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Abstract: In this manuscript, we experimentally and numerically investigate the chaotic 
dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction 
between an incident signal and its intense backward replica generated at the fiber-end through 
an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the 
two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic 
dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. 
The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off 
Keying telecom signal achieving an error-free transmission. We also describe how these 
temporal and chaotic polarization fluctuations can be exploited as an all-optical random 
number generator. To this aim, a billion-bit sequence was experimentally generated and 
successfully confronted to the dieharder benchmarking statistic tools. Our experimental 
analysis are supported by numerical simulations based on the resolution of counter-
propagating coupled nonlinear propagation equations that confirm the observed behaviors. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction

Nowadays, chaotic dynamics in optical systems find numerous applications, among which the 
most emblematic are cryptographic secure communications [1–3], reservoir computing [4,5] 
or random bit generation [6–15]. Similarly to other physical areas, the common feature of 
those systems is that the route to chaos is achieved by means of a time-delayed feedback. In 
this contribution, we particularly focus our attention on the chaotic dynamics of the 
polarization state occurring in optical fiber and driven by a counter-propagating feedback 
setup. Beyond its fundamental aspect, understanding and harvesting the randomness of the 
light state-of-polarization (SOP) can find several practical applications. For instance, 
polarization scrambler devices are mainly implemented in optical communication and exploit 
polarization randomness in order to ensure polarization diversity in transmission links so as to 
mitigate the impact of polarization mode dispersion [16-17]. There are also mandatory 
apparatus when testing the performances of polarization-sensitive fiber devices, integrated 
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systems or optical components. While commercially available polarization scramblers are 
usually based on the cascade of fiber resonant coils, rotating wave-plates, or fiber squeezers 
and opto-electronic elements [18–23], we have recently introduced an alternative approach 
based on the nonlinear Kerr effect occurring in optical fibers [24,25]. Fundamentally, it relies 
on an additional operating mode, i.e. the chaotic regime, of a bistable device called 
Omnipolarizer, originally designed to operate as an all-optical polarization funnel [26,27]. 
The principle of operation consists in an incident signal with a fixed polarization-state which 
nonlinearly interacts through a cross-polarization process with its own backward replica 
generated at the fiber-end thanks to an amplified reflective loop. When a strong power 
imbalance between the two counter-propagating waves is applied, the system becomes 
unstable and chaotic temporal fluctuations of the output SOP are then observed, thus leading 
to an optical scrambling system [24]. In this new contribution, we go significantly beyond our 
previous works and show that the polarization instability and its route to chaos can be greatly 
improved by feeding this self-organized system with an optical delay [28]. In particular, the 
instability threshold and transient regimes leading to a chaotic regime have been found to be 
greatly reduced when a time-delayed feedback is incorporated in the system with a time scale 
larger than the characteristic nonlinear time. We then report on a series of experiments 
involving a 1-km long highly nonlinear fiber (HNLF) and show that scrambling speeds up to 
600-krad/s can be achieved. Moreover, a 2.5-reduction in terms of power threshold compared 
to our previous results reported in [24] as well as a dramatic reduction of fluctuations in the 
scrambling speed and output degree-of-polarization (DOP) have been observed. Experimental 
measurements are well confirmed by numerical predictions based on the numerical resolution 
of a set of counter-propagating nonlinear propagation equations. The performance of this all-
optical chaotic scrambler has then been evaluated for telecom applications on a 10-Gbit/s 
On/Off Keying (OOK) signal showing that an error-free transmission can be achieved in a 
fully chaotic scrambling regime. 

The second practical application highlighted in this contribution relies on the possibility 
for a chaotic system to harvest its randomness properties in order to generate random numbers 
[6–13]. Indeed, a genuine random number generator (RNG) must produce unpredictable, 
unreproducible and unbiased sequences of numbers. For that specific reason, many true 
RNGs are based on the peculiar properties that characterize chaotic dynamics. Practically, the 
advantage of using an optical approach is that one can generate random numbers at high 
repetition rate directly in the physical layer rather than using classical algorithmic techniques. 
Examples of such all-optical RNG include optoelectronic devices such as chaotic oscillations 
of high-bandwidth lasers [6,7], polarization chaos from a VCSEL diode [8], supercontinuum 
generation [9], homodyne detection of vacuum states [10], cosmic photons [11], spontaneous 
emission [12], superluminescent diodes [13] or exploiting the randomness inherent to 
quantum mechanics effects [14,15]. In the last section of this manuscript, we propose to 
exploit the chaotic SOP dynamics induced by the time-delayed feedback loop to generate 
random binary sequences. In this proof-of-concept experiment, the evolution over time of the 
output Stokes parameters has been recorded and sampled according to a fixed threshold so as 
to compute a binary sequence of one billion of bits. The degree of randomness of the 
generated bit sequence has been evaluated using the standard statistical benchmark provided 
by the dieharder testing suite [29], which shows that polarization chaos in optical fiber can be 
an efficient source of randomness for the generation of random numbers. 

2. Principle and modeling 

The system under-study is depicted in Fig. 1. It basically consists in a nonlinear Kerr medium, 
here a segment of randomly birefringent telecommunication fiber of length L, in which an 
initial forward signal defined by its Stokes vector S = [S1, S2, S3] and characterized by a fixed 
input SOP interacts nonlinearly with its own counter-propagating replica J = [J1, J2, J3] 
through a cross-polarization interaction. The forward signal J is generated at the fiber-end by 
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means of an amplified reflective device incorporating a time-delay (in practice, this optical 
delay is made of a second segment of standard fiber Ld for which the propagation regime is 
supposed to be linear). The dynamics of the system, in particular the chaotic regime, is mainly 
driven by the amplification factor g of the reflective apparatus defined as the power ratio 

between the backward and forward signals measured in z = L: g ( ) ( ), / ,L t L t= J S . The 

normalized unitary vectors /=s S S  and /=j J J  indicate their corresponding SOPs. For 

such a system, the spatio-temporal dynamics of S and J are described by the following set of 
coupled nonlinear propagation equations [26, 30]: 
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where z and t denote the propagation distance and time coordinates, respectively, c is the 
speed of light, γ the nonlinear Kerr coefficient, D the diagonal matrix 

( )8 / 9, 8 / 9,8 / 9diag − −  and α the fiber losses, while the symbol ^  denotes the vectorial 

product. Since typical temporal fluctuations come in the microsecond scale, only continuous-
waves are considered in simulations, thus the chromatic dispersion has been neglected. 

In order to simulate such a system including the time-delayed feedback, we implement the 
following numerical procedure. Equations (1) are numerically resolved along the whole 
propagation distance L + Ld while the boundary conditions and time-delay are taken into 
account in such a way that ( ),  L Ld t+ =J  gR ( ),L Ld t+S , where R denotes the rotation 

matrix of the reflective device, while the nonlinear Kerr coefficient γ as well as fiber losses 
are taken to zero along the Ld segment. In this way, the nonlinear coupling between the 
counter-propagating waves is only effective for z = [0, L]. 

 

Fig. 1. Principle of operation: The signal wave S is injected and interacts in the fiber of length 
L with its backward replica J generated by an amplified reflective delayed loop R (with gain g 
and a delay determined by the fiber length Ld). 

Before describing the experimental and numerical results, we would like here to briefly 
comment by means of simple qualitative arguments the mechanism underlying the fast 
process of polarization scrambling. As will be discussed below, polarization scrambling is 
characterized by a fast and disordered motion of the Stokes vectors on the surface of the 
Poincaré sphere. This scrambling process originates from the fact that even weak polarization 
fluctuations present in the incident waves are magnified through the nonlinear coupling that 
exists between the wave itself and its counter-propagating amplified replica. In fact, this 
feedback avalanche process prevents the Omnipolarizer to reach a stationary solution, leading 
to large polarization temporal fluctuations at its output. Moreover, the insertion of an optical 
delay within the feedback loop allows to achieve a complete decorrelation between the 
incident and backward wave fluctuations, which greatly helps the system to enter into its 
chaotic operation regime. On the other hand, from a fundamental point of view, a key 
property of Eqs. (1) is that, at variance with usual nonlinear Schrödinger equations governing 
light propagation in optical fibers, here the dynamics is dominated by the counter-propagating 
configuration of the interaction, i.e., there are no second-order dispersion effects in Eqs. (1). 
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This property introduces an undetermined sign into the expression of the kinetic energy of the 
waves (setting α = 0 the Hamiltonian of Eqs. (1) is not bounded from above or below [31]). 
As a consequence, the system can exhibit a fast decoherence process by creating rapid spatial 
fluctuations in the motion of S and J, because the local increase of kinetic energy due to such 
rapid fluctuations in the forward S component can be compensated by a corresponding 
negative reduction in the backward wave component J (the detailed microscopic fluctuations 
of the backward waves still being decorrelated) [31]. Moreover, in the limit of a conservative 
interaction of Eqs. (1), such a fast scrambling process was shown to be responsible for an 
unexpected process of “unconstrained thermalization”: At variance with standard 
thermalization to equilibrium, here the system can freely increase the amount of disorder, 
because such an increase is no longer constrained by energy conservation, and can thus occur 
much faster than a slow conventional thermalization process [31]. 

3. Experimental setup 

In order to study the chaotic dynamics of that system, we have implemented the experimental 
setup depicted in Fig. 2. A 1-km length of HNLF is used as nonlinear Kerr medium. The 
HNLF is characterized by a nonlinear coefficient γ = 9 W–1km–1 and fiber losses α of 0.7 
dB/km. The HNLF is then encapsulated between two optical circulators. The input signal is 
amplified using an Erbium doped fiber amplifier (EDFA-1), then the first circulator allows to 
inject the incident fully-polarized light into the fiber and reject the counter-propagating 
replica simultaneously. At the opposite end of the HNLF, the time-delayed feedback 
apparatus consists in a fiber loop made of the second circulator, a 90:10 tap coupler to extract 
the output signal, a kms long spool of standard single mode fiber (SSMF) as additional delay 
line and a second amplifier (EDFA-2). The gain of the EFDA-2 is carefully controlled to 
adjust the amplification factor g. A polarization controller is also inserted within the loop in 
order to control the polarization rotation R of the reflected beam. For fundamental studies, the 
input signal consists in a fully-polarized 100-GHz bandwidth incoherent wave centered at 
1550 nm. This incident signal is generated from an Erbium-based amplified spontaneous 
noise source (ASE) sliced into its spectrum domain thanks to an optical filter followed by an 
inline polarizer. This large bandwidth input signal is used to avoid any impairment due to the 
stimulated Brillouin backscattering in the fiber under-test but this process is compatible with 
any type of incident signal. The signal is then amplified up to 14 dBm by means of the 
EDFA-1 before injection into the fiber. At the output of the system, the SOP of the resulting 
signal is characterized by means of a standard commercial polarimeter. Furthermore, for 
random bit generation experiments, the output signal SOP is projected on an inline polarizer 
in order to transfer the polarization chaos into intensity fluctuations. The resulting random 
signal is then recorded by means of a 1-GHz photodiode and a fast oscilloscope before 
digitalization process. 
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Fig. 2. Experimental setup. ASE: Amplified spontaneous noise emission, BPF: bandpass filter, 
Pol: Polarizer, PPG: Pulse pattern generator, MLFL: Mode-locked fiber laser, PM: Phase 
modulator, IM: Intensity modulator, EDFA: Erbium-doped fiber amplifier, CIR: Optical 
circulator, HNLF: highly nonlinear fiber, PC: polarization controller, SSMF: Standard single 
mode fiber, RBG: Random bit generation, BER: Bit-error-rate. 

In a final step, in order to further assess the performance of this all-optical chaotic 
scrambler for telecom applications, the incoherent wave has been substituted by a 10-Gbit/s 
OOK signal at 1550 nm. This return-to-zero (RZ) optical signal is generated from a 10-GHz 
mode-locked fiber laser (MLFL) delivering 2.5-ps pulses at 1550 nm. This 10-GHz pulse 
train is then intensity modulated thanks to a LiNbO3 Mach-Zehnder modulator driven by a 
10-Gbit/s pulse pattern generator (PPG). Note that the initial pulse train is also phase 
modulated at 100 MHz in order to prevent any deleterious effect from Brillouin 
backscattering. 

4. Experimental results 

Figure 3(a) displays a 3-dimensionnal operation diagram of our system, which is recorded at 
the system output as a function of the amplification factor g. More precisely, it corresponds to 
the projection of the output SOP in the S2-S3 plane. For that measurements, the input power is 
fixed to 14 dBm while the optical delay-line for the forward signal consists in a 5-km long 
spool of SSMF. Three different regions for the g parameter can be observed. First-of-all, for a 
moderate level of backward power (g < 8, ~20 dBm), it can be clearly seen that the two waves 
do not interact, consequently, the output SOP remains almost constant. For higher values of g, 
typically (8 ≤ g < 20, ~24 dBm), the system becomes unstable and starts to oscillate. In this 
transient regime, more or less complicate close trajectories can be observed whose 
complexity and frequency of appearance increase with the level of backward power. Unstable 
fixed points can be also observed. Moreover, in this transient regime, the dynamics of the 
system was found to be dependent on both the input SOP and the rotation matrix R. In 
contrast, by increasing further the g values beyond 20 allows the system to enter into the 
chaotic regime. In this case large fluctuations and aperiodic chaotic behaviors are observed 
independently of the input SOP and the rotation matrix R, leading to a full scrambling of the 
output SOP. In order to illustrate the scrambling and chaotic behavior of the output SOP, we 
have compared in Figs. 3(b)-3(e) the output Poincaré sphere for different values of the 
amplification factor. While the output signal is characterized by a fixed SOP for a weak value 
of g = 1 (a single point on the sphere in Fig. 3(b)), we can clearly note in Fig. 3(c) that the 
output SOPs describe close trajectories in the transient regime (here g = 10) and then exhibit a 
more or less complex behavior for larger values of the reflective coefficient (g = 17 in Fig. 
3(d)), before covering almost homogeneously the complete surface of the sphere for high 
values of g (g = 53 in Fig. 3(e)). This demonstrates the scrambling potential of the underlying 
process. To go deeper into the analysis, we have also reported in Figs. 3(b)-3(e) the 
corresponding RF spectra of the output S1 Stokes component. As the reflection coefficient g is 
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increased, one can easily notice that the resulting spectrum evolves from a DC component to 
well-defined set of discrete frequencies in the transient regime, until reaching a broad 
continuum of frequencies without any discrete lines (Fig. 3(e)), which further evidences the 
aperiodic and random nature of SOP fluctuations in the chaotic regime. Moreover, to further 
understand the key role of the time-delay introduced into the reflective loop as well as its 
amplification factor g, we have carried out a series of experiments and numerical simulations 
in three different configurations for a fixed feedback delay: 0 delay (Omnipolarizer 
configuration reported in [24]), 1 km of SSMF included into the reflective loop and then 5 
km. Furthermore, we have carefully recorded 100 realizations for each value of the parameter 
g, each of them having a different polarization rotation matrix R to ensure the chaotic regime 
is reached independently of the SOP of the backward replica. The input power is still kept 
constant to 14 dBm. The scrambling performances have been evaluated by means of the 
degree-of-polarization (DOP) and scrambling speed ( scrV ) defined as: 

 
( ) ( ) ( )

( )
2 2 2

1 2 3
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Figures 4(a)-4(c) summarize the experimental results for the output DOP as a function of g, 
while Figs. 4(d)-4(f) report the corresponding scrambling speed Vscr. Red solid lines represent 
average values of DOP and speed, while the shaded areas display respective fluctuations 
(standard deviation in grey and maximum excursion in ochre). 
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Fig. 3. (a) Bifurcation diagram of the system: Projection of the experimentally measured 
output SOP in the S2-S3 plane (b-e) Poincaré sphere for different values of the reflective 
amplification factor g as well as corresponding RF spectrum of the S1 component: (b) g = 1, (c) 
g = 10, (d) g = 17 and (e) g = 53. 

From Figs. 4, the influence of the delay-line becomes evident. Indeed, for an increasing 
delay starting from 0 to 5 km, the threshold value of g required to enter into a genuine chaotic 
scrambling regime and thus reach a DOP close to zero (at least <5%) is found to be 
significantly reduced. More precisely, compared to our previous works (here zero delay case 
in Fig. 4(a)), the insertion of a delay-line within the reflective loop allows to achieve at least a 
2.5-fold reduction of the chaotic amplification factor threshold. Moreover, it is important to 
stress that the strong system fluctuations, typically generated in the transient regime, 
progressively vanish for g ≥ 40 when a 1-km long delay-line is inserted in the system and just 
above 30 (backward power of 26 dBm) with a 5-km spool of delay, thus making the 
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scrambling performances more predictable and reliable. The same behavior can be observed 
for the scrambling speed in Figs. 4(d)-4(f) for which at least a 2-fold increase of Vscr is 
achieved for the same amplification factor value when a 5-km long delay-line is inserted in 
the system. The performances and repeatability of the device are also greatly improved with a 
large reduction of fluctuations in the output scrambling speed. These results underline the fact 
that the polarization instability and its route to chaos can be significantly improved by feeding 
this self-organized system with an optical time-delay. We attribute this behavior to the fact 
that the polarization fluctuations of the backward waves are mutually decorrelated from each 
other, which greatly helps the system to enter into the chaotic regime. Finally, we have also 
reported in Figs. 4 by means of black circles the results obtained from numerical resolution of 
Eqs. (1) averaged over 24 realizations, each involving a different rotation matrix R and 
including the exact experimental parameters, in particular taking into account for the limit 
response of our polarimeter (1Msa/s). We can observe an excellent agreement between our 
numerical predictions and the experimental data, thus validating our theoretical model and 
providing a reliable tool for designing this home-made chaotic polarization scrambler. 

 

Fig. 4. (Top line) DOP measured at the output of the system as a function of the amplification 
factor g for the 0-delay configuration (a) a 1-km long delay-line (b) and 5-km long delay-line 
(c), respectively. (Bottom line) Scrambling speed as a function of amplification factor g (same 
convention as for DOP measurements). The red solid-lines correspond to the experimental data 
averaged over 100 realizations, while the shaded areas represent respective fluctuations 
(standard deviation in grey and maximal excursion in ochre). The black circles correspond to 
the numerical simulation results averaged over 24 realizations. 

In order to highlight in more details the key role played by the delay-line, we have carried 
out the following additional measurements. For a fixed maximal amplification factor of g = 
53, we have measured the resulting scrambling speed and DOP at the output of the 
Omnipolarizer as a function of the fiber length inserted into the reflective loop. Moreover, to 
further characterize the chaotic nature of our system, we have also calculated the 
corresponding Lyapunov coefficient L following the procedure described in [32]. These 
measurements are summarized in Figs. 5, and have been averaged over 100 realizations 
involving different rotation matrix R. 
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We can fairly observe the strong impact of the feedback delay-line with a clear threshold 
around 200 m which enables to reach the maximum scrambling speed near 610 krad/s (blue 
circles) and very low values of DOP (red triangles). This threshold behavior is consistent with 
the nonlinear response of the system and can be explained by the fact that, to enter into a fully 
chaotic regime, the decorrelation time-scale between both counter-propagating waves is 
governed by the nonlinear length of the system defined by 1/ Pγ , leading to 180 m for g = 

53. Note also the excellent agreement between our measurements and numerical predictions 
(averaged over 24 runs), depicted in Fig. 5(a) by means of blue stars for the scrambling speed 
and red crosses for DOP. Finally, the calculation of the experimental Lyapunov coefficient L, 
depicted here in Fig. 5(b), shows that thanks to the inclusion of a delay-line in the system, L 
becomes largely positive for a fiber length beyond 200 m when g = 53, confirming 
aforementioned conclusions and providing a clear signature of the chaotic nature of the SOP 
at the output of the system. As already highlighted in Fig. 4, we can also notice the strong 
reduction of fluctuations in the system performance owing to the feedback delay, thus making 
our device more reliable. Finally, Fig. 5(c) displays the typical temporal evolution of the S1 
Stokes parameter at maximum scrambling speed and for 5 km of delay, directly recorded at 
the output of the fiber beyond a polarizer. We can clearly see that typical temporal 
fluctuations come in the microsecond scale. 

 

Fig. 5. (a) Scrambling speed (blue circles) and corresponding DOP (red triangles) as a function 
of fiber length used as delay-line within the reflective loop of the Omnipolarizer. The 
amplification factor g is kept constant to g = 53. Numerical simulations are displayed with blue 
stars and red crosses, respectively (b) Corresponding experimental Lyapunov coefficient L as a 
function of the fiber length inserted into the reflective loop. All measurements have been 
averaged over 100 realizations (c) Typical temporal evolution of the S1 parameter at maximum 
scrambling speed and 5 km of delay. 

5. Polarization scrambling of a 10-Gbit/s optical signal 

The chaotic all-optical scrambler under-study has been tested in a telecommunication 
configuration. For this proof-of-principle, the partially coherent wave (100-GHz) described in 
the first section has been substituted with a 10-Gbit/s RZ signal centered at 1550 nm. The 
pulse width has been chosen as short as 2.5 ps in order to evaluate the impact of the scrambler 
for higher repetition rates of data or high-frequencies analogic signals. The delay-line inserted 
into the reflective loop is fixed to 5 km while the input power is kept constant to 14 dBm. To 
ensure that our device operates in a genuine chaotic regime, the amplification factor has been 
chosen to g = 53, corresponding to a backward power of 28 dBm. Figure 5 summarizes our 
results. Firstly, Figs. 6(a) and 6(b) display respectively the input and output Poincaré sphere 
of the 10-Gbit/s signal. While the input SOP is totally fixed at the input of the system, the 
output Poincaré sphere appears entirely covered, thus confirming that an efficient scrambling 
process can be achieved, even with high-repetition rate pulsed signals. Furthermore, Figs. 6(c) 
and 6(d) depict the output eye-diagrams when the backward signal is OFF (Fig. 6(c)) and in 
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scrambling configuration (Fig. 6(d), pump ON). We can observe that the shape of the pulses 
is ideally preserved with a clearly opened output eye-diagram, which validates the 
applicability of our polarization scrambler to RZ telecom signals. Note however the presence 
of an additional amplitude jitter into the scrambled eye-diagram in Fig. 6(d). This source of 
noise was attributed to the Rayleigh backscattering imposed by the backward signal on the 
output beam. Nevertheless, in a wavelength division multiplexing configuration, one could 
exploit one isolated pump channel in order to filter out this deleterious noise source, as 
already proposed in [24]. To further assess the quality of the transmitted signal, we have 
performed bit-error-rate (BER) measurements as a function of the average power incoming on 
the receiver. Figure 6(e) compares the back-to-back configuration (blue circles) with the 
pump OFF (red dots) and ON (purple diamonds) cases for two values of the backward power 
(29 dBm and 30 dBm). We can first stress that an error-free transmission is achieved for the 
scrambled signal, confirming that our scrambler is fully compatible with such single-channel 
RZ telecom configuration. However, a slight power penalty (0.5 dB) has been measured 
between the pump ON/OFF curves, which is attributed to the Rayleigh backscattering 
induced by the intense backward signal. A power penalty of 1.5 dB has been detected 
compared to the input configuration, which is mainly attributed to the deleterious effects of 
chromatic dispersion and Kerr effect on the ultra-short pulses used in our experiments. 

 

Fig. 6. (a) Input Poincaré sphere of the 10-Gbit/s RZ signal (b) Output SOP in scrambling 
regime for g = 50 (c&d) Output eye-diagrams of the 10-Gbit/s signal recorded in pump OFF 
(c) and pump ON configuration (d) (e) BER measurements as a function of the average power 
incoming on the receiver, back-to-back configuration (blue circles), pump OFF (red dots) and 
pump ON: 29 dBm (yellow squares) and 30 dBm (purple diamonds). 

6. Random bit generation 

The genuine chaotic nature of our all-optical scrambler provides a good opportunity to exploit 
this optical system as RNG, a field that has recently received much attention in photonics [6–
13]. To this aim, in the last section of this manuscript, we take advantage of the chaotic 
evolution of the output Stokes parameters to experimentally generate random bit sequences. 
For this proof-of-concept experiment, the evolution over time of a Stokes parameter has been 
recorded and concatenated from a large number of different realizations in order to construct 
a 109 bit sequence. Such long sequences are mandatory in order to perform standard statistical 
Dieharder tests as described below [29]. The principle of operation of random bit generation 
from polarization chaos is to convert a Stokes component of the output field of the scrambler 
into either a 0 or 1 depending on its relative value according to some specific threshold, here 
calculated from the median value of the waveform. In this series of experiments, the S1 
component is recorded beyond an inline polarizer by means of a photo-receiver connected to 
a 1-Gsa/s oscilloscope, 106 slots of 100-ms each were then acquired, concatenated and 
sampled. For that purpose, the chaotic polarization scrambler uses a 5-km delay-line as well 
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as an amplification factor g = 53. The input signal corresponds to the 100-GHz partially 
coherent wave described in the first section of the paper. Figure 7(a) displays a part of a 
typical experimental realization of the raw data (blue solid-line) as well as the post-processing 
involved in the random numbers extraction. Basically, the waveform is first under-sampled at 
a clock rate whose frequency is chosen well below the typical correlation length of the signal 
under test so as to ensure a reliable randomization. In our practical case, the clock (in black) 
has been chosen to 10 kHz for a typical scrambling speed of 610 krad/s. The S1 signal is then 
sampled (red points) at each rising edge of the clock. After suitable thresholding by 
calculating the median value of the sampled signal, the binary random sequence represented 
in Fig. 7(b) has been obtained. Note that 5 days of continuous recording involving more than 
1.2 To of raw data have been necessary to construct the billion bit sequence required for the 
dieharder test. Finally, in order to improve the randomness of the sequence and successfully 
pass the benchmark tests, we also remove any residual correlation and bias associated with 
binary conversion using an exclusive-or (XOR) gate between the initial sequence and its 
time-delayed replica [6, 9, 12, 13]. A delay of 100 bits was here applied. The degree of 
randomness of the computed binary sequences are first tested through calculation of the 
autocorrelation trace (Fig. 7(c)), and the cross-correlation function between two different 
sequences (Fig. 7(d)). These first results reveal a vanishing cross-correlation for all of the 
generated random bit streams, indicating that all the sequences are different and that the 
proposed technique is a good candidate for RNG. 

 

Fig. 7. (a) In blue, evolution of the S1 parameter over time. In red sampled values taken in 
correspondence of rising edges of an ad hoc defined clock (in black). (b) Random sequence 
generated after thresholding samples chosen in (a). In (c) and (d) autocorrelation and cross-
correlation functions of different random sequences generated in experiments. 

To further assess the degree of randomness of the generated billion bit sequence, we have 
implemented the standard statistical benchmark dieharder tests. Results are summarized in 
Fig. 8 [see also Dataset 1 (33) for complete results] and show that the generated sequences 
pass all the most commonly used statistical tests (p-value > 0.01), thus demonstrating that the 
polarization chaos induced by a counter-propagating time-delayed feedback is a suitable 
source of randomness to generate random binary sequences. It is important to note that the 
Dieharder suite also includes all the statistical tests developed by the National Institute for 
Standards and Technology (NIST), as well as some extra tests [29], which all successfully 
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passed with resulting values between 0.04 and 1, thus demonstrating the genuine randomness 
of the generated sequence. 

 

Fig. 8. Dieharder benchmark tests results for the 109 experimental binary sequence generated 
from polarization chaos. 

7. Conclusions 

In summary, we have experimentally investigated the chaotic dynamics of the state-of-
polarization in a nonlinear optical fiber fed by an intense time-delayed backward replica. The 
fundamental basis of this work was initially proposed in [24] as an additional working regime 
of the device called Omnipolarizer [26] and dedicated to polarization scrambling. This system 
relies on a nonlinear cross-polarization interaction occurring in an optical fiber between an 
incident signal and its own high-power counter-propagating replica, generated at the fiber-end 
through an amplified reflective loop apparatus. In this new contribution, we go significantly 
beyond these previous results and show that the polarization instability and its route to chaos 
can be significantly improved by feeding this self-organized system thanks to a time-delayed 
feedback. Indeed, the polarization fluctuations of the incident and reflected waves are 
completely decorrelated from each other, which significantly helps the system to enter into a 
chaotic regime. For that particular configuration, we have shown that the instability threshold 
and transient regimes can be substantially reduced when a delay-line is incorporated in the 
reflective loop, with a time scale longer than the nonlinear characteristic time of the system. 
We have then reported on a series of experiments involving a 1-km long HNLF-based 
polarization scrambler including different lengths of delay-line within the reflective loop, 
which revealed that scrambling speeds up to 600-krad/s can be achieved. A 2.5-fold reduction 
in terms of power threshold compared to our previous observations as well as a significant 
reduction of the system performance fluctuations in the scrambling speed and output DOP 
have been observed. The performance of this all-optical scrambler for telecom applications 
has been evaluated on a 10-Gbit/s OOK RZ signal with error-free transmission. Finally, we 
also described how the chaotic nature of polarization fluctuations can be exploited to generate 
ensembles of random bit sequences. More precisely, through a digitalization process of the 
Stokes parameters at the output of the system, we have experimentally generated a billion bit 
sequence at a repetition rate of 10 kHz whose randomness has successfully passed the 
benchmark dieharder test. The speed of our random bit generator is quite low compared to 
recent publications, which can achieved several of Gbit/s in [6, 7, 12, 13]. However, these 
results represent the first proof-of-principle demonstration of random bit generation through a 
counter-propagating cross-polarization interaction. Moreover, the speed of our system as well 
as its compactness could be improved by implementing ultra-high nonlinear materials or 
high-confinement waveguides such as soft-glass optical fibers or silicon waveguides 
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integrated on a CMOS compatible chip in order to achieve the Gbit/s repetition rate. Finally, 
our experimental observations have been well confirmed by numerical simulations based on 
the resolution of counter-propagating coupled nonlinear propagation equations. 
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