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ABSTRACT 

The through-thickness thermal conductivity of unidirectional CFRP laminates was examined by 

means of a steady-state technique based on the Guarded Hot Plate (GHP) method. By establishing the 

one-dimensional heat flow through the sample and measuring the heat flux the thermal conductivity 

was determined. To validate the technique, measurements were conducted in two different materials 

with well-defined values. PTFE and Fused Silica samples were employed as reference materials. 

Calibration runs showed good correlation with the expected literature values for both of the reference 

materials. Unidirectional CFRP laminates with a fibre volume content of 57% were manufactured 

using Vacuum Assisted Liquid Resin Infusion in three different thicknesses to assess the measuring 

capabilities of the apparatus. Consistent results were obtained for all three laminate  thicknesses thus 

validation the efficiency and accuracy of the technique.   

 

1 INTRODUCTION 

 The thermal response of CFRP (Carbon Fibre Reinforced Polymers) materials has received 

significant scientific interest during recent years due to the increasing use of these materials in 

aerospace and automotive applications, which in turn has created new scientific and technical 

challenges. Unlike metals and other isotropic materials, the anisotropic properties including thermal 

conductivity of CFRP, impede their incorporation in applications in which thermal loads can be 

imposed on the structure. Their poor transverse and through-thickness direction thermal conductivity, 

compared to the values encountered parallel to the fibre direction, impedes the heat dissipation in the 

bulk material resulting in local heating and thermal degradation of the composite laminate [1, 2].  
The wind turbine industry has only recently started embracing large scale usage of CFRPs in the 

principal load carrying elements of wind turbine blades. This is to achieve longer and lighter blades, 

compared with blades made from traditional GFRP (Glass Fibre Reinforced Polymer), allowing for 

higher rated power output of wind turbines [3]. As the blades become longer an increase in the overall 

height of the wind turbine needs to be realized to incorporate them into the design, and current wind 

turbines reaching heights (ground to blade tip in upper position) up to 230m with future trends 

suggesting even larger machines. 

 Such tall structures exhibit higher lightning susceptibility and when adding electrically 

semiconducting materials such as CFRP to the blade structure new challenges are introduced for the 

wind turbine lightning protection systems since modern multi-MW wind turbines are expected to 

receive 1-2 lightning strikes each year [4-6]. To minimize the risk of internal flashovers, equipotential 

bonds between the down conductor and the CFRP sparcaps of the wind turbine blades need to be 

realized along the length of the blades. In these equipotential bonds electric current is introduced into 

the structure allowing current flow through the main CFRP laminate/sparcap of the blade. High 

thermal loads attributed to Joule heating are induced in these electrical connections. Considering the 

poor electrical conductivity of CFRP in the transverse and through-thickness directions, high 

temperature gradients can be observed in these directions. Taking into account that the thermal 

conductivity is also very low (much lower than in the fibre direction) in these directions heat 
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dissipation is constricted, and as a result localized thermal damage can degrade the properties of the 

equipotential bond/structure that can deteriorate the performance of the lightning protection system as 

well as the structural integrity.  

Similarly to the electrical conductivity, CFRP materials exhibit anisotropic thermal conductivity. 

Factors such as fibre volume content, laminate layup as well as the properties of constituent materials 

affect the thermal conduction mechanism. Thus, phonon scattering which is the predominant thermal 

conduction mechanism in CFRP differs in the carbon fibres and the polymer matrix, since phonons 

can travel faster through the crystalline structure of carbon fibres compared to the amorphous polymer 

[7, 8].  A key aspect of wind turbine CFRP sparcaps is that they are usually manufactured using 

vacuum infusion and they feature additional layers of glass fibres placed between carbon layers as well 

as glass fibre stitches that help to ease the resin flow. Considering that glass fibres have similar 

thermal conductivity to epoxy resins, between 0.2-0.3 W/mK, their presence  influence the heat 

conduction in the transverse and through-thickness directions [9].   

   Several experimental techniques have been developed to determine the thermal conductivity of 

solids. These techniques can be categorized either as steady-state (Guarded Hot Plate) or transient 

(laser flash, Transient Hot strip, Hot Disk etc.) [1, 7, 10-15]. Variations or discrepancies can be 

observed between the values obtained using the two different techniques, and therefore  accurate 

methods need to be developed [8]. A significant advantage of the steady-state techniques is that, unlike 

transient methods, no additional information about the examined material such as specific heat is 

required.  

The purpose of this study is to characterize the through-thickness thermal conductivity of CFRP 

used in wind turbine blade applications. To achieve these measurements a novel measuring method 

was developed.  

 

2 EXPERIMENTAL METHODOLOGY 

2.1 Sample preparation 

A two-component epoxy system supplied by BASF was used as matrix material. The system 

consisted of Baxxores® ER 5300 epoxy resin and Baxxodur® EC 5310 curing agent. The components 

were mixed by weight at a ratio of 100/20 according to the specifications of the manufacturer. A 

unidirectional non-crimp carbon fabric, supplied by SAERTEX GmbH & Co, Germany, with Zoltek 

Panex 35 50K carbon fibres and an areal weight of 852g/m2 was used as reinforcement. The fabric 

featured glass fibre stitching of 24g/m2. Unidirectional laminates consisting of 2, 5 and 10 plies were 

manufactured by means of Vacuum Assisted Liquid Resin Infusion. The infused laminates were cured 

at 70oC for 6 hours, which is the recommended curing profile specified by the supplier. The fibre 

volume content, which was determined using optical microscopy (Fig. 1), was approximately 57% . 

Disk shaped samples, with a diameter of 50mm, were made from the manufactured plates using 

waterjet cutting. 

 

 
 

Figure 1: Micrograph for the [0o]5 laminate corresponding to 57% fibre content. 
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2.2 Experimental setup 

To obtain the thermal conductivity in the through-thickness direction, CFRP samples were placed 

between two Brass substrates (Fig. 2). By applying a heat flux from the bottom substrate (hot plate) 

and by constantly extracting heat from the heat sink a one-dimensional heat flow can be achieved, 

assuming that no lateral heat losses exist. Steady-state conditions were assumed when the temperature 

difference between the substrates was not exhibiting fluctuations higher than ±0.5oC for 30min.   

A heating element rated at 2W at 12V was connected with a DC voltage source to provide the heat 

flow. To accurately measure the heat flux a thin film flux sensor, HFS-4, OMEGA Engineering, 

United Kingdom was utilised. The flux sensor had a nominal thickness of 180μm and it was calibrated 

at 1.6μV/W/m2 of sensitivity. The heat flux q was calculated with the use of Eq. (1). 
 

                                                                 q=V/S                                                                                 (1) 
 

Where V is the sensor’s DC voltage in μV and S the sensitivity in μV/W/m2. 

 

 
 

Figure 2: Schematic representation of the apparatus whithout the insulation. 

 

The DC voltage measurements were logged through the Agilent Technologies 34401A multimeter. 

Temperature readings were achieved using K-type thermocouples connected to a Pico Technologies 

TC-08 data logger. To avoid lateral heat losses PMI (Polymethylacrilimide), Rohacell, foam was 

attached around the hot plate setup. As a cooling fluid an Ethylene Glycol mixture was circulating 

through the cooling block via a Heto CBN 8-30 cold bath/circulator. The temperature of the cooling 

fluid was controlled through the built-in thermostat.  

To promote reproducibility of the measurements a M6 bolt was utilized to apply constant pressure. 

By applying 1Nm of torque to the bolt an axial force of ˜555N was generated resulting in 0.28MPa of 

applied pressure. Mitigation of thermal resistance is crucial to obtain accurate results, as the sample 

surface roughness can lead to the formation of air gaps in the interface between the sample and the 

substrates. Thus to eliminate these factors both of the brass substrates were polished to achieve a 

surface roughness not greater that 5μm RA.  

Finally a thermally conducting paste, Electrolube HTSP, with a thermal conductivity value of 3 

W/mK was utilised to increase the thermal conductance and mitigate thermal resistance between the 

sample and the substrates. The samples were not polished to avoid any removal of material that might 

alter their morphology. 

2.3 Validation of the technique 

To validate the  measuring performance of the apparatus prior to its use, conducting measurements 

were carried out using materials with well-defined values, also known as reference materials. In this 

study two reference materials were used to obtain a two point calibration. PTFE 

(Polytetrafluoroethylene), supplied by RS Components, and Fused Silica (quartz glass), supplied by 

UQG Optics, were employed (Table 1). The thickness of both reference samples was 6mm. 

https://en.wikipedia.org/wiki/Polytetrafluoroethylene
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Calibration runs were conducted at a heat flux level of approximately 1000 W/m2 for both materials to 

assure consistency in the measurement conditions. By applying a voltage of 12 V to the heating 

element the abovementioned heat flux was introduced to the sample. Constant heat extraction was 

achieved through the heat sink/cooling system. The obtained values for the reference materials are 

listed in the table below (Table 1). 

 

Material 

Thermal Conductivity 

(literature) 

(W/mK) 

Thermal Conductivity 

(measured)  

(W/mK) 

PTFE 0.25  0.261±0.004 

Fused 

Silica 
1.38 1.196±0.08 

 

Table 1: Thermal conductivity values of reference materials at 20oC 

 

By comparing the measured values with values found in the literature a deviation of 4.72% can be 

observed for the PTFE and 13.3% for the Fused Silica respectively. The higher percentage of deviation 

observed in the Fused Silica is assumed to be due to an increase of thermal resistance 

3 RESULTS AND DISCUSION 

3.1 CFRP through-thickness thermal conductivity 

Measurements in the through-thickness direction were conducted on the UD CFRP samples 

consisting of 2, 5 and 10 plies. Three samples were cut from each of the manufactured plates to 

eliminate any influence from variations of the fibre volume content, each sample was tested at least 

twice. From the obtained results listed in the table below (Table 2) it is seen that the thermal 

conductivity values measured were consistent for all three laminate thicknesses with minor variations. 

 

Sample 
Thermal Conductivity  

(W/mK) 

[0o]2 0.633±0.098 

[0o]5 0.655±0.044 

[0o]10 0.695±0.042 
 

Table 2: Through-thickness thermal conductivity of CFRP 
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Figure 3: Plot of ΔΤ/Q versus Δx for the CFRP samples (three different thicknesses). 

 

A key parameter in thermal conductivity measurements is to achieve a high thermal conductance 

(h) between the substrates and the sample. Thermal conductance estimations can be achieved by 

conducting measurements in samples with different thickness by plotting ΔT/Q versus Δx. This is 
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shown in Fig. 3 from which 1/h can be calculated. In this case the thermal conductance h was found to 

be 1.1 kW/m2K. The mean heat flux during the measurements was 1380W/m2. 

 

Estimations of the measurement uncertainty were achieved by calculating the temperature drop in 

the interface between the brass substrate and the sample since the addition of the flux sensor and the 

thermal paste (Fig. 4) can interfere with the measurement of the temperature drop across the samples 

thickness, ΔΤ. Knowing the thickness of each component and its thermal conductivity value (Table 3) 

in conjunction with temperature readings from T1 and T1 thermocouples, estimations of the 

uncertainty were achieved depending on the applied heat flux. 

 

   
 

Figure 4: Schematic representation of the interface between substrate and sample (dimensions not to 

scale). 

 

 

Component/Material Brass substrate Thermal paste Flux sensor 

k (W/mK) 1051 32 9.523 

1 Literature value 
2 From manufacturer 
3 Calculated based on the thermal resistance provided by the manufacturer 

 

Table 3: Thermal conductivity values of interface constituents. 

 

Based on the methodology described above, the uncertainties were estimated to 15.5% for the 2-ply, 

6.68% for the 5-ply, and 6% for the 10-ply laminate respectively. While the uncertainty for the 5 and 

10-ply laminates is quite similar, the measurements for the 2-ply laminate showed a higher percentage 

of deviation.   

 

4 CONCLUSIONS 

A novel technique for measuring the thermal conductivity has been presented. Whilst the technique 

is simple, it has been shown to be robust and able to provide accurate results for CFRPs and polymer 

composites. By conducting measurements in samples of different thicknesses similar results were 

obtained, thus verifying the applicability of the technique over a wide range of sample thicknesses. 

Good interfacial conductance was achieved with the use of a silicone based heat transfer paste, which 

also helped to mitigate the influence of sample surface roughness. The obtained thermal conductivity 

values for the manufactured CRFP samples exhibit good correlation with values found in literature for 

PAN-based CFRP with similar fibre volume content. The existence of glass fibre stitching does not 

seem to affect the heat conduction in the through thickness direction since its fibre volume fraction is 

low compared to volume fraction of the carbon fibres. Minor alteration in the design of the apparatus 

will enable investigation of the transverse thermal conductivity, and this is planned for future research. 
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