis-

sion/reception, for large-scale random access and for traffic prediction.

We believe that these typical examples can further inspire the conception of a plethora of potential

sparsity exploration and exploitation techniques. Our hope is that you valued colleague might also become

inspired to contribute to this community-effort.

II. KEY TECHNICAL DIRECTIONS IN 5G

The celebrated Shannon capacity formula indicates the total network capacity can be approximated as

Cnetwork ≈

I
∑

i

J
∑

j

Wi,j log2 (1 + ρi,j), (1)

where i and j are the indices of cells and channels, respectively, I and J are the numbers of cells

and channels, respectively, Wi,j and ρi,j are the associated bandwidth and signal-to-interference-plus-

noise ratio (SINR), respectively. As shown in Fig. 1 at a glance, increasing Cnetwork for next-generation

systems relies on 1) achieving an increased spectral efficiency with larger number of channels, for example

by spatial-multiplexing MIMO; 2) an increased transmission bandwidth including spectrum sharing and

extension; and 3) better spectrum reuse relying on more cells per area for improving the area-spectral-

efficiency (ASE). To elaborate a little further:

1) Increased spectral efficiency can be achieved for example: first, massive multi-antenna aided spatial-

multiplexing techniques can substantially boost the system capacity, albeit both the channel estimation in

massive MIMO [3], [4] and the signal detection of massive spatial modulation (SM)-MIMO [5] remain

challenging issues; second, NOMA techniques are theoretically capable of supporting more users than

conventional orthogonal multiple access (OMA) under the constraint of limited radio resources, but the
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optimal design of sparse codewords capable of approaching the NOMA capacity remains an open problem

at the time of writing [6].

2) Larger transmission bandwidth may be invoked relying on both CR [7], [8] and UWB [9], [10]

techniques, both of which can coexist with licenced services under the umbrella of spectrum sharing,

where the employment of sub-Nyquist sampling is of salient importance. As another promising candidate,

mmWave communications is capable of facilitating high data rates with the aid of its wider bandwidth

[1], [11], [12]. However, due to the limited availability of hardware at a low cost and owing to its high

path-loss, both channel estimation and transmit precoding are more challenging in mmWave systems than

those in the existing cellular systems.

3) Better spectrum reuse can be realized with the aid of small cells [1], which improves the ASE ex-

pressed in bits/sec/Hz/km2. However, how to realize interference mitigation, CoMP transmission/reception

and massive random access imposes substantial challenges [13]–[15].

III. COMPRESSIVE SENSING THEORY

Naturally, most continuous signals from the real world exhibit some inherent redundancy or correlation,

which implies that the effective amount of information conveyed by them is typically lower than the

maximum amount carried by uncorrelated signals in the same bandwidth [2]. This is exemplified by the

inter-sample correlation of so-called voiced speech segments, by adjacent video pixels, correlated fading

channel envelopes, etc. Hence the number of effective degrees of freedom of the corresponding sampled

discrete time signals can be much smaller than that potentially allowed by their dimensions. This indicates

that these correlated time-domain (TD) signals typically can be represented by much less samples in the

frequency-domain (FD) [2], because correlated signals only have a few non-negligible low-frequency FD

components. Just to give a simple example, a sinusoidal signal can be represented by a single non-zero

frequency-domain tone after the transformation by the Fast Fourier transformation (FFT). Sometimes this

is also referred to as the energy-compaction property of the FFT. Against this background, CS theory

has been developed and applied in diverse fields, which shows that the sparsity of a signal can indeed be

exploited to recover a replica of the original signal from fewer samples than that required by the classic

Nyquist sampling theorem.

To briefly introduce CS theory, we consider the sparse signal x ∈ Cn×1 having the sparsity level of

k (i.e., x has only k ≪ n non-zero elements), which is characterized by the measurement matrix of

Φ ∈ Cm×n associated with m ≪ n, where y = Φx ∈ Cm×1 is the measured signal. In CS theory,

the key issue is how to recover x by solving the under-determined set of equations y = Φx, given

y and Φ. Generally, x may not exhibit sparsity itself, but it may exhibit sparsity in some transformed
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domain, which is formulated as x = Ψs, where Ψ is the transform matrix and s is the sparse signal

associated with the sparsity level k. Hence we can formulate the standard CS Model (1) of Table I.

Additionally, we can infer from the standard CS Model (1) of Table I the equally important Models (2),

(3), and (4) of Table I, which can provide more reliable compression and recovery of sparse signals, when

some of the specific sparse properties of practical applications are considered. Specifically, Model (2) is

capable of separating multiple sparse signals {sp}
P
p=1

associated with different measurement matrices

{Θp}
P
p=1

by recovering the aggregate sparse signal s =
[

sT
1
, sT

2
, · · · , sTP

]T
; Model (3) has the potential

of improving the estimation performance of s by exploiting the block sparsity of s, as shown in Table I;

Model (4) is capable of enhancing the estimation performance of P sparse signals {sp}
P
p=1

, when their

identical/partially common sparsity pattern is exploited.

Considering the standard CS model, we arrive at the three fundamental elements of CS theory as follows.

1) Sparse transformation is essential for CS, since finding a suitable transform matrix Ψ can efficiently

transform the original (non-sparse) signal x into the sparse signal s. 2) Sparse signal compression refers

to the design of Φ or Θ = ΦΨ. Φ should reduce the dimension of measurements, while minimizing the

information loss imposed, which can be quantified in terms of the coherence or restricted isometry property

(RIP) of Φ or Θ [2]. 3) Sparse signal recovery algorithms are important for the reliable reconstruction of x

or s from the measured signal y. Particularly, the CS algorithms widely applied in wireless communications

can be mainly divided into three categories as follows.

i) Convex relaxation algorithms such as basis pursuit (BP) as well as BP de-noising (BPDN), and so on,

can formulate the CS problem as a convex optimization problem and solve them using convex optimization

software like CVX [2]. For instance, the CS problem for Model (1) of Table I can be formulated as a

Lagrangian relaxation of a quadratic program as

ŝ = argmin
s

‖s‖
1
+ λ‖y −Θs‖

2
, (2)

with ‖·‖
1

and ‖·‖
2

being l1-norm and l2-norm operators, respectively, and λ > 0, and the resultant

algorithms belong to the BPDN family. These algorithms usually require a small number of measurements,

but they are complex, e.g., the complexity of BP algorithm is on the order of O
(

m2n3/2
)

[2].

ii) Greedy iterative algorithms can identify the support set in a greedy iterative manner. They have a

low complexity and fast speed of recovery, but suffer from a performance loss, when the signals are not

very sparse. The representatives of these algorithms are orthogonal matching pursuit (OMP), CoSaMP,

and subspace pursuit (SP), which have the complexity of O (kmn) [2].

iii) Bayesian inference algorithms like sparse Bayesian learning and approximate message passing infer

the sparse unknown signal from the Bayesian viewpoint by considering the sparse priori. The complexity of
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these algorithms varies from individual to individual. For example, the complexity of Bayesian compressive

sensing via belief propagation is O
(

nlog2n
)

[2]. Note that, the algorithms mentioned above have to be

further developed for Models (2)-(4) of Table I. For example, the group-sparse BPDN, the simultaneous

OMP (SOMP), and the group-sparse Bayesian CS algorithms tailored for MMV Model (4) are promising

future candidates [2].

Since the conception of CS theory in 2004, it has been extensively developed, extended and applied

to practical systems. Indeed, prototypes for MIMO radar, CR, UWB, and so on based on CS theory

have been reported by Eldar’s research group [2]. Undoubtedly, the emerging CS theory provides us with

a revolutionary tool for reconstructing signals, despite using sub-Nyquist sampling rates [2]. Therefore,

how to exploit CS theory in the emerging 5G wireless networks has become a hot research topic [3]–[5],

[7]–[15]. By exploring and exploiting the inherent sparsity in all aspects of wireless networks, we can

create more efficient 5G networks. In the following sections, we will explore and exploit the sparsity

inherent in future 5G wireless networks in the context of the three specific technical directions discussed

in Section II.

IV. HIGHER SPECTRAL EFFICIENCY

The first technical direction to support the future 5G vision is to increase the spectral efficiency, where

massive MIMO, massive SM-MIMO and NOMA schemes constitute promising candidates. This section

will discuss how to explore and exploit the sparsity inherent in these key 5G techniques.

A. Massive MIMO Schemes

Massive MIMO employing hundreds of antennas at the BS are capable of simultaneously serving

multiple users at an improved spectral- and the energy-efficiency [3], [4]. Although massive MIMO indeed

exhibit attractive advantages, a challenging issue that hinders the evolution from the current frequency

division duplex (FDD) cellular networks to FDD massive MIMO is the indispensible estimation and

feedback of the downlink FDD channels to the transmitter. However, for FDD massive MIMO, the users

have to estimate the downlink channels associated with hundreds of transmit and receive antenna pairs,

which results in a prohibitively high pilot overhead. Moreover, even if the users have succeeded in

acquiring accurate downlink channel state information (CSI), its feedback to the BS requires a high

feedback rate. Hence the codebook-based CSI-quantization and feedback remains challenging, while the

overhead of analog CSI feedback is simply unaffordable [4]. By contrast, in time division duplex (TDD)

massive MIMO, the downlink CSI can be acquired from the uplink CSI by exploiting the channel’s

reciprocity, provided that the interference is also similar at both ends of the link. Furthermore, the pilot



7

contamination may significantly degrade the system’s performance due to the limited number of orthogonal

pilots, which hence have to be reused in adjacent cells [3].

Fortunately, recent experiments have shown that due to the limited number of significant scatterers

in the propagation environments and owing to the strong spatial correlation inherent in the co-located

antennas at the BS, the massive MIMO channels exhibit sparsity either in the delay domain [3] or in the

angular domain or in both [4]. For massive MIMO channels observed in the delay domain, the number

of paths containing the majority of the received energy is usually much smaller than the total number of

CIR taps, which implies that the massive MIMO CIRs exhibit sparsity in the delay domain and can be

estimated using the standard CS Model (1) of Table I, where s is the sparse delay-domain CIR, Θ consists

of pilot signals, and y is the received signal [3]. Due to the co-located nature of the antenna elements,

the CIRs associated with different transmit and receiver antenna pairs further exhibit structured sparsity,

which manifests itself in the block-sparsity Model (3) of [3]. Moreover, the BS antennas are usually found

at elevated location with much few scatterers around, while the users roam at ground-level and experience

rich scatterers. Therefore, the massive MIMO CIRs seen from the BS exhibit only limited angular spread,

which indicates that the CIRs exhibit sparsity in the angular domain [4]. Due to the common scatterers

shared by multiple users close to each other, the massive multi-user MIMO channels further have the

structured sparsity and can be jointly estimated using the MMV Model (4) of Table I [4]. Additionally,

this sparsity can also be exploited for mitigating the pilot contamination in TDD massive MIMO, where

the CSI of the adjacent cells can be estimated with the aid of the signal separation Model (2) for further

interference mitigation or for multi-point cooperation.

Remark: Exploiting the sparsity of massive MIMO channels with the aid of CS theory to reduce the

overhead required for channel estimation and feedback are expected to solve various open challenges and

constitute a hot topic in the field of massive MIMO [3], [4]. However, if the pilot signals of CS-based

solutions are tailored to a sub-Nyquist sampling rate, ensuring its compatibility with the existing systems

based on the classic Nyquist sampling rate requires further research.

B. Massive SM-MIMO Schemes

In massive MIMO systems, each antenna requires a dedicated radio frequency (RF) chain, which will

substantially increase the power consumption of RF circuits, when the number of BS antennas becomes

large. To circumvent this issue, as shown in Fig. 2, the BS of massive SM-MIMO employs hundreds of

antennas, but a much smaller number of RF chains and antennas is activated for transmission. Explicitly,

only a small fraction of the antennas is selected for the transmission of classic modulated signals in each

time slot. For massive SM-MIMO, a 3-D constellation diagram including the classic signal constellation
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and the spatial constellation is exploited. Moreover, massive SM-MIMO can also be used in the uplink

[5], where multiple users equipped with a single-RF chain, but multiple antennas can simultaneously

transmit their SM signals to the BS. In this way, the uplink throughput can also be improved by using

SM, albeit at the cost of having no transmit diversity gain. This problem can be mitigated by activating

a limited fraction of the antennas.

Due to the potentially higher number of transmit antennas than the number of activated receive antennas,

signal detection and channel estimation in massive SM-MIMO can be a large-scale under-determined

problem. The family of optimal maximum likelihood or near-optimal sphere decoding algorithms suffers

from a potentially excessive complexity. By contrast, the conventional low-complexity linear algorithms,

such as the linear minimum mean square error (LMMSE) algorithm, suffer from the obvious performance

loss inflicted by under-determined rank-deficient systems. Fortunately, it can be observed that in the

downlink of massive SM-MIMO, since only a fraction of the transmit antennas are active in each time

slot, the downlink SM signals are sparse in the signal domain. Hence, we can use the standard CS Model

(1) of Table I for developing SM signal detection, where s is the sparse SM signal, Θ is the MIMO channel

matrix, and y is the received signal. Moreover, observe in Fig. 2 that for the uplink of massive SM-MIMO,

each user’s uplink SM signal also exhibits sparsity, thus the aggregated SM signal incorporating all of

the multiple users’ uplink SM signals exhibits sparsity. Therefore, it is expected that by exploiting the

sparsity of the aggregated SM signals, we can use the signal separation Model (2) of Table I to develop

a low-complexity, high-accuracy signal detector for improved uplink signal detection [5].

Remark: The sparsity of SM signals can be exploited for reducing the computational complexity of

signal detection at the receiver. To elaborate a little further, channel estimation in massive SM-MIMO is

more challenging than that in massive MIMO, since only a fraction of the antennas are active in each

time slot. Hence, how to further explore the intrinsic sparsity of massive SM-MIMO channels and how

to exploit the estimated CSI associated with the active antennas to reconstruct the complete CSI is a

challenging problem requiring further investigations.

C. Sparse Codewords in NOMA systems

Cellular networks of the first four generations obeyed different orthogonal multiple access (OMA)

techniques [6]. In contrast to conventional OMA techniques, such as frequency division multiple access

(FDMA), time division multiple access (TDMA), and orthogonal frequency division multiple access

(OFDMA), NOMA systems are potentially capable of supporting more users/devices by using non-

orthogonal resources, albeit typically at the cost of increased receiver complexity.

As a competitive NOMA candidate, sparse code multiple access (SCMA) supports the users with the
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aid of their unique user-specific spreading sequence, which are however non-orthogonal to each other -

similar to classic m-sequences, as illustrated in Fig. 3 [6]. Each codeword exhibits sparsity and represents

a spread transmission layer. In the uplink, the BS can then uniquely and unambiguously distinguish the

different sparse codewords of multiple users relying on non-orthogonal resources. In the downlink, more

than one transmission layers can be transmitted to each of the multiple users with the aid of the above-

mentioned non-orthogonal codewords. The SCMA signal detection problem can be readily formulated as

the signal separation Model (2) of Table I, where the columns of Θp consist of the pth user’s codewords,

and sp is a vector with 0 and 1 binary values and only one non-zero element. Amongst others, the

low-complexity message passing algorithm (MPA) can be invoked by the receiver for achieving a near-

maximum-likelihood multi-user detection performance.

Remark: The optimal codeword design of SCMA and the associated multi-user detector may be designed

with the aid of CS theory for improving the performance versus complexity trade-off [6].

V. LARGER TRANSMISSION BANDWIDTH

The second technical direction contributing to the 5G vision is based on the larger transmission

bandwidth, where the family of promising techniques includes CR, UWB and mmWave communication.

How we might explore and exploit sparsity in these key 5G techniques will be addressed in this section.

A. Cognitive Radio

It has been revealed in the open literature that large portions of the licensed spectrum remains under-

utilized [7], [8], since the licensed users may not be fully deployed across the licensed territory or might

not occupy the licensed spectrum all the time, and guard bands may be adopted by primary users (PUs).

Due to the sparse spectrum exploitation, CR has been advocated for dynamically sensing the unused

spectrum and for allowing the secondary users (SUs) to exploit the spectrum holes, while imposing only

negligible interference on the PUs.

However, enabling dynamic spectrum sensing and sharing of the entire spectral bandwidth is chal-

lenging, due to the high Nyquist sampling rate for SUs to sense a broad spectrum. To exploit the low

spectrum occupancy by the licensed activities, as verified by extensive experiments and field tests [7], the

compressive spectrum sensing concept, which can be described by the standard CS Model (1) of Table

I, has been invoked for sensing the spectrum at sub-Nyquist sampling rates. In CR networks, every SU

can sense the spectrum holes, despite using a sub-Nyquist sampling rate. However, this strategy may

be susceptible to channel fading, hence collaborative sensing relying on either centralized or distributed

processing has also been proposed [7], [8]. Due to the collaborative strategy, the sparse spectrum seized
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by each SU may share common components, which can be readily described by the MMV Model (4) of

Table I to achieve spatial diversity [7]. Moreover, integrating a geo-location database into compressive

CR is capable of further improving the performance attained [8].

Remark: CS-based CR can facilitate the employment of low-speed analog-to-digital-converter (ADC)

instead of the high-speed ADC required by conventional Nyquist sampling theory. In closing we mention

that in addition to sensing the spectrum holes by conventional CR schemes, Xampling is also capable of

demodulating the compressed received signals, provided that their transmission parameters, such as their

frame structure and modulation modes are known [2].

B. Ultra-Wide Band Transmission

UWB systems are capable of achieving Gbps data rates in short range transmission at a low power

consumption [9], [10]. Due to the ultra-wide bandwidth utilized at a low power-density, UWB may coexist

with licenced services relying on frequency overlay. Meanwhile, the ultra-short duration of time-hopping

UWB pulses enables it to enjoy fine time-resolution and multipath immunity, which can be used for

wireless location.

According to Nyquist’s sampling theorem, the GHz bandwidth of UWB signals requires a very high

Nyquist sampling rate, which leads to the requirement of high-speed ADC and to the associated strict

timing control at the receiver. This increases both the power consumption and the hardware cost. However,

the intrinsic time-domain sparsity of the received line-of-sight (LOS) or non-line-of-sight (NLOS) UWB

signals inspires the employment of an efficient sampling approach under the framework of CS, where

the sparse UWB signals can be recovered by using sub-Nyquist sampling rates. Moreover, the UWB

signals received over multipath channels can also be approximately considered as a linear combination

of several signal bases, as in the standard CS Model (1) of Table I, where these signal bases are closely

related to the UWB waveform, such as the Gaussian pulse or it derivatives [9], [10]. Compared to those

users, who only exploit the time-domain sparsity of UWB signals, the latter approach can lead to a

higher energy-concentration and to the further improvement of the sparse representation of the received

UWB signals, hence enhancing the reconstruction performance of the UWB signals received by using

fewer measurements. Besides, CS can be further applied to estimate channels in UWB transmission by

formulating it as MMV Model (4) of Table 1, where the common sparsity of multiple received pilot

signals is exploited [10].

Remark: The sparsity of the UWB signals facilitates the reconstruction of the UWB signals from

observations sampled by the low-speed and power-saving ADCs relying on sub-Nyquist sampling. The

key challenge is how to extract the complete information characterizing the analog UWB signals from
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the compressed measurements. Naturally, if the receiver only wants to extract the information conveyed

by the UWB signals, it may be capable of directly processing the compressed measurements by skipping

the reconstruction of the UWB signals [9].

C. Millimeter-Wave Communications

The crowded microwave frequency band and the growing demand for increased data rates motivated

researchers to reconsider the under-utilized mmWave spectrum (30∼100 GHz). Compared to existing

cellular communications operating at sub-6 GHz frequencies, mmWave communications have three dis-

tinctive features: a) the spatial sparsity of channels due to the high path-loss of NLOS paths, b) the

low signal-to-noise-ratio (SNR) experienced before beamforming, and c) the much smaller number of

RF chains than that of the antennas due to the hardware constraints in mmWave communications [11],

[12]. Hence, the spatial sparsity of channels can be readily exploited for designing cost-efficient mmWave

communications.

1) Hybrid Analog-Digital Precoding: The employment of transmit precoding is important for mmWave

MIMO systems to achieve a large beamforming gain for the sake of compensating their high pathloss.

However, the practical hardware constraint makes the conventional full-digital precoding in mmWave

communications unrealistic, since a specific RF chain required by each antenna in full-digital precoding

may lead to an unaffordable hardware cost and to excessive power consumption. Meanwhile, conventional

analog beamforming is limited to single-stream transmission and hence fails to effectively harness spatial

multiplexing. To this end, hybrid analog-digital precoding relying on a much lower number of RF chains

than that of the antennas has been proposed, where the phase-shifter network can be used for partial

beamforming in the analog RF domain for the sake of an improved spatial multiplexing [11].

The optimal array weight vectors of analog precoding can be selected from a set of beamforming

vectors prestored according to the estimated channels. Due to the limited number of RF chains and as a

benefit of spatial sparsity of the mmWave MIMO channels, the hybrid precoding can be formulated as a

sparse signal recovery problem, which was referred to as spatially sparse precoding [Equ. (18) in 11]. This

problem can be efficiently solved by the modified OMP algorithm. However, the operation of this CS-

based hybrid precoding scheme is limited to narrow-band channels, while practical broadband mmWave

channels exhibit frequency-selective fading, which leads to a frequency-dependent hybrid precoding across

the bandwidth [11]. For practical dispersive channels where OFDM is likely to be used, it is attractive to

design different digital precoding/combining matrices for the different subchannels, which may then be

combined with a common analog precodering/combining matrix with the aid of CS theory.
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2) Channel Estimation: Hybrid precoding relies on accurate channel estimation, which is practically

challenging for mmWave communications relying on sophisticated transceiver algorithms, such as mul-

tiuser MIMO techniques. In order to reduce the training overhead required for accurate channel estimation,

CS-based estimation schemes have been proposed in [11], [12] by exploiting the sparsity of mmWave

channels. Compared to conventional MIMO systems, channel estimation designed for mmWave massive

MIMO in conjunction with hybrid precoding can be more challenging due to the much smaller number

of RF chains than that of the antennas. The mmWave massive MIMO flat-fading channel estimation can

be formulated as the standard CS Model (1) of Table I [Equ. (24) in 11], where s is the sparse channel

vector in the angular domain, the hybrid precoding and combining matrices as well as the angular domain

transform matrix compose Θ. While for dispersive mmWave MIMO channels, the sparsity of angle of

arrival (AoA), angle of departure (AoD), and multipath delay indicates that the channel has a low-rank

property. This property can be leveraged to reconstruct the dispersive mmWave MIMO CIR, despite using

a reduced number of observations [12].

Remark: By exploiting the sparsity of mmWave channels, CS can be readily exploited both for reducing

the complexity of hybrid precoding and for mitigating the training overhead of channel estimation.

However, as to how we can extend the existing CS-based solutions from narrow-band systems to broadband

mmWave MIMO systems is still under investigation.

VI. BETTER SPECTRUM REUSE

The third technical direction to realize the 5G vision is to improve the frequency reuse, which can be

most dramatically improved by reducing the cell-size [1]. Ultra-dense small cells including femocells,

picocells, visible-light atto-cells are capable of supporting seamless coverage, in a high energy efficiency,

and a high user-capacity. Explicitly, they can substantially decrease the power consumption used for radio

access, since the shorter distance between the small-cell BSs and the users reduces the path-loss [13]–[15].

This section will address how to explore and exploit the sparsity in dense networks under the framework

of CS theory.

A. BSs Identification

The ultra-dense small cells may impose non-negligible ICI, which significantly degrades the received

SINR. Thus, efficient interference cancellation is required for such interference-limited systems. In con-

ventional cellular systems, orthogonal time-, frequency-, and code resources can be used for effectively

mitigating the ICI. By contrast, in the ultra-dense small cells, mitigating the ICI in the face of limited

orthogonal resources remains an open challenge [13].
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In the ultra-dense small cells of Fig. 4 (a), a user will be interfered by multiple interfering BSs. The

actual number of interfering BSs for a certain user is usually small, although the number of available BSs

can be large. Hence, the identification of the interfering BSs can be formulated based on the CS Model

(1) of Table I, where indices of non-zero elements in s corresponds to the interfering BSs, Θ consists

of the training signals, and y is the received signal at the users. To identify the interfering BSs, each BS

transmits non-orthogonal training signals based on their respective cell identity. Then the users detect both

the identity and even the CSI of the interfering BSs from the non-orthogonal received signals at a small

overhead. Moreover, the ICI may be further mitigated by using the signal separation Model (2) of Table

I via the CoMP transmission, where the interfering BSs becomes the coordinated BSs. Additionally, by

exploiting the observations from multiple antennas in the spatial domain and/or frames in the temporal

domain, the block-sparsity Model (3) and MMV Model (4) of Table I can be further considered for

improved performance [13].

Remark: The identification of the interfering BSs can be formulated as a CS problem for reducing the

associated overhead, by exploiting the fact that the actual number of BSs interfering with a certain user’s

reception is usually smaller than the total number of BSs. Under the framework of CS, designing optimal

non-orthogonal training signals and robust yet low-complexity detection algorithms for identifying these

potential BSs with limited resources are still under investigation.

B. Massive Random Access

It is a widely maintained consensus that the Internet of Things (IoT) will lead to a plethora of devices

connecting to dense networks for cloud services in 5G networks. However, the conventional orthogonal

resources used for multiple access impose a hard user-load limit, which may not be able to cope with

the massive connectivity ranging from 102/km2 to 107/km2 for the IoT [1]. It can be observed for each

small-cell BS that although the number of potential users in the coverage area can be large, the proportion

of active users in each time-slot is likely to remain small due to the random call initiation attempts of the

users accessing typical bursty data services, as shown in Fig. 4 (b) [14]. In this article, this phenomenon

is referred to as the sparsity of traffic, which points in the direction of CS-based massive random access.

More particularly, in the uplink, the users transmit their unique non-orthogonal training signals to

access the cellular networks. As a result, the small-cell BSs have to detect multiple active users based

on the limited non-orthogonal resources. This multi-user detection process can be described by the signal

separation Model (2) of Table I [Equ. (2) in 14]. Moreover, due to the ultra-dense nature of the small

cells, the adjacent small-cell BSs can also receive some common signals, which implies that the adjacent

small-cell BSs may share some common sparse components. Were considering small-cell BSs constituted
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by the remote radio head (RRH) of the cloud radio access network (C-RAN) architecture, this sparse

active-user detection carried out at the baseband unit (BBU) can be characterized by the MMV Model (4)

of Table I. By exploiting this structured sparsity, it is expected that further improved active user detection

performance can be achieved.

Remark: The sparsity of traffic in UDN can be exploited for mitigating the access overhead with the

aid of CS theory. Compared to the identification of BSs in the downlink, supporting large-scale random

access in the uplink is more challenging: 1) Since the number of users is much higher than that of the

BSs, the design of non-orthogonal training signals under the CS framework may become more difficult; 2)

The centralized cooperative processing may be optimal, but the compression of the feedback required for

centralized processing may not be trivial; 3) Distributed processing contributes an alternative technique

of reducing the feedback overhead, but the design of efficient CS algorithms remains challenging.

C. Traffic Estimation and Prediction for Energy-Efficient Dense Networks

It has been demonstrated that the majority of power consumption for the radio access is dissipated

by the BSs, but this issue is more challenging in dense networks [1]. To dynamically manage the radio

access for the sake of improved energy efficiency, the estimation of traffic load is necessary. However,

under the classic Nyquist sampling framework, to estimate the large-scale traffic matrix for UDN, the

measurements required as well as the associated storage, feedback, and energy consumption may become

prohibitively high. Therefore, it is necessary to explore efficient techniques of estimating the traffic load

for dense networks.

Experiments have shown that the demand for radio access exhibits the obvious periodic variation

on a daily basis and it also has a spatial variation due to human activities [1]. The strong spatio-

temporal correlation of traffic load indicates that the indicator matrix of traffic load exhibits a low rank,

which inspires us to reconstruct the complete indicator matrix with the aid of sub-Nyquist sampling

techniques [2]. When partial traffic data is missing, a spatio-temporal Kronecker compressive sensing

method may be involved for recovering the traffic matrix as the standard CS Model (1) of Table I [Equ.

(15) in 15]. This may motivate us to exploit the low-rank property for estimating the complete traffic

matrix with a reduced number of observations. Furthermore, if the past history of the traffic load has been

acquired, traffic prediction may be obtained by exploiting the low-rank property of the indicator matrix,

and then the BSs can dynamically manage the network for the improved energy efficiency. This process

is illustrated in Fig. 4 (c). To achieve global traffic prediction from the different BSs, the estimate of

traffic load sampled by different sensors has to be fed back to the fusion center, which may impose a

huge overhead. This challenge may be mitigated by using part of the historic data for traffic prediction
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and by exploiting the low-rank nature of the indicator matrix. Moreover, since the spatial correlation of

traffic load is reduced as a function of the distance of different BSs, using distributed CS-based traffic

prediction with limited feedback may become a promising alterative approach to be further studied.

Remark: The low-rank nature of the traffic-indicator matrix can be exploited for reconstructing the

complete indicator matrix with the aid of sub-Nyquist sampling techniques. In this way, the measurements

used for traffic prediction or their feedback to the fusion center can be reduced.

VII. CONCLUSIONS

CS has inspired the entire signal processing community and in this treatise we revisited the realms

of next-generation wireless communications technologies. On the one hand, the very wide bandwidth,

hundreds of antennas, and ultra-densely deployed BSs to support massive users in those 5G techniques will

result in the prohibitively large overheads, unaffordable complexity, high cost and/or power consumption

due to the large number of samples required by Nyquist sampling theorem. On the other hand, CS theory

has provided a sub-Nyquist sampling approach to efficiently tackle the above-mentioned challenges for

these key 5G techniques. We have investigated the exploitation of sparsity in key 5G techniques from three

technical directions and four typical models. Furthermore, we have discussed a range of open problems

and future research directions from the perspective of CS theory. The theoretical research on CS-based

next generation communication technologies has made substantial progress, but its applications in practical

systems still have to be further investigated. CS algorithms exhibiting reduced complexity and increased

reliability, as well as compatibility with the current systems and hardware platforms constitute promising

potential future directions. It may be anticipated that CS will play a critical role in the design of future

wireless networks.

Hence our hope is that you valued colleague might like to join this community-effort.
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TABLE I

TYPICAL CS MODELS

Types

of Model

CS Models Mathematical Expression Illustration

Model (1)
Standard

CS model [2]

y = Φx = ΦΨs = Θs Θ = ΦΨ

Model (2)
Signal separation by

sparse representations [2]

ỹ =
P∑

p=1

Θpsp = Θ1s1 +

P∑

p=2

Θpsp

︸ ︷︷ ︸

interference

= Θs

Θ= [Θ1,Θ2, · · · ,ΘP ], s =
[
sT1 , s

T
2 , · · · , s

T
P

]T

sp andΘp are the pth sparse

signal and the pth measure-

ment matrix, respectively, s

is the sparse aggregate signal

Model (3) Block sparse signal [2]

y = Θs, s appears the block sparsity, e.g.,

s = [s1 · · · sd
︸ ︷︷ ︸

s
T[1]

sd+1 · · · s2d
︸ ︷︷ ︸

s
T[2]

· · · sN−d+1 · · · sN
︸ ︷︷ ︸

s
T[L]

]T

dL=N , and sT[l] for 1 ≤ l ≤ L

has non-zero Euclidean norm for

at most k indices

Model (4)
Multiple vector

measurement (MMV) [2]

[y1,y2, · · · ,yP ] = Θ [s1, s2, · · · , sP ],

{sp}
P

p=1 share the identical or partially

common sparsity pattern

sp and yp for 1 ≤ p ≤ P are

the sparse signal and measured

signal associated with the pth

observation, respectively
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