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This paper proposes a methodology for shape optimization of the starting cage of a line start permanent magnet synchronous motor
motor with the aim to improve its synchronization performance. The parameters of the machine are established from a field-circuit
model, where the magnetic field is simulated using a finite element method (FEM). A strategy for evaluating machine parameters
exploiting parallel computing is proposed. To facilitate the use of FEM package, bespoke procedures have been developed and model
parameterization applied with the aid of the scripting language Visual Basic. A particle swarm algorithm has been adapted for
design optimization purposes. The proposed strategy has been verified via test simulations.
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I. INTRODUCTION

HE global drive for energy efficiency inspired the search

for new types of permanent magnet synchronous motors
with the ability for line start. The development of such motors
depends on the availability of reliable methods for analysis,
design, and optimization. A particular challenge is to find a
cage shape allowing synchronization even under high inertia
load. With the aim to find a reliable methodology, in this paper
an accurate electromagnetic model has been derived in combi-
nation with a computationally efficient algorithm for solving
the resultant equations. The field-circuit model encompasses:
1) electromagnetic field equations taking into account the skin
effect in the cage bars; 2) a description of the driving circuit
including winding connection; and 3) mechanical formulation,
where the electromagnetic torque is expressed in terms of field
quantities.

The parameters resulting in the best starting performance
of the line start permanent magnet synchronous motor
motor (LSPMSM) are normally different to the optimal
design for synchronous operation (efficiency and power
factor) [1], [2], thus it is advisable to conduct a multiobjective
search to account for all conflicting requirements. This type
of optimization is very time consuming if full numerical
modeling is used; in this paper, efficient design strategies are
considered as well as ways of extracting motor parameters
from field solutions. An algorithm is developed to establish—
via parallel computation—such parameters, primarily the syn-
chronous torque and the synchronizing torque during starting.
The methodology first proposed in [2] has been adapted rely-
ing on numerical field solutions using finite-element modeling
at an imposed speed.

Various optimization methods were considered, including
an approach described in [3]. Following many tests and
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practical experience with numerical analysis, it was decided
that methods exploiting particle swarm optimization (PSO)
were most appropriate for the efficient design of the LSPMSM.

II. MODELING STRATEGY AND TECHNIQUES

In the design of LSPMSMs, various constraints must be
met and specific requirements satisfied regarding both steady-
state synchronous operation and asynchronous starting per-
formance. Lumped parameter models are typically used for
analysis [2]. Unfortunately, such models tend to be unreliable,
especially in the context of the transient state during starting;
hence, their usefulness is very limited for design optimization
purposes. This limitation provided motivation to search for
more accurate approaches based on field models. Originally
a sequential algorithm was applied, where a steady state
was reached via a simulation of a transient start-up phase.
In this algorithm, first the start-up and then the steady-state
parameters were established. Calculations were performed for
a given value of the load inertia Jz, specified with the help of
a coefficient k; defined by the ratio of the moment of inertia of
the load system to that of the rotor of the motor itself. To assess
the starting parameters of the motor, the maximum value kg
is used, above which the motor fails to synchronize. In order
to establish this maximum value, it is necessary to repeat
simulations with increasing values of k;. Finding the value
of kimax by these repetitive simulations of the motor start-
up results in unacceptably long computing times, in particular
as the number of necessary function calls is often unknown in
advance. Such sequential strategy may therefore be inefficient.

In the search for a computationally efficient approach,
it was therefore proposed to implement a parallel methodology
where the transient start-up and steady-state simulations are
performed simultaneously as two independent computational
processes. The relevant start-up parameters are assessed using
the approach described in [4], where the parameters are
evaluated based on the value of the synchronizing torque
Tgo defined as the asynchronous torque generated by the
cage winding at a speed close to the final operating speed
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Fig. 1. Finite-element mesh. (a) For starting. (b) For steady-state operation.

(here taken as 80% of the synchronous speed). The value of
this torque may be found using finite-element modeling at
a prescribed speed, i.e., neglecting the mechanical transient,
thus significantly reducing the computational effort required to
establish the component of the objective function representing
the synchronizing parameters of the machine.

Two possible strategies were considered: 1) based on two
discretization meshes for the two states (asynchronous and
synchronous) and 2) using identical meshes. Strategy 1) bears
a resemblance to an adaptive mesh refinement approach. The
mesh of the stator is the same for both modes of operation,
but the rotor area is discretized differently with a refined mesh
in the air gap region of the slot pitch (see Fig. 1).

Comparisons were made between the calculated start-up
parameters using the mesh optimized for the steady-state
simulations and values obtained from the mesh adapted so
as to better capture the transient performance during the start-
up period at 80% of the synchronous speed. The differences
were noticeable, reaching a few percent of the synchronizing
torque 7g9. Moreover, it was observed that using an adapted
mesh allowed for a reduction of computing times up to about
15%, depending on the level of magnetic saturation and related
number of iterations in the Newton—Raphson algorithm.

In the model dedicated to the steady-state operation [syn-
chronous mode (SM)] at synchronous speed, the dynamics of
the moving elements was considered assuming a relatively
small value of the load moment of inertia (k;, = 1) and
the rotor speed at the instant of switching ON equal to the
speed of the rotating field. This has allowed shortening of
the simulated transient associated with the switching ON of
the motor. A criterion was used for two simulation cycles
not to differ by more than 1% in terms of efficiency and the
power factor for the steady state to be assumed to have been
reached. A similar strategy was applied to the simulation of the
asynchronous state [asynchronous mode (ASM)] with imposed
speed. For both types of simulation (SM and ASM), a 2-D
formulation was used in terms of magnetic vector potential
and time stepping with the same time step Af.

It should be noted that in order to accomplish the desired
parallelization—and achieve the automation of the execution
of the relevant tasks—dedicated scripts had to be developed
associating the algorithms for field modeling at start-up and
steady state. Moreover, both algorithms have been linked to
the optimization routines explained later in this paper. The
overall concept of the design optimization of the LSPMSM is
explained in Fig. 2. The calculations presented here have been
performed for a thermally steady-state condition, i.e., constant
properties of permanent magnets and electric conductivities.
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Fig. 2. Proposed concept of design optimization of LSPMSM.

The inclusion of the end-ring effects is essential when using
2-D finite element method (FEM) models and the results
should be verified either by full 3-D analysis or by measure-
ments on a real machine. The 2-D FEM models developed
for the study presented in this paper had been originally
validated by measurements on a prototype of a motor with
round bars [5], and the method of estimating the end-ring
lumped parameters was then extended to include the drop-
shaped bars.

III. OPTIMIZATION ALGORITHM

Despite the implementation of the efficient strategy for code
parallelization, the optimization process remains computation-
ally time consuming due to the need for repetitive simulations
with the continuously varied cage parameters; hence the need
for an effective optimization algorithm. Many alternatives
were considered, including genetic [3], particle swarm [6] and
ant colony algorithms [7], as well as the less popular brain
storm [8], bat-inspired [9] and gray wolf optimizers [10].
Following intensive search and testing, it was decided to
rely on the well performing particle swarm approach, with
a modification of an added coefficient representing the swarm
center.

The PSO algorithm, inspired by the flocking and schooling
patterns of birds and fish, was first introduced in 1995 [11].
In the PSO, the swarm consists of particles. In the optimization
process, the particles move in the n-dimensional design space,
where n refers to the number of design parameters. Each
ith particle in the swarm is described by its position x’ and
velocity v’ representing the possible variant of the machine.
Each particle remembers its best position in previous time
steps xiL and the position of the leader x, which is the fittest
particle in the swarm. In the classical PSO method in the kth
time step, the position vector of the particle is derived from
the following formula:

X=X twr anE —x_ ) +one —x )
(1

where w 1is the inertia factor, x}‘ﬁ] is the position vector
in the previous step k — 1; ¢; and ¢ are the learning
coefficients, and r; and rp are the random numbers from the
range (0, 1) [12].

Since the original introduction of the classical PSO, this
population-based stochastic optimization approach has been
successfully applied to many engineering problems. The more
advanced applications include modifications aiming at improv-
ing the convergence and accuracy [13]-[15].

In this paper, a modified version has been utilized, adapted
to particular requirements of the design of electromechanical
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devices. In the proposed algorithm, a term is added to (1)
which describes the center of gravity of the swarm

373 (Xme — x4_}) (2)

where c3 is the learning factor, 3 is the random number, and
Xme 18 the vector of coordinates of the gravity of the swarm.
The vector x,,. is given by

N N
Xme = infi(x)/z fi(x) (3)
i=1 i=1

where fi(x) is the objective function and N is the number of
particles in the swarm.

The effectiveness of the modification of the PSO algorithm
was first highlighted in [15]. It was demonstrated that adding
a component representing the center of the mass of the swarm
helps to improve the convergence of the optimization process
of the LSPMSM, thus offers practical benefits, in particular
the shortening of computational times.

IV. CASE STUDY

In order to verify the effectiveness of the proposed strategy,
a particular LSPMSM has been considered whose stator comes
from a classical 3.5 kW general purpose induction motor;
details of the initial design may be found in [2].

The optimization task has been defined as a search for
such a shape of the starting cage rods which—with the
given dimensions and distribution of the rotor permanent
magnets—would maximize the previously defined parameter
ki, while maintaining high values of efficiency and power
factor. Magnetic field simulation was undertaken using com-
mercial software Maxwell assuming planar symmetry of the
machine, supplemented by parameterized shape descriptors
of the starting cage, and linked—via appropriate scripting—
with specially developed optimization routines. The algorithm
includes two 2-D FEM transient field simulations: 1) a model
to calculate efficiency # and power factor (PF) under the
rated load condition and 2) calculation of the synchronizing
torque Tgp (a torque generated at 80% of the synchronous
speed). As mentioned above, these simulations are carried out
in parallel.

The shape of the starting-cage bars has been described
by six dimensions defined in Fig. 3. It will be noted that
the introduction of the radii 71 and r, as design parameters
overspecifies the problem and unnecessarily complicates the
description of cage geometry; in practice, these radii are
selected by considering the cross-sectional area of the rotor
tooth at r = const so that r,,;, < r < ryin+hsk. Consequently,
in the formulated models, a parameter k,; has been introduced
describing the angular fill of the slot pitch by the rotor bar.
Through simple geometrical derivation, with the assumption of
rotor teeth sides being parallel under ry,;,, < r < ryin+hgi, the
radii r1 and r, may be easily calculated for a given value of k.

As a result of expressing the radii i and rp in terms
of k;, the number of components of the vector z of the
design parameters has been reduced to 5: z;7 = s, the
width of the slot opening, z2 = h, the depth of the slot
opening, z3 = hg defining the depth of the slot, z4 = 7y,
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Fig. 3. Design variables describing the shape of the cage bars.

circular bar radius (see Fig. 3), and z5 = k; the coefficient
introduced above. In the optimization algorithm, the design
parameters z describe different quantities with different ranges;
in the numerical implementation, these have therefore been
normalized [10] and the vector of actual design parameters z
replaced by a normalized vector x.

The design of permanent magnet machines usually involves
multiobjective optimization with multiple parameters and sev-
eral often conflicting constraints. Here the multiobjective opti-
mization problem has been transformed to a single objective
function, combining all objectives, defined as

e ) N )

1o COoS 9o Ty
where ¢; (i = 1, 2, and 3) are the weighting coefficients,
and 7, cos g, and Tp denote the initial values of efficiency,
power factor, and the torque 7go, respectively, assumed in the
first iterative step of the optimization process. The weights can

be adjusted to suit particular requirements; for the purpose of
this paper, they have been assumed to be identical, i.e., g; = 1.

V. RESULTS OF THE CAGE SHAPE OPTIMIZATION

Calculations were performed for the following values of the
control parameters of the swarm: N =40, ¢y = 1.2, ¢c; = 1.4,
and ¢3 = 1.2. The number of triangular elements in the
2-D FEM models for synchronous operation and asynchronous
operation of the machine were equal to about 35 000 and
39 000, respectively. The time step Ar for both models
was equal to time period/180. The average values of 7, PF,
and Tgo at the start of the iterations were: 92%, 0.94, and
25 Nm, respectively. These values were determined by taking
an average for several runs of the PSO initiation algorithm.

In order to validate the proposed strategy of evaluation of
the synchronizing torque in the optimization of the LSPMSM,
field simulations of the starting process were undertaken.

The shapes before and after optimization were consid-
ered (Fig. 4). Simulations of the start-up transient were exe-
cuted for various, gradually increasing, values of the moment
of inertia of the load that is for different values of the
coefficient k;, up to the maximum value k;;,y, above which
the motor fails to synchronize—i.e., rotor speed oscillations
do not fade away. Fig. 5 shows the speed waveforms for the
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Fig. 4. Initial and optimized shapes of the cage of the LSPMSM. (a) Initial

shape. (b) Optimized shape.
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Fig. 5. Speed waveforms during the start-up for the initial shape of the cage.
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Fig. 6. Speed waveforms during the start-up for the optimized cage.
initial parameters, whereas Fig. 6 contains the results for the
optimized machine. It can be seen that the optimized machine
can synchronize even for the value of kj;,.x = 48, whereas
the original motor would only do this for the maximum value
of k,‘ma x = 27.

VI. CONCLUSION

In this paper, an effective strategy has been put forward for
the LSPMSM design optimization. The start-up and operating
parameters are established using the numerical field modeling
techniques, while the optimization relies on the use of a
specially modified PSO approach.

The proposed methodology creates two independent design
tracks, both exploiting full field models of the machine. Thus,
both the starting and steady-state states are considered, aiming
at achieving the best compromise between optimal operating
parameters (efficiency and power factor) while delivering the
best starting performance (7gp). The simulations are conducted
in parallel, which allows the finite-element mesh to be defined
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to capture the specific properties of the field distributions in
both the synchronous and asynchronous states; this improves
the accuracy and by itself reduces the computation time by
around 15%.

The second innovation is an implementation of the modi-
fied PSO algorithm, complemented by dedicated scripting to
link the design process with commercial finite-element code,
incorporating a specific strategy for assessing the starting
performance. This has resulted in a unique integrated dedicated
system for design optimization of LSPMSM motors.

The effectiveness of the proposed methodology and com-
putational efficiency of the developed design algorithms were
verified by considering a particular case. It was shown that
a significant performance improvement was possible; in the
case studied, a 75% increase of the moment of inertia of
the load was made possible during starting without sacrificing
the steady-state performance.
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