The Journal of Physiology

https://jp.msubmit.net

JP-TR-2017-275633R1

Title: Perinatal Physiology, Special Issue - Human placental oxygenation in late gestation: experimental and theoretical approaches

Authors: Gareth Nye
Emma Ingram
Edward Johnstone
Oliver Jensen
Henning Schneider
Rohan Lewis
Igor Chernyavsky
Paul Brownbill

Author Conflict: No competing interests declared

Author Contribution: Gareth Nye: Conception or design of the work; Acquisition or analysis or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Emma Ingram: Conception or design of the work; Acquisition or analysis or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Edward Johnstone: Conception or design of the work; Acquisition or analysis or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Oliver Jensen: Conception or design of the

Disclaimer: This is a confidential document.

work; Acquisition or analysis or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Henning Schneider: Conception or design of the work; Acquisition or analysis or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Rohan Lewis: Conception or design of the work; Acquisition or analysis or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Igor Chernyavsky: Conception or design of the work; Acquisition or analysis or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Paul Brownbill: Conception or design of the work; Acquisition or analysis or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work

Running Title: Human placental oxygenation: experimental and theoretical approaches

Dual Publication: Figure 4 uses images taken from published papers to companion the text. All images have had permissions gained for re publication and have in most part been published by co authors on this review

Funding: Medical Research Council (MRC): Gareth Anthony Nye, Edward D Johnstone, Rohan M Lewis, Igor L Chernyavsky, Paul Brownbill, MR/N011538/1; NO FUNDING: Emma Ingram, Oliver E Jensen, Henning Schneider, N/A

Disclaimer: This is a confidential document.

Paul Brownbill
Maternal & Fetal Health Research Group
Division of Developmental Biology & Medicine
School of Medical Sciences
Faculty of Biology, Medicine and Health
The University of Manchester
Research Floor
5th Floor, St Mary's Hospital
Oxford Road
Manchester M13 9WL

11 January 2018

Dear Editor.

Please accept our review article for peer review. We have had previous communication with Sally Howells who gave approval for the peer review process to happen for our paper. The article should be considered for publication in the Special Edition of *The Journal of Physiology* devoted to Perinatal Physiology in 2018, collated to celebrate the work of Prof Parer.

Our paper considers early advances in placental oxygen transfer physiology. It primarily focuses on new and emerging technologies to unravel this mechanistic "black box" behind transfer efficacy across the placental barrier in health and disease, by explaining the scope for evidence based modelling of the structural and haemodynamic factors governing this transfer. We explain how *in silico* modelling tools will enhance obstetric practice in the future, aiding the diagnosis of pregnancies at risk from failed placental oxygen transfer, enabling closer clinical management of problem pregnancies.

Kind regards

Paul Brownbill

Research Fellow

Tel: +44(0)161 701 6957 / 276 6483

Fax:+44(0)161 701 6971

E-Mail: paul.brownbill@manchester.ac.uk

- 1 Review: Human placental oxygenation in late gestation: experimental and
- 2 theoretical approaches
- 3 Dr Gareth A Nye a, , Dr Emma Ingram , Dr Edward D Johnstone , Prof Oliver E
- 4 Jensen ^b, Prof Henning Schneider ^c, Prof Rohan M Lewis ^d, Dr Igor L Chernyavsky
- 5 a, b, * and Dr Paul Brownbill a, *
- ^aMaternal and Fetal Health Research Centre, Division of Developmental Biology &
- 7 Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,
- 8 University of Manchester, Manchester Academic Health Science Centre; St. Mary's
- 9 Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester
- 10 Academic Health Science Centre, Manchester M13 9WL;
- ^b School of Mathematics, University of Manchester, Manchester, M13 9PL, United
- 12 Kingdom
- ^c Department of Obstetrics and Gynecology, Inselspital, University of Bern, Switzerland
- ^d Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United
- 15 Kingdom
- * these authors contributed equally to the work
- 17 Address Correspondence to:
- 18 Gareth A Nye, Maternal and Fetal Health Research Centre, Institute of Human
- 19 Development, University of Manchester, Manchester, United Kingdom
- 20 E-mail: <u>Gareth.Nye@Manchester.ac.uk</u>
- 21
- 22 Refs Count: 66
- 23 Word Count: 4400
- 24 Figures: 4
- 25 Tables: 1

26 Abstract

27	The placenta is crucial for life. It is an ephemeral but complex organ acting as the
28	barrier interface between maternal and fetal circulations, providing exchange of gases,
29	nutrients, hormones, waste products and immunoglobulins. Many gaps exist in our
30	understanding of the detailed placental structure and function, particularly in relation to
31	oxygen handling and transfer in healthy and pathological states in utero.
32	Measurements to understand oxygen transfer in vivo in the human are limited, with no
33	general agreement on the most appropriate methods. An invasive method for measuring
34	partial pressure of oxygen in the intervillous space through needle electrode insertion at
35	the time of Caesarean sections has been reported. This allows for direct measurements
36	in vivo whilst maintaining near normal placental conditions, however there are practical
37	and ethical implications in using this method for determination of placental
38	oxygenation. Furthermore, oxygen levels are likely to be highly heterogeneous within
39	the placenta.
40	Emerging non-invasive techniques, such as MRI, and ex vivo research are capable of
41	enhancing and improving current imaging methodology for placental villous structure
42	and increase the precision of oxygen measurement within placental compartments.
43	These techniques, in combination with mathematical modelling have stimulated novel
44	cross-disciplinary approaches that could advance our understanding of placental
45	oxygenation and its metabolism in normal and pathological pregnancies, improving
46	clinical treatment options and ultimately outcomes for the patient.
47	
48	Key Words
49	placenta, oxygen, perfusion, MRI, intervillious space, FGR, modelling
50	
51	
52	
JZ	

Introduction

53

The placenta is vital for fetal growth and development, adapting its physiology, 54 architecture and signalling throughout gestation to meet changing demands. Despite 55 this, there remain many unanswered questions in our detailed understanding of placental 56 structure, function and transfer efficacy in both normal and diseased states in utero. 57 It is an ephemeral but complex organ acting as the interface between mother and fetus, 58 59 providing a hub for exchange. One of the key functions of the placenta is to mediate transfer of oxygen to the fetus. However, there is poor consensus on the oxygenation of 60 61 placental compartments; most notably oxygen gradients within the intervillous space (IVS) of the maternal circulation, and how the partial pressure of this gas (PO₂) differs 62 between normal pregnancies and those complicated by placental diseases. A full 63 understanding of spatio-temporal oxygenation and associated placental villous 64 architecture in healthy and diseased states, aiding mathematical model development on 65 transplacental oxygen transfer, will ultimately be useful to obstetricians trying to 66 understand and treat placental disease. In this review, we will present current views on 67 human placenta structure and function with respect to oxygen transfer. This will include 68 discussions on the strengths and weaknesses of the current methods used to measure 69 placental oxygenation both in vivo and ex vivo. It will also summarise reported oxygen 70 levels within the placenta-fetal unit, with an emphasis on dysregulated materno-fetal 71 72 oxygen transfer in pregnancy pathologies.

73 Placental structure and function

74 The human placenta is a discoid haemomonochorial dually-perfused organ, which in a healthy term pregnancy has a mean mass of 650g and a surface area for exchange of 75 13m² (Mayhew et al., 2007). It contains 25% (80ml) of the total fetal blood volume 76 (Luckhardt et al., 1996). Fetal blood flow from the two umbilical arteries is forced 77 78 through two elaborately branched networks across the chorionic plate, before delving 79 into the placental mass, where they branch again entering approximately fifty placental villous trees. Several villous trees might occupy a single lobule, which is the semi-80 compartmentalised structure defined by septa as seen from basal plate aspect. Villous 81 trees are elaborately branched, commencing with stem villi (Leiser et al., 1985). Stem 82

villi divide extensively to form intermediate villi, with the mature type branched-off to 83 form the terminal villi (Kaufmann et al., 1985). In later pregnancy, having arrived to the 84 villous capillaries via an arteriolar microcirculatory system, the fetoplacental capillary 85 blood enriched with oxygen and nutrients is forced into the venular systems of the 86 mature intermediate and stem villi; and then into veins on the chorionic plate, 87 subsequently traveling to the fetus via a single umbilical vein. Architectural events 88 unfold in the developing placenta throughout gestation to arrive at the position of 89 mature villous trees capable of servicing the ever-increasing demands of the fetus for 90 oxygen. See e.g. (Huppertz, 2008; Wang & Zhao, 2010), for the detailed anatomy and 91 physiology of the human placenta and its developmental aspects. 92 93 During the third trimester, terminal villi formation increases exponentially (Risau & 94 Rubanyi, 2000). From 24-26 weeks of gestation, branching angiogenesis ensues, leading to capillary outgrowths and the maturation of intermediate villi. Capillary loops 95 96 are hypothesised to dilate and remodel laterally under transmural hydrostatic pressure between the fetal and maternal placental circulations (Burton et al., 1996). Furthermore, 97 98 fetal and maternal blood are brought into close proximity at specialised adaptive 99 capillary structures known as vasculosyncytial membranes. These represent a thinning of the combined fetoplacental endothelium and syncytilaised trophoblast, with extensive 100 101 lateral displacement of single-celled trophoblasts and membrane associated organelles (Castellucci et al., 1990). This structural adaptation confines the endo-epithelial 102 placental barrier to a diffusion distance of 2-3 µm, an important facet of Fick's Law of 103 Diffusion, appertaining more particularly to the efficiency of transfer of hydrophilic 104 molecules (Sibley et al., 1998), but also in-part to fast diffusing gases like oxygen. The 105 106 pathway of blood between the placenta and fetus with compartmentalised reported 107 oxygen ranges in late pregnancy has been summarised for purpose of this review in Figure 1. 108 109 Although the placenta is involved in essential functions to maintain fetal health, little is 110 known about how human placenta transfer in vivo relates to fetal oxygen acquisition in the human. The placenta is dynamic, with the capability of adapting to possible net 111 reductions in maternal blood flow, ensuring there is an adequate supply of oxygen to the 112 fetus (Wilkening & Meschia, 1983). *In vivo* work using animal models, most notably 113

the sheep, shows a normal tolerance to reduced maternal-side placental blood flow, 114 before placental metabolic demands out-compete fetal demands for oxygen provision 115 from the maternal circulation (Gu et al., 1985). The work of Gu, who collaborated with 116 Prof Julian Parer whilst he was at the University of California, showed that a reduction 117 in uterine artery blood flow by up to 30% had no effect on fetal oxygenation levels (Gu 118 et al., 1985). Whilst the anatomy of the sheep placenta is substantially different to the 119 120 human placenta, broader concepts such as hypoxic fetoplacental vasoconstriction and the possible role of oxygen-sensitive voltage-gated potassium channels in this process, 121 as found in humans, might provide a cross species mechanism by which fetomaternal 122 blood flow matching could arise (Byrne et al., 1997; Hampl et al., 2002; Kiernan et al., 123 124 2010). 125 Modern in vivo imaging, ex vivo placental spatial oxygen mapping technology and mathematical modelling are now available to investigate these early observations and 126 127 aim to unravel the intricacies of how fetal oxygen acquisition is regulated by placental structure and function in health and disease. This multidisciplinary approach has shown 128 129 the impact of sinusoidal capillaries on placental function (Pearce et al., 2016; Plitman Mayo et al., 2016b) where mathematical modelling indicates the existence of an 130 optimal capillary dilation size that maximises oxygen uptake. A fuller understanding of 131 132 the remaining aspects of the placental oxygen transfer in health and disease now seems possible. 133 Oxygen metabolism and levels within the human placenta 134 In the placenta, gases diffuse due to partial pressure gradients which are maintained by 135 maternal and fetal blood flow. As diffusion of gasses across the placenta is rapid, 136 placental gas transfer is flow limited (Meschia et al., 1967). Oxygen transfer depends on 137 a partial pressure gradient being present between the maternal blood in the intervillious 138 space (IVS) and the fetal blood in the fetoplacental capillaries and is enhanced by the 139 Bohr-Haldane effect – as maternal blood takes up fetal carbon dioxide and becomes 140 acidotic, oxygen release to the fetus is favoured. Simultaneously fetal blood takes up 141 oxygen while decreasing its storage capacity for carbon dioxide and releasing it into the 142 maternal circulation (Pinnock, 2002). Additionally, there is higher affinity of the fetal 143

haemoglobin for oxygen, containing two alpha and two gamma sub-units, compared to

maternal haemoglobin, which has two alpha and two beta sub-units. When considering oxygen levels within the placenta, the differing compartments need to be viewed 146 separately. The normal range for oxygenation of adult blood is between 75 and 100 147 mmHg. Although there may be a slight reduction in this during pregnancy, it is not 148 expected to differ greatly. IVS soluble oxygenation values are expected to be reduced by 149 the metabolic demand of placental tissue and the transfer to the fetal circulation. It is 150 known that 40% of the total oxygen consumption occurs in the syncytiotrophoblast 151 layer (Carter, 2000). However, where there is failure of spiral arteries to transform to a 152 wider aperture, this potentially leads to altered hemodynamics, with a reduced net IVS 153 flow, more localised blood flow patterns, and disparate skewed oxygen gradients around 154 155 placental villi (Burton et al., 2009). This in turn, ultimately leads to placental dysfunction and disease. 156 Poor placental oxygenation – a trigger for placental dysfunction 157 The placenta is developed to maximise the transfer of gases and nutrients to aid the 158 growth of the fetus. When this fails, a wide range of maternal and fetal complications 159 can occur, one of the most common complications being fetal growth restriction (FGR) 160 where the fetus fails to reach its genetic growth potential. Over half of neonatal deaths 161 162 worldwide are associated with low birth weight (UNICEF, 2004). Surviving FGR neonates face developmental problems and an increased risk of cardiovascular diseases 163 164 in later life. There are many causes of FGR involving both maternal and placental factors (Sharma et 165 al., 2016). One key factor is a reduction in oxygen transfer to the baby. Placentas 166 measured from FGR babies are on average 24% smaller in weight than normal 167 pregnancies (Heinonen et al., 2001). In the absence of genetic abnormalities and 168 underlying maternal conditions, this suggests a reduced functional capacity of the 169 placenta. One hypothesised aetiology is a reduced placental surface area for gas 170 exchange, coupled with dysregulated placental blood flow, leading to sub-optimal 171 oxygen transfer from maternal to fetal circulations (Yu, 1992), an alternative is that 172 dysregulated placental morphology might also reduce the oxygen transfer across the 173 placenta. Non-placental aetiologies relate to maternal lifestyle factors which include 174 smoking, living at high altitude and heart or lung disease, all of which depress the PO₂ 175

176	in the maternal circulation, diminishing placental oxygen transfer (Sharma et al., 2016).
177	In such low oxygen environments, as found in some cases of FGR, it should be borne in
178	mind that placental metabolism might shift to a high glucose and low oxygen
179	consumption mode, which could have bearing on relative oxygen transfer rates to the
180	fetus. This indirect evidence comes from an analogous study of high altitude
181	pregnancies, referring to a reduced maternal oxygen supply to the placenta (Zamudio et
182	al., 2010).
183	Conversely, Kingdom <i>et al</i> proposed processes whereby changing oxygen levels can
184	alter the structure of capillarisation within the terminal villous tree (Kingdom <i>et al.</i> ,
185	2000). Potentially this can compound an already compromised disturbance in PO ₂ ,
186	further reducing oxygenation of the fetal circulation. The hypothesis remains to be
187	tested that compromised villous tree architecture coupled with existing reduced oxygen
188	levels in the maternal circulation exceed a critical threshold leading to FGR.
189	A comprehensive study including mathematical modelling of complex placental
190	architecture, coupled with <i>ex vivo</i> physiological perfusion experimentation and <i>in vivo</i>
191	MRI will provide further answers. This may then permit an interrogation of
192	transplacental transfer efficacy of oxygen, providing translational tools for obstetricians
193	in their diagnosis and management of FGR associated with oxygen transfer deficiency.
104	Current underestanding of placental express levels
194	Current understanding of placental oxygen levels
195	As discussed previously, the <i>in vivo</i> measurement of placental oxygen has proved
195 196	
	As discussed previously, the <i>in vivo</i> measurement of placental oxygen has proved
196	As discussed previously, the <i>in vivo</i> measurement of placental oxygen has proved difficult and has only been recorded in a handful of studies. Schaaps <i>et al</i> published the
196 197	As discussed previously, the <i>in vivo</i> measurement of placental oxygen has proved difficult and has only been recorded in a handful of studies. Schaaps <i>et al</i> published the most recent cross-sectional study (Schaaps <i>et al.</i> , 2005) using IVS blood sampling
196 197 198	As discussed previously, the <i>in vivo</i> measurement of placental oxygen has proved difficult and has only been recorded in a handful of studies. Schaaps <i>et al</i> published the most recent cross-sectional study (Schaaps <i>et al.</i> , 2005) using IVS blood sampling which was achieved through insertion of a 21 gauge needle through the chorionic plate,
196 197 198 199	As discussed previously, the <i>in vivo</i> measurement of placental oxygen has proved difficult and has only been recorded in a handful of studies. Schaaps <i>et al</i> published the most recent cross-sectional study (Schaaps <i>et al.</i> , 2005) using IVS blood sampling which was achieved through insertion of a 21 gauge needle through the chorionic plate, with blood being collected once baby was delivered, but before the placenta was
196 197 198 199 200	As discussed previously, the <i>in vivo</i> measurement of placental oxygen has proved difficult and has only been recorded in a handful of studies. Schaaps <i>et al</i> published the most recent cross-sectional study (Schaaps <i>et al.</i> , 2005) using IVS blood sampling which was achieved through insertion of a 21 gauge needle through the chorionic plate, with blood being collected once baby was delivered, but before the placenta was expelled. (Schaaps <i>et al.</i> , 2005). This had previously been done in 1960 Quilligan <i>et al.</i>
196 197 198 199 200	As discussed previously, the <i>in vivo</i> measurement of placental oxygen has proved difficult and has only been recorded in a handful of studies. Schaaps <i>et al</i> published the most recent cross-sectional study (Schaaps <i>et al.</i> , 2005) using IVS blood sampling which was achieved through insertion of a 21 gauge needle through the chorionic plate, with blood being collected once baby was delivered, but before the placenta was expelled. (Schaaps <i>et al.</i> , 2005). This had previously been done in 1960 Quilligan <i>et al.</i> (1960) and again in 1996, who both recorded lower average values (Fujikura &
196 197 198 199 200 201	As discussed previously, the <i>in vivo</i> measurement of placental oxygen has proved difficult and has only been recorded in a handful of studies. Schaaps <i>et al</i> published the most recent cross-sectional study (Schaaps <i>et al.</i> , 2005) using IVS blood sampling which was achieved through insertion of a 21 gauge needle through the chorionic plate, with blood being collected once baby was delivered, but before the placenta was expelled. (Schaaps <i>et al.</i> , 2005). This had previously been done in 1960 Quilligan <i>et al.</i> (1960) and again in 1996, who both recorded lower average values (Fujikura & Yoshida, 1996). The Schaaps paper also published a PO ₂ ratio between the uterine vein

206	30mmHg. Although providing the best-available estimate of IVS PO_2 , caution must be
207	applied to the uterine vein-IVS ratio extrapolator. The ratio first appears counter-
208	intuitive, since uterine vein blood occurs downstream of the IVS. However, arterio-
209	venous placental shunting and preferential IVS flow pathways evading PO2
210	measurement may lead to higher than expected uterine vein oxygen values. Ideally,
211	further ubiquitous IVS real-time data must be sought before relying solely on this
212	reported ratio.
213	The few studies recording IVS oxygenation on term placentas show a value of ≈ 36
214	mmHg. This is much lower than the PO ₂ of peripheral maternal arterial blood, which
215	does not drop below 100 mmHg throughout gestation (Templeton & Kelman, 1976),
216	potentially indicating transfer loss and a highly metabolic cellular layer of the IVS.
217	Compartmentalised in vivo values of soluble human placental oxygenation are given in
218	Figure 1 and corresponding published values are summarised in Table 1. A small
219	reduction in the oxygen levels between the IVS and the umbilical vein is evident with
220	an average IVS oxygen recording of 30 mmHg and a further reduction in values
221	between the umbilical vein and arteries (22 mmHg). However there is much greater
222	variation in the recorded values in both measures potentially due to different
223	experimental methods. In particular, there are differences in practice regarding clamping
224	of the umbilical cord after delivery. As shown in Table 1, other studies measuring both
225	venous and arterial values from the same cord recorded similar reductions in the arterial
226	values (Nicolaides et al., 1989; Link et al., 2007). The venous oxygen level recorded by
227	Schaaps et al is comparatively lower than other recorded values and lower than the
228	average value by 10 mmHg which is possibly due to measurement of unclamped cords
229	influencing the oxygen value (Schaaps et al., 2005). It is expected that cord clamping
230	will yield results closer to peripartum PO2 levels, due to cord samples being
231	compartmentalised away from the highly metabolic placental tissue.
232	Measuring and modelling oxygen transfer function in the human placenta
233	Assessing function through in vivo electrodes
234	A reported method for analysing placental oxygen status of the IVS is through the
235	insertion of a needle into the placental tissue during routine Caesarean sections

(Quilligan et al., 1960; Fujikura & Yoshida, 1996) (Table 1). Although this allows for 236 direct measurement in vivo whilst still under normal conditions, there is a sampling 237 efficiency problem, due to the limited number of IVS PO₂ measurements that can 238 realistically be taken during surgery in such a large tissue. The heterogeneity of PO₂ 239 levels within the IVS and the potential for contamination of IVS samples from 240 241 disruption of the fetal capillaries are also major problems with this early method. However, there have been recent moves towards in vivo techniques to measure oxygen 242 more ubiquitously in the human placenta. 243

Assessing function through magnetic resonance imaging

244

Magnetic resonance imaging (MRI) techniques have demonstrated the ability to 245 measure non-compartmentalised changes in oxygen levels within defined placental 246 spatial parameters. One such technique, Blood-Oxygen-Level-Dependent (BOLD) MRI 247 (Figure 2A), can effectively measure changes in placental oxygen saturation following a 248 maternal oxygen challenge. Deoxyhaemoglobin acts as an endogenous contrast agent, 249 due to the differing magnetic properties of both haemoglobin and deoxyhaemoglobin. 250 251 Changes in oxygen saturation, and therefore deoxyhaemoglobin levels, alter the local magnetic field susceptibility, thus affecting transverse relaxation times and BOLD 252 253 signal. The first human placental BOLD MRI study (Sorensen et al., 2013), described results from eight women with uncomplicated singleton pregnancies at 28-36 weeks' 254 255 gestation. An increased BOLD signal was detected in areas proximal to the chorionic plate of the placenta. However, the potential application of BOLD in placental 256 257 pathology is uncertain with conflicting data concerning FGR pregnancies in early comparative studies (Ingram et al., 2017). The interpretations of BOLD signal changes 258 259 is complex due to its relation to haemoglobin concentration and potential oxygenrelated changes in local perfusion. The signal is also potentially affected by undetected 260 uterine activity and there is a tendency for BOLD signal intensity to be correlated more 261 closely with fetal haemoglobin oxygen saturation than with maternal haemoglobin 262 263 oxygen saturation. This may be due to the relative hypoxic condition of the normal fetus, which results in a significant BOLD signal change, with changes in oxygen 264 concentration, operating along the exponential phase of the sigmoidal fetal haemoglobin 265 266 oxygen association curve.

267	In addition to BOLD MRI, effective changes in tissue PO ₂ have been determined using
268	a complementary technique: Oxygen-Enhanced (OE) MRI. In OE MRI, changes in
269	longitudinal relaxation rates (R1) occur due to an increase in the paramagnetic dissolved
270	oxygen content in the tissue with maternal hyperoxia. An increase in R1 following
271	maternal hyperoxia, reflecting an increase in PO2, was first demonstrated in the placenta
272	in 2013 (Huen et al., 2013). Increases in R1 following hyperoxia diminish with
273	gestational age, which is thought to be a consequence of rapid materno-fetal O2 transfer
274	and utilisation. Additionally, in pregnancies affected by FGR, R1 changes are
275	significantly lower presumably demonstrating a relative placental hypoxia as more of
276	the dissolved oxygen is bound to deoxyhaemoglobin (Ingram et al 2017). The benefit of
277	these techniques are their non-invasive nature, however they are limited in availability
278	and expensive (Sorensen et al., 2013). Essentially these techniques provide measures of
279	relative change in tissue oxygen status. However, these techniques cannot provide
280	absolute PO ₂ or saturation values without further phantom validation.
281	Understanding placental blood flow rates is also important in deciphering placental
282	oxygen transfer efficacy. Within <i>in vivo</i> imaging capability, several options might be
283	available to the researcher in appreciating flow: dynamic contrast enhanced imaging
284	(DCE) (Marcos <i>et al.</i> , 1997), arterial spin labelling (ASL) (Gowland <i>et al.</i> , 1998) and
285	phase contrast imaging (Jansz <i>et al.</i> , 2010). DCE MRI provides spatial images of villous
286	capillary (fetal) and IVS (maternal) flow. Substances such as Omniscan TM ; (a
287	gadolinium chelate) are unstable and therefore are potentially toxic when used <i>in vivo</i>
288	and have not been characterised for vascular leakage and signal stability. They therefore
289	are only suited for <i>ex vivo</i> perfusions or acute animal experiments. These validations are
290	essential in proving that acquired flow signals are truly compartmentalised. The future
291	research agenda in placenta MR imaging is optimization of acquisition techniques and
292	combining MR imaging approaches, such as OE with ASL to fully characterise the
293	placenta.
294	In ASL, blood is intrinsically labelled, thus avoiding the concerns of exogenous contrast
295	agents, ASL has been used in vivo to determine placental flow however to date this has
296	been performed on a placental region-of-interest (ROI) which incorporates both
297	materno-placental and feto-placental compartments. (Shao et al., 2017). ASL quantifies

flow per gram of tissue mass, however the technique is hampered by poor signal-tonoise ratio and the few studies that have been performed demonstrate considerable variation in derived normal values.

Whilst functional MRI (fMRI) may be of benefit through the measurement of placental 301 perfusion and oxygen status, its use in the placenta is still limited by a lack of data and 302 there are no accepted MRI-based definition of normal/abnormal placental tissue flow 303 rates (Avni et al., 2015). Again, this could be due to differences in cost and availability 304 but also through a lack of consensus on protocols, and poor image quality due to the 305 306 challenges of correcting for maternal and fetal motion. However, these MRI techniques 307 could be exploited ex vivo, through phantom perfusion investigations, utilising the 308 human dual placental perfusion model to quantify flow and validate in vivo perfusion 309 measures, improving our understanding of the imaging response as a proxy to tissue oxygenation. 310

Assessing function through ex vivo placental perfusion

298

299

300

311

312 There is a limited capability to manipulate *in vivo* physiological variables during human pregnancy. In this stance, the utilisation of ex vivo physiological research techniques is 313 now coming to the fore. Ex vivo dual perfusion of the human placenta is now a widely 314 used system for investigating a range of pharmacological and physiological functions 315 316 including drug transfer whilst maintaining placental structure and an approximate in vivo state (Figure 2B). Perfusion has advantages over cell culture, tissue slices and 317 318 explant studies due to the maintenance of villous architecture and relative IVS volume density (Brownbill et al., 2018). Vascularised fetoplacental and IVS perfusate flows are 319 320 key features of the model, in which the placental tissue maintains a higher metabolic level than in other human placental models (Hauguel et al., 1983). This technique 321 322 involves isolating a whole placental cotyledon from a freshly delivered placenta. The fetal side is cannulated on both arterial and venous sides and either near-anoxic blood or 323 physiological buffer is pumped through the villous microcirculation (Schneider & Huch, 324 1985). The maternal side is also supplied with blood or physiological buffer at normoxic 325 or superoxic PO₂ levels. Flow rates of perfusate are similar to, but less than, in vivo 326 conditions (fetal side, 6ml/min) to reduce the overall resistance encountered during the 327 experiment. Placental blood flow on the fetal side is calculated to be approximately 0.35 328

mL / min / g in vivo at term, based on the placental receiving 40% of fetal left 329 ventricular output, being 480 mL/min at term (Rudolf, 1975). This compares to ex vivo 330 fetal-side flow of 0.17 mL/min based on a perfused tissue mass of 35g being perfused at 331 6 mL/min (Desforges et al., 2017). Once perfusion is established, a number of 332 333 experiments can be undertaken that are not possible in vivo. Examples include increasing or decreasing the flow rate of either fetal or maternal perfusate, introducing 334 drugs such as vasodilators/constrictors, or multiple sampling to monitor perfusate gases. 335 There are disadvantages however, there is a high preparation failure rate; it is 336 reasonably expensive and time consuming to run an experiment; and only one lobule 337 from each placenta is usually suitable intact for perfusion, preventing parallel control 338 339 investigations. 340 To simplify our understanding of placental oxygen transfer, a new adapted version of this model is being trialled by our laboratory. This involves scaling down the established 341 342 maternal-side multi cannula dual perfusion model, so that the IVS irrigation volume is limited, employing just one maternal cannula, delivering normoxic perfusate and 343 344 measuring oxygen gradients within the IVS (Figure 2B). Unlike in vivo oxygen sampling, extensive IVS oxygen sampling under steady-state experimental conditions is 345 possible by means of an oxygen-sensitive needle optode, inserted through the decidual 346 347 plate at set X-Y-Z planes controlled with a micro-manipulator (Figure 2B). With further experimentation the placental metabolic component of IVS oxygen consumption can be 348 elucidated. IVS oxygen gradient data can be acquired and interrogated for metabolism 349 and transfer, and it may be possible to discover how variable perfusate flow rates and 350 fetoplacental vasoactive endocrine agents affect fetal-side oxygen acquisition, gaining 351 352 an understanding of how the associated underlying villous architecture enhances or constrains oxygen transfer across the placental barrier. 353 354 Post-perfused human placental tissue can be successfully imaged using a wholemount confocal and lightsheet microscopy. These three-dimensional approaches confer 355 356 advantages over traditional two-dimensional techniques, such as transmission-electron and phase-contrast microscopy (Figure 3A), and allow the surface of the villi and the 357 fetal vascular system to be differentially labelled (Figure 3B & C). However these 358 higher-resolution approaches are only able to image smaller regions of tissue. MicroCT 359

360	allows visualisation of larger regions of placental villi placenta but at different scales
361	(Figure 3D). Imaging of the fetoplacental vascular system can be enhanced by perfusing
362	contrast agents into the fetal circulation to image the arterial and venous circulation
363	(Junaid et al., 2017). From this, information on vessel branching patterns,
364	interbranching length and capillary loop dilations are useful in predicting the placenta's
365	ability to optimally transfer oxygen; a portion of the placenta often inaccessible by other
366	means (Junaid et al., 2017). However, while microCT can image large regions of tissue,
367	when doing this its ability to image the microcirculation is limited. Micro CT imaging
368	of fetoplacental capillaries is possible but in smaller pieces of tissue.
369	Integrating structure and function relationships through modelling
370	The increased availability of 3D imaging approaches including confocal microscopy
371	and microCT have allowed for a recent increase in the efforts to build multiscale
372	computational models that go hand-in-hand with refined experimental models (Pearce et
373	al., 2016; Plitman Mayo et al., 2016a; Perazzolo et al., 2017; Roth et al., 2017) (Figure
374	4). In tissues with complex structures such as the human placenta, computational
375	modelling has allowed the full structure to be visualised and analysed allowing
376	assessment of structure-function relationships (Clark et al., 2015; Plitman Mayo et al.,
377	2016a) (Figure 4A). Mathematical models have also been created to explain properties
378	of the placenta that would not be possible to understand using in vivo measurements
379	alone (Chernyavsky $\it et~al.,~2011;$ Serov $\it et~al.,~2015;$ Pearce $\it et~al.,~2016)$ (Figure 4B, C &
380	D). However, there is open challenge of effective extraction of structural information
381	from imaging data as well as of identifying key parameter values necessary for
382	mathematical modelling. Once validated, theoretical models could provide a bridge
383	between $in\ vivo$ and $ex\ vivo$ or $in\ vitro$ approaches to characterise placental structure and
384	oxygenation in normal and pathological pregnancies (Lecarpentier et al., 2016).
385	Conclusion
386	The physiology of placental oxygen transfer is crucial for optimal fetal development and
387	survival. Gross placental structure is well characterised and newer techniques, such as
388	MRI, micro CT and advanced microscopy scanning techniques are affording greater
389	detail. However, the function of the placenta remains poorly understood. Key

measurements of oxygen and carbon dioxide levels in a normal human placenta remain elusive, due to logistical and ethic complications with experimenting on in vivo human placenta, which are compounded by slow advances of ex vivo, in vitro and in silico work. This lack of fundamental understanding has led to slow progress in terms of treating pathological states such as in cases of fetal growth restriction. It is our theory that impaired placental oxygen transfer and metabolism (Schneider, 2015) may well be a key factor in many cases of FGR, however whether this is due to abnormal structure or abnormal function is currently unknown. It is only with robust measures and consensus in experimental design that we can develop an integrated understanding of structure function relationships within the placenta. This in turn will provide a basis for developing therapeutic interventions for the treatment of the placental in fetal diseases in vivo.

415	References
416 417	Arikan GM, Scholz HS, Petru E, Haeusler MC, Haas J & Weiss PA. (2000). Cord blood oxygen saturation in vigorous infants at birth: what is normal? <i>BJOG</i> 107 , 987-994.
418 419 420	Avni R, Neeman M & Garbow JR. (2015). Functional MRI of the placentaFrom rodents to humans. <i>Placenta</i> 36 , 615-622.
421 422 423 424	Bernardez-Zapata FJ & Moreno-Rey C. (2014). [Normal values of gases in the vein of the umbilical cord during the postpartum period and postcesarea immediately in normal fetuses to term]. <i>Ginecol Obstet Mex</i> 82, 170-176.
425 426 427 428	Blechner JN, Cotter JR, Stenger VG, Hinkley CM & Prystowsky H. (1968). Oxygen, carbon dioxide, and hydrogen ion concentrations in arterial blood during pregnancy. <i>Am J Obstet Gynecol</i> 100 , 1-6.
429 430 431 432	Brownbill P, Sebire N, McGillick EV, Ellery S & Murthi P. (2018). Ex Vivo Dual Perfusion of the Human Placenta: Disease Simulation, Therapeutic Pharmacokinetics and Analysis of Off-Target Effects. <i>Methods Mol Biol</i> 1710 , 173-189.
433 434 435 436	Burton GJ, Reshetnikova OS, Milovanov AP & Teleshova OV. (1996). Stereological evaluation of vascular adaptations in human placental villi to differing forms of hypoxic stress. <i>Placenta</i> 17 , 49-55.
437 438 439 440	Burton GJ, Woods AW, Jauniaux E & Kingdom JC. (2009). Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. <i>Placenta</i> 30 , 473-482.
441 442 443	Byrne BM, Howard RB, Morrow RJ, Whiteley KJ & Adamson SL. (1997). Role of the L-arginine nitric oxide pathway in hypoxic fetoplacental vasoconstriction. <i>Placenta</i> 18 , 627-634.
444 445 446	Carter AM. (2000). Placental oxygen consumption. Part I: in vivo studiesa review. <i>Placenta</i> 21 Suppl A, S31-37.
447 448 449	Castellucci M, Scheper M, Scheffen I, Celona A & Kaufmann P. (1990). The development of the human placental villous tree. <i>Anat Embryol (Berl)</i> 181, 117-128.
450 451 452	Chernyavsky IL, Jensen OE & Leach L. (2010). A mathematical model of intervillous blood flow in the human placentone. <i>Placenta</i> 31, 44-52.
453	

454 455 456	Chernyavsky IL, Leach L, Dryden IL & Jensen OE. (2011). Transport in the placenta: homogenizing haemodynamics in a disordered medium. <i>Philos Trans A Math Phys Eng Sci</i> 369 , 4162-4182.
457 458 459	Clark AR, Lin M, Tawhai M, Saghian R & James JL. (2015). Multiscale modelling of the feto- placental vasculature. <i>Interface Focus</i> 5 , 20140078.
460 461 462 463	Daniel Y, Fait G, Lessing JB, Jaffa A, Gull I, Shenav M, Peyser MR & Kupferminc MJ. (1998). Umbilical cord blood acid-base values in uncomplicated term vaginal breech deliveries. Acta Obstet Gynecol Scand 77, 182-185.
464 465 466 467 468	Desforges M, Rogue AR, Pearson N, Rossi C, Olearo E, Forster R, Lees M, Sebire N, Greenwood S, Sibley C, David AL & Brownbill P. (2017). In vitro human placental studies to support an adenovirus-mediated VEGF-DDeltaNDeltaC maternal gene therapy for the treatment of severe early-onset fetal growth restriction. <i>Hum Gene Ther Clin Dev</i> .
469 470 471	Di Tommaso M, Seravalli V, Martini I, La Torre P & Dani C. (2014). Blood gas values in clamped and unclamped umbilical cord at birth. <i>Early Hum Dev</i> 90, 523-525.
472 473 474	Dudenhausen JW, Luhr C & Dimer JS. (1997). Umbilical artery blood gases in healthy term newborn infants. <i>Int J Gynaecol Obstet</i> 57, 251-258.
475 476 477 478	Fardiazar Z, Atashkhouei S, Yosefzad Y, Goldust M & Torab R. (2013). Comparison of fetal middle cerebral arteries, umbilical and uterin artery color Doppler ultrasound with blood gas analysis in pregnancy complicated by IUGR. <i>Iran J Reprod Med</i> 11 , 47-51.
479 480 481	Fujikura T & Yoshida J. (1996). Blood gas analysis of placental and uterine blood during cesarean delivery. <i>Obstet Gynecol</i> 87, 133-136.
482 483 484 485	Gowland PA, Francis ST, Duncan KR, Freeman AJ, Issa B, Moore RJ, Bowtell RW, Baker PN, Johnson IR & Worthington BS. (1998). In vivo perfusion measurements in the human placenta using echo planar imaging at 0.5 T. <i>Magn Reson Med</i> 40 , 467-473.
486 487 488	Gu W, Jones CT & Parer JT. (1985). Metabolic and cardiovascular effects on fetal sheep of sustained reduction of uterine blood flow. <i>J Physiol</i> 368 , 109-129.
489 490 491 492	Hampl V, Bibova J, Stranak Z, Wu X, Michelakis ED, Hashimoto K & Archer SL. (2002). Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. <i>Am J Physiol Heart Circ Physiol</i> 283 , H2440-2449.
493	

494 495 496	нагита	especially oxygenation during cesarean section]. <i>Nihon Sanka Fujinka Gakkai Zasshi</i> 38 , 909-916.
497 498 499 500	Haugue	el S, Challier JC, Cedard L & Olive G. (1983). Metabolism of the human placenta perfused in vitro: glucose transfer and utilization, O2 consumption, lactate and ammonia production. <i>Pediatr Res</i> 17 , 729-732.
501 502 503	Heinon	en S, Taipale P & Saarikoski S. (2001). Weights of placentae from small-for-gestational age infants revisited. <i>Placenta</i> 22 , 399-404.
504 505 506 507	Huen I,	Morris DM, Wright C, Parker GJ, Sibley CP, Johnstone ED & Naish JH. (2013). R1 and R2 * changes in the human placenta in response to maternal oxygen challenge. <i>Magn Reson Med</i> 70 , 1427-1433.
508 509	Hupper	tz B. (2008). The anatomy of the normal placenta. <i>J Clin Pathol</i> 61, 1296-1302.
510 511 512 513	Ingram	E, Morris D, Naish J, Myers J & Johnstone E. (2017). MR Imaging Measurements of Altered Placental Oxygenation in Pregnancies Complicated by Fetal Growth Restriction <i>Radiology</i> , 162385.
514 515 516	Jansz M	1S, Seed M, van Amerom JF, Wong D, Grosse-Wortmann L, Yoo SJ & Macgowan CK. (2010). Metric optimized gating for fetal cardiac MRI. <i>Magn Reson Med</i> 64 , 1304-1314.
517 518 519 520	Junaid [·]	TO, Bradley RS, Lewis RM, Aplin JD & Johnstone ED. (2017). Whole organ vascular casting and microCT examination of the human placental vascular tree reveals novel alterations associated with pregnancy disease. <i>Sci Rep</i> 7 , 4144.
521 522 523 524	Kakoga	wa J, Sumimoto K, Kawamura T, Minoura S & Kanayama N. (2010). Noninvasive monitoring of placental oxygenation by near-infrared spectroscopy. <i>Am J Perinatol</i> 27, 463-468.
525 526 527 528	Kaufma	nnn P, Bruns U, Leiser R, Luckhardt M & Winterhager E. (1985). The fetal vascularisation of term human placental villi. II. Intermediate and terminal villi. <i>Anat Embryol (Berl)</i> 173, 203-214.
529 530 531 532	Kiernar	MF, Barrie A, Szkolar J, Mills TA & Wareing M. (2010). Functional evidence for oxygensensitive voltage-gated potassium channels in human placental vasculature. <i>Placenta</i> 31, 553-555.
533		

534 535 536	Kingdom J, Huppertz B, Seaward G & Kaufmann P. (2000). Development of the placental villous tree and its consequences for fetal growth. <i>European journal of obstetrics, gynecology, and reproductive biology</i> 92, 35-43.
537 538 539 540 541	Lecarpentier E, Bhatt M, Bertin GI, Deloison B, Salomon LJ, Deloron P, Fournier T, Barakat AI & Tsatsaris V. (2016). Computational Fluid Dynamic Simulations of Maternal Circulation: Wall Shear Stress in the Human Placenta and Its Biological Implications. <i>PLoS One</i> 11, e0147262.
542 543 544	Leiser R, Luckhardt M, Kaufmann P, Winterhager E & Bruns U. (1985). The fetal vascularisation of term human placental villi. I. Peripheral stem villi. <i>Anat Embryol (Berl)</i> 173, 71-80.
545 546 547	Link G, Clark KE & Lang U. (2007). Umbilical blood flow during pregnancy: evidence for decreasing placental perfusion. <i>Am J Obstet Gynecol</i> 196 , 489 e481-487.
548 549 550 551	Luckhardt M, Leiser R, Kingdom J, Malek A, Sager R, Kaisig C & Schneider H. (1996). Effect of physiologic perfusion-fixation on the morphometrically evaluated dimensions of the term placental cotyledon. <i>J Soc Gynecol Investig</i> 3 , 166-171.
552 553 554	Marcos HB, Semelka RC & Worawattanakul S. (1997). Normal placenta: gadolinium-enhanced dynamic MR imaging. <i>Radiology</i> 205 , 493-496.
555 556 557 558 559	Mayhew TM, Manwani R, Ohadike C, Wijesekara J & Baker PN. (2007). The placenta in preeclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances. <i>Placenta</i> 28 , 233-238.
560 561 562	Meschia G, Battaglia FC & Bruns PD. (1967). Theoretical and experimental study of transplacental diffusion. <i>J Appl Physiol</i> 22 , 1171-1178.
563 564 565	Nicolaides KH, Economides DL & Soothill PW. (1989). Blood gases, pH, and lactate in appropriate- and small-for-gestational-age fetuses. <i>Am J Obstet Gynecol</i> 161 , 996-1001
566 567 568 569	Ochiai N, Tashiro C, Okutani R, Murakawa K, Kinouchi K & Kitamura S. (1999). Improved oxygen delivery to the fetus during cesarean section under sevoflurane anesthesia with 100% oxygen. <i>J Anesth</i> 13 , 65-70.
570 571 572 573	Pardi G, Buscaglia M, Ferrazzi E, Bozzetti P, Marconi AM, Cetin I, Battaglia FC & Makowski EL. (1987). Cord sampling for the evaluation of oxygenation and acid-base balance in growth-retarded human fetuses. <i>Am J Obstet Gynecol</i> 157 , 1221-1228.
574	

575 576 577	Pearce I	P, Brownbill P, Janacek J, Jirkovska M, Kubinova L, Chernyavsky IL & Jensen OE. (2016). Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries <i>PLoS One</i> 11, e0165369.
578 579 580 581	Perazzo	lo S, Lewis RM & Sengers BG. (2017). Modelling the effect of intervillous flow on solute transfer based on 3D imaging of the human placental microstructure. <i>Placenta</i> 60, 21-27.
582 583	Pinnock	a. (2002). Fundamentals of Anaesthesia. Greenwich Medical Media Ltd, London.
584 585 586	Plitman	Mayo R, Charnock-Jones DS, Burton GJ & Oyen ML. (2016a). Three-dimensional modeling of human placental terminal villi. <i>Placenta</i> 43 , 54-60.
587 588 589 590	Plitman	Mayo R, Olsthoorn J, Charnock-Jones DS, Burton GJ & Oyen ML. (2016b). Computational modeling of the structure-function relationship in human placental terminal villi. <i>J Biomech</i> 49, 3780-3787.
591 592 593 594 595	Postigo	L, Heredia G, Illsley NP, Torricos T, Dolan C, Echalar L, Tellez W, Maldonado I, Brimacombe M, Balanza E, Vargas E & Zamudio S. (2009). Where the O2 goes to: preservation of human fetal oxygen delivery and consumption at high altitude. <i>J Physio</i> 587 , 693-708.
596 597 598 599	Quilliga	n EJ, Vasicka A, Aznar R, Lipsitz PJ, Moore T & Bloor BM. (1960). Partial pressure of oxygen in the intervillous space and the umbilical vessels. <i>Am J Obstet Gynecol</i> 79 , 1048-1052.
600 601 602	Risau W	/ & Rubanyi GM. (2000). <i>Morphogenesis of endothelium</i> . Harwood Academic, Amsterdam, The Netherlands.
603 604 605 606	Roth CJ,	Haeussner E, Ruebelmann T, Koch FV, Schmitz C, Frank HG & Wall WA. (2017). Dynamic modeling of uteroplacental blood flow in IUGR indicates vortices and elevated pressure in the intervillous space - a pilot study. <i>Sci Rep</i> 7 , 40771.
607 608 609 610	Schaaps	5 JP, Tsatsaris V, Goffin F, Brichant JF, Delbecque K, Tebache M, Collignon L, Retz MC & Foidart JM. (2005). Shunting the intervillous space: new concepts in human uteroplacental vascularization. <i>Am J Obstet Gynecol</i> 192, 323-332.
611 612 613	Schneid	er H. (2015). IFPA senior award lecture: Energy metabolism of human placental tissue studied by ex vivo perfusion of an isolated cotyledon. <i>Placenta</i> 36 Suppl 1, S29-34.
614		

615 616	Schneider H & Huch A. (1985). Dual in vitro perfusion of an isolated lobe of human placenta: method and instrumentation. <i>Contrib Gynecol Obstet</i> 13, 40-47.
617 618 619	Serov AS, Salafia CM, Filoche M & Grebenkov DS. (2015). Analytical theory of oxygen transport in the human placenta. <i>J Theor Biol</i> 368 , 133-144.
620 621 622 623	Shao X, Liu D, Martin T, Chanlaw T, Devaskar SU, Janzen C, Murphy AM, Margolis D, Sung K & Wang DJJ. (2017). Measuring human placental blood flow with multidelay 3D GRASE pseudocontinuous arterial spin labeling at 3T. <i>J Magn Reson Imaging</i> .
624 625 626 627 628	Sharma D, Shastri S, Farahbakhsh N & Sharma P. (2016). Intrauterine growth restriction - part 1. The journal of maternal-fetal & neonatal medicine: the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet 29, 3977-3987.
629 630 631 632	Sibley CP, Birdsey TJ, Brownbill P, Clarson LH, Doughty I, Glazier JD, Greenwood SL, Hughes J, Jansson T, Mylona P, Nelson DM & Powell T. (1998). Mechanisms of maternofetal exchange across the human placenta. <i>Biochem Soc Trans</i> 26 , 86-91.
633 634 635 636 637 638	Sibley CP, Pardi G, Cetin I, Todros T, Piccoli E, Kaufmann P, Huppertz B, Bulfamante G, Cribiu FM, Ayuk P, Glazier J & Radaelli T. (2002). Pathogenesis of intrauterine growth restriction (IUGR)-conclusions derived from a European Union Biomed 2 Concerted Action project 'Importance of Oxygen Supply in Intrauterine Growth Restricted Pregnancies'-a workshop report. <i>Placenta</i> 23 Suppl A, S75-79.
639 640 641 642	Sorensen A, Peters D, Simonsen C, Pedersen M, Stausbol-Gron B, Christiansen OB, Lingman G & Uldbjerg N. (2013). Changes in human fetal oxygenation during maternal hyperoxia as estimated by BOLD MRI. <i>Prenatal diagnosis</i> 33 , 141-145.
643 644 645	Stave U. (1970). <i>Physiology of the perinatal period; functional and biochemical development in mammals</i> . Appleton-Century-Crofts, New York,.
646 647 648	Templeton A & Kelman GR. (1976). Maternal blood-gases, PAo2Pao2), hysiological shunt and VD/VT in normal pregnancy. <i>Br J Anaesth</i> 48 , 1001-1004.
649 650	UNICEF. (2004). Low Birthweight: Country, Regional and Global Estimates. UNICEF.
651 652	Wang Y & Zhao S. (2010). In <i>Vascular Biology of the Placenta</i> . San Rafael (CA).
653 654 655	Wilkening RB & Meschia G. (1983). Fetal oxygen uptake, oxygenation, and acid-base balance as a function of uterine blood flow. <i>Am J Physiol</i> 244 , H749-755.

656 657 658	Yu KM. (1992). [Relation between placental morphometry and fetal growth]. <i>Zhonghua fu chan ke za zhi</i> 27, 217-219, 250.
659 660 661 662	Zamudio S, Torricos T, Fik E, Oyala M, Echalar L, Pullockaran J, Tutino E, Martin B, Belliappa S, Balanza E & Illsley NP. (2010). Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth. <i>PLoS One</i> 5 , e8551.
663	
664	
665	Additional Information
666 667	All authors approved the final version of the manuscript and all persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.
668	Competing Interests
669	The authors declare no conflicts of interest
670	Funding
671	Funding was provided by the Medical Research Council, MR/N011538/1
672	
673	
674	
675	
676	
677	
678	
679	
680	
681	

Table 1 In vivo IVS and ex vivo umbilical artery and vein PO_2 values in term normal human placentas

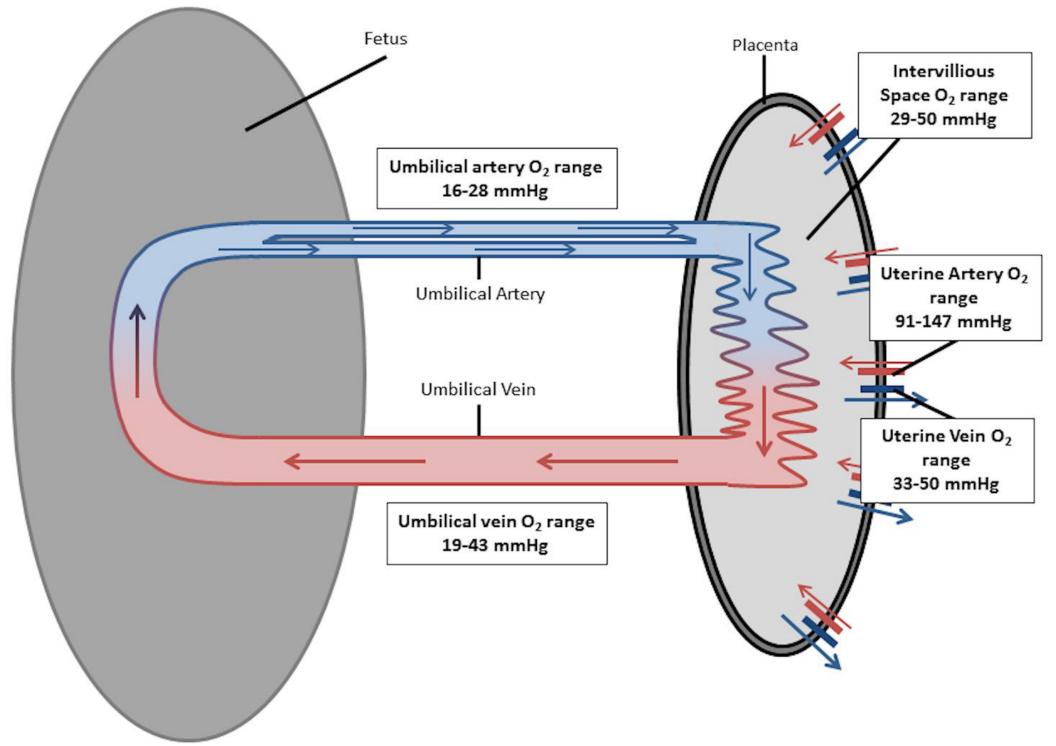
	PO2 values, mmHg (# of Samples)	Type of measureme nt	Time of measureme nt	Reference
Pre-partum IVS	34 (n=4)	18 Gauge needle	Before placental shedding	(Quilligan et al., 1960)
	30 (n=12)	21 Gauge needle	Before placental shedding	(Fujikura & Yoshida, 1996)
Post-partum IVS	49 (n=12)	18 Gauge needle	N/A	(Haruta <i>et al.</i> , 1986)
	33 (n=6)	Uterine vein analysis	Post placental shedding	(Sibley et al., 2002)
	29 (n=9)	21 Gauge needle		(Schaaps et al., 2005)
	30 (n=15)	Uterine vein analysis		(Kakogawa <i>et al.</i> , 2010)
Range, mmHg	29 – 49			
Weighted mean ± SD, mmHg	34 ± 9			
Umbilical artery	28 (n=53)	Cordocente sis	Pre caesarean section	(Nicolaides et al., 1989)
	18 (n=681)	N/A	Post placental shedding	(Dudenhausen et al., 1997)
	21 (n=60)	21 Gauge needle		(Daniel et al., 1998)
	30 (n=18)	Blood Gas analyser		(Ochiai et al., 1999)
	16 (n=1281)	N/A		(Arikan <i>et al.</i> , 2000)
	19 (n=46)	N/A		(Link et al., 2007)
	26 (n=60)	N/A		(Fardiazar et al., 2013)
	23 (n=46)	N/A		(Di Tommaso et al., 2014)
Range, mmHg	16 - 30			
Weighted mean ± SD, mmHg	18 ± 4			
Umbilical vein	35 (n=14)		Pre	(Pardi <i>et al.</i> , 1987)

	43 (n=143)	Cordocente sis	caesarean section	(Nicolaides et al., 1989)
	31 (n=60)	21 Gauge needle		(Daniel et al., 1998)
	18 (n=18)	Blood Gas analyser	Post	(Ochiai <i>et al.</i> , 1999)
	19 (n=9)	21 Gauge needle	placental shedding	(Schaaps et al., 2005)
	25 (n=46)	N/A	shedding	(Link <i>et al.</i> , 2007)
	29 (n=300)	N/A		(Bernardez-Zapata & Moreno-Rey, 2014)
	27 (n=46)	N/A		(Di Tommaso <i>et al.</i> , 2014)
Range, mmHg	19 – 43			
Weighted mean ± SD, mmHg	32 ± 8			
Uterine Artery	97 (n=50)	Electrode	Post placental shedding	(Blechner et al., 1968)
	147 (n=18)	Blood Gas analyser		(Ochiai <i>et al.</i> , 1999)
	91 (n=168)			(Postigo et al., 2009)
Range, mmHg	91 – 147			
Weighted mean ± SD, mmHg	97 ± 22			
Uterine Vein	33	Electrode	Post placental shedding	(Stave, 1970)
	50 (n=6)	Blood Gas analyser		(Sibley et al., 2002)
	46 (n=10)	21 Gauge needle	Before placental shedding	(Fujikura & Yoshida, 1996)
Range, mmHg	33-50			

- Figure 1 Simplified schematic of the maternal and fetal placental circulations, showing the major compartments and published attributed *in vivo* oxygen values (See Table 1).
- Figure 2 Measuring oxygen distribution in the human placenta. A) Demonstrating a normal placenta imaged using oxygen-enhanced (OE) MRI techniques. This shows an axial T2-weighted structural MR image through maternal abdomen demonstrating the uterine cavity, fetus (abdominal cross-section) and placenta with a superimposed dR1 map showing the placental region of interest (ROI). B) Soluble oxygen measurement of the IVS in the *ex vivo* dually perfused placental lobule via a flow- through cell (black
- 698 box top-left) and via an optode needle inserted into the placental tissue
- Figure 3 A) A transmission electron micrograph of terminal villi showing microvillous 699 membrane (MVM), an underlying capillary (CAP), a syncytiotrophoblast (S), 700 trophoblast (T) and endothelium (E). B) Projection of an imaged stack (wholemount 701 confocal microscopy); stained with lectin fitce-AAL from the endothelium (green), 702 rhodamine-psa for the stroma (red) and biotin-dsl for the trophoblast (violet); the dsl 703 704 was detected with streptavidin 680; imaging was on a Leica Sp5 confocal microscope, presented as an imaged stack. C) Villous microcirculation of a term normal placenta 705 perfused with a UEA lectin linked to biotin and detected with streptavidin 800. D) 706 707 microCT image of a vascular corrosion cast of a term placenta, infused through the umbilical artery with Batson's resin, which was then set and underwent tissue corroded 708 709 steps for several days in 20% (w/v) potassium hydroxide.
 - **Figure 4** Mathematical modelling of human placental perfusion and oxygenation at different scales. A) variability of perfusion in a feto-placental vascular network (colour scale shows pressure for chorionic vessels and relative capillary flow for terminal capillaries, plotted as spheres) (Clark *et al.*, 2015); B) distribution of a passive solute in the intervillous space of a single placental lobule (Chernyavsky *et al.*, 2010); C) oxygen flux distribution over the capillary and syncytiotrophoblast surfaces of a single terminal villus (Pearce *et al.*, 2016); D) microscopic flow in the intervillous space(Perazzolo *et al.*, 2017). Images are reproduced with permission, subject to the respective copyrights.

711

712


713

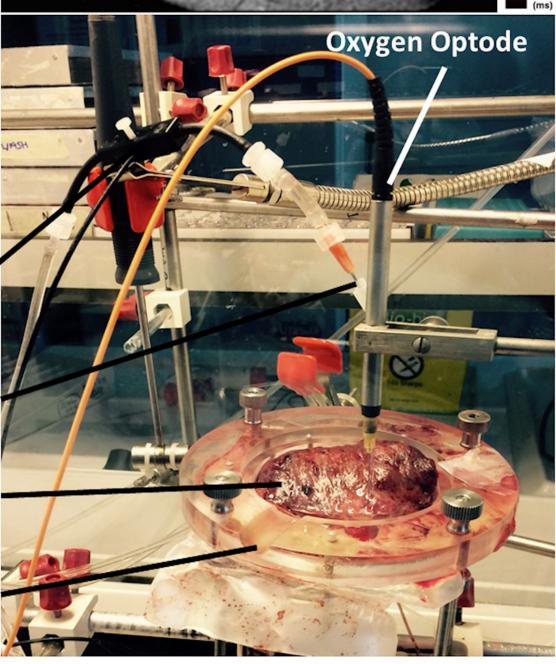
714

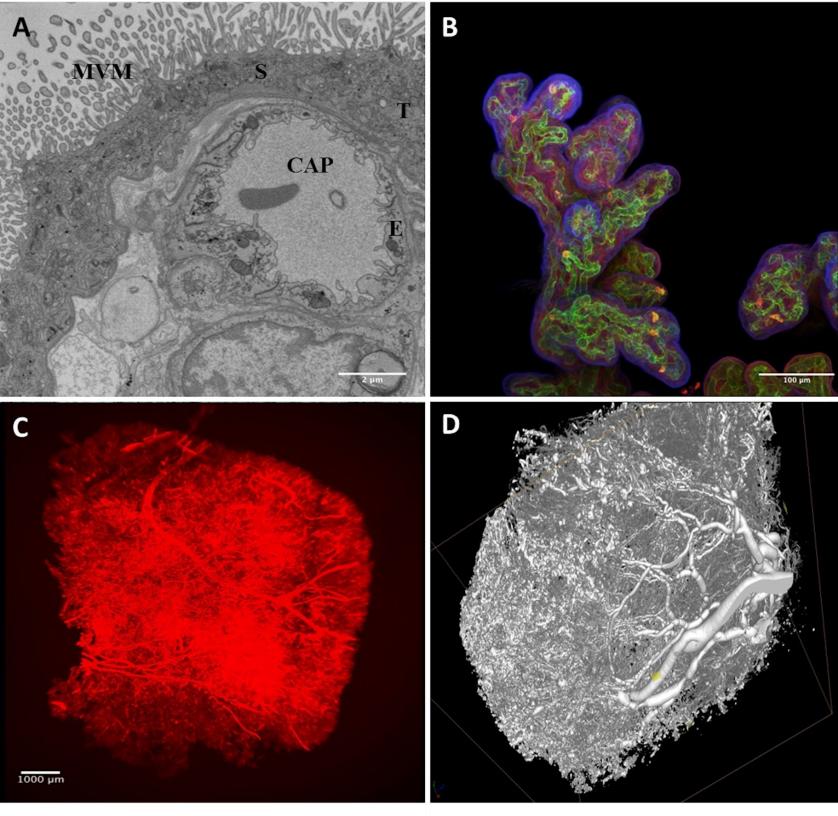
715

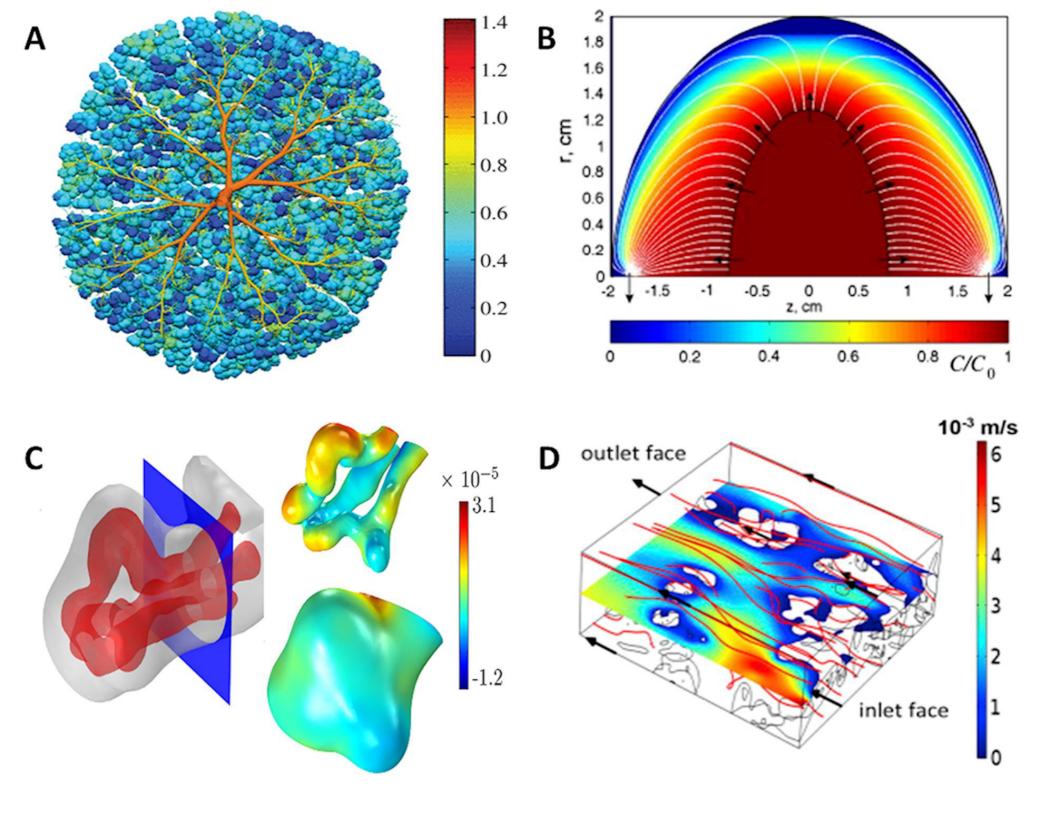
716

717

В


Α


Pre-IVS Oxygen Chamber


Maternal Cannula

Decidual Surface

Placental Platform

Accuracy of oxygen measurement