

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s.

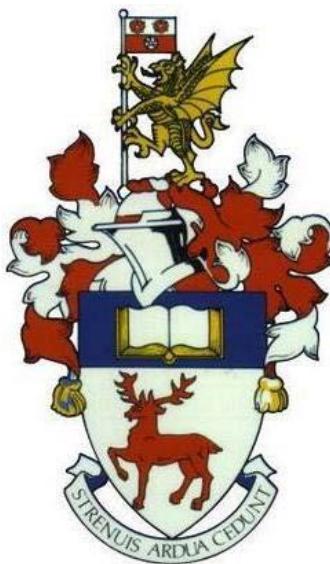
When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination.

UNIVERSITY OF SOUTHAMPTON

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES

Centre for Biological Sciences



Prediction of Avian Species Composition from Assemblage Structure

by

Jing-Lun Huang

Thesis for the degree of Doctor of Philosophy

January 2018

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES

Centre for Biological Sciences

Thesis for the degree of Doctor of Philosophy

Prediction of Avian Species Composition from Assemblage Structure

Jing-Lun Huang

This research focuses on how capitalising on community pattern, a character of ecological communities, could improve the predictability of community models, thus facilitating research in conservation. Patterns of communities not only depict phenomena but are also useful for predicting potential changes in species composition when patterns are governed by specific mechanisms. Most conventional prediction models do not take community pattern into consideration, despite the fact that incorporating community patterns into conventional models for predicting species richness and composition may enhance predictability. In this thesis, I assessed if incorporating two community patterns, nestedness and species co-occurrence, into conventional prediction models could improve the model predictability. Nestedness is a non-random species distribution pattern in which species in depauperate sites are contained in species-rich sites. Co-occurrence networks categorise species assemblages that reflect differential habitat requirements. I demonstrate that capitalising on nestedness provides a novel approach for improving the predictive power of species accumulation curves for species richness in unsampled areas. Specifically, while species richness is usually overestimated when

the data are inputted in random order (the conventional approach), species richness is underestimated when the data are inputted in nested order. Taking an average of projected species richness of these two inputting orders dramatically lowers the prediction error rate, indicating that using nestedness in addition to random orders can greatly improve the predictive power of species distribution curves. I also show that network analysis can improve the ability to correctly classify site groups, which is the basis for calculating the indicator species value, by accurately reflecting similar ecological requirements of co-occurred species. Indicator species identified by network modularity, comparing to conventionally based on the k-means clustering method, can more successfully assign unsampled sites to the correct species groups and recognise representative species for the groups. These methods were tested using both British and Taiwanese bird assemblages. Both case studies supported the above conclusions, suggesting that the methods developed in this thesis have real promise for conservation applications. However, further work is required to assess whether these two novel pattern-based approaches are similarly applicable in other geographic regions or taxas.

To my grandpa and grandma

Table of Contents

Table of Tables.....	ix
Table of Figures	xi
DECLARATION OF AUTHORSHIP.....	xiii
Acknowledgements.....	xv
Abbreviations.....	xvii
Chapter 1: General Introduction -- Ecological communities, community pattern and the theories derived from these patterns.....	1
1.1 Ecological communities and community patterns	1
1.2 Predictive models simulated at the community level	2
1.3 Predictive models based on environmental constraints	3
1.4 Community-level modelling based on interspecific interaction	6
1.5 Community-level modelling community structure based on quantitative analysis.....	8
1.5.1 Nestedness.....	8
1.6 Applying community orderliness to species richness prediction	10

Table of Contents

1.7 The importance of species identity in community composition prediction.....	12
1.7.1 Network and network modularity	14
1.8 Applying community identification to community composition prediction.....	16
1.9 Utilising orderliness of structure to predict species richness and composition	17
Chapter 2: The utility of nestedness structure for predicting species richness.....	19
2.1 Abstract	19
2.2 Introduction	21
2.2.1 Estimating species richness and species accumulation curves	21
2.2.2 Community structure and nestedness subset	23
2.2.3 Utilising nestedness to predict species richness	26
2.2.4 Aim of this study.....	26
2.3 Methods.....	28

Table of Contents

2.3.1	Avian data.....	28
2.3.2	Calculating nestedness	29
2.3.3	Species accumulation curve and extrapolation	30
2.4	Results	33
2.4.1	Nestedness of British avian assemblage.....	33
2.5	Species accumulation curve and data orderliness	36
2.6	Species richness extrapolation for Britain.....	37
2.7	Species richness extrapolation for 100 km squares.....	43
2.8	Discussion	51
2.8.1	Species accumulation curve with nestedness structure	51
2.8.2	Nestedness application in sampling design	52
2.8.3	Species accumulation curve functions for British avian species	53
Chapter 3:	Incorporating network analysis in the identification of indicator species of the British avian assemblage	57
3.1	Abstract	57
3.2	Introduction	58
3.3	Methods.....	65

Table of Contents

3.3.1	Species data	65
3.3.2	Network analysis data organisation	65
3.3.3	Site group detection with network modularity	65
3.3.4	Site group detection with k-means clustering versus network modularity	66
3.3.5	Sampling site and sampling site groups	67
3.3.6	Selecting the indicator species	68
3.4	Results	71
3.4.1	Subgroups detected by population modularity and k-means clustering	71
3.4.2	Subgroups detected by sampling modularity and k-means clustering	74
3.4.3	Indicator species selected by sampling modularity and k-means clustering	76
3.4.4	Using indicator species to predict site groups in unsampled sites	77
3.5	Discussion	86

Table of Contents

3.5.1	Consistency in site–species association in the indicator species analysis	86
3.5.2	Geographical distribution of site groups.....	87
3.5.3	Indicator species value as surrogate in plant and animal research.....	88
3.5.4	Identifying indicator species and umbrella species	90
Chapter 4:	Prediction of Taiwan avian assemblage with nestedness and network analyses.....	91
4.1	Abstract	91
4.2	Introduction	92
4.3	Methods.....	97
4.3.1	Study site	97
4.3.2	Research data	97
4.3.3	Calculating assemblage nestedness structure and network analysis.....	98
4.3.4	Calculating nestedness	98
4.3.5	Species accumulation curve and extrapolation	99
4.3.6	Network analysis data organisation	101

Table of Contents

4.3.7	Site group detection with network modularity	101
4.3.8	Site group detection with k-means clustering versus network modularity	102
4.3.9	Selecting the indicator species	102
4.3.10	Environmental associates of site groups	104
4.4	Results	106
4.4.1	Nestedness of Taiwan Breeding Bird Survey data	106
4.4.2	Nestedness and species accumulation curve	106
4.4.3	Subgroups detected by modularity versus clustering algorithms	109
4.4.4	Environmental associates of site groups	115
4.5	Discussion	119
Chapter 5:	General discussion.....	125
Appendix A.....		132
A.1	Nestedness order of 10 km sub-squares in Britain	132
A.2	Nestedness order of species in Britain	140
A.3	Nestedness order of 10 km sub-squares in Taiwan	141

Table of Contents

A.4 Nestedness order of species in Taiwan.....	143
Appendix B	145
B.1 Minimum set for estimating species number by assemblage structure	145
B.1.1 Randomly-select method	145
B.1.2 Nestedness-select method	146
B.2 Minimum sub-squares required for estimating species richness: result	147
Appendix C.....	148
C.1 Determining the number of clusterings in indicator species value analysis	148
Appendix D.....	152
D.1 Sensitivity analysis for sampling size of site group detecting.....	152
D.2 Sensitivity analyses for sampling size of site group detecting: result	152
Appendix E	154

Table of Contents

E.1 Species composition in determined network modules and k-means	
clusters in Britain.....	154
Appendix F	157
F.1 Species composition in determined network modules and k-means	
clusters in Taiwan.....	157
Glossary of Terms	170
List of References	173

Table of Tables

Table 2. 1 Comparison of error rate between nestedness order v.s random order under three functions.....	44
Table 3. 1 The indicator groups selected by sampling modularity and sampling clustering of British Trust of Ornithology (BTO) dataset.....	79
Table 4. 1 The indicator groups selected by modularity (left) and clustering (right) methods of Taiwan Breeding Birds Survey (BBS) data.....	112
Table 4. 2 Redundancy analysis of Taiwan Breeding Birds Survey (BBS) data.....	115
Table 4. 3 Akaike information criterion (AIC) value for the multinomial logistic regression.....	117
Table 4. 4 The model selection table for Taiwan Breeding Birds Survey (BBS) data.....	118

Table of Tables

Table of Figures

Figure 1. 1 A sample network graph composing two <i>components</i>	15
Figure 2. 1 A sample matrix representing a theoretical community.....	25
Figure 2. 2 Arrangement of British 100 km squares.....	28
Figure 2. 3 Frequency distribution of nestedness temperature for the fifty five 100 km square of Britain.....	34
Figure 2. 4 Presence-absence matrix of British avian assemblage.....	35
Figure 2. 5 Species richness at 10 km scale.....	36
Figure 2. 6 Species accumulation curves based on three orders of data arrangement...	37
Figure 2.7 Prediction of whole British avian species based on three species accumulation curve functions.....	40
Figure 2.8 Predicted total species richness for a combination of two dataset orders.....	41
Figure 2. 9 Error rate based on exponential accumulation curve function for fifty five 100 km squares with three level of sampling efforts.....	45
Figure 2. 10 Error rate based on logistical accumulation curve function for fifty five 100 km squares with three level of sampling efforts.....	47
Figure 2. 11 Error rate based on Clench accumulation curve function for fifty five 100 km squares with three level of sampling efforts.....	49
Figure 3. 1 Results of modularity detection and k-means clustering from the BTO dataset.....	73

Table of Figures

Figure 3. 2 Assigned module of sites based on 40% sampling and whole sampling of BTO dataset with randomtrap modularity algorithm.....	74
Figure 3. 3 Assigned cluster of sites based on 40% sampling and whole sampling of BTO dataset with k-means clustering method.....	75
Figure 3. 4 The predictive ability of the site group to the unsampled sites when predicted based on 40% sampling and under each of the five sampling modularity indicator species group.....	82
Figure 3. 5 The predictive ability of the site group to the unsampled sites when predicted based on 40% sampling and under each of five sampling clustering indicator species group.....	84
Figure 4. 1 The nestedness matrix of Taiwan Breeding Bird Survey data.....	107
Figure 4. 2 Prediction of Taiwan avian species based on four species accumulation curve functions with 410 sampling sites under two data arrangement orders.....	108
Figure 4. 3 Results of modularity detection and k-means clustering from the Taiwan BBS dataset.....	110
Figure 4. 4 Plot of redundancy analysis (RDA) for environmental associates with site groups of Taiwan BBS data.....	116

DECLARATION OF AUTHORSHIP

I, Jing-Lun Huang, declare that this thesis and the work presented in it are my own and has been generated by me as the result of my own original research.

Prediction of Avian Species Composition from Assemblage Structure

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at this University;
2. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;
3. Where I have consulted the published work of others, this is always clearly attributed;
4. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;
5. I have acknowledged all main sources of help;
6. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself;
7. None of this work has been published before submission.

Signed:

Date:

DECLARATION OF AUTHORSHIP

Acknowledgements

Firstly, I would like to thank my supervisors, Felix Eigenbrod and Patrick Osborne. Thanks for your supports, inspirations and encouragements all the way throughout my PhD life. I really appreciate the chance that I can learn from both of you. Thank you both for always giving me hope to carry on. Thank you Felix that you always let me keep my own pace on the research. Especially thank you for always being very understanding to my family circumstances and helped me to exclude many obstacles and problems. Thank you Patrick, your simple question became the pillar of my PhD research. It is really fun to answer this question and I really enjoy these processes.

Many thanks to Ms Lorraine Prout in Graduate School Office of Biological Sciences, for giving me so many logistical supports. Thanks to the School Heads, Dr Jeremy Webb and Dr Rob Ewing, who provided very generous and warm helps when I experienced the administrative issues.

I would like to thank to all who provided me academic supports in both Britain and Taiwan, they are: Dr Patrick Doncaster in University of Southampton, Dr Richard Field in University of Nottingham, Dr Tsung-Jen Shen in National Chun-Hsing University, Dr Anne Chao in National Tsing Hua University, Dr Pierre Legendre in Université de Montréal, Dr Tzung-Su Ding in National Taiwan University, Dr Laura Graham in University of Southampton and Dr Chi-Chien Kuo in National Taiwan Normal University. Also thanks to Dr Chris Jackson in University of Southampton, Dr I-Hsin, Sung in National Chiayi University, Dr Chi-Ling Chen and Dr Chien-Chung Chen in Taiwan Agricultural Research Institute for your advices and support in the early stage of developing my PhD research topic.

Acknowledgements

Many thanks to University of Southampton and Ministry of Education of Taiwan Government for funding my PhD study. Also many thanks to British Trust for Ornithology and Taiwan Endemic Species Research Institute for providing me very precious avian data to be the main base of my PhD research. Thanks to Dr Simon Gillings and Dr Humphrey Crick in British Trust for Ornithology, Dr Meng-Wen Fan, Mr Chie-Jen Ko and Ms Yu-Chen Lu in Taiwan Endemic Species Research Institute for helping me solve the data related issues.

My beloved Dad and Mum, thank you so much for your unconditional support. Also thanks to my Parents-in-law, I really appreciate your emotional and economical supports. Thanks to Emma Wright, Rebecca Spake, Judith Lock, Neil Gostling, Robert Holland and all the B85 Level-6 cohorts. Thanks for your academic and emotional support and helped me get used to the life in England very quickly. It is very lucky to meet you in Britain. Thanks to all who be in company with me in I-Lan, especially my Auntie and cousin Cathy, when I experience this special life sappm. Your companies give me strengths to carry on. Finally, the very special thanks to my dearest partner (in both family and research), and my three lovely children's Dad, Chi-Chien. Thanks for your supports all the ways. It is through you that I can complete this research and live in my dream life.

Abbreviations

Abbreviation	Term
AIC	Akaike's Information Criterion
BBS	Breeding bird survey
BTO	British Trust for Ornithology
CCA	Canonical correspondence analysis
Clh	Clench
Exp	Exponential
FM index	Fowlkes-Mallows index
IndVal	Indicator species value
Log	Logarithmic
NDVI	Normalized difference vegetation index
RDA	Redundancy analysis
SDMs	Species distribution models

Chapter 1: General Introduction -- Ecological communities, community pattern and the theories derived from these patterns

1.1 Ecological communities and community patterns

Community ecology is one of the major disciplines in ecology, focusing primarily on how and why specific species occur in one area and the interactions among species. Communities support the biodiversity that underpins ecosystem function, which regulates the ecosystem services on which human wellbeing depends (Cardinale et al. 2012, Balvanera et al. 2014, Allan et al. 2015). Changes to community structure therefore have repercussions on the survival and welfare of wildlife on earth including human beings. Therefore research on community pattern, which is one way to detect environmental change, matters. A community can be characterised by some attributes, including diversity, species richness, species-abundance relationships, and species composition (Morin 1999). The former three depict the numerical relations among species and provide the basis for comparison among communities. For example, alpha-diversity measures species richness and abundance in one site while beta-diversity is defined as species turnover among communities (Morin 1999, Socolar et al. 2016). Community composition, on the other hand, is the collection of species that occur in each community.

Community composition is typically determined by abiotic factors and biotic interactions among species (Watt 1947). For example, species composition of a grassland community can be affected by soil properties (abiotic factor) and competition among grass species for similar

resources (biotic factor). Patterns of community composition will vary with the processes involved in the formation of a community. Some well-known patterns of community include, for instance, the distribution-abundance relationship which describes how broadly distributed species are also more locally abundant (Holt et al. 2002); island biogeography theory which postulates that species number is determined by habitat size and remoteness (MacArthur 1967); and the species rank-abundance distribution which illustrates different descending distribution slopes (e.g. broken stick distribution, geometric series, and lognormal distribution) for species abundance in a community (Whittaker 1975). In general, the main goal of community ecology is not only to identify patterns of community, but also to elucidate the underlying mechanisms of these patterns.

1.2 Predictive models simulated at the community level

Patterns of communities not only depict phenomena but are also useful for predicting potential changes in species composition. This is particularly true when patterns are governed by specific mechanisms. If there are changes in the background mechanism, changes in the patterns can be predicted (D'Amen et al. 2017). For example, understanding how food resources are allocated would allow the prediction of the distribution of an animal which relies on particular food resources. There are various approaches for constructing species distribution models based on community patterns or the processes leading to them. Conventional methods rely on environmental attributes for the prediction of species distributions and are currently the most prevalent method for constructing species distribution models (Sinclair et al. 2010, Zimmermann et al. 2010, Ruhí et al. 2014). However, it has been argued that ecological processes, such as inter-specific interactions, are also crucial for building predictive models (Austin 2002, Godsoe and Harmon 2012) and that the determinants of species distributions may change over time (Skelly et al. 1999, Ackerly 2003). Different approaches have been

utilised for building species distribution models but there are strengths and weaknesses inherent in each method, which I review here.

1.3 Predictive models based on environmental constraints

The last few decades have seen much interest in the development of species distribution models (SDMs) (Guisan and Thuiller 2005, Elith and Leathwick 2009, Calabrese et al. 2014, Guillera-Arroita et al. 2015) and their application in the prediction of potential change in distribution following environment variations such as climate or land-use changes (Dirnböck 2003). Typically, SDMs associate environmental variables to distribution of individual species to help reveal how environmental factors may govern distribution of wildlife (Guisan and Zimmermann 2000). SDMs have proven effective in associating and predicting species' distributions (Zimmermann et al. 2010) and have been widely applied to ecological and environmental studies, such as the validation of biogeographical (Romdal et al. 2005, Randin et al. 2006, McInerny and Purves 2011) and ecological (Mouton et al. 2010, Meier et al. 2010, Godsoe and Harmon 2012) hypotheses, prediction of range expansion of invasive species (Ward 2006, Ficetola et al. 2007, Václavík et al. 2012), and provision of predictions and solutions for conservation related issues, such as potential shifts in species distributions following land use or global climate change (Pearson and Dawson 2003, Thuiller et al. 2004, Watt et al. 2011). SDMs could also be very useful for ecological surveys and for establishing conservation strategies. For example, the efficiency of detecting rare species (LeLay et al. 2010) can be improved by modelling potentially suitable habitat. SDMs also help predict how species distribution may shift with climate change, such as projection of amphibian and reptile distributions under global warming (Araújo et al. 2006).

SDMs are also known as environmental niche models or ecological niche models (Elith and Leathwick 2009). The environmental attributes that constrain the distribution of a species

reflect the preference and the realistic niche of a species (Austin 2007). The commonly used algorithms for SDMs are generalised linear models (GLM) (Thuiller 2003, Segurado and Araújo 2004, Pearson et al. 2006, Guisan et al. 2007, Oppel et al. 2012, García-Callejas and Araújo 2016), generalised additive models (GAM) (Lehmann et al. 2002, Thuiller 2003, Segurado and Araújo 2004, Pearson et al. 2006, Guisan et al. 2007, Oppel et al. 2012, García-Callejas and Araújo 2016), maximum entropy (Maxent) (Phillips et al. 2006, Guisan et al. 2007, Oppel et al. 2012, Merow et al. 2013, García-Callejas and Araújo 2016), artificial neural networks (ANN) (Thuiller 2003, Araújo et al. 2006, Olden et al. 2008, Larsen et al. 2012), classification and regression trees (CART) (Thuiller 2003, Olden et al. 2008), and boosted regression trees (BRT) (Oppel et al. 2012, García-Callejas and Araújo 2016). Developing these models is challenging and each has its own statistical background and limitation. Some models (especially mechanistic models that synthesise individual responses into demographic models) require further field experiments or observations to estimate key parameters (Johnson and Omland 2004, Guisan and Thuiller 2005, Holt 2009).

The SDM approach has two major limitations in terms of predictions. One is that these distribution models focus almost exclusively on separate species instead of considering all species as a whole. Detailed information on abundance and distribution of the majority of species is thus a prerequisite for a satisfactory performance of SDM, which may not be available for less common species or places with less extensive survey (Ferrier and Guisan 2006). Moreover, SDMs typically consider only abiotic factors and treat the study as a closed and isolated system while neglecting the importance of biotic interactions, such as competition, predation, or mutualism, in shaping species distribution and the reality is that ecological systems are more or less interconnected (Cassini 2011, Gavish et al. 2017). This is similar to the contrast between the Grinnellian niche and the Eltonian niche, with the former considering environmental variables only (e.g. temperature, precipitation, solar radiation, etc.) but

neglecting biotic interactions (e.g. competition, predation and parasitism) as emphasised in the Eltonian niche (Soberón 2007). SDMs only reflect the Grinnelian but not the Eltonian niche, thus missing important components of the full niche (Hutchinsonian n-dimensional hyperspace).

Modelling at the community level investigates environmental correlations of biodiversity from a different perspective than single-species modelling. While species-level modelling could be useful for predicting occurrence of single species, taxonomic groups are typically considered for real world conservation issues. For example, when investigating the impact of climate change on a community containing numerous plant and animal species, the response of each individual species may vary, and the overall effect is not simply the sum of separate species but also includes the interactions among them. Species-level modelling may thus become inappropriate under such circumstance (Mokany and Ferrier 2011).

Species-level data can still assist community-level models because: (a) species-level data can serve as groundwork, providing individual distribution maps to be assembled and analysed; (b) predictors for each individual distribution can be established first, then with the species-level base maps assembled; or (c) species-level data can be applied to disparate statistical models in order to detect the predictor variables and ensemble at the same time (Ferrier and Guisan 2006). However, none of these methods could accurately predict community composition (Baselga and Araújo 2010). Moreover, these three predicting methods rely largely on environmental factors, which will lead to low predictability when environments cannot reliably reflect species distribution. Furthermore, exclusion of biotic factors may further reduce predictability of these models.

1.4 Community-level modelling based on interspecific interaction

Biotic interactions are usually neglected in classical SDMs (Elith and Leathwick 2009, Kissling et al. 2012, De Araújo et al. 2014). Predictive models with limited incorporation of biotic interactions might fail to predict the consequences of global change for species and ecosystems (Guisan and Thuiller 2005, Gilman et al. 2010, Kissling et al. 2012, Clark et al. 2014). Different from species distribution modelling based on environmental factors, some ecologists attempt to predict distribution of species by focusing on interspecific interactions. A classic example of how community composition can be affected by interspecific interaction is Robert Paine's observations from the tidal pools of the Pacific rocky shore that presence of top predators could lead to the coexistence of its prey (Paine 1966). Starfish (*Pisaster ochraceus*) is a generalist predator preying on most mollusc species in the tidal pool. With intermediate predation intensity the biodiversity is the highest since no species can dominate the resources, thus leading to coexistence of several species. However, species richness is greatly reduced after manual removal of starfish (Paine 1974). This example, termed keystone predation (Gilman et al. 2010, Rudolf and Rasmussen 2013), demonstrates how biotic factors such as predation could shape community composition.

Besides predation, competition has also been included in the modelling of species distributions. Diamond (1975) stresses the importance of competition for species assemblage, which leads to much debate on the generality of this theme (Gotelli and McCabe 2002, Yackulic et al. 2014, Rollinson et al. 2016). According to Diamond, related species would be less likely to coexist due to competition, thus fewer species are likely to occur at a given site than by chance. Leathwick and Austin (2001) evaluated the importance of competition for the distribution of New Zealand tree species and found that including competition leads to higher predictability in species distribution model than relying simply on environmental factors. The

model with inclusion of competition also helps explain disjunct species distributions in the middle of the temperature gradient.

Examples of including biotic factors in SDMs, such as applying Lotka–Volterra models (Solé and Bascompte 2006, Holt and Barfield 2009), population dynamic models (Mutshinda et al. 2009, 2011), epidemiological models (Keeling 2001, Estrada-peña and Fuente 2016), multivariate regression models (Banerjee et al. 2008, Latimer et al. 2009, Ovaskainen et al. 2010, Ovaskainen and Soininen 2011), trophic interaction distribution model (Trainor et al. 2014) and dynamic vegetation models (Lischke et al. 2006, Prentice et al. 2007) can be found in the literature (Kissling et al. 2012).

A contrasting approach is neutral theory (Hubbell 2001), which posits that the role of trophically similar species in the assembly of ecological community is neutral (equal). The distributions of species are determined by chance and are unrelated to their niche. It is a null simplification of competitive interactions that works well for tropical forests in particular – random processes are more important than deterministic differentiation. (Hubbell 2001, 2005, 2006). Neutral theory has been repeatedly investigated, but is not validated in many empirical studies (McGill and Collins 2003, Chave 2004). However, neutral theory provides a valuable baseline for a comparison with empirical data or other models. If a set of data is not consistent with prediction from a neutral model, some biological factors might be needed to be considered (Rosindell et al. 2011).

Despite recent advances, translating species' niches into geographic distributions remains a complex and difficult task (Holt 2009), and the modelling of spatio-temporal dynamics in multispecies communities remains a significant challenge in ecology (Solé and Bascompte 2006). Modelling large spatial and temporal datasets with multiple interacting species, coupled with spatially (and maybe temporally) varying parameter estimation and non-stationary

covariance structures clearly pose considerable challenges for statistical modelling. Indeed, the complexity of multispecies models renders estimating all parameters at the same time impractical (Kissling et al. 2012). The key is therefore to reduce the complexity and there are established methods to achieve this goal.

1.5 Community-level modelling community structure based on quantitative analysis

Quantitative characterisation of community structure involves interpretation of biological survey data from a community perspective. Recognising and analysing community structure can help unravel mechanisms (such as environmental gradients) underpinning community composition and allows the prediction of how composition will change (Wiegand et al. 2003, Schröder and Seppelt 2006, Grimm and Railsback 2012). Many indices have been developed (Stone and Roberts 1990, Atmar and Patterson 1993, Koleff et al. 2003, Podani and Schmera 2011), including nestedness and beta-diversity, which are commonly applied to depict community structure. Nestedness illustrates an ordered decrease in species richness among sites caused by some non-random factors (species loss), while beta-diversity stresses how species are replaced among different sites (species turnover). These two characteristics, species loss and species turnover, are essential for depicting community structure. Therefore, it is often sufficient to use only these two indices to distinguish two communities with distinct structures (Baselga 2010).

1.5.1 Nestedness

The concept of nestedness was firstly proposed by Patterson and Atmar (1986) to explain the peculiar insular fauna structure: island species abundances decrease with distance from the continent; moreover, species on distant islands are a subset of species on proximate ones. A

perfect nested matrix indicates that a community is arranged in an absolute mathematical order, in which species within a depauperate site also occur in a species-rich site and thus constitute a sequentially shorter ladder. Therefore in a strongly nested community, species composition is predictable from knowledge of the rare species, since any samples from the community taken at different points in space or time tend to share all of the more common species (Doncaster et al. 2016). This nestedness index took the idea of matrix system disorder or entropy. The relationship between entropy and heat led the nestedness index to quantify matrix randomness in terms of temperature (Norton et al. 2004), which ranges from 0-100°, with T= 0° representing a perfect-nested matrix (minimum entropy) and T= 100° absolute randomness (maximum entropy) (Rodríguez-Gironés and Santamaría 2006). This relationship is like the three phases of water, the liquid phase scaling between phases of maximal structure as ice and maximal disorder as vapour, and low nestedness reflects high turnover of species in space or time whereas high nestedness means ordered accumulation or loss (Doncaster et al. 2016). The concept of nestedness has been widely applied to terrestrial communities (Atmar and Patterson 1993), including small mammals (Cutler 1991), birds (Mac Nally et al. 2002), reptiles (Fischer and Lindenmayer 2005), and invertebrates (Fleishman and Mac Nally 2002). Various hypotheses have been proposed to explain the proximate cause of nestedness, including passive sampling (Fischer and Lindenmayer 2002, Higgins et al. 2006), neutrality (Ulrich and Zalewski 2007), colonization (Patterson 1990, Cook and Quinn 1995, McAbendroth et al. 2005), extinction (Patterson and Atmar 1986, Wright and Reeves 1992, Bruun and Moen 2003, Wethered and Lawes 2005), nested habitat (Brualdí and Sanderson 1999, Fleishman and Mac Nally 2002), and habitat hospitality (Bloch et al. 2007). Among these, the extinction hypothesis, which states that differential local extinction rate among species is the main driving force for nested structure, attracts the most attention (Fleishman and Murphy 1999). Although the mechanisms underlying nestedness patterns are not well elucidated, pattern of nestedness

are frequently investigated in studies of species conservation. For example, with a further decrease in habitat size or with a further deterioration in habitat quality, the remnant species are often a non-random subset of the total pool species, and are generally dominated by generalist species that can tolerate more degrees of environmental variance (Cutler 1991, Fleishman and MacNally 2002, Fleishman et al. 2002, Baber et al. 2004, Hylander et al. 2005, Schouten et al. 2007, Hill et al. 2011).

1.6 Applying community orderliness to species richness prediction

Rather than focusing on environmental or intraspecific factors, an alternative approach to predicting community composition is based on intrinsic community pattern. This approach has the advantage that it avoids involving specific processes that may not yet be known. For example, the relationship between species range size and species diversity helps reveal non-random pattern in community structure (Arita et al. 2008). A negative relationship occurs between species diversity and species distribution range of small mammals in North America based on species presence-absence matrix. Species with restricted distribution (rare species) tend to occur in sites with higher species diversity. In other words, “hotspots” that contain more species are mostly the result of presence of more rare species. Another example is that structure indices such as community alpha- (species richness in sites at a local scale) and beta-diversity (species turnover between regional or local species diversity) might potentially be used to predict community composition derived from limited ground survey data (Mokany et al. 2011, Prober et al. 2015, Socolar et al. 2016, Gavish et al. 2017).

From a different perspective, some analyses utilise the property of community structure such as alpha diversity or beta diversity, to predict the pattern underlying the structure. For instance, species accumulation curves use the rate of species accumulation (species number per sampling area, performance of beta-diversity) to predict the overall species richness (the point value of

a species pool, one common index of alpha-diversity) based on extrapolation of accumulation curve to an asymptote. Species richness is the basic outline of a community, providing fundamental measurement of community and regional diversity. It is the foundation of many ecological models and conservation strategies. In spite of its importance, ecologists have not always appreciated the influence of abundance and sampling effort on estimated species richness (Gotelli and Colwell 2001). Information on species richness relies mainly on field surveys and requires significant sampling effort. Implementation limitations, such as the difficulty in accessing remote areas and the high costs in surveying a large region, has rendered the determination of the most efficient and reliable sampling scenario a priority in community ecology research. Indeed, several methods have been designed to achieve this goal (Bunge and Fitzpatrick 1993, Colwell and Coddington 1994, Chao and Shen 2004, Gotelli et al. 2009, Chao and Jost 2015a). In recent decades, there have been many attempts to estimate species richness based on species accumulation curves, where species richness is projected based on its relationship with sampling effort or area. With an increase in sampling effort, the number of species initially increases, but typically reaches an asymptote (Soberón and Llorente 1993, Ugland et al. 2003). The steepness of the curve specifies species dissimilarity among sampled areas, which is also useful in estimating species abundance in unsampled areas. In addition, a slight raise in extended tail that typically occurs in species accumulation curves suggests the existence of undetected rare species. An asymptote in the curve indicates that the increase in the species richness of an area is not unlimited, thus making extrapolating total richness from species accumulation curve possible (Morin 1999). Finally, as the asymptote represents the saturation point in species richness, it can help determine the least sampling effort for estimating total richness without all areas being sampled.

One area that has received little attention to date is to investigate how well general insights into community structure can be used to predict species richness, based on the species presence-

absence orderliness. For example, nestedness describes community structure by sorting species richness non-randomly from species-rich to species-poor area (Smith and van Belle 1984, Patterson and Atmar 1986, Gotelli 2000, Podani and Schmida 2011, Ricotta and Pavoine 2015).

Nestedness might be helpful for improving the predictive power of the species accumulation curve because a nested-order curve includes proportionally more uncommon species in the initial samplings, followed by a decelerating rate of increase in species richness due to fewer uncommon species remaining undetected. Therefore the curve is a constantly upward convex shape with a flattened tail. The first data chapter of my PhD (Chapter 2) focuses on how nestedness structure in a community can improve the predictability of species richness from species accumulation curves.

1.7 The importance of species identity in community composition prediction

Mapping community nested structure gives the ‘big picture’ of how community patterns vary spatially. Although nested structure improves predictability of species richness in an area (see Chapter 2), the species composition in specific sites within the area remains unknown. Information on the consistency in species composition, particularly the repeated co-occurrence of certain species group, is helpful for the prediction of unknown species because the observation of one or more common species can predict the occurrence of other species within each group.

Braun-Blanquet's work (1932) on plant sociology was one of the first attempts to classify communities efficiently (Poore 1955). Fidelity, how frequently a species occurs in a specific community, is critical for assigning species into distinct communities (Braun-Blanquet 1932). A species with higher fidelity means it occurs more frequently in one community and is less likely to be found in the other community. This method sorts the community member based on

abundance/dominant scoring (AD score) and the community is represented by a combination of species with the highest score. Subjectivity and arbitrariness in the Braun-Blanquet's scoring system can lead to biased results (Podani 2006). Nevertheless, the idea of species occurrence probability proposed by Braun-Blanquet is still a useful concept for predicting community composition, and lends itself to more quantitative analysis via network analysis.

Network analysis is ideal for analysing complicated relationship among members within communities. Nodes and edges in a network represent members in the community and their interrelations, respectively. Network analysis is based on mathematical algorithms of graph theory and can disentangle complicated relationships even with large amount of data and interactions, so is widely adopted in various academic disciplines such as sociology, information science and biology (Newman 2010). For example, network analysis is adopted in protein research for identifying amino acids co-expressing in the same metabolism pathways (Jeong et al. 2001) and in neural sciences for classifying brain cells and ganglia according to probabilities of participating in the same brain function (Voytek and Voytek 2012). In ecological research, network analysis helps clarify relationship among predators and prey in the food web (Dunne et al. 2002, Krause et al. 2003, Navia et al. 2010, Kéfi et al. 2015) or plant and animal interactions in pollination networks (Olesen et al. 2007, Devoto et al. 2012, Olioto and Fox 2015, Biella et al. 2017). These studies all involve numerous members (nodes) and complex relationships (edges).

Based on Braun-Blanquet, a community can be defined by simultaneous attendance of the same event (co-occurrence of species in the same location) (Braun-Blanquet 1932, Podani 2006). That is, species with more frequent co-existence should belong to the same community. One type of network analysis termed an affiliation network is capable of sorting large amounts of species data according to this rule. An affiliation network is one kind of two-mode networks

which contain two sorts of nodes. Therefore this type of network describes not only the direct linkage between members but also the events these members “attend” (biologically, events attended correspond to the habitat that species occupy) and the relationship among events. Once this member-event relationship is projected into a one-node network that contains only member relationships, the co-membership through attending to the same event will be revealed. When applied to ecological research, such projections can help categorise communities based on species co-occurrence.

1.7.1 Network and network modularity

The first step to define a community network structure is to identify subgroups in a network and there are numerous ways to do this, based on different concepts and algorithms (Guimerà and Amaral 2005, Fortunato 2010) derived from graph theory (Wilson 1996, White and Harary 2001). Nodes with more frequent links indicate cohesion of these nodes. Nodes that link to each other with at least one path are defined as a *component*, which is the most essential part of a subgroup (White and Harary 2001, Moody and White 2003). In a graph component, all nodes are linked to each other in this component by at least one path. A path is the complete linkage route between two nodes. If the path length is larger than one, it means linkages between two nodes are going through other nodes. For example, there are two components in Figure 1, comprising nodes {1, 2 and 3} and {4, 5, 6 and 7} respectively. Component {1, 2 and 3} is termed a strong component because members all directly link to each other. However component {4, 5, 6 and 7} is a weak component because it contains linkages with a path length greater than one. The edge between node 3 and 7 is the only route connecting these two components and is regarded as a bridge. Calculating relationships among all nodes and edges allows sub-groups to be identified.

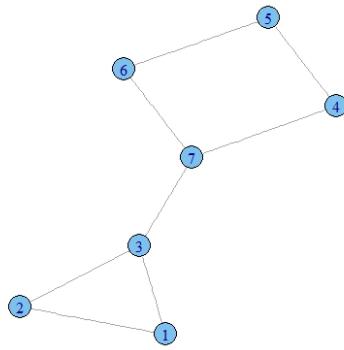


Figure 1. 1 A sample network graph composing two *components*, {1, 2 and 3} and {4, 5, 6 and 7}

One approach for identifying subgroups is to calculate the network modularity (Newman 2004). This concept has been adopted in ecological research to reveal intricate interactions and to detect heterogeneous structure within ecological communities or ecosystems (Olesen et al. 2007, Genini et al. 2012). Modularity not only measures linkages within a module but also considers linkages among modules. A module is a group of nodes, and within-module nodes possess a higher “degree” (the sum of edges link to the node) than other members in the same module but a lower degree to members belonging to other modules (Blondel et al. 2008, Newman 2010). In each module, the node with the highest degree represents the most dominant member (i.e. the member that links to most other members). This node is called a *module hub* and can efficiently indicate the presence of other members in this module (Guimerà and Amaral 2005, Olesen et al. 2007).

1.8 Applying community identification to community composition prediction

Compared to niche modelling that requires environmental attributes, using species information solely to predict species composition is based on the assumption that when a group of species is closely associated with specific ecological requirements, this group of species can be taken as “indicator species” to predict characteristics of unsampled sites (Harms et al. 2001, DeCáceres and Legendre 2009). A method developed by Dufrêne and Legendre (1997), called “indicator species value”, stresses species-habitat associations. Dufrêne and Legendre’s indicator species are selected based on two characteristics: 1) the degree to which the species is associated with specific habitat. The ideal situation is that a species only occurs in one specific habitat, thus reflecting its ecological preference or requirement; 2) the abundance of the species; that it is abundant enough to be effective as an indicator. Although a rare species can fit the first requirement, it would be hard to observe and therefore not a useful indicator.

Identifying indicator species requires classifying sites (or samplings) into different habitat types that each contains unique species composition. Each species is then assigned an indicator value for each habitat type. For instance, if three habitat types are classified, each species will have three indicator values corresponding to each of the three habitats. Indicator species for each habitat are defined as the species with the highest indicator value. However, the site groups are typically classified based on a clustering method especially non-hierarchical method such as k-means clustering which is a descriptive method whose robustness is hard to validate. It is also an indirect method, relying on distance (difference) between species rather than directly measuring co-occurrence patterns (Milligan 1980, Legendre and Legendre 2012). Clustering is also sensitive to the double-zero issue, which is very common in ecological datasets and may cause group misclassification (Dufrêne and Legendre 1997, Legendre and

Legendre 2012). The double-zero issue happens when comparing two site with the presence or absence of specific species. Presence in both sites of species indicates resemblance of sites, but absence in both sites does not necessarily represent resemblance because the absence of species in two sites may be due to different reasons. Distance metrics calculated in conventional clustering methods cannot reflect this fact. In comparison, a direct measure of species co-occurrence could improve the efficiency of the indicator species method. To improve efficiency of site group classification, site groups based on a modularity algorithm would be a substitute for the clustering groups in the indicator species analysis, with the merit of directly measuring species co-occurrence. Although species co-occurrence has been investigated before, this is the first study to quantify species co-occurrence with network analysis and to apply network-based co-occurrence groups for indicator species analysis. Hence for the second data chapter of my Ph.D (Chapter 3), I apply network analysis and modularity detection techniques for identifying indicator species.

1.9 Utilising orderliness of structure to predict species richness and composition

Knowledge on species richness and species composition is essential for the study of community ecology and is also critical for conservation biology and in conservation policy-making. Community pattern is a defining character of ecological communities and is also useful for predicting potential changes in species composition. Incorporating information on community pattern could improve the effectiveness of predictive community models, thus facilitating research in conservation. My PhD research focuses on how community structure with specific pattern (e.g. the non-random order of nestedness and the structure identified by network analysis) can be applied to improve predictability of conventional mathematic models that focus on community structure, such as species accumulation curve (beta-diversity) and

indicator species index (alpha- and beta- diversity). The species accumulation curve is applied to predict overall species richness. In my PhD I show that because nestedness represents orderliness in a community, it is feasible to utilise nestedness analysis to improve the predictability of species richness in unsampled areas (Chapter 2). I show that nested structure in a community could improve predictability of community richness and composition based on a non-random mathematical relationship. In the second part of my thesis, I focus on prediction of species composition. The commonly applied indicator species value requires classification of habitat types that reflect ecological requirements of individual species. I show that network analysis can help produce a better classification of species (Chapter 3). British bird data are utilised to develop the methodologies in chapters 2 and 3 due to the quality of the data available. The last part of my PhD dissertation (Chapter 4) evaluates these methodologies in another island – Taiwan – as a test of the extent to which my findings in Britain can be applicable in a tropical setting. Overall, the methodologies I develop for my PhD study have the potential to increase predictability of the two components (species richness and species composition) that are essential for defining a community and has important applications for conservation research. The two datasets applied in the thesis, British bird data and Taiwanese bird data, include only a single taxon (i.e. birds). Under such a circumstance, using the term '*assemblage*' is more appropriate than community. For the following chapters, assemblage is therefore used in lieu of community.

Chapter 2: The utility of nestedness structure for predicting species richness

2.1 Abstract

A species accumulation curve is frequently applied to predict the overall species richness of a given area when resources for surveying the whole region are unavailable. It typically involves plotting a species accumulation against sampling effort, choosing a mathematical function to fit the curve, and extrapolating final species richness based on the function. Both the order of inputting in sampling data and the selected function affect the shape of the curve and the predicted species richness. Conventionally a randomisation process is used to minimise the prediction error caused by the order of data input. However, this randomisation process means that useful additional information on community structure is lost that may increase the predictive power of species accumulation curves. In this study, the degree to which incorporating nested structure (that is, inputting data from the most species rich to species poor sites, rather than randomly) improves the predictive power of species accumulation functions was assessed, with British avian data as an example. Two methods of ordering input data (randomly and based on nested structure) each for three levels of sampling efforts (10%, 20%, 40%) were fitted to three species accumulation curves functions (negative exponential, logarithmic, and Clench) under two spatial scales (the whole British island and 100 km square). While inputting data based on nested order had similar performance as random order under British island scale, inputs based on nestedness order detectably increase the predictability of total species richness at the 100 km square scale, especially coupled with the logarithmic function. This is probably because there is only one possible curve when ranking sites by nested order (starting with the most species-rich sites) whereas there are many possible curves when

ranking sites based on random order. This study demonstrated that sampling according to nested order is generally more favourable than when based on random order. More studies considering different species and study site characteristics are needed to test for the general applicability of using nested order in species accumulation curves.

2.2 Introduction

2.2.1 Estimating species richness and species accumulation curves

Species richness provides a basic outline of a community and is an essential piece of information for species conservation. Information on species richness relies mainly on field surveys and requires significant sampling effort. Implementation limitations, such as the difficulty in accessing remote areas and the high costs of surveying a large region, have rendered the determination of the most efficient and reliable sampling scenario a priority in community ecology research. Indeed, several methods have been developed to estimate species richness based on individual abundance (individual based) or presence-absence data (sample-based) (Bunge and Fitzpatrick 1993, Colwell and Coddington 1994, Gotelli and Colwell 2001). These have mainly included species accumulation curve-fitting (Soberón and Llorente 1993, Díaz-Francés and Soberón 2005), parametric model fitting (Hortal et al. 2004, Connolly et al. 2009, Engen et al. 2011), nonparametric extrapolation from species accumulation curves (Colwell et al. 2012, Chao et al. 2014), or asymptotic estimators (Colwell and Coddington 1994, Chao and Shen 2004, Cardoso et al. 2014). Among these four methods, when only presence-absence data are available, the accumulation curve-fitting method is the most commonly applied approach.

There have been many attempts to estimate species richness based on species accumulation curves. Species accumulation curves take advantage of the relationship between species richness and sampling effort or area. As sampling effort is increased, the number of species initially increase, but typically reaches an asymptote (Soberón and Llorente 1993, Ugland et al. 2003). The steepness of the curve can be used to quantify how rapidly species dissimilarity changes between sampled areas, as well as to estimate species richness in non-sampled areas.

In addition, a slight raise in extended tail that typically occurs in species accumulation curves suggests the existence of undetected rare species. As the species richness of an area will not increase infinitely with increasing sampling effort, the species accumulation curve eventually reaches an asymptote and once this is reached, the total species richness of the area can be predicted (Morin 1999). Finally, as the asymptote represents the saturation point in species richness, it can help determine the least sampling effort for estimating total richness in other, ecologically similar regions.

A species accumulation curve can be constructed based on one-time sampling data or mean value of multiple samplings; the latter is called a rarefaction curve (Gotelli and Colwell 2001). The one-time accumulation curve uses original values collected randomly from a series of samples or along a gradient. However, the shape of the curve is largely determined by the order of adding additional samples (Ugland et al. 2003, Gray et al. 2004). For example, samples entered in the order of ascending richness leads to a smoothly growing curve while samples entered in the order of descending richness results in a steeply upward curve. Therefore, repeatedly randomly selecting the order in which samples are added, and building a curve based on the mean value of these randomly ordered sampling curves (that is, rarefaction) is necessary to eliminate the arbitrariness of one-time sampling (Colwell and Coddington 1994).

Species accumulation (or rarefaction) curves allow for the prediction of undetected species through the generation of a prediction function based on curve fitting and extrapolation. Again, the shape of the extrapolated species accumulation curve affects final predicted results and relies on choosing the appropriate equation for extrapolation. Soberón and Llorente (1993) proposed three prediction functions - exponential, logarithmic and Clench functions. The exponential (specifically negative exponential) (Miller and Wiegert 1989) and logarithmic (Gleason 1922) functions have long been adopted for fitting species accumulation curves

(Tjørve 2003, Dengler 2009). The Clench function originates from the Michaelis-Menten kinetics function in biochemistry, and was later applied to species accumulation curves by Clench (1979). The shape of the species accumulation curve determines which prediction function is most appropriate. The logarithmic curve is a continuously growing, concave downward curve without an upper asymptote while the negative exponential and Clench curves are saturation curves that decrease at an increasing rate until finally reaching an asymptote. The latter two curves vary in their rate of decrease and thus different turning angles, which is where the tangent slope along the curve has the greatest shift.

It is critical but difficult to select an appropriate fitting function for extrapolation because there is no universal recipe for deciding on which function to use (Soberón and Llorente 1993). A thorough understanding of the biological process governing a specific community is helpful for choosing the most appropriate function (Tjørve 2003). For instance, Thompson *et al.* (2003) suggested that a species accumulation curve was influenced by the proportion of common to rare species in a community. A community with more common species increases more rapidly in the early sampling stage, leading to an initially steep accumulation curve and then saturates (Thompson and Withers 2003). In contrast, a community with more rare species results in an accumulation curve with flatter slope and prolonged period of slow increase until reaching an asymptote. Therefore, studying community structure can potentially improve the predictive power of species accumulation functions as it provides additional information on orderliness and dynamics of communities that simple species accumulation curves fail to capture.

2.2.2 Community structure and nestedness subset

Quantifying community structure can be defined as considering biological survey data from a community perspective. For example, indices such as beta-diversity and nestedness are commonly adopted to describe the dissimilarity along sites. Recognising and analysing

community structure can help reveal mechanisms (such as environmental gradients) underpinning community composition and allow the prediction of how species composition will vary based on these mechanisms. Many indices for quantifying community structure have been developed (Stone and Roberts 1990, Atmar and Patterson 1993, Koleff et al. 2003, Podani and Schmera 2011), including nestedness. The concept of nestedness was first proposed by Patterson and Atmar (1986) to explain a common phenomenon in the structure of insular fauna: species richness on islands decreases with distance from the continent; moreover, species on distant islands are a subset of those on proximate ones. Nestedness takes account of both species richness and species occurrence and is calculated through arranging community data into a matrix of study sites and species presence-absence data for each site. By arranging species and sites in a matrix, species composition can be compared among sites or the frequency of occurrence can be compared among species (Ulrich et al. 2009). A perfect nested matrix indicates that a community is arranged in an absolute mathematical order, in which species within a depauperate site also occur in a species rich site and thus constitute a sequentially shorter ladder (Figure 2. 1). Owing to such a unique order, a nestedness index can potentially improve predictability of species accumulation curves, because no other indices (ex. beta-diversity) provide similar information, but such a novel idea has never been applied for enhancing species richness predictability. Also by using this index, it should be possible to stabilise the shape of accumulation curves in a way other than using the conventional randomisation method, which can possibly lose biological information inherent in community structure. Because the uncertainty in predicting species number based on species accumulation curve largely comes from the randomisation processes (Gray et al. 2004) and the initial stage of curve shaping (Bebber et al. 2007), incorporating nested structure should decrease the uncertainty of species accumulation curve and increase the accuracy of predictive results.

Community nestedness can be represented with several indices but all involve counting the ‘surprises’ in the study matrix against a perfectly-nested matrix (Ulrich et al. 2009). Here the ‘surprise’ represents ‘unexpected absence’ and ‘unexpected presence’ - species that would be present/absent from the site in a perfectly nested assemblage. For example, the index “nestedness temperature” is calculated by identifying unexpected absences in species-rich site or unexpected presences in a species-poor site. By summing these ‘surprises’ in each community sub-unit, the extent to which the community is perfectly nested can be determined so that a higher temperature represents more ‘surprises’ and less orderliness in a community.

In other words, a higher temperature indicates lower nestedness.

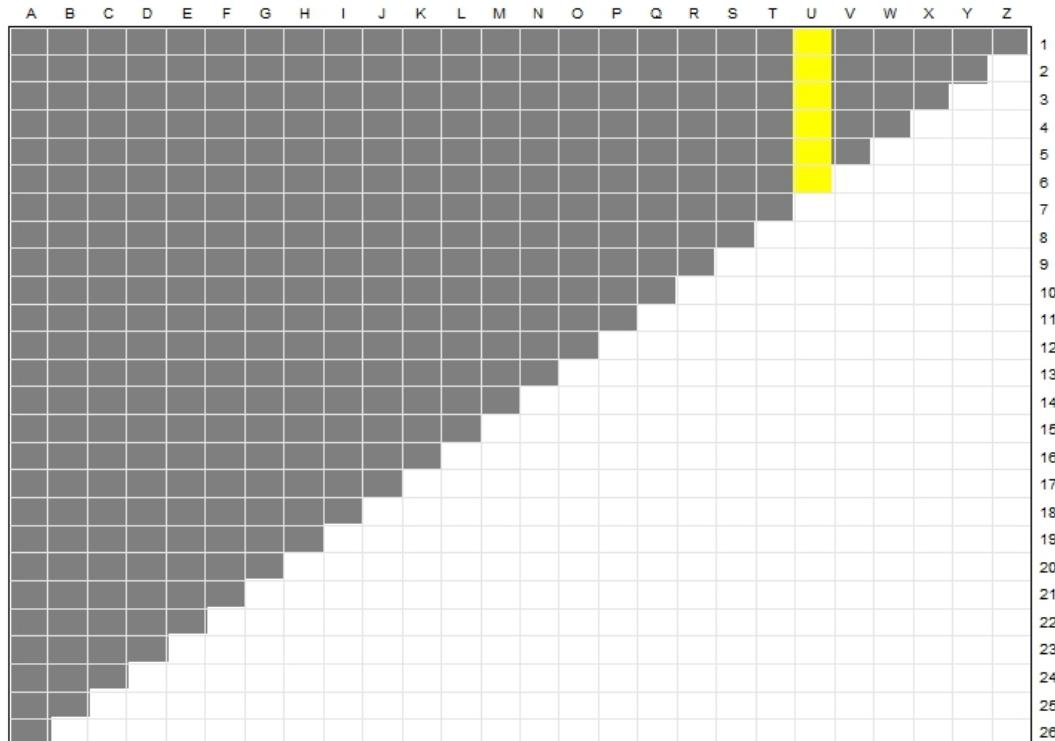


Figure 2. 1 A sample matrix representing a theoretical community of species A to Z in sites 1 to 26. Grey cells indicate which species are contained in each site. This virtual community provides an example of a perfectly nested community. For example, species U occurs only in the 6 species richest sites (sites 1-6).

2.2.3 Utilising nestedness to predict species richness

As mentioned earlier, the idea presented here is that the predictive power of species accumulation curve can be enhanced by a better understanding of the community structure. As a measure of community structure (orderliness of the community), nestedness could be helpful for improving the predictive power of the species accumulation curve when there is a moderate degree of nestedness in the community. This is because in a perfectly nested community, the site with the greatest species richness includes all species and each of the other sites is a non-random subset of the most speciose site (Wright 1998). Figure 2.1 gives a theoretical example. The species accumulation curve of a perfectly nested assemblage is very steep, but then levels off very quickly because no more new species can be added after the first site, as the first site contains all species in the community. Such a species-rich to species-poor order will consistently result in an asymptotic curve with little variation. In other words, incorporating nested orderliness results in a more consistent species accumulation curve than the other commonly used rarefaction curve, which is derived from randomised multi-sampling data (Soberón and Llorente 1993, Scheiner 2003). For example, when based on nestedness order, sampling the example matrix (Figure 2. 1) only by sites of even numbers produces a curve similar to when sampling all sites. If species accumulation curves based on nested order do indeed give a more consistent curve shape than rarefaction curves, this could mean that such nestedness-based species accumulation curves also have higher predictive accuracy than the standard rarefaction curve approach.

2.2.4 Aim of this study

This study aims to evaluate whether building species accumulation curves based on ordering samples by their nestedness structure improves their utility for predicting species richness. British avian assemblage data (Gibbons et al. 1993) were examined because it

contains a complete avian species list for Britain which provide a solid base for model validation (Ugland et al. 2003). In this study, differences in the predictive accuracy of three species accumulation curve functions (exponential, logarithmic, and Clench functions; Soberón & Llorente 1993) based on random vs. nested order in the addition of the sampling sites were compared. Three levels of sampling efforts (10%, 20%, or 40% of all sampling sites) were selected as the cut-off points for a comparison of accuracy in predicting species richness. All analyses were run at two spatial scales (whole of the British mainland vs. 100 km squares, see Methods) to evaluate whether predictive power is scale-dependent.

2.3 Methods

2.3.1 Avian data

The British Trust for Ornithology (BTO) 1988-1991 survey data (Gibbons et al. 1993) cover Britain and Ireland. In this study, only the British data were used, which were divided into 55 squares (Figure 2. 2) and each 100 km square was further divided into at most one hundred sub-squares (10 km x10 km). The entire BTO dataset contains 273 avian species in 2830 sub-squares. Presence-absence data for every species are available at the sub-square level and were inputted in a species-site matrix. The sub-square is the basic unit for the analyses of community structure of the British avian assemblage.

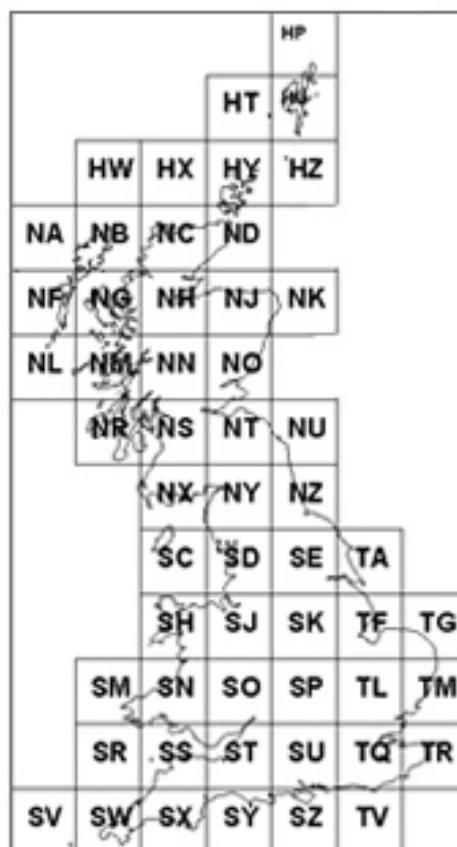


Figure 2. 2 Arrangement of British 100 km squares (<http://www.bto.org/volunteer-surveys/birdatlas/taking-part/correct-grid-references/know-your-place>)

2.3.2 Calculating nestedness

Nestedness temperature, a measure of community nestedness, takes unexpected presences and unexpected absences into account (Ulrich and Gotelli 2007, Ulrich et al. 2009). It is represented by a normalised sum of squared relative distance of absences above and presences below a hypothetical isocline that separates occupied from unoccupied areas in a perfect nested matrix (Atmar and Patterson 1993). According to Atmar and Patterson (1993), the calculation of nestedness is based on the unexpectedness, which is measured by the distance an unexpected presence or absence of a species lies in the matrix as compared to the perfectly nested matrix. Unexpectedness runs diagonally along a line running parallel to the skew diagonal. For a matrix with n species and m sites, the local unexpectedness (u_{ij}) is calculated as:

$$u_{ij} = \left(\frac{d_{ij}}{D_{ij}} \right)^2$$

D_{ij} is the length of the full line running through the j th species on the i th site and d_{ij} is the specific length along that line. The total unexpectedness (U) is then represented by:

$$U = \frac{1}{mn \sum_i \sum_j u_{ij}}$$

A perfectly ordered matrix should have no unexpectedness, thus $U=0$, and a matrix with maximum unexpectedness always has $U_{max} \approx 0.04145$. The nestedness temperature T is then defined as:

$$T = kU$$

$$k = \frac{100}{U_{max}}$$

T ranges from 0-100°, with T=0° representing a perfect-nested matrix and T= 100° absolute randomness.

Ordering a presence-absence matrix in nested order therefore means re-arranging it into a new matrix where sites are organized from the most species-rich to the most species-poor. The nestedness of the avian assemblage of all of Britain and of each of the fifty-five 100 km squares was calculated as a first step in understanding whether using nested order can help improve the predictions of species accumulation curves.

2.3.3 Species accumulation curve and extrapolation

2.3.3.1 Orders of sampling sub-squares for species accumulation curves

British avian assemblage data were arranged in three different types of order in terms of adding in sampling sub-squares: 1) random order with the mean of 100 permutations (rarefaction curves; sensu Gotelli & Colwell 2001); 2) nested structure – that is, ordering sampling sub-squares from the most species-rich to the most species poor. 3) reverse nested structure – that is, ordering sampling sub-squares from the most species-poor to the most species-rich.

2.3.3.2 Functions for fitting species accumulation curve

Three functions for fitting species accumulation curves were compared for all three types of orders of sample sub-squares (random, nested, reversed nested) to evaluate their accuracy

in terms of predicting overall species richness of Britain and of each 100 km square. These three functions are based on Soberón & Llorente (1993):

$$\text{Negative exponential function: } y = a \times \left(1 - e^{-\frac{x}{b}}\right) \quad (\text{Equation 1})$$

$$\text{Logarithmic function: } y = a + b \times \log(x) \quad (\text{Equation 2})$$

$$\text{Clench function: } y = \frac{ax}{1+bx} \quad (\text{Equation 3})$$

In which y is the species number and x the number of sub-squares.

2.3.3.3 Calculating the predictive power of species accumulation curve

The three functions mentioned above were used for extrapolating species richness in non-sampled areas. The ability of the three species accumulation functions to predict total species richness across Britain and within each 100 km square was compared based on three levels of sampling effort: 10%, 20%, and 40% of sub-squares from each 100 km square (termed 10%, 20% and 40% sampling data henceforth). For example, for the 20% sampling effort, 20% of sub-squares in each 100 km square were randomly selected to form 20% sampling data. This selected sampling data was randomly shuffled 100 times to calculate a mean value (random order) or rearranged according to a nestedness order (nestedness order). This procedure was conducted in two spatial scales to see whether predictability is scale dependent: the whole British mainland and within each of the fifty-five 100 km squares in Britain. At the scale of Britain as a whole, randomly selected data from each of the fifty-five 100 km squares were pooled together. For example, for 20% sampling data, 20% sub-squares from each 100 km square were selected and combined to form the total 20% sampling data of Britain. For the 100 km square scale, 20% of each sub-square were selected and predictability then assessed separately for each of the fifty-five 100 km squares. The three percentages were chosen based on the minimum sub-squares needed for estimating 90% and 100% of all species

(approximately 20% for 90% of species and 80% for 100% of species, detail see Appendix B). However as 80% sampling is unrealistic in most instances, comparisons were conducted starting at 10% sampling effort (half of 20%).

To summarise, each of the datasets (two orders of sampling each for three levels of sampling efforts) was fitted to three curve functions (i.e. negative exponential, logarithmic and Clench) under two spatial scales (whole British mainland and 100 km square). The procedure of randomly selecting samples or re-arranging according to nestedness order and then extrapolation from fitting curves was repeated 50 times (therefore 50 random samples) and each combination of two orderliness and three levels of sampling efforts for three functions, in two different geographic scales), to access a mean predicting value for species richness. The inaccuracy in the prediction of total species richness, that is, error rate, is defined as:

$$1 - (\text{predicted species richness} / \text{observed species richness})$$

A positive value indicates an underestimation while a negative value indicates an overestimation of results. The error rate was correlated with nestedness temperature (at 100 km square scale) using Spearman's correlation test to assess any association between nestedness temperature and error rate. Error rates (absolute value) with nestedness versus random order data were compared using t-tests (compare 50 repeats in whole British mainland) and paired t-test (compare mean results in each 100 km square). The calculation and statistical procedures are conducted in R (R Development Core Team 2013).

2.4 Results

2.4.1 Nestedness of British avian assemblage

The nestedness temperature of Britain as a whole for avifauna is 21.24° while the temperature for each of the 55 squares (100 km x 100 km) ranges from 1.58° to 26.95°, with >40% squares with a temperature in the range of 20°-25° (Figure 2. 3). These indicate a moderate level of nestedness (against the 0° to 100° scale) for Britain and most of the 100 km squares (Wright 1998). Figure 2. 4 illustrates an overview of the presence-absence matrix for the entire British avian assemblage (Appendix A provides detailed axes information for the presence-absence matrix and gives the site and species lists respectively in nested order) and one 100 km square from southern England with a typical nestedness temperature (23.85°). Species generally cluster in the upper-left corner but are more scattered in the lower-right side, indicating a trend of nestedness, with species in more species rich sub-squares (on the top) encompassing those in depauperate sub-squares (on the bottom). The isocline delineates the hypothetically perfect nested structure (Figure 2. 4). The white cells above the isocline are the “unexpected absences”, while the red cells below the isocline are the “unexpected presences”; both reduce the nested structure and increase the nestedness temperature.

The 10 most species rich sub-squares are: ND27, TL87, TF74, TF84, TF62, TQ77, TM47, SZ19, TR06, and SU70, with each sub-square containing >120 avian species. Except for ND27 located in north-eastern Scotland, and SZ19 and SU70 located in southern England, all other sites are in south-eastern England, which is close to the European Continent. In contrast, the 10 most species depauperate sub-squares are: NZ39, NL79, NF61, NA81, NM05, HY35, SY38, SW65, SS11, and TR46. Roughly half of these sites are located at in the far north and the other half in south-western England except for TR46 (Figure 2. 5).

The 10 most commonly occurring avian species among the 2830 sub-squares are: wren (*Troglodytes troglodytes*), skylark (*Alauda arvensis*), pied/white wagtail (*Motacilla alba*), blackbird (*Turdus merula*), robin (*Erithacus rubecula*), starling (*Sturnus vulgaris*), swallow (*Hirundo rustica*), song thrush (*Turdus philomelos*), chaffinch (*Fringilla coelebs*), and willow warbler (*Phylloscopus trochilus*). The 10 most limited occurrence species are: emperor goose (*Chen canagica*), swan goose (*Anser cygnoides*), king eider (*Somateria spectabilis*), helmeted guineafowl (*Numida meleagris*), red-footed falcon (*Falco vespertinus*), little egret (*Egretta garzetta*), black swan (*Cygnus atratus*), northern bobwhite (*Colinus virginianus*), white-winged black tern (*Chlidonias leucopterus*), and smew (*Mergus albellus*).

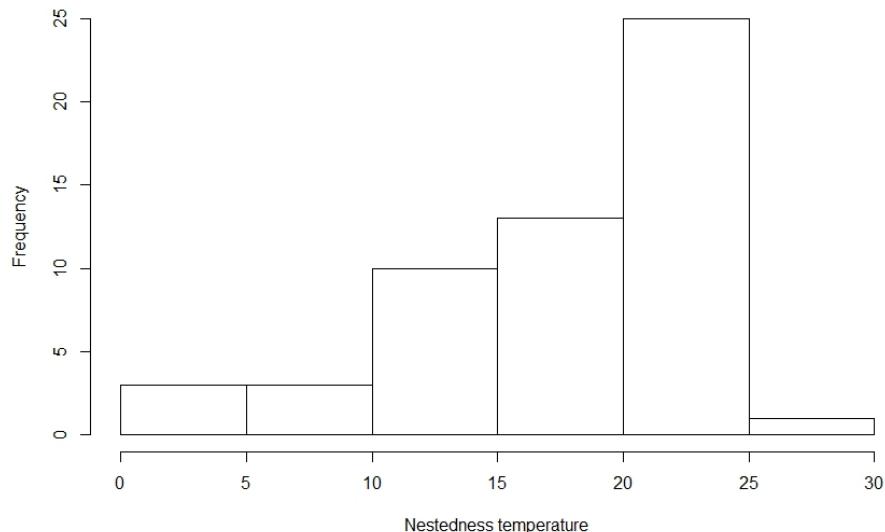


Figure 2. 3 Frequency distribution of nestedness temperature for the fifty five 100 km square of Britain.

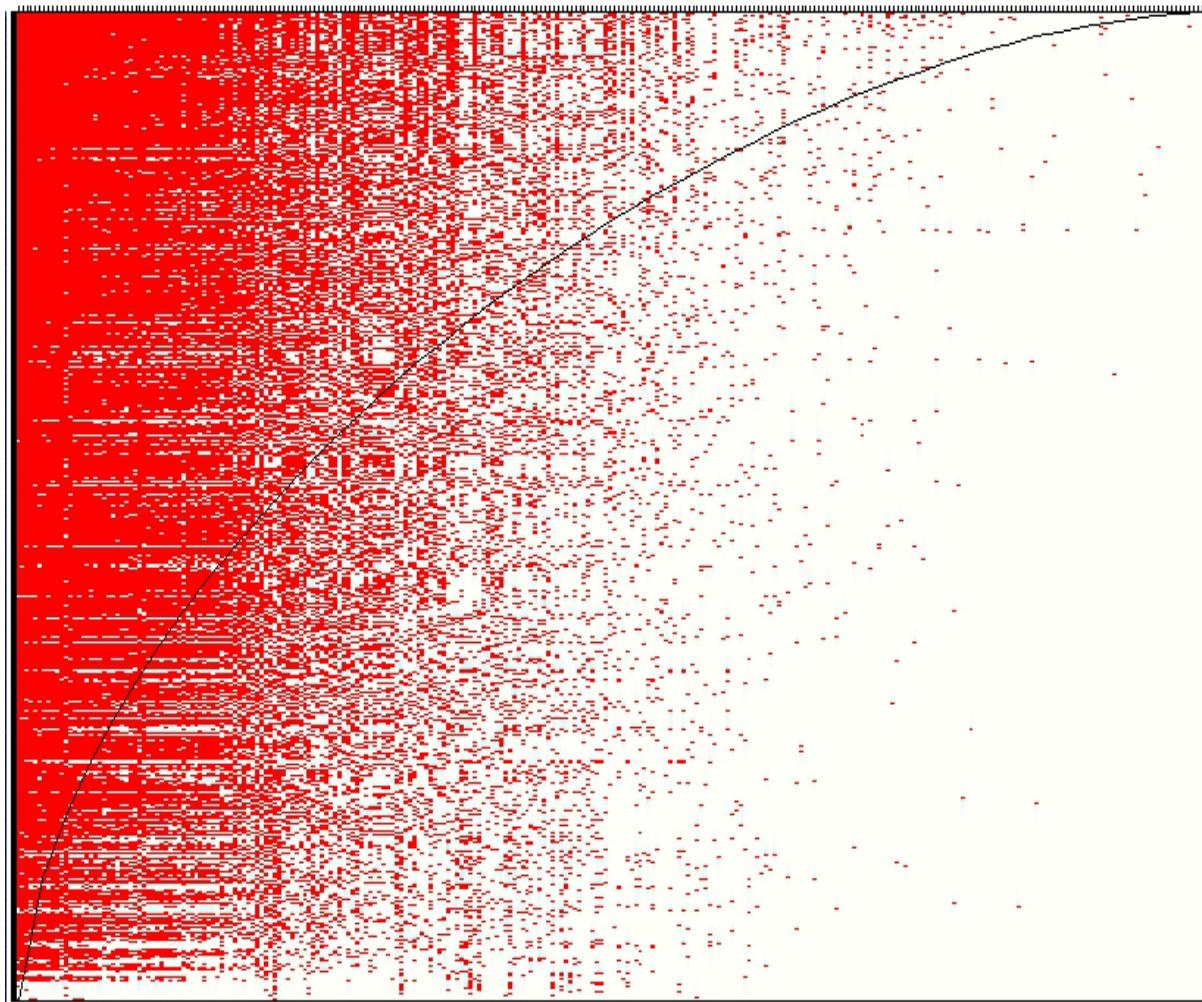


Figure 2. 4 Presence-absence matrix of British avian assemblage. The x-axis represent sites (sub-squares) and the y-axis represent species. No site or species names are shown here as there are not legible in this figure; Appendix A provides full site and species lists in nested order for this presence-absence matrix. Red cells indicate species occurrence and white ones, species absence. The black concave diagonal curve represents the isocline that delineates the hypothetically perfect nested matrix. The white cells located at the left hand side of the diagonal curve represent the unexpected absence and the red ones at the right hand side, unexpected presence.

Figure 2. 5 Species richness at 10 km scale. Darker area is with higher species richness.

2.5 Species accumulation curve and data orderliness

The avian assemblage of entire British sub-squares were arranged according to three orders: nested structure, mean of random order after 100 permutations, and reverse nested structure. Species accumulation curve varied with orders of adding in sub-squares (Figure 2. 6). Curves based on nested structure quickly saturated while curves based on reverse nested structure increased slowly and barely saturated. Random sampling curve was situated between the curves based on nested and reversed nested structure which represented the upper and lower limit, respectively (Figure 2. 6).

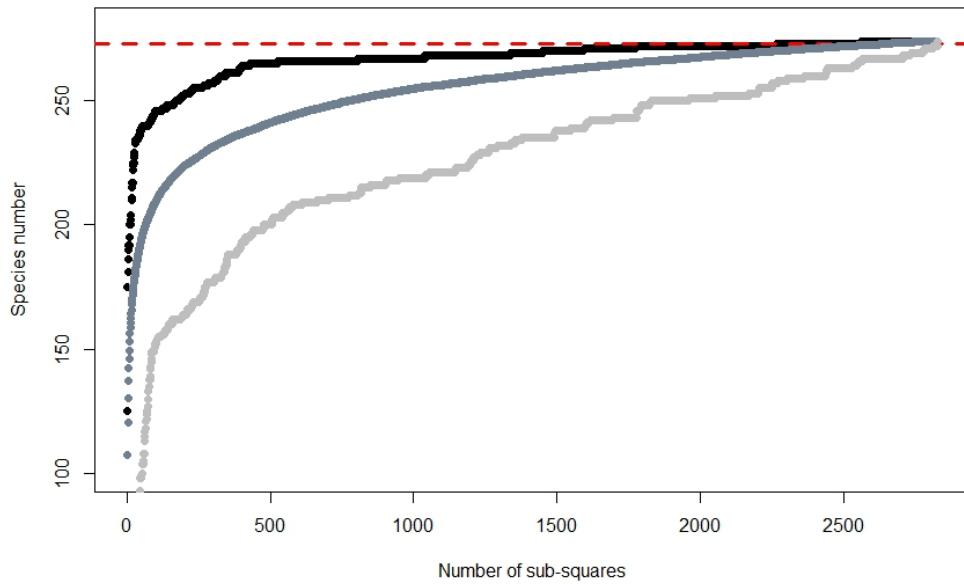


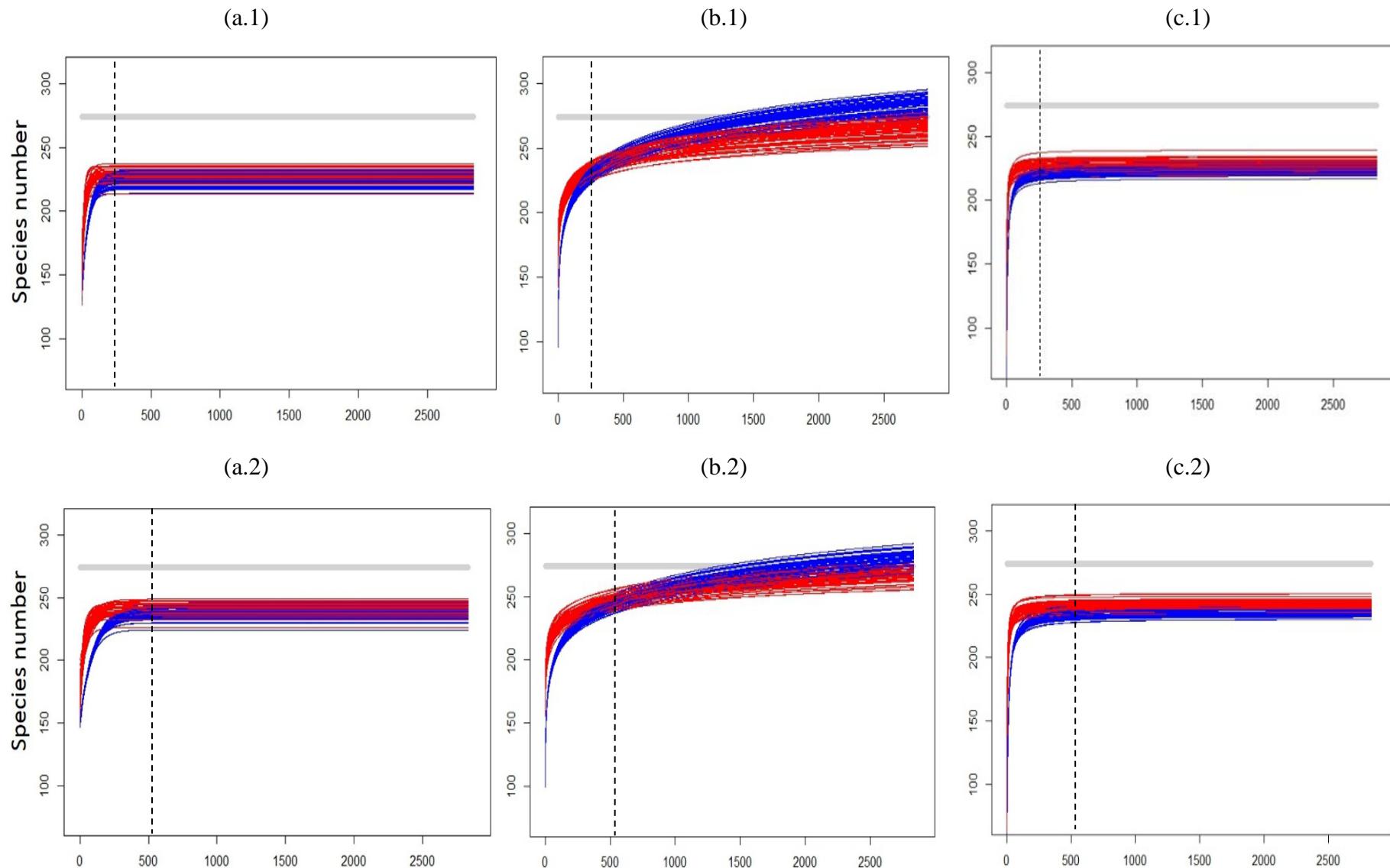
Figure 2.6 Species accumulation curves based on three orders of data arrangement. Black dots (●): data arranged by nested order, species richness from high to low; dark grey dots (●): mean of 100 randomly arranged data; light grey dots (●): data arranged by reverse nested order, species richness from low to high. The red dash line indicates the real total number of species (273 species).

2.6 Species richness extrapolation for Britain

Because predictability based on reverse nestedness for all three species accumulation curve functions was 20-30% less efficient than random and nestedness orders, only results for random and nestedness orders are presented in the following section. Total species richness for Britain was predicted based on three species accumulation curve functions (exponential, logarithmic, and Clench) with three level of sampling efforts (10%, 20%, and 40% of total sites) under two data arrangement orders (random and nestedness) each with 50 replicates. Figure 2.7 depicts

species accumulation curves and Figure 2. 8 summarises the predicted total species richness. For all three levels of sampling effort, projections based on the logarithmic function was more accurate than those based on exponential and Clench functions irrespective of data arrangement orders. However, predictions with random data order tended to overestimate total species richness whereas those with nested order were more likely to underestimate total species richness when based on the logarithmic function (Figure 2. 7 and 2. 8). There was significant difference in error rate (absolute value, $p < 0.05$) between random and nestedness orders for exponential or Clench prediction function but not for logarithmic function ($p > 0.05$). Overall, the method based on nestedness order had lower or equal error rate in the prediction of species richness than that based on random order.

Error rate decreased with sampling effort for both nestedness and random order (Figure 2. 8). Among the three functions, accuracy based on logarithmic curves increased the least when sampling efforts doubled from 10% to 20% or from 20% to 40%, with < 2% of decrease in error rates for both random and nestedness order. This was mostly due to the already high accuracy under the 10% sampling efforts (3.5% error rate, absolute values) and the 20% sampling efforts (<2.7% error rate, absolute values). In comparison, although doubling sampling efforts comparatively improved predictability of exponential and Clench functions, error rates were higher than 7% even under the 40% sampling effort.



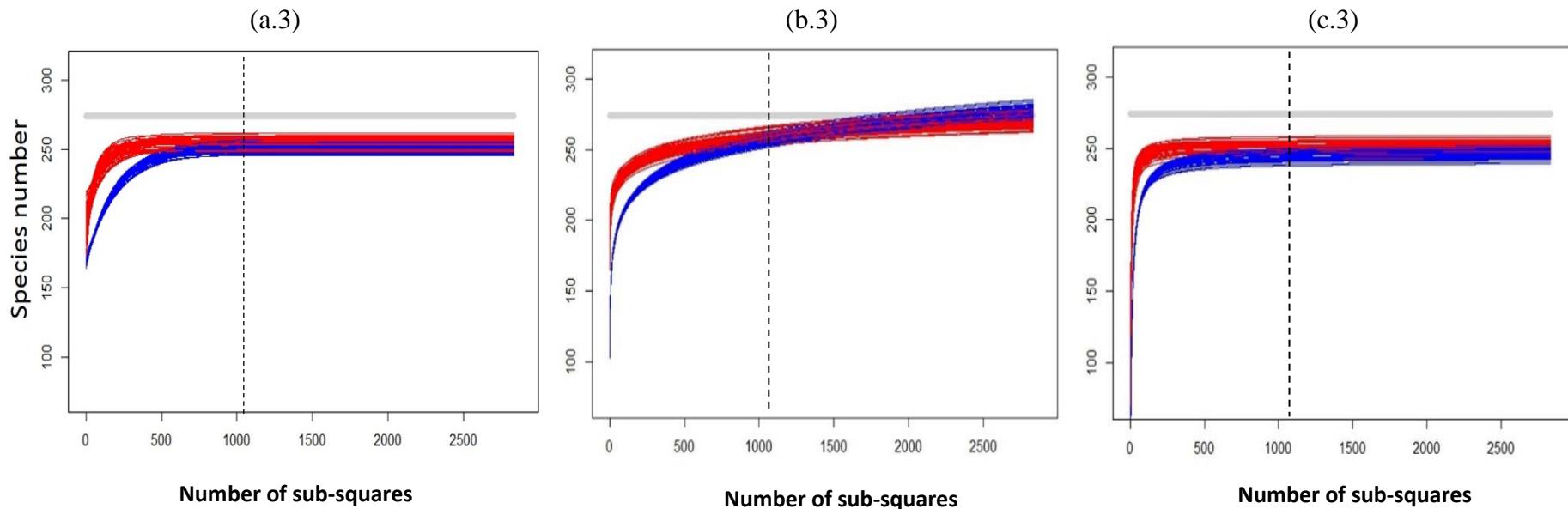


Figure 2. 7 Prediction of whole British avian species based on three species accumulation curve functions (a: exponential; b: logarithmic; c: Clench) with three levels of sampling effort (1:10%; 2: 20%; 3: 40%, of total sites) under two data arrangement orders (blue: random; red: nested). Each prediction was repeated 50 times. The grey horizontal line indicates the real total number of species (273 species). The vertical dash line indicates the number of sampling sites.

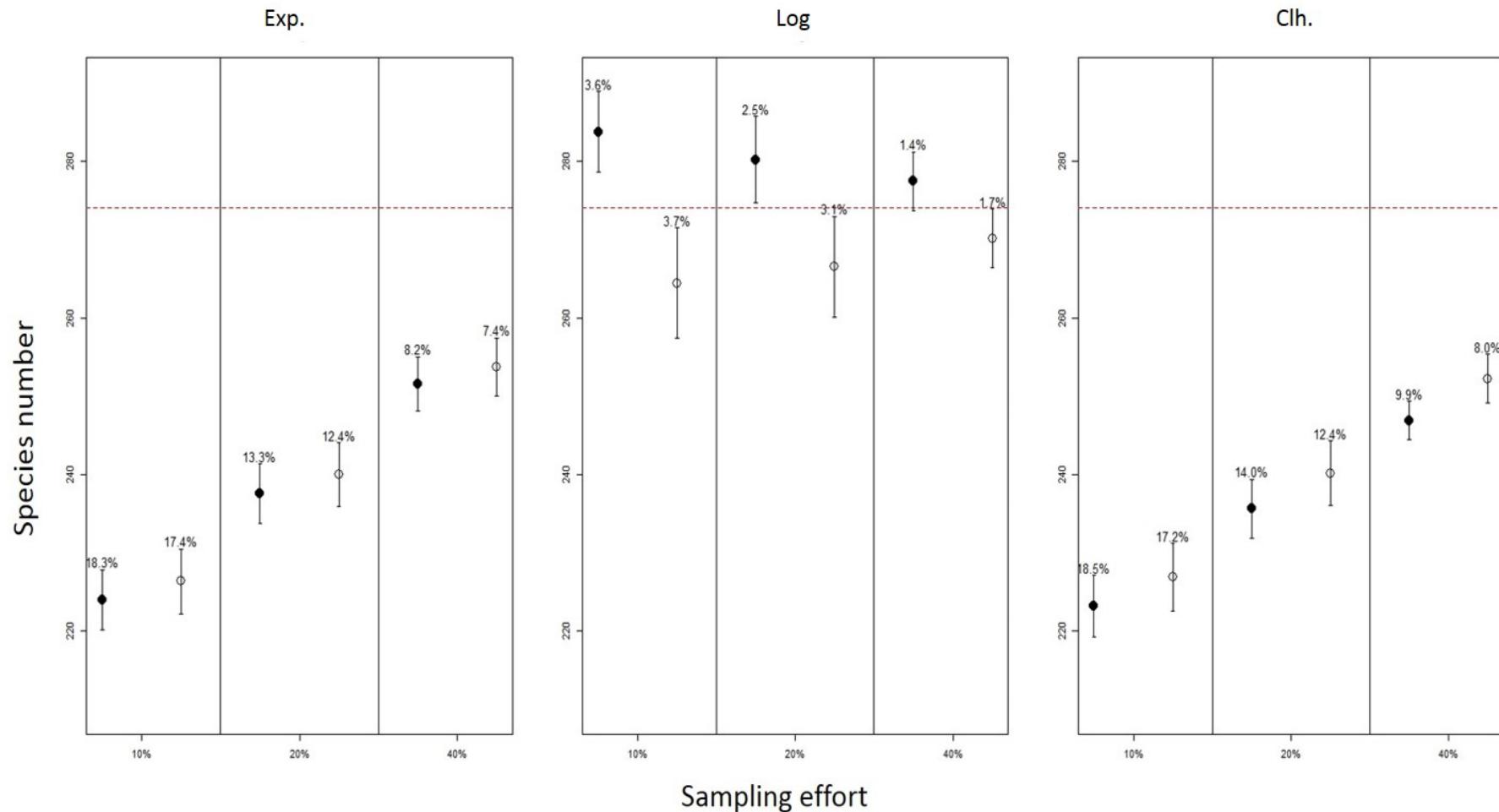


Figure 2.8 Predicted total species richness (\pm sd) for a combination of two dataset orders (solid circle: random order; open circle: nested order), three prediction functions (*Exp.* = negative exponential function; *Log* = logarithmic function; and *Clh.* = Clench function), and three sampling

efforts (10%, 20%, and 40%). The percentage above the bars represented the mean error rate. Red dash line represented the observed species richness (273 species).

2.7 Species richness extrapolation for 100 km squares

The total species richness of each of the fifty-five 100 km squares was also predicted based on three species accumulation curve functions with three level of sampling efforts under two data arrangement orders each with 50 replicates.

Under nestedness order, logarithmic function had lower error rates ($4.6\pm5.3\%$, $3.4\pm3.5\%$, $1.4\pm2.7\%$ for 10%, 20%, 40% sampling efforts, respectively) than exponential ($20.9\pm2.9\%$, $13.7\pm11.7\%$, $9.6\pm2.2\%$) and Clench functions ($19.0\pm2.3\%$, $14.8\pm3.1\%$, $9.0\pm1.9\%$) for all three levels of sampling efforts. Error rates did not differ with geography (e.g. northern vs. southern, coast vs. inland), but squares containing full sub-squares (100 sub-squares) tended to be more accurate than squares in the periphery of Britain that encompassed < 100 sub-squares (Figures 2. 9, 2.10, 2. 11). There was no correlation (Spearman's correlation coefficient $r= -0.69$ to 0.04 , $p>0.05$) between nestedness temperature and error rates among the 55 squares; however, the error rate increased with lower nestedness when it approaches random order.

Similarly, under random order, logarithmic function had lower error rates ($-12.0\pm6.8\%$, $-7.0\pm5.3\%$, $3.9\pm3.2\%$) than exponential ($20.5\pm2.2\%$, $9.1\pm30.8\%$, $10.4\pm1.8\%$) and Clench functions ($14.9\pm2.5\%$, $12.5\pm4.8\%$, $9.6\pm2.3\%$) when the comparisons were based on absolute values. There was no correlation ($r= -0.66$ to 0.38 , $p>0.05$) between nestedness temperature and error rates among the 55 squares; however, the error rate increased with lower nestedness when it approaches random order.

Error rates varied considerably among different combinations of arrangement orders, curve functions and sampling efforts (Table 2.1). However, error rates were generally lower when based on nestedness order than when based on random order ($p<0.05$), especially under

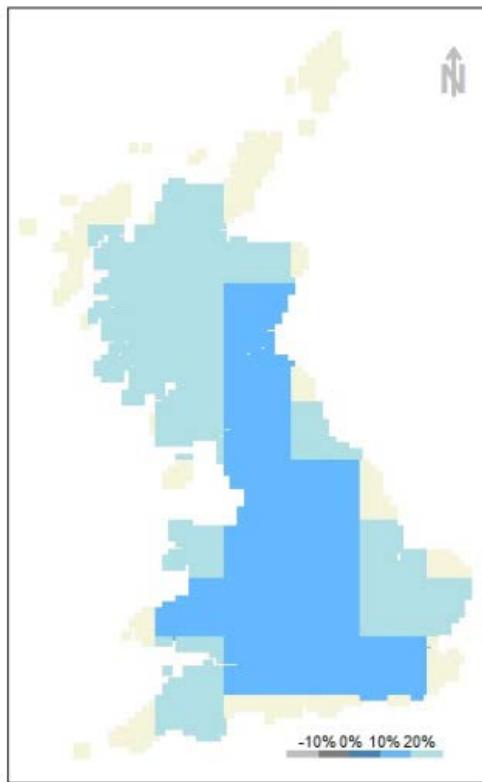
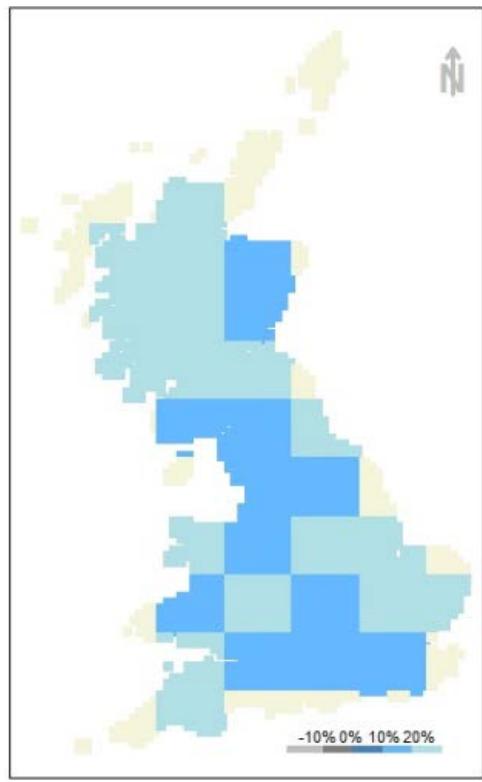
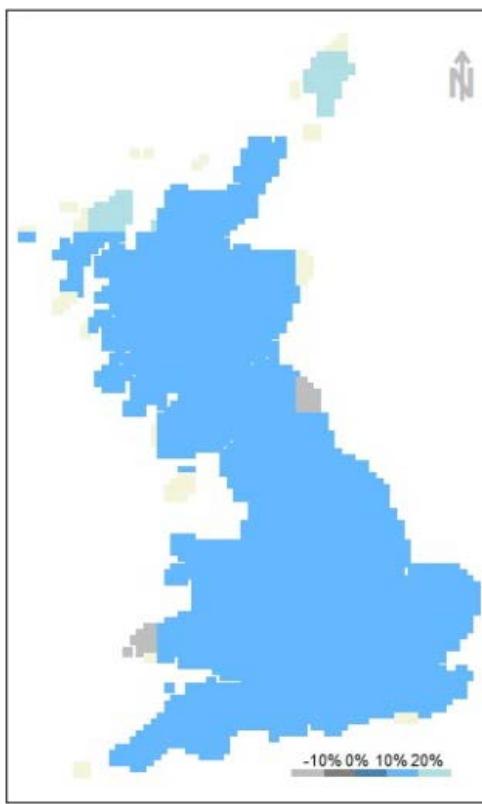
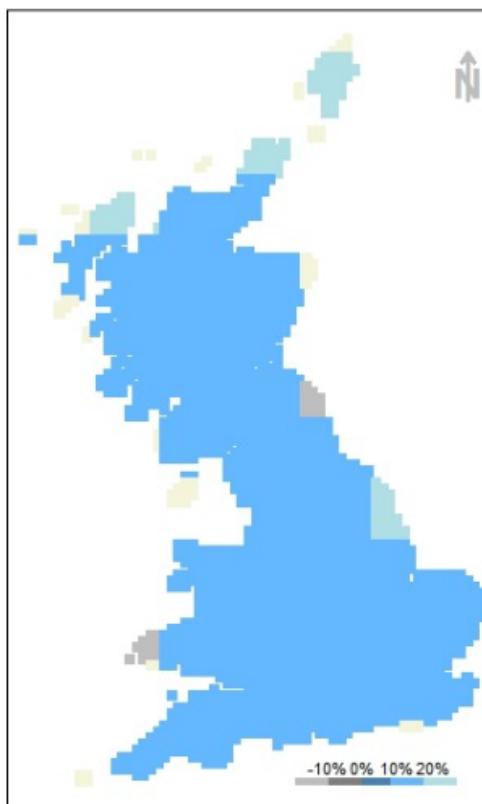
logarithmic function that had much lower error rates than exponential and Clench functions (Table 2. 1).

Table 2. 1 Comparison of error rate between nestedness order (N) v.s random order (R) under three functions (Exp. = negative exponential function; Log = logarithmic function; and Clh. = Clench function) and three levels of sampling efforts (10%, 20%, and 40%) at 100km x 100km scale. Bold type indicates significant differences at $p=0.05$ level (with absolute value).

Functions	Sampling effort	Error rate*		t^{**}	df	p-value
		N	R			
Exp.	10%	20.9±2.9%	20.5±2.2%	1.05	28	0.30
	20%	13.7±11.7%	9.1±30.8%	-1.29	41	0.20
	40%	9.6±2.2%	10.4±1.8%	-2.45	42	0.02
Log	10%	4.6±5.3%	-12.0±6.8%	-4.53	35	<0.01
	20%	3.4±3.5%	-7.0±5.3%	-3.85	39	<0.01
	40%	1.4±2.7%	3.9±3.2%	-4.05	42	<0.01
Clh.	10%	19.0±2.3%	14.9±2.5%	7.52	28	<0.01
	20%	14.8±3.1%	12.5±4.8%	3.84	35	<0.01
	40%	9.0±1.9%	9.6±2.3%	-3.43	42	<0.01

*positive value indicates an underestimation while negative an overestimation of species richness

**positive indicates higher error rate for nested order and vice versa (comparison based on absolute value)

Random*Nested*

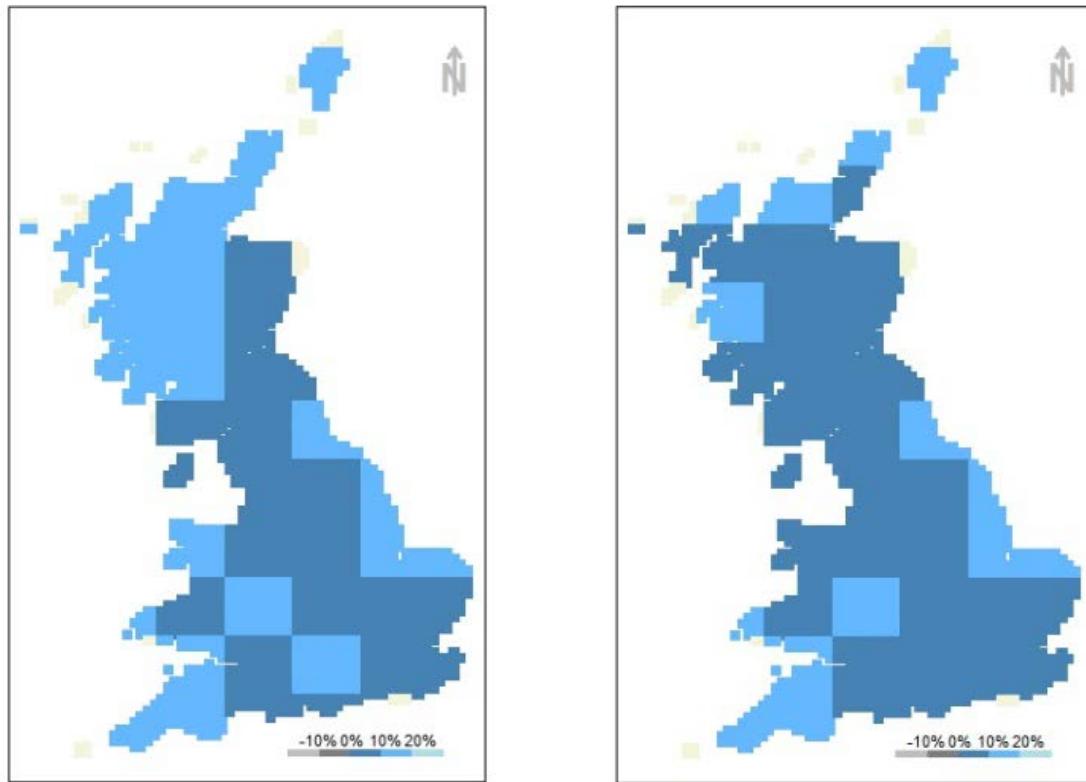
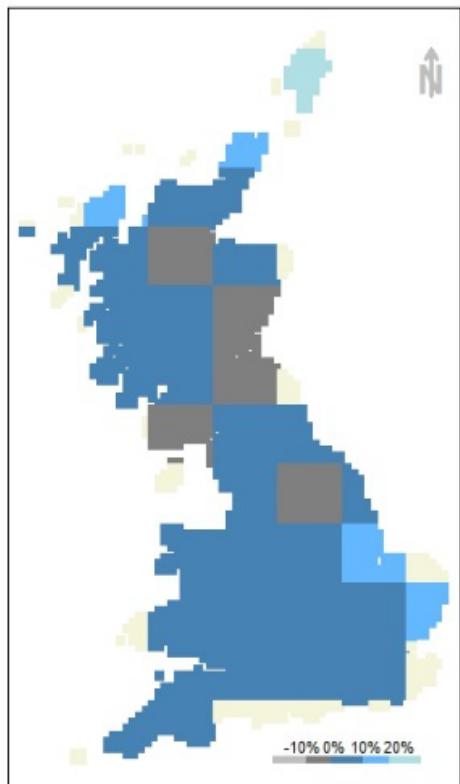
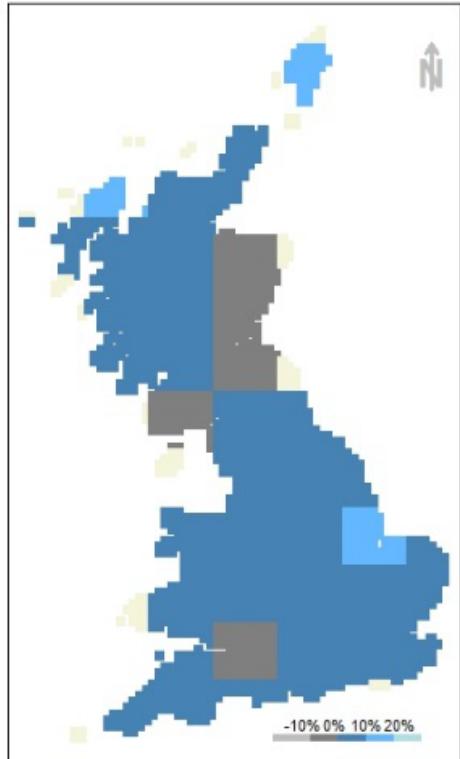


Figure 2. 9 Error rate (mean of 50 repeats) based on exponential accumulation curve function for fifty five 100 km squares with three level of sampling efforts (1st row: 10%; 2nd: 20%; 3rd: 40% of total sites). The left column shows results by random order and right column, nestedness order. Blue areas indicate underestimation and grey areas overestimation of prediction results. Darker colours represent better predictive results (lower error rates). Beige areas indicate sub-squares without enough data for extrapolation.

*Random**Nested*

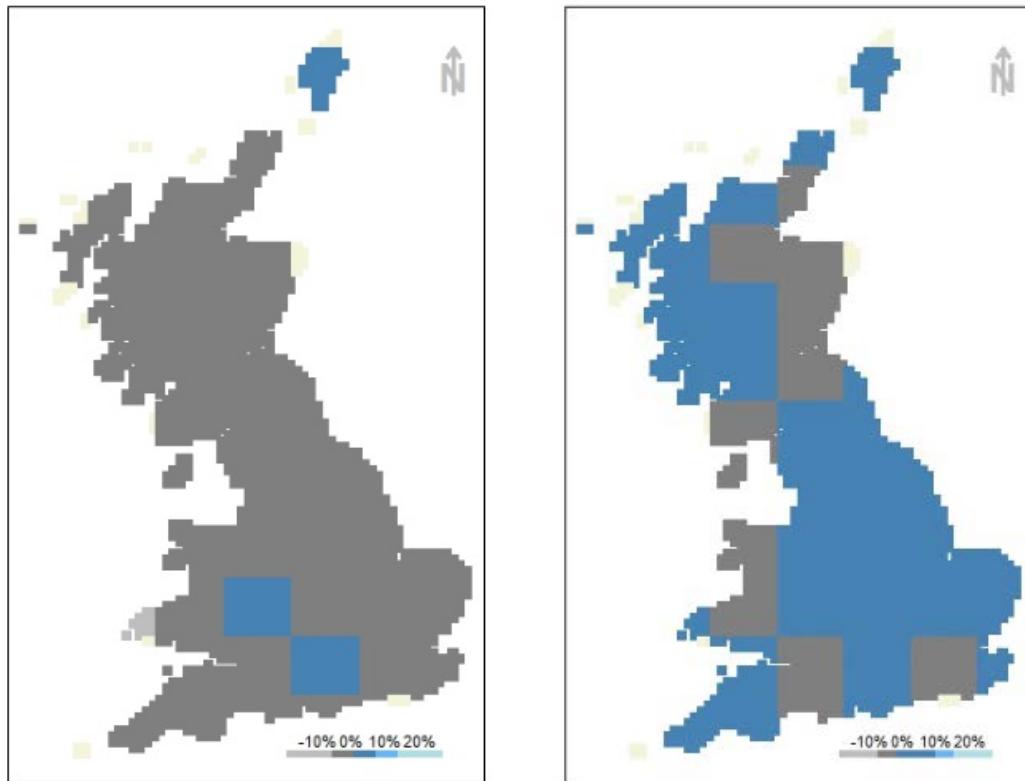
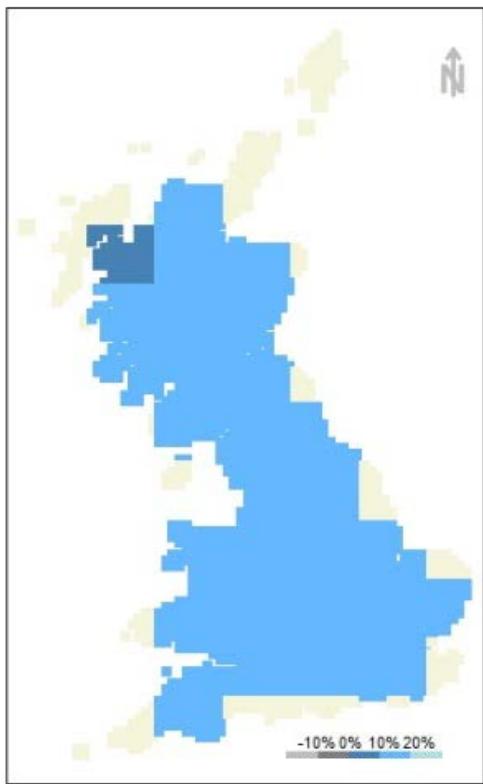
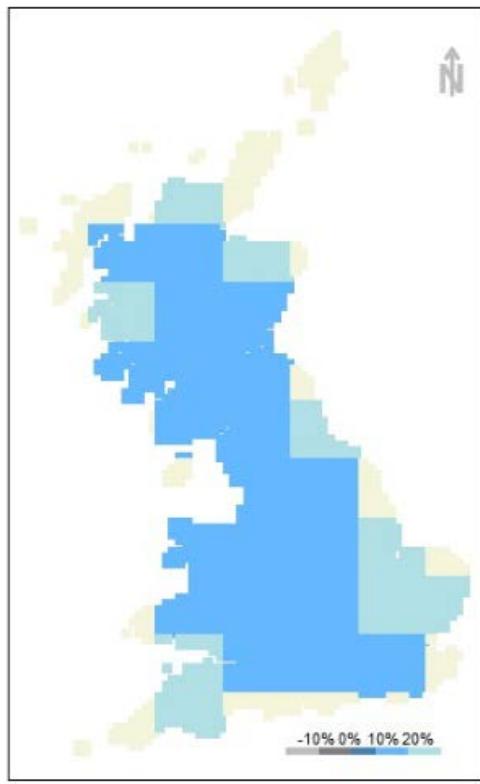
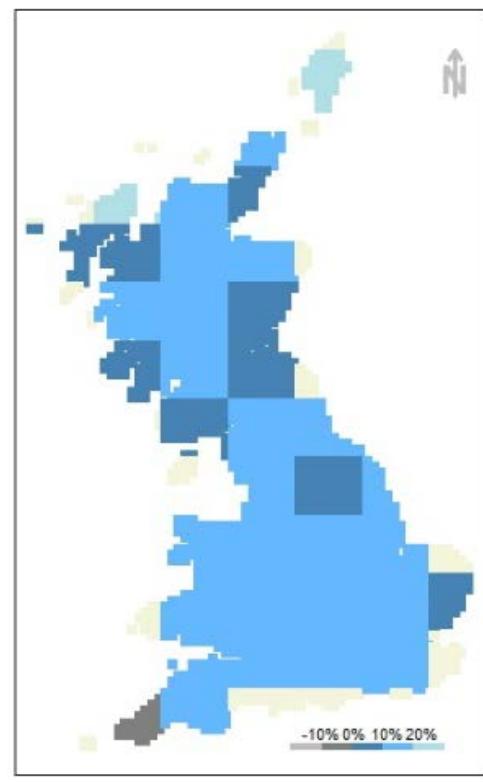
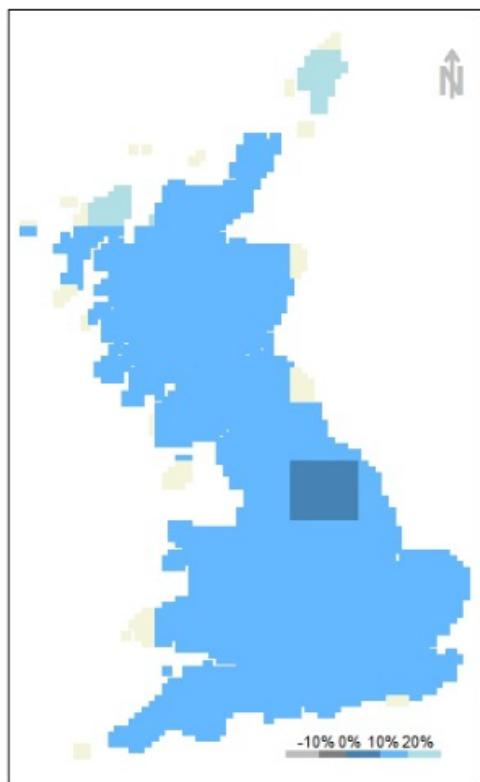


Figure 2. 10 Error rate (mean of 50 repeats) based on logarithmic accumulation curve function for fifty five 100 km squares with three level of sampling efforts (row 1st: 10%; 2nd: 20%; 3rd: 40% of total sites). Left column showed results by random order and right column, nestedness order. Blue areas indicate underestimation and grey areas overestimation of prediction results. Darker colours represent better predictive results (lower error rates). Beige areas indicate sub-squares without enough data for extrapolation.

Random



Nested



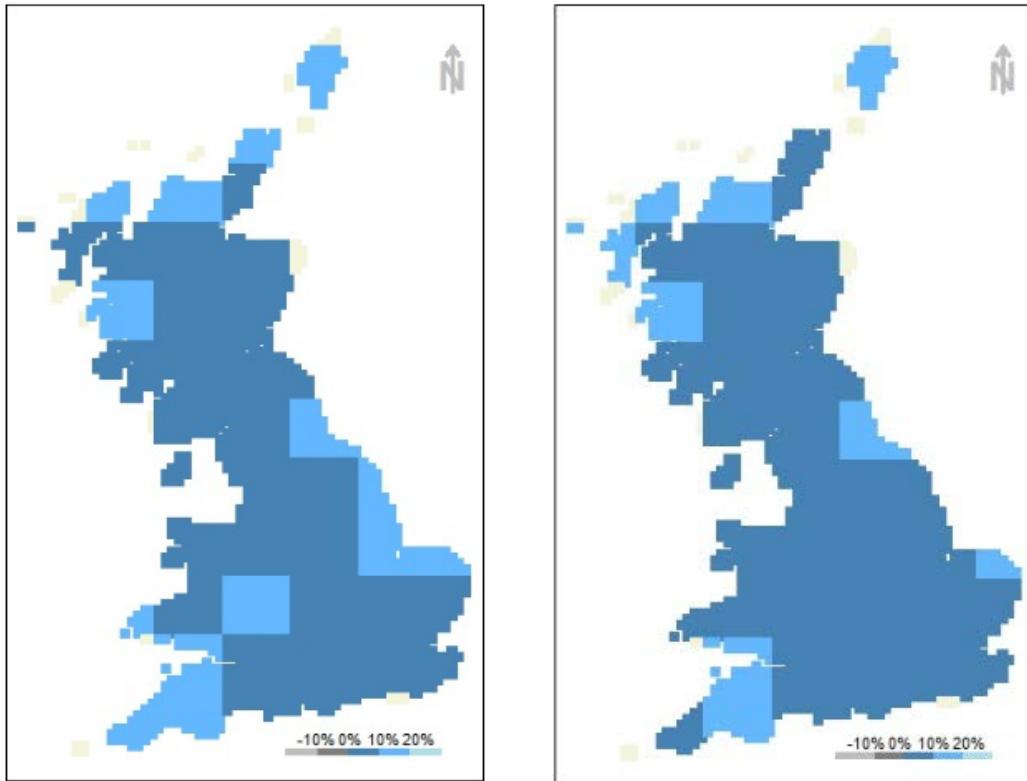


Figure 2. 11 Error rate (mean of 50 repeats) based on Clench accumulation curve function for fifty five 100 km squares with three level of sampling efforts (row 1st: 10%; 2nd: 20%; 3rd: 40% of total sites). Left column showed results by random order and right column, nestedness order. Blue areas indicate underestimation and grey areas overestimation of prediction results. Darker colours represent better predictive results (lower error rates). Beige areas indicate sub-squares without enough data for extrapolation.

2.8 Discussion

In the current study of the British avian assemblage, it was found that accuracy in the projections of species richness increased with sampling effort, and error rates were much lower when fitted with logarithmic function than with exponential or Clench function for both British and 100 km square spatial scales (Figure 2.8, Table 2.1). More importantly, when fitted with the best performing logarithmic function, prediction was at least as good or better when data were arranged based on nestedness order than based on random order (Figure 2.8, Table 2.1).

2.8.1 Species accumulation curve with nestedness structure

Extrapolation from species accumulation curves is a commonly adopted and relatively simple solution to estimate species richness with limited information. Approaches based on asymptotic estimators (Walther and Moore 2005, Magnussen 2014, Béguinot 2015, Chao and Jost 2015, Gwinn et al. 2015) or nonparametric extrapolation from species accumulation curves (Colwell et al. 2012, Chao et al. 2014) require further information on species abundance (instead of presence-absence data only) and are considered to be more accurate in estimating species richness (Brose et al. 2003, Cayuela et al. 2015) than curve fitting method that could be estimated based solely on presence-absence data. The biggest challenge in curve fitting method comes from selecting the optimal extrapolation function (Soberón and Llorente 1993, Dengler 2009b) or randomisation process (Ugland et al. 2003, Gray et al. 2004), which might be improved after the incorporation of information on community structure. In this study, we have demonstrated that ordering data based on nestedness could potentially improve predictability. Most recent research on nestedness has focused on describing

community structure (Picazo et al. 2012, Herczeg and Horvath 2015, Chaves and Ariez 2016) or how to improve the algorithms of calculating nestedness indexes (Almeida-Neto et al. 2008, Podani et al. 2014). This study is a new attempt to incorporate nestedness index to improve the predictive power of the species accumulation curve fitting method. Compared with random order, inputs based on nestedness order would enhance the ability of species accumulation curves to predict avian species richness in Britain at the 100 km square scale, especially coupled with logarithmic function. Accuracy in the prediction of total species richness for both the entire British island and 100 km squares could be >95% for 10% sampling effort when logarithmic species accumulation curve function are fitted with data based on nestedness order. In comparison, the accuracy was less than 90% when data were arranged randomly for 10% sampling effort under logarithmic function at spatial scale of 100 km square.

2.8.2 Nestedness application in sampling design

Owing to the limited resources available for field surveys, it is worthwhile to improve the efficiency of sampling efforts (Ashcroft et al. 2010). Both mathematical pattern and biological mechanism can potentially improve the efficacy of sampling effort. For example, Pearman and Weber (2007) found that including widely distributed species can better predict overall richness than when species of limited distribution were contained. The nestedness-order dataset applied in this study can similarly lead to a better prediction when combined with the best fit extrapolation functions. For instance, error rate was <5% based on nestedness order compared with 12% based on random method when logarithmic functions were applied for the estimation of British avian species richness in 100 km squares with 10% sampling effort.

Conventionally, intensive randomisation procedures are needed for the species accumulation curve to achieve higher predictive power (Ugland *et al.* 2003; Chao & Shen 2004; Gray *et al.* 2004). The randomisation procedure reduces the probability of including extreme values and attempts to simulate real conditions by considering a large number of replications. Alternatively, sampling based on nestedness order is a novel attempt for capitalising on community structure for the prediction of total species richness. Results of this study have demonstrated that overall, sampling according to nested order is more favourable than based on random order. Melo *et al.* (2003) compared predicted species richness from species accumulation curve in different taxa and indicated at least 40% of sampling effort is needed to acquire above 90% accuracy. The nestedness method applied in this study captured information about assemblage composition and used it to achieve better accuracy with lower sampling effort. Thus taking advantage of the nested structure can potentially help predict assemblage composition by focusing on information in the most species-rich sub-squares. However, these findings may be related to the fact that the British avian assemblage demonstrates a moderate level of nestedness at two spatial scales: the entire British island and 100 km squares. More studies considering different species and study site characteristics, as well as different levels of nestedness, are needed to test for the general applicability of nested order.

2.8.3 Species accumulation curve functions for British avian species

Selecting appropriate species accumulation curve function to predict species richness is difficult, as there is no universal principle for the selection of the optimal function. Ugland *et al.* (2003) suggested that the exponential model is suitable for small scale data, while Díaz-Francés and Soberón (2005) proposed that the power model and

logistic model are ideal for median and larger scale data or when information on taxa is scarce. This study indicates that predictability does vary remarkably with functions and selecting the optimal function would greatly improve the predictability. Soberón and Llorente (1993) compared predictability of negative exponential, logarithmic, and Clench functions (but not incorporating information on nestedness) and also concluded that functions vary in their performance. For instance, negative exponential function tends to approach asymptote too soon and typically underestimates overall species richness; however, the same function would also avoid species overestimation under homogenous environment. Indeed, negative exponential function fitted Mexican butterfly data better than logarithmic and Clench functions and this was likely due to the relatively homogenous environment in the Mexican study (Díaz-Francés and Soberón 2005).

The fact that negative exponential function, along with Clench function, usually perform better under homogenous environment is due to both functions belonging to the saturation model (Dengler 2009). That is, there is an upper asymptote and the accumulation curve eventually approaches a saturation point. Compared with negative exponential function, Clench function fits better when homogenous area contains more rare species (Soberón and Llorente 1993, Moreno and Halffter 2000) although both functions tend to underestimate overall species richness (Soberón and Llorente 1993, Cardoso et al. 2008). In comparison, logarithmic function creates a unbounded curve without mathematical asymptote and is more suitable for heterogeneous environment despite this function tending to overestimate species number due to an infinite increase (Tjørve 2003, Dengler 2009).

In this study, logarithmic function performed the best for both the whole British island and 100 km square spatial scales. This agrees with the findings of Lennon *et al.* (2001) in which they assessed the British avian assemblage and found that the logarithmic function, on average, predicted total species richness better than the power function for 10 km to 90 km spatial scales. Because the whole British island and most of the 100 km squares also cover coastal areas (Figure 2.2) that contain water birds, both spatial scales are relatively heterogeneous in the species composition (i.e. they contain both water and land birds), hence the better predictability of logarithmic function than negative exponential or Clench function. In this study, the basic unit of assemblage is the grid square, which is an artificial unit, but the constant size of each grid square avoids the confounding effects of area on species richness and allows a comparison of input order in the species accumulation curve. Besides, if nestedness order can enhance predictability in artificial square data (which may contain more than two real communities), it might perform even better in real communities. In other words, the advantage of nestedness order might be underestimated when based on the artificial square grid data here.

Logarithmic function tends to overestimate species richness (Tjørve 2003, Dengler 2009). Species overestimation does occur in the current study when the prediction is based on logarithmic function with conventionally applied random order. However, replacing random order with nested order instead underestimates total species richness. This is probably because when compared with random order, data input based on nested order include proportionally more uncommon species in the initial samples (Figure 2.1), followed by a decelerating rate of increase in species richness (Figure 2.6, 2.7) because fewer uncommon species remain undetected. Such deceleration might lead to an underestimation of total species richness. On the contrary, fewer species are included

in the initial samples when based on random order (Figure 2.6, 2.7). This is later compensated by an accelerating rate of increase, causing an overshoot in the prediction of total species richness. Owing to similar but opposite levels of error rates with random versus nestedness order for logarithmic function under British scale (Figure 2.8), it is interesting to test whether combining results from both random and nested order leads to better predictions. Indeed, a test showed that predicted species richness can be as low as 0.07% using logarithmic function in 40% sampling at British scale due to the error rates cancelling each other out when using the mean of both estimates. Further studies should test whether incorporating both random and nestedness orders further increases success in the prediction of species richness.

Relative to random order, data input based on nestedness order have better predictive power at small spatial scale (100 km square) when both are fitted with logarithmic function (the most accurate function). Such superiority in prediction does not occur under large spatial scale (e.g. British island), where both ordering approaches lead to similar predictability. Comparatively, new species are more likely to be encountered in larger areas (Ney-Nifle and Mangel 1999, Tjørve 2003, Ulrich and Buszko 2007), thus increasing the uncertainty of including new species and decreasing the prediction accuracy. Under such circumstance, input based on nestedness order might not be more favourable than when based on random order. In comparison, the chance of including new species is lower in smaller areas, especially when the species-rich sites are included in the first samples (i.e. nestedness order), thus the higher prediction accuracy of nestedness ordered data input. However, whether the superiority of nested order is scale-dependent deserves further investigation.

Chapter 3: Incorporating network analysis in the identification of indicator species of the British avian assemblage

3.1 Abstract

Predicting species identity instead of species richness alone is of significant value particularly with species of conservation concerns. The indicator species approach is commonly applied to predict species composition in unsampled sites, but the conventional clustering method can often lead to inconsistent and misleading results due to that this method measuring the relative dissimilarities among species. In this study, we applied network analysis that directly measures co-occurrence among species to improve the predictive power of indicator species, with British birds as an example. Five indicator species groups identified among British avian species across all sites differed between two approaches of site group detection, clustering method and network analysis, with the latter showing clear geographical demarcation. Selected indicator species based on 40% study sites also differed between clustering method and network analysis; however, species in unsampled sites were better predicted by network analysis than by clustering method. Our study demonstrates that incorporating network analysis can improve predictability of indicator species and this novel method can be of broad applicability to other study systems.

3.2 Introduction

Results from the previous chapter showed that incorporating information on assembly structure, such as nestedness, can improve predictability of species richness in comparison with capitalising simply on mathematical equations that lack any biological underpinning. Based on the aforementioned approach, only species richness but not species composition can be predicted; nevertheless, information on species identity is frequently more important than species richness, particularly with species of conservation concerns (Webb 1989, Cousins 1991). For example, two sites with similar species richness merit different management plans when one harbours species that are endangered or have a limited distribution while the other is composed primarily of exotic species. Furthermore, conservation strategy focusing solely on areas with the highest species richness (i.e. hotspots) sometimes neglects the requirement of rare species that happen not to occur in the hotspot; for example, rare liverworts and aquatic plants have environmental requirements distinctive from other terrestrial flora (Prendergast et al. 1993). Evidently, information merely on species number might be misleading, particularly when concerning conservation or policy legislation (Prendergast et al. 1993, Prendergast 1997, Grunel et al. 2014).

In this chapter, I take a step further and focus on species identity and composition instead of species richness only. Community structure, including species co-existence information, is analysed to see if simply having limited information on species identity but no environmental attributes can predict overall species composition. Compared to niche modelling that requires environmental attributes, using species information solely to predict species composition is based on the assumption that when a group of species is closely associated with specific ecological requirements, this group of species can be taken as “indicator species” to predict

characteristics of unsampled sites (Harms et al. 2001, DeCáceres and Legendre 2009). This method is called “indicator species value” and was developed by Dufrêne and Legendre (1997).

An interest in associations between habitat and species assemblage can be traced back to Two Way Indicator Species Analysis (TWINSPAN) (Hill 1979), which is the earliest numerical method on habitat association of species assemblage (Dufrêne and Legendre 1997). However, TWINSPAN has two main weaknesses. Firstly, it is based on correspondence analysis (CA) or detrended correspondence analysis (DCA) that projects sampled species onto an assumed linear-gradient axis, which might not in fact be linear. Furthermore, this analysis retrieves information only from the first axis of CA or DCA and neglects the second axis which might also affect the ordination result. Secondly, TWINSPAN is a top-down division process, clustering and arbitrarily dividing the first axis of CA (or DCA) into two even groups. This process might misclassify species near the centre of the axis. Moreover, the two-group method may not always be suitable for classification, for example in categorizing a xeric to hydric gradient into either group because in-between there exists mesophytic plants. Therefore, classification by TWINSPAN may be inappropriate and lead to low predictability when associations between species and habitats are weak. To solve these problems, a method termed “indicator species value” (Dufrêne and Legendre 1997) was devised to provide a more efficient way for identifying indicator species.

The indicator species concept has roots in the idea of representative diversity (Webb 1989, Cousins 1991), which argues that species assemblages are associated with specific habitat types. Such species assemblages help characterise habitats based on Species–Environment Relationships (SER) analysis, which categorizes species assemblage according to spatial and environmental factors (Borcard 1992). The SER analysis also involves measuring environmental attributes and relies on multivariate methods for modelling species distribution.

Instead, the indicator species value method stresses measuring association between species and habitats, using hierarchical or nonhierarchical classification method (e.g. clustering) (Dufrêne and Legendre 1997). In contrast to TWINSPAN, indicator species are not classified along a gradient but are selected based on two characteristics: 1) the degree to which the species is associated with specific habitat. The ideal situation is that a species only occurs in one specific habitat, thus reflecting its ecological preference or requirement. This character is usually designated as A in indicator species value calculation; 2) the abundance of the species; that is, is it abundant enough to be effective as an indicator. Although a rare species can fit the first requirement, its lower numbers mean a lower detection rate. This is usually designated as B in the calculation. These two indices can be applied and interpreted individually or jointly. According to Dufrêne and Legendre (1997), the indicator value is the product of A and B and a higher value suggests more feasibility as an indicator species. In contrast to species distribution modelling that relies on environmental variables to model species richness or composition, the indicator species method depends solely on information inherent in species groups (DeCáceres and Legendre 2009). For example, research on carabid spatial distribution shows that this taxon has strong habitat preference and clear distributional boundaries. Based on the indicator species value, a new habitat type was identified and indicator species were found to possess species indicator values (Magura 2002).

Identifying indicator species requires classifying sites (or samples) into different habitat types that each contains unique species composition. Each species will then be assigned an indicator value for each habitat type. For instance, if three habitat types are classified, each species has three indicator values corresponding to each of the three habitats. The indicator species for each habitat are defined as the species with the highest indicator value. However, the habitats are typically classified based on clustering methods (especially non-hierarchical

methods such as k-means clustering), which is a descriptive method with its robustness hard to validate and it is also an indirect method, relying on distance (difference) between species rather than directly measuring co-occurrence patterns (Milligan 1980, Legendre and Legendre 2012). It is also sensitive to the double-zero issue, which is very common in ecological datasets and may cause group misclassification (Dufrêne and Legendre 1997, Legendre and Legendre 2012). A double-zero issue happens when comparing two sites with the presence or absence of specific species. Presence in both sites of species indicates resemblance of sites, but absence in both sites does not necessarily represent resemblance, for the absence of species in two sites may be due to different reasons. However the distance calculations in conventional clustering methods cannot reflect this fact. In comparison, a direct measure of species co-occurrence could improve the efficiency of indicator species method.

Numerous field observations have revealed that species co-occurrence is not a random process but instead one species tends to occur more frequently with certain species (Waddle et al. 2010). Such co-occurrence may reflect similar environmental requirements such as food and habitats, thus forming functional groups (Woodcock et al. 2010, Ehouman et al. 2012). It is also likely to be due to cooperation or mutualism such as the formation of feeding flocks (Farine et al. 2012). If such a relationship is stable through space and time, whole groups of co-occurring species could potentially be predicted when one of the members is observed. Until now, most studies have focused on measuring negative species co-occurrence, such as the checkerboard score (Gotelli 2000). The checkerboard scores emphasise how two species do not co-occur due to competition although predictability of species is likely to be enhanced when instead based on how and how often species co-occur (Gotelli 2000, Gotelli and McCabe 2002). Under such circumstance, network analysis may serve as a valuable tool, because of its

efficiency in disentangling complex relationships among members in an assemblage or community.

Network analysis has now been widely used in social, biological, and many other fields to help illustrate and disentangle complicated interactions and relationships among members (Whitehead 1995, Lusseau 2003, Newman and Girvan 2004). It is particularly useful for managing large amounts of data (Blondel et al. 2008) and can usually be visualised to help reveal entangled relationships (Moody et al. 2005). A network contains two essential elements: nodes and edges. Each node is an individual member in a network, and the edge represents relation among them. For example, food webs are one kind of network that is composed of plants and animals (nodes) with each interaction representing an edge. Such complicated interactions, common in ecological studies, are usually difficult to analyse by conventional methods. Network analysis, instead, can tackle the problems even with a community comprising thousands of interactions (Montoya and Sol 2002, Estrada 2007, Gilbert 2009).

When information on sites is incorporated into analyses of interactions among species, a specific network type called multi-mode network should be used (here, a two-mode network containing species and sites). Multi-mode networks encompass more than one type of node (Newman 2010). For example, a two-mode network can represent the relationship among species and their resident sites, and there are two types of nodes representing species and sites harbouring the species respectively. The community data can then be arranged into an “incidence matrix” to reveal whether some groups of species coexist more frequently on particular sites than others. Such network analysis reveals relationships among species that co-occur in various sites. When the analysis focuses on only one aspect of a relationship (e.g. relationship among species in the same sites or sites containing similar species group), a two-mode network can be projected into a one-mode network to facilitate analysis (Prell 2011). For

example, when the network is projected along the site axis, it emphasises how sites containing similar species can aggregate to form site groups (i.e. subgroup in network analysis) that reflect similar ecological requirements. For instance, sites containing puffins and petrel species form a subgroup that represents rocky-coastal habitat. If the associations between site groups and species are robust and repeatable, the habitat type or species composition of an unsampled site can potentially be predicted based on observed species or habitat. This is in accordance with the concept of indicator species value (Dufrêne and Legendre 1997). Furthermore, network analysis has the potential to improve the predictability of the latter method by its superior analytical capability in (site) group detection.

Based on different concepts and algorithms (Guimerà and Amaral 2005, Fortunato 2010) derived from graph theory (Wilson 1996, White and Harary 2001), there are various ways to identify subgroups in a network. One approach is to calculate the network modularity (Newman 2004). This concept has been adopted in ecological research to reveal complicated interactions and to detect heterogeneous structure within ecological communities or ecosystems (Olesen et al. 2007, Genini et al. 2012). For example, network analysis has been used to analyse the European fauna structure (Araújo et al. 2011) and successfully reveal the robustness of each fauna group by geographical distribution and resistance to climate change. Modularity measures not only linkages within a module but also the linkages among modules. Nodes possess a higher “degree” (the sum of edges link to the node) than other members in the same module, but a lower degree with members in other modules (Blondel et al. 2008, Newman 2010).

The aim of this chapter is to investigate the possibility of substituting clustering methods with network modularity in indicator species analysis, in the hope of improving predictability of species composition or habitat type in unsampled sites. In this research, the sites were sorted

into groups according to their linkage levels (i.e. the number of sharing species). Site groups based on the modularity algorithm would be a substitute for the clustering groups in the indicator species analysis. This new method was compared with conventional clustering-based indicator species to investigate its merits in directly measuring species co-occurrence.

3.3 Methods

3.3.1 Species data

The species dataset is the same as Chapter 2, which is termed the BTO dataset hereafter. In this study, the analytic unit is the 10 km square (a site), with species represented by presence (designated as 1) or absence (designated as 0). No species abundance data were used in the current study.

3.3.2 Network analysis data organisation

The incidence matrix was arranged by site vs. species, with marginal sums as the total number of species in a site and species prevalence as occurrence of specific species across all sites. Based on the matrix, a two-mode network (two types of nodes, with each representing site and species), describing which species resided in what site (linkage), was then plotted. To better understand how sites clustered according to similarity in species composition, the network was projected into a one-mode network containing only nodes that represented sites. Three possibilities of linkages can occur in a pair of sites: no linkage meaning no shared species, one linkage meaning only one species in common, and multi-linkages meaning sharing more than one species. A weighted network illustrating relationship among sites and based on the extent of species in common can then be constructed (Newman 2010).

3.3.3 Site group detection with network modularity

The modularity detection method termed randomtrap (Pons and Latapy 2005) is based on random walk via the closest distance among neighbouring nodes (Fortunato 2010). In network analysis, the closest neighbour node is the node with only one-step linkage to the target node.

The nodes are then organized into linked subgroup (that is, a module) that contain closer neighbours. The modularity detected by the randomtrap method may be visualized as a person walking randomly among nodes along the shortest distance; with limited steps, the walker would readily be trapped in a closely linked subgroup (module). When this process is repeated, the nodes are gradually assigned into different modules and this can be recorded by plotting a dendrogram of random walks. This random-walk method aggregate nodes in an agglomerative direction and measures the similarity between nodes to detect modules. It is an efficient and timesaving method, ideal for analysing large and complicated networks (Pons and Latapy 2005, Fortunato 2010).

3.3.4 Site group detection with k-means clustering versus network modularity

The efficiency of network modularity versus clustering in site group detection was compared within the same avian assemblage dataset. Dufrêne and Legendre's (1997) method was followed for determination of the optimal number of clusters for the indicator species value analysis. This method firstly calculates the indicator value (IndVal) of each avian species for each clustering level (e.g. IndVal for species 1 to species 273 at clustering level 2, 3, 4 etc.). The difference in IndVal between consecutive cluster levels for each species is then calculated (e.g. the difference in IndVal between cluster 2 and cluster 3 for species a) and plotted. Because larger IndVal represents a better predictor, the optimal clustering level is when the difference in IndVal (cluster $n+1$ minus cluster n) is the largest and is most positive (Appendix C). For comparison purposes, the k value (the number of groups to be split) was set to equal to the number of modules in modularity detection. In this case (Appendix C, Figure A-1), because the value (difference in IndVal, y axis) is the highest between cluster 2 and cluster 3, and is of similar high value between cluster 4 and cluster 5 (both also have smaller negative value unlike

between cluster 7 and cluster 8), it is most optimal to divide the avian assembly into three or five clusters. However, either three or five clusters has lower predictability than the method based on network modularity, as demonstrated briefly in Figure A-2 (below, for three clusters) and comprehensively in Chapter 3 (for five clusters).

In this stage, the site map partitioned by network modularity and k-means clustering method was compared, and was termed population modularity and population clustering, respectively. The resulting site groups (based on the whole dataset) were compared with site groups determined by partial sampling of whole dataset (see the following paragraph) to investigate the reliability of these two partitioning methods.

3.3.5 Sampling site and sampling site groups

For deciding the sampling size used in this analysis, a preliminary sensitivity analysis was done to estimate the sampling size for effectively representing population modularity. The analysis showed when using 10% and 20% sampling, the sub-squares belong to a small coastal site group would usually be missed and not be included in the modularity result, but in 40% sampling these sub-squares would be selected more often and had more representativeness of the population modularity (for details see Appendix D). Also, in the previous chapter, a 40% sampling effort can accurately predict species richness, therefore the 40% sampling effort was applied here. To assess the predictability of indicator species, 40% random samples from the whole BTO dataset were partitioned based on network modularity and k-means clustering and were called sampling modularity and sampling clustering, respectively. Assigned modularity based on 40% sampling was compared with assigned modularity based on the whole population using the *Fowlkes-Mallows index (FM index)* (Fowlkes and Mallows 1983) to see whether the sampling sites were classified in the same module as when the assignment was based on the

whole population. The same process was applied to compare sampling clustering and population clustering. The *FM index* compares two clusters and evaluates the extent of similarity or dissimilarity between the clusters. Assuming that two clusters X_1 and X_2 both with n objects and k clusters. X_1 ($k=1\dots i$) and X_2 ($k=1\dots j$) are compared and a matching matrix (m_{ij}) can be created as (when $k=2$):

$$m_{ij} =$$

			X_2
		1	2
	1	m_{11}	m_{1j}
X_1	2	m_{i1}	m_{ij}

The *FM index* is defined as:

$$\text{FM_Index} = \sqrt{\frac{T_k}{P_k \cdot Q_k}}$$

Where $T_k = \sum_{i=1}^k \sum_{j=1}^k m_{ij}^2 - n$, $P_k = \sum_{i=1}^k m_{i\cdot}^2 - n$, $Q_k = \sum_{j=1}^k m_{\cdot j}^2 - n$. The *FM index* ranges from zero to one, with higher value indicating more similarity between two clusters.

Significance of the *FM Index* is evaluated against $E(FM) \pm 2(\text{var}(FM))^{1/2}$, where $E(FM)$ is the mean and $\text{var}(FM)$ is the variance under the assumption of no relation between X_1 and X_2 .

3.3.6 Selecting the indicator species

Based on 40% sampling effort, the indicator species value for each species in each site (termed IndVal hereafter) is determined by two indices, A and B, which represent specificity (the *positive predictive value*) and frequency (the *sensitivity*) of species to the site, respectively

(sensu Dufrêne and Legendre 1997; De Cáceres *et al.* 2012). A_{ij} is the proportion of species *i* present in specific site group *j* ($N_{presence_{ij}}$) relative to presence of species *i* in all site groups ($N_{presence_i}$), and the higher A_{ij} , the more species *i* is specific to site group *j*. Similarly, B_{ij} is the frequency of sites in site group *j* where species *i* is present ($N_{sites_{ij}}$) among all sites in site group *j* (N_{sites_j}).

$$A_{ij} = N_{presence_{ij}} / N_{presence_i}$$

$$B_{ij} = N_{sites_{ij}} / N_{sites_j}$$

$$IndVal_{ij} = A_{ij} \times B_{ij} \times 100$$

$$IndVal_i = \max[IndVal_{ij}]$$

Significance of $IndVal_i$ was evaluated by bootstrapping: 1000 randomly resampled observed sites were used to generate an approximate distribution for the observed data and confidence interval for A , B and $IndVal$.

For selecting the indicator species, the square root of indicator value ($\sqrt{IV^g}$) was used to measure the association between species and sites (*sensu* De Cáceres and Legendre 2009). The *g* denotes group equalisation, to correct for differences in group size among indicator species when summing A_{ij} values in *J* areas.

$$A_{pa}^g = \frac{N_{presence_{ij}} / N_{presence_i}}{\sum_{j=1}^J N_{presence_{ij}} / N_{presence_i}}$$

A threshold of $A=0.6$ (the positive predictive value) and $B=0.2$ (the sensitivity) was set to select effective indicators (De Cáceres *et al.* 2012). Because in comparison with single species, a combination of species could be more efficient in being indicator species (De Cáceres *et al.* 2012), a combination of four-species was selected as candidate species. It is necessary to set a limit for the number of indicator species, otherwise sensitivity of indicator will decrease and

uncertainty of positive predictive value will increase with too many indicator species. Indicator species based on two grouping methods, network modularity and k-means clustering, were then used to predict unsampled sites. The A value of indicators also represented the likelihood of an unsampled site to be predicted as a site group including the selected indicators. For example, if an unsampled site contained indicator species i indicating site group I with an A value of 0.7, then this unsampled site had 0.7 likelihood of belonging to site group I by the presence of species i . The aim is to search for the maximum value that indicates the most likely species-site association. Significance of the species-site association can be tested by the percentile bootstrap method, which resampled the observed data to generate an approximate distribution of the indicator values (DeCáceres and Legendre 2009, DeCáceres et al. 2012).

All analyses were conducted in the R environment (R Development Core Team 2013) using the R packages “igraph” (Csardi and Nepusz 2006) (for the network analysis), “indicspecies” (DeCáceres and Legendre 2009) (for the indicator values), and “dendextend” (Fowlkes and Mallows 1983) (for the Fowlkes-Mallows index).

3.4 Results

The network of the BTO dataset contained 273 bird species in 2830 nodes (sites). The population network included 3,957,073 edges, with each edge representing a linkage among sites with the same species.

3.4.1 Subgroups detected by population modularity and k-means clustering

3.4.1.1 Modularity

The Randomtrap method identified five modules in the BTO dataset (population modularity) (Figure 3. 1 left panel), with each module containing 133, 475, 11, 1345 and 866 sites, respectively. Sites in the same module had similar species composition (species list in Table 3. 1 left). There was a clear latitudinal segregation among these five modules (Figure 3. 1 left). One small module was located mainly at the northern coast and a few islets (red module in Figure 3. 1 left). Three modules (blue, orange, and purple modules in Figure 3. 1 left) were distributed primarily in highland Scotland, middle to west coast area, and south-eastern area, respectively. There was also a small module (with 11 sites) that was scattered at some coastal areas (green module). The avian species contained in each module are listed in Appendix E, left.

3.4.1.2 Clustering

Because the difference in IndVal is the highest between cluster 2 and cluster 3, and is of similar high value between cluster 4 and cluster 5 (both also have smaller negative value unlike between cluster 7 and cluster 8, Figure A-1 in Appendix C), it is optimal to divide the avian assembly into three or five clusters. However, since the network modularity identified five

modules, for comparison purposes, the number of groups to be split was set to five (results for three clusters are briefly demonstrated in Figure A-2 of Appendix C, and also had lower predictability than the method based on network modularity).

The five clusters determined by k-means clustering method each contained 513, 436, 775, 748 and 358 sites (Figure 3. 1 right). Likewise, sites in the same cluster had species with shorter distance (less dissimilar) among themselves than with those outside the cluster. The five clusters were also located approximately from north to south, but the geographic demarcation was less clear-cut than those modules determined by randomtrap method. The northern coast and islands were assigned to the same cluster (blue cluster in Figure 3. 1 right), but the Highland area was partitioned into two clusters (green and orange clusters). The green cluster represented most coastal areas except the northern coast, however the range was larger than the green coastal module in the modularity result. The southern urban area was also divided into two clusters (purple and red clusters) but cannot be easily segregated. Avian species contained in each cluster are listed in Appendix E, right.

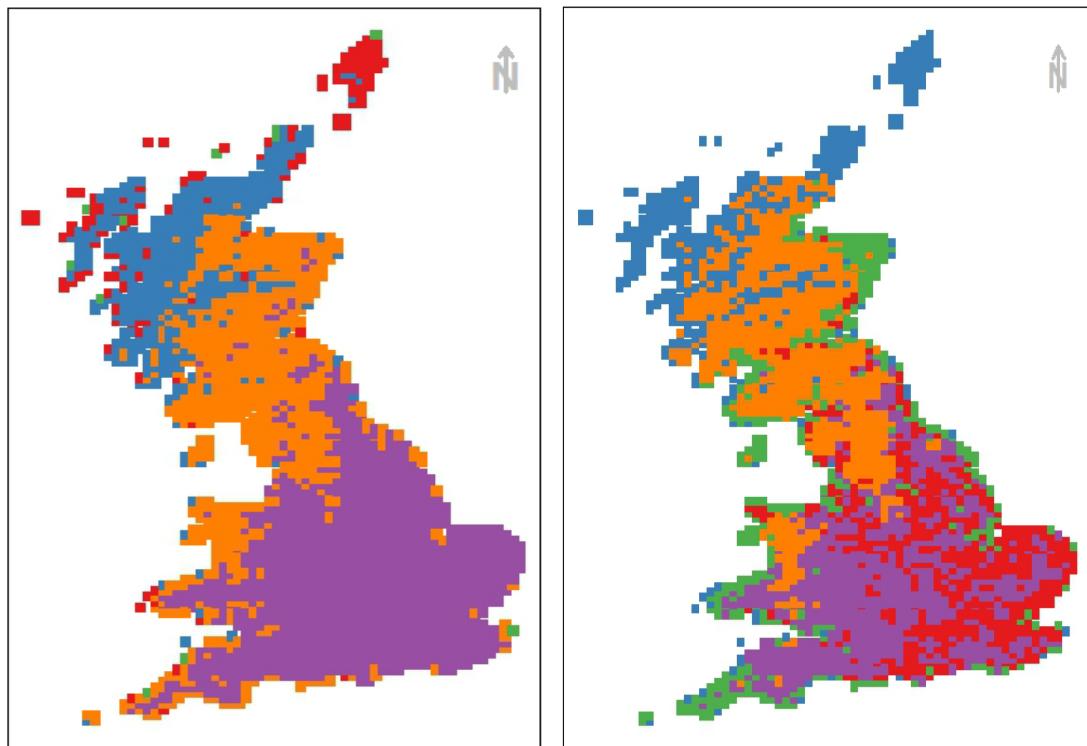


Figure 3. 1 Results of modularity detection (left) and k-means clustering (right) from the entire BTO dataset. Different colours represented different modules or clusters. Colours and order of module (or cluster) are arbitrary. Each square is a 10 km sub-square.

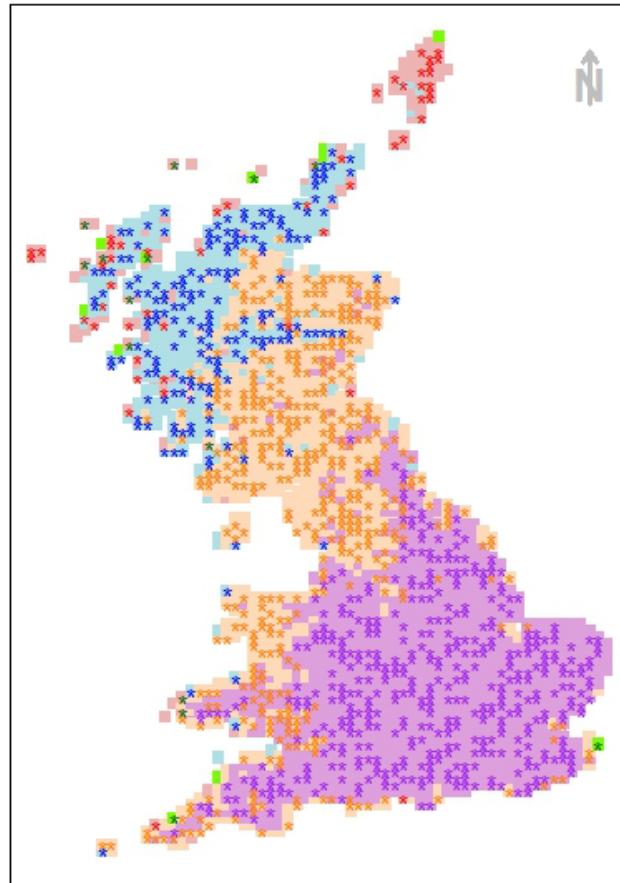


Figure 3. 2 Assigned module of sites based on 40% sampling (colour asterisk) and whole sampling (background colour) of BTO dataset with randomtrap modularity algorithm. Different colours represented different modules. Each square is a 10 km sub-square.

3.4.2 Subgroups detected by sampling modularity and k-means clustering

The Randomtrap method also identified five modules in random sampling of 40% BTO dataset (Figure 3. 2). Sampled sites were largely assigned to the same modules (based on 40% sampling) as those based on the whole dataset (i.e. 100% sampling) (Figure 3. 2), with a FM index of 0.83 and an expected value of 0.34 and variance less than 0.01. In comparison, there

was less overlap in the assigned clusters between those sites based on 40% vs. 100% sampling using k-means clustering method (Figure 3. 3), with a lower FM index of 0.62 and an expected value of 0.28 and variance less than 0.01.

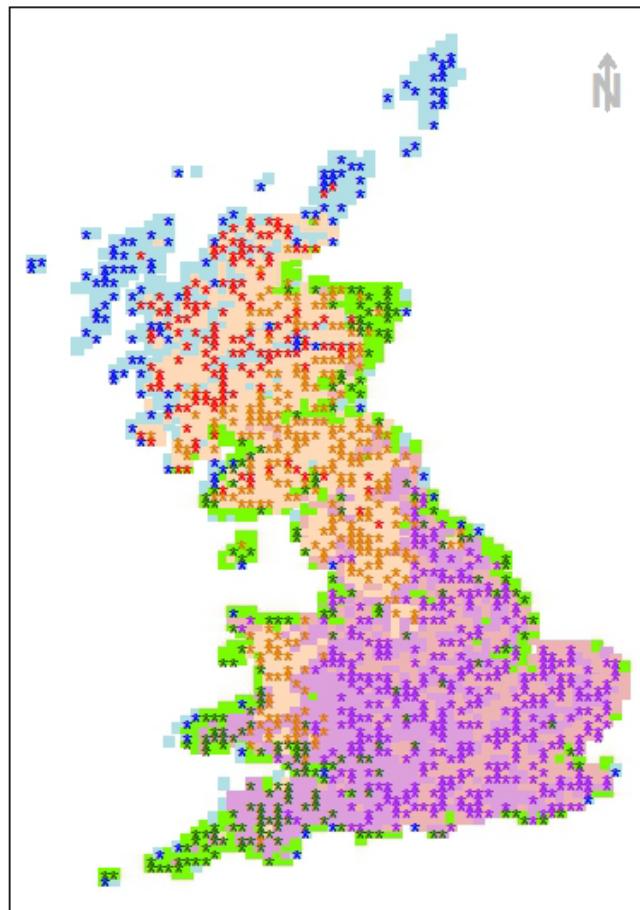


Figure 3. 3 Assigned cluster of sites based on 40% sampling (colour asterisk) and whole sampling (background colour) of BTO dataset with k-means clustering method. Different colours represented different modules. Each square is a 10 km sub-square.

3.4.3 Indicator species selected by sampling modularity and k-means clustering

Each of the five sampling modules and sampling clusters contained groups of indicator species (up to four avian species in each species group, Table 3. 1) that all had significant indicator values ($p < 0.05$, except the green group), but modularity and clustering gave different indicator species combinations (Table 3. 1). For instance, the blue module and the blue cluster were located in approximately the same area but have different indicator species groups with different positive predictive values (Table 3. 1). When all indicator species of a specific site group are observed in an unsampled site, the chance that this site belongs to the site group is higher. For example, in the red sampling modularity, the indicator group comprising fulmar (*Fulmarus glacialis*), meadow pipit (*Anthus pratensis*), shag (*Phalacrocorax aristotelis*) and black guillemot (*Cephus grille*) has the highest positive predictive value of 0.69. This is followed by fulmar, great black-backed gull (*Larus marinus*), meadow pipit and black Guillemot with a positive predictive value of 0.68, and herring gull (*Larus argentatus*), fulmar, meadow pipit, and shag with a value of 0.64. When an unsampled site contains one of the three indicator groups, the site probably belongs to the northern coast area or coastal islands and based on the indicator values, one can evaluate how confident the classification is. Nonetheless, a very small module (green) does not meet the threshold of selecting valid indicator group. The fulmar is the most suitable indicator species when no threshold is set, with a positive predictive value of 0.51 (Table 3. 1 left).

The positive predictive values (A values) of sampling modularity range from 0.64 to 0.88 (except for the green group which is without an indicator group) and the sensitivity values (B values) range from 0.70 to 0.86 (Table 3. 1 left). Aside from the green group, the rest of indicator groups have high \sqrt{IV}^g values (>0.7) so that site types can be confidently identified. In comparison, the positive predictive values (A values) of sampling clustering range from 0.66

to 0.87, with the mean higher than those of sampling modularity, but the sensitivity (B values) varies significantly (from 0.31 to 0.87) (Table 3. 1 right). The value $sqrtIV^g$ also varied remarkably (from 0.47 to 0.87) (Table 3. 1 right).

3.4.4 Using indicator species to predict site groups in unsampled sites

3.4.4.1 Modularity

Indicator species determined by 40% sampling were used to predict assigned modules in unsampled sites and predictability was evaluated by comparing with the assigned module based on population modularity (that is, the whole dataset).

Figure 3. 4 shows how well prediction based on 40% sampling matched those assigned with population modularity. Except for the green and, to a lesser extent, red modules that both contain fewer sites than the other three modules, prediction based on 40% sampling generally matches assigned population modularity. For example, when predicted sites are known to belong to the blue population modularity (Figure 3. 4b), the likelihood of unsampled sites also to be assigned blue modularity is 0.8 (Figure 3. 4 b2), while the likelihood of unsampled sites being assigned to the other four modules is 0 (Figure 3. 4 b1, 3, 4, 5). In terms of the red population modularity (Figure 3. 4 a), the red group indicators successfully predicted the red group to be red (Figure 3. 4 a1) but falsely predicted the blue group to be red (Figure 3. 4 a2). For the small green population modularity, the predictability was low (Figure 3. 4 d) because of no suitable indicator species (Table 3. 2 left).

3.4.4.2 Clustering

Similarly, Figure 3. 5 illustrates frequency of occurrence of different clusters when predicted based on 40% sampling under each of the five population clustering. However,

prediction based on 40% sampling generally did not match assigned population clustering except for the blue and green groups with mixed successes. While some predicted sites were assigned the same clustering as the population clustering, there were also a large number of sites that should be assigned blue or green clustering but failed to do so (Figure 3.5 b2, c3). Also, the orange indicator group could predict unsampled sites correctly with lower levels of false negatives (Figure 3. 5e5), but still with chances of assigning unsampled sites to the wrong colour groups.

Although the sampling clustering indicator group had almost the same level of square root value (indicator species value) as the modularity approach, the power to predict unsampled sites by sampling clustering indicator groups was weaker compared to the sampling modularity indicator groups. Only the orange group was able to successfully predict the site groups without confusion with other groups (Figure 3. 5e). This may due to the inconsistency of partitioning results between the population clustering and sampling clustering (Figure 3. 3) and low level of dissimilarity between species combination in clusters of sampling clustering result (Table 3. 1).

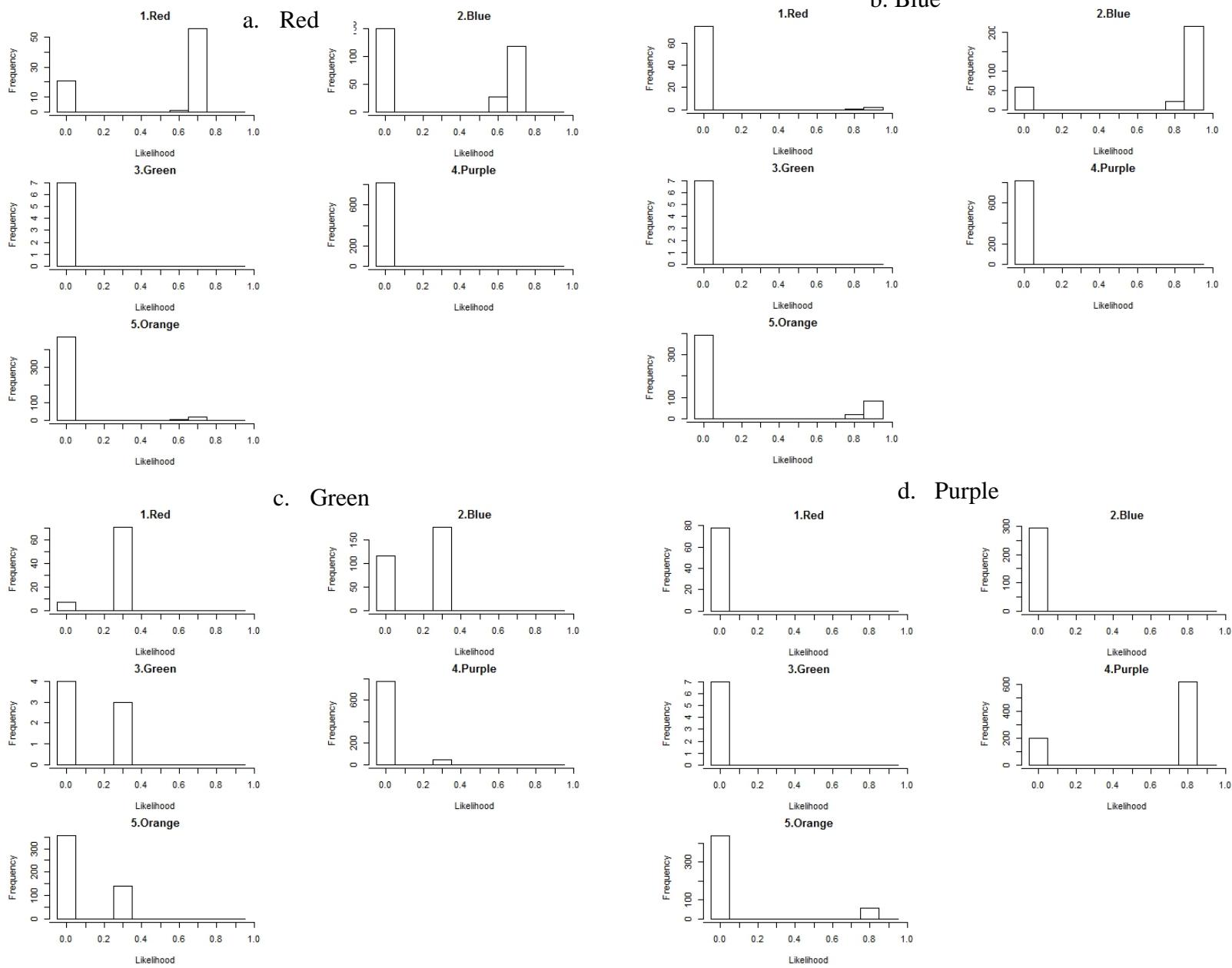
Table 3. 1 The indicator groups selected by sampling modularity (left) and sampling clustering (right) of British Trust of Ornithology (BTO) dataset. SP = species name codes; A = positive predictive value to a site group of each indicator group; B = sensitivity of each species group to a site group; $sqrt{IV^g}$ = grouped equalised square root value of $A \times B$.

*: The indicator values of the green module do not reach the threshold of $A=0.6$ and $B=0.2$. Under the circumstances no indicator species can be selected. The result here is the result of when no threshold sets.

Modules	Indicator species group				Clusters	Indicator species group			
	SP	A	B	$sqrt{IV^g}$			SP	A	B
Red	<i>Fulmarus glacialis</i>				Red	<i>Fringilla coelebs</i>			
	<i>Anthus pratensis</i>	0.69	0.82	0.75		<i>Actitis hypoleucos</i>			
	<i>Phalacrocorax aristotelis</i>					<i>Corvus cornix</i>	0.77	0.76	0.77
	<i>Cephus grylle</i>					<i>Erithacus rubecula</i>			
	<i>Fulmarus glacialis</i>				Red	<i>Fringilla coelebs</i>			
	<i>Larus marinus</i>	0.68	0.82	0.75		<i>Aquila chrysaetos</i>			
	<i>Anthus pratensis</i>					<i>Oenanthe oenanthe</i>	0.84	0.69	0.77
	<i>Cephus grylle</i>					<i>Phylloscopus trochilus</i>			
	<i>Larus argentatus</i>				Blue	<i>Fringilla coelebs</i>			
Blue	<i>Anthus pratensis</i>	0.64	0.86	0.74		<i>Aquila chrysaetos</i>			
	<i>Phalacrocorax aristotelis</i>					<i>Anthus pratensis</i>	0.83	0.70	0.76
	<i>Cephus grille</i>					<i>Phylloscopus trochilus</i>			
	<i>Corvus cornix</i>				Blue	<i>Fulmarus glacialis</i>			
	<i>Motacilla alba</i>	0.84	0.73	0.78		<i>Larus marinus</i>	0.61	0.68	0.64
	<i>Oenanthe oenanthe</i>					<i>Phalacrocorax aristotelis</i>			
	<i>Phylloscopus trochilus</i>								

Green*	<i>Actitis hypoleucos</i>				Green	<i>Fulmarus glacialis</i>			
	<i>Corvus cornix</i>	0.88	0.70	0.78		<i>Cephus grylle</i>	0.67	0.61	0.64
	<i>Oenanthe oenanthe</i>					<i>Fulmarus glacialis</i>			
	<i>Phylloscopus trochilus</i>					<i>Larus marinus</i>			
	<i>Corvus cornix</i>					<i>Larus argentatus</i>	0.60	0.67	0.64
	<i>Anthus pratensis</i>	0.83	0.74	0.78		<i>Phalacrocorax aristotelis</i>			
	<i>Motacilla alba</i>								
	<i>Phylloscopus trochilus</i>								
	<i>Fulmarus glacialis</i>	0.34	0.79	0.51		<i>Corvus corone</i>			
	<i>Phalacrocorax aristotelis</i>	0.26	0.57	0.39		<i>Fulmarus glacialis</i>	0.67	0.37	0.48
Purple	<i>Fulmarus glacialis</i>					<i>Carduelis carduelis</i>			
	<i>Larus marinus</i>	0.27	0.50	0.37		<i>Passer domesticus</i>			
	<i>Phalacrocorax aristotelis</i>					<i>Corvus corone</i>			
	<i>Garrulus glandarius</i>					<i>Fulmarus glacialis</i>	0.67	0.37	0.48
	<i>Sylvia curruca</i>	0.85	0.84	0.8		<i>Carduelis carduelis</i>			
	<i>Gallinula chloropus</i>					<i>Erithacus rubecula</i>			
	<i>Phasianus colchicus</i>					<i>Corvus corone</i>			
	<i>Turdus merula</i>					<i>Fulmarus glacialis</i>	0.73	0.31	0.48
	<i>Garrulus glandarius</i>	0.84	0.85	0.84		<i>Carduelis chloris</i>			
	<i>Sylvia curruca</i>					<i>Pica pica</i>			
	<i>Gallinula chloropus</i>								
Sylvia atricapilla	<i>Sylvia atricapilla</i>				Purple	<i>Corvus corone</i>			
	<i>Garrulus glandarius</i>	0.84	0.85	0.84		<i>Phylloscopus collybita</i>	0.95	0.85	0.90
	<i>Sylvia curruca</i>					<i>Fulica atra</i>			
	<i>Gallinula chloropus</i>					<i>Streptopelia turtur</i>			

Orange	<i>Corvus corone</i>				Orange	<i>Actitis hypoleucos</i>			
	<i>Numenius arquata</i>	0.74	0.70	0.72		<i>Cinclus cinclus</i>	0.78	0.83	0.80
	<i>Apus apus</i>					<i>Carduelis carduelis</i>			
Orange	<i>Oenanthe oenanthe</i>					<i>Carduelis cannabina</i>			
	<i>Numenius arquata</i>				Orange	<i>Actitis hypoleucos</i>			
	<i>Corvus monedula</i>	0.73	0.70	0.71		<i>Cinclus cinclus</i>	0.75	0.86	0.80
	<i>Apus apus</i>					<i>Carduelis carduelis</i>			
	<i>Oenanthe oenanthe</i>					<i>Muscicapa striata</i>			
	<i>Corvus monedula</i>					<i>Actitis hypoleucos</i>			
	<i>Alauda arvensis</i>	0.69	0.74	0.72		<i>Cinclus cinclus</i>	0.77	0.83	0.80
	<i>Apus apus</i>					<i>Corvus monedula</i>			
	<i>Oenanthe oenanthe</i>					<i>Carduelis cannabina</i>			



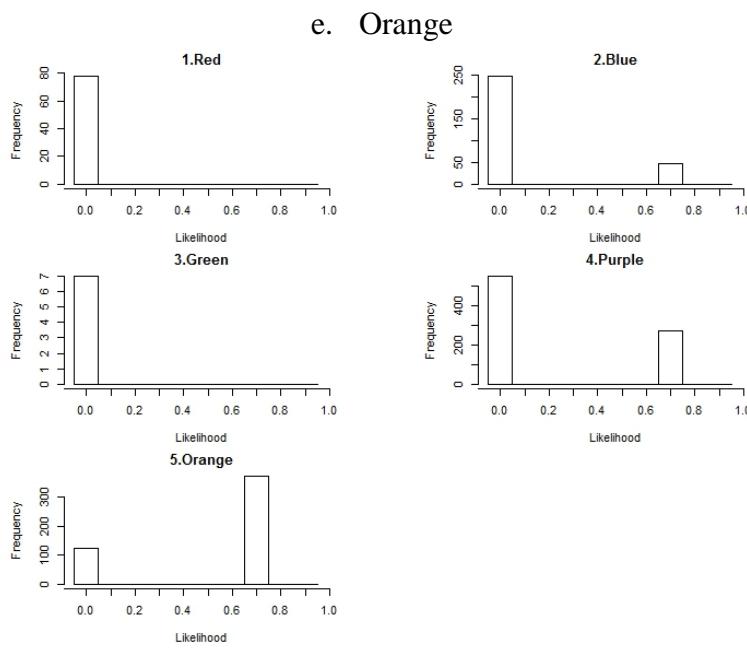
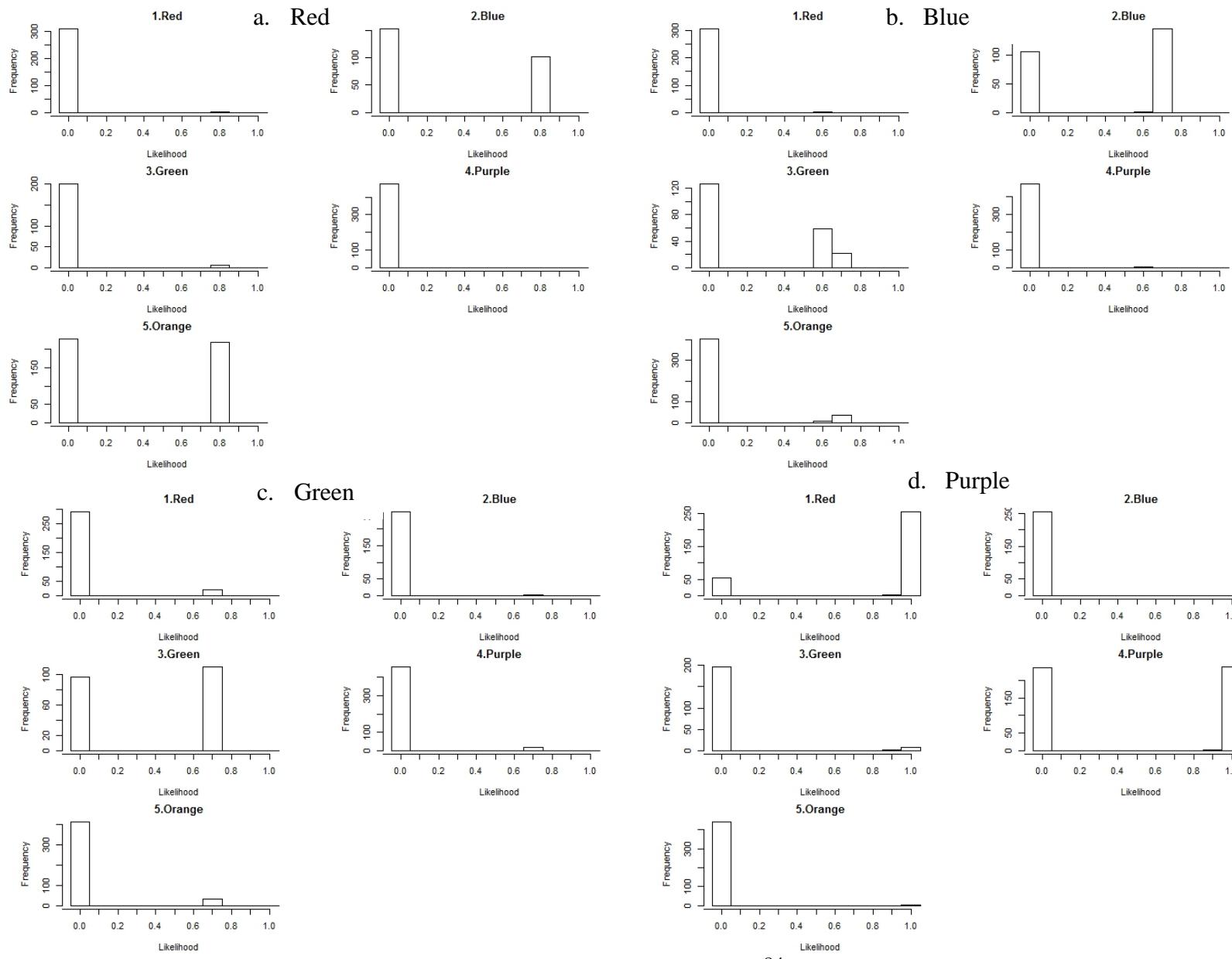


Figure 3.4 The predictive ability of the site group to the unsampled sites when predicted based on 40% sampling and under each of the five sampling modularity indicator species group. The title (a-e) indicates each of the five assigned population modularity and the x-axis is the likelihood of assigning an unsampled site to the target site group, comparing with the original site memberships (i.e. the site group assigned by the population modularity). For example, figure (a) is the indicators derived from the red group and figure (a.1) is the likelihood to assign an unsampled site, which is originally assigned to the red group in population modularity, to the red site group by the red indicators.



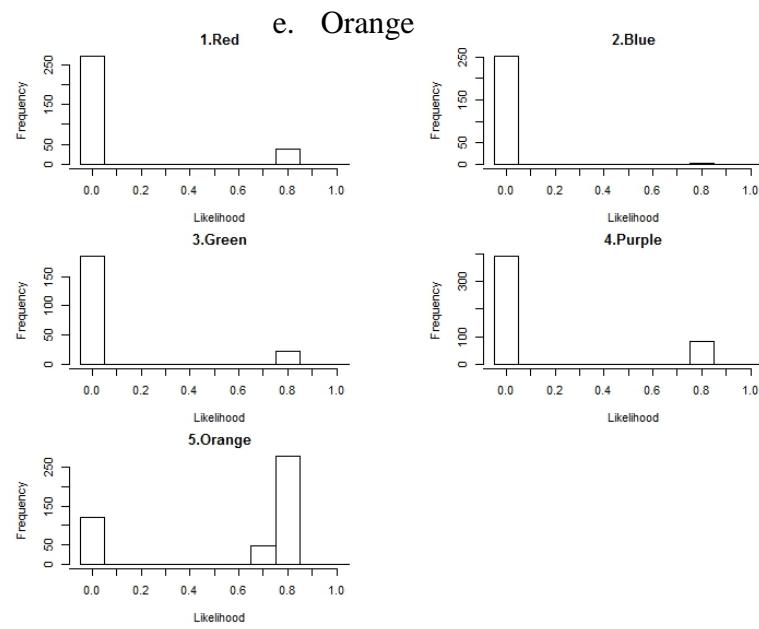


Figure 3. 5 The predictive ability of the site group to the unsampled sites when predicted based on 40% sampling and under each of five sampling clustering indicator species group. The title (a-e) indicates each of the five assigned population clustering and the x-axis is the likelihood of assigning an unsampled site to the target site group, comparing with the original site memberships (i.e. the site group assigned by the population clustering). For example, figure (a) is the indicators derived from the red group and figure (a.1) is the likelihood to assign an unsampled site, which is originally assigned to the red group in population clustering, to the red site group by the red indicators.

3.5 Discussion

3.5.1 Consistency in site-species association in the indicator species analysis

Compared with the k-means clustering method, indicator species identified by network modularity detection can more successfully assign unsampled sites to correct species groups. Indicator species analysis is an efficient tool for recognising representative species and has been applied on various research topics such as plant species composition (Flinn et al. 2008, Willerslev et al. 2014), vector ecology (Obsomer et al. 2013), mycological community (Taylor et al. 2014, Varela-Cervero et al. 2015) and intestinal microflora ecology (Seedorf et al. 2014, Planer et al. 2016). The accuracy of prediction of site types relies on robust classification of sampled species and sites (Dufrêne and Legendre 1997). The results of clustering, however, can be easily influenced by several factors. Firstly, because cluster analysis is based on dissimilarity distance among members, the clustering result depends on which sites are sampled. Different sampled sites lead to different clustering outcomes, turning into inconsistent species-site associations. The second concern is that subgroups partitioned by clustering methods are arbitrarily delineated by user-defined cut off thresholds and may create artefact groups (Legendre and Legendre 2012). Although k-means clustering is recommended to be utilised in indicator species analysis (Dufrêne and Legendre 1997), this method can be easily affected by to which group the original node is assigned (Celebi et al. 2013). Even though Dufrêne and Legendre (1997) suggest repeating the partitioning process until the indicator values of all species are decreasing to find the appropriate number of clusters, there is still no reliable criterion to decide the number of clusters.

In comparison, network analysis measures species co-occurrence directly and partitions the subgroups more objectively and is therefore an efficient substitute for group partitioning in

the indicator species analysis. Moreover, a notable difference between network analysis and clustering is that network analysis measures network distance while clustering measures Euclidean distance. Network distance is the number of direct paths between two nodes (the distance from one node to its nearest neighbour is one path away and nodes without direct connection will have more than one path). The Euclidean distance is not identical to the network distance and might not be suitable for measuring the relationship in a network containing geographical information (which is a spatial network) (Yiu and Mamoulis 2004) given that it neglects the relationships among nodes but focuses only on how different these nodes are. It is thus unsurprising that clustering and network analysis lead to different partitioning results and compared with clustering, network analysis is more consistent in assigning species groups.

3.5.2 Geographical distribution of site groups

The spatial network has been frequently applied in fields such as transportation and mobility networks, internet, mobile phone networks, power grids, social and contact networks (Barthélemy 2011). For example, a spatial network of chain restaurants and their proximities to the nearest road systems can help identify areas that are suitable to start a new branch (Yiu and Mamoulis 2004). In social science, user distribution based on users' social connection such as check-in locations (Joseph et al. 2012) or online photo tag co-occurrence (Zhang et al. 2012) can be revealed with geo-social networks. Similarly, network analyses have been adopted by biologists and many biological studies have applied spatial networks to analyse co-occurrence pattern of microbes in human bodies (Levy and Borenstein 2013). In ecological research, incorporating ecological processes such as dispersal, competition, or food webs into network analysis to uncover geographic pattern remains challenging (e.g. Cumming et al. 2010) and

most of the research focuses on single species or individual (e.g. Saura and Rubio 2010, Pereira et al. 2011).

The current study shows that network analysis can efficiently classify subgroups of co-occurring avian species in Britain according to species co-occurrence. For example, the complete bird assemblage is sorted into subgroups according to occurrence in coastal or inland areas, along a north-south gradient. The sites are divided into several groups and sites within a module are usually geographically connected compared to the geographical mosaic pattern of clustering results. This suggests the ability to combine species (co-occurrence) and spatial information by network analysis. In the indicator species analysis, it also provides more ecological meaning and consistency to species-site associations. However, this ability has not attracted enough attention and more research is required. Newly developed methods such as constrained clustering (Yuan et al. 2015, Cheruvellil et al. 2017) have attempted to balance spatial continuity with landscape homogeneity. In this method, it is not only similarities in characteristics among sites that are considered; adjacency of sites is also stressed, which helps delineate site groups. Incorporating this network modularity algorithm into geographical site arrangement might be a novel direction for analysing geographical networks.

3.5.3 Indicator species value as surrogate in plant and animal research

This research tests a simple idea - utilising assemblage structure to predict species composition. In most studies, predictions of species richness or community structure usually involve environment attributes. However, environment attributes could be affected by so many parameters that identifying the most important and disentangling their relative influence could become difficult (Sutherland 2006, Arita et al. 2008). Capitalising simply on assemblage structure has the advantage of avoiding confounding effects arising from various environment

factors by focusing solely on the relationships among species. For indicator species analysis, where only species information is considered, the question is how these indicator species can be effective surrogate for whole flora or fauna. The indicator species value concept originates from research on plant ecology (Dufrêne and Legendre 1997), and is extensively adopted to characterise plant communities (Ricotta et al. 2015), but indicator species value is not limited to studies on plant communities (Tichý and Chytrý 2006). However, whether a similar concept can be applied to mobile animals remains little studied. Sattler et al. (2014) applied indicator species analysis (with traditional clustering methods) to six taxa, including plants, insects, and birds and compared the suitability for reflecting biodiversity measures (such as biodiversity index, species richness, etc.). Overall, indicator suitability of plants was better than for birds. Our study demonstrates that when incorporating network analysis, the indicator species value concept can also be applied to mobile organisms.

The indicator species value aims to construct site typology by comparing species difference instead of predicting existence of specific species. Research that commonly applies this value, such as vegetation classification, thus stresses more the dominant plant composition and community type (Chytrý et al. 2002, Tichý and Chytrý 2006). However, it will be challenging to extend this method to predict the appearance of undetected species in an unsampled site, for this value still lacks information on associations among detected species and undetected species. More information, such as environmental attributes or non-random numerical relationship like nestedness, is required to achieve the goal of predicting individual species.

3.5.4 Identifying indicator species and umbrella species

In this research, network analysis was applied to identify “key-members” among large amounts of data and uncover complicated relationships. Conceptually, this is related to other studies that have attempted to identify umbrella or focal species objectively. For example, Fleishman et al. (2001) used percentage of co-occurrence as an umbrella species index. The number of species co-occurring with the umbrella species was treated as the dependent variable to investigate the efficiency of an umbrella species index. Umbrella species identified by this index, however, did not cover more species than when umbrella species were randomly selected. Simply using species richness reveals very limited information on species composition which is essential for identifying umbrella species. Randomly selected species may include more species but fail to identify whether they are common species with little conservation value. In the present study, the concept was advanced with network analysis by not only estimating the number of species each member is linked to but also the identity of the linked species.

Chapter 4: Prediction of Taiwan avian assemblage with nestedness and network analyses

4.1 Abstract

Results of the previous studies on British avian species illustrate that incorporating assemblage structure (nestedness) in species accumulation curve and network analysis of indicator species value can improve predictability of avian species richness and species groups, respectively. However, the general applicability of these methodologies remains unexplored. Here, I apply the same methods developed for Britain to the birds of Taiwan based on the Taiwanese Breeding Bird Survey. Taiwan is a small island (ca. 36,000 km²) but with elevation ranging from sea level to nearly 4,000 meters. Moreover, past studies in Taiwan have focused on environmental associates of avian species richness without considering species status (e.g. common, exotic, or rare species), meaning that the environmental determinants of the Taiwanese avian assemblage are not well understood. For the species accumulation curve result, the Arrhenius power function was found to perform better than negative exponential, logarithmic, or Clench function in the prediction of Taiwan avian species richness. This result is different from the British avian assemblage in which the logarithmic function provides the best prediction for species richness. In addition, a very high prediction rate (error rate = 1.55%) was achieved when species richness estimation based on two curves, random and nestedness ordered, was averaged; this was when only about 1% area of Taiwan has been surveyed (410 1x1 km plots out of Taiwan's 36,000 km² area). For the indicator species analysis, selecting indicator species by network modularity had better performance than by conventional k-means clustering method. The resultant species groups can be best differentiated by elevation and

Normalised Difference Vegetation Index. This study demonstrates that capitalising on nestedness structure and network analysis can enhance predictability in Taiwan avian assemblage. Moreover, in contrast to the conventional usage of species richness as a dependent variable, associating environmental attributes with network-based indicator species groups is informative in the recognition of factors critical for delineating community assemblage and is valuable in the preservation of intact community structure and function.

4.2 Introduction

In previous chapters, I have discussed how species accumulation curves and indicator species analysis can improve predictability of species richness and species composition, respectively, by incorporating information on assemblage structure. Species accumulation curves are commonly applied to predict species richness in unsampled areas, but conventional species accumulation curves usually overestimate species richness, especially when the sampling area is unknown or when the sample size is very small (Soberón and Llorente 1993, Ugland et al. 2003). My previous analysis of British Trust for Ornithology (BTO) 1988-1991 survey data demonstrated that species accumulation curves that incorporate nestedness structure can predict species richness more precisely than conventional curves and without overestimation. However, it remains unclear how well the nested species accumulation curve performs in areas with different environmental characteristics from Britain. In this chapter, I investigate the performance of nested species accumulation curves in a very different setting - Taiwan.

Predicted species richness will depend on the extrapolation models, so choosing a suitable formula is important for a precise prediction (Soberón and Llorente 1993). The suitability of specific extrapolation models depends on the characteristics of the sampled area. For example, the exponential function which approaches an asymptote more swiftly might be more suitable for small or homogeneous areas or when there are few rare species (Soberón and Llorente 1993, Tjørve 2003, Díaz-Francés and Soberón 2005). By contrast, Clench or logarithmic models, which grow more rapidly, are better for sampling areas with many unknown taxa or large, heterogeneous areas with many rare species. The logarithmic model is also suitable for areas comprising fauna or fauna that experience severe annual fluctuations (e.g. many tropical butterfly species) (Soberón and Llorente 1993). Lastly, the commonly used power model usually overestimates species richness (Thompson et al. 2003a) and is best suited to intermediate to large sampling areas or islands (Preston 1962a, 1962b, He and Legendre 1996, He et al. 1996, Rosenzweig and Ziv 1999, Tjørve 2003, Scheiner 2003). In previous studies (Lennon et al., 2001 and my previous chapter), the logarithmic model was found to be best in predicting British avian assemblage richness. However, the logarithmic model might not be appropriate where environmental characteristics or coverage of the sampling area is different from Britain.

On the other hand, some extrapolation models, such as the logarithmic or power model, lack an asymptote, so their application is confined to medium-sized areas and is unsuitable for very small or very large areas (Tjørve 2003). Applying functions without an asymptote to predict species richness is risky (Ugland et al. 2003), as estimating species richness depends on an user-defined boundary. Based on my previous BTO 1988-1991 survey study (Chapter 2), when data are input based on nested order, proportionally more uncommon species accumulate

in the initial stage of sampling, as the most species rich site has the most uncommon species, followed by a decelerating rate of increase. Thus accumulation leads to a curve slowly approaching an asymptote, making it possible to estimate the complete species pool from a sample of the population. Comparatively fewer uncommon species are included in the initial samples when data are input based on a random order. Compensation by an accelerating rate of increase in the later stage of accumulation can cause an overshoot in the predicted species richness. However, it remains unclear whether incorporating nested order can help stabilise species accumulation curves and improve predictability in regions other than Britain.

Determining key parameters for modelling is typically the most important but difficult issue in species distribution modelling (Johnson and Omland 2004, Guisan and Thuiller 2005) and each model selection method has its own requirement and limitation (see reviews in Guisan and Zimmermann 2000, Guisan and Thuiller 2005, Elith and Leathwick 2009). Indicator species analysis can help identify groups of species that implicitly have similar ecological requirement or have similar response to change in the environment (Dufrêne and Legendre 1997, McGeoch 1998, De Cáceres and Legendre 2009, De Cáceres et al. 2010). These species groups can then be associated with environmental attributes. This is in contrast to the conventional method where researchers select specific environmental characteristics (e.g. primary forests) first, followed by listing species commonly observed in selected habitats, which is usually a subjective process. However, the classification of site group, which is the basis for selecting indicator species, has to be coherent and robust. My previous study on the BTO dataset (Chapter 3) has demonstrated that incorporating the concept of ecological networks can improve the performance of conventional indicator species analysis. However, the applicability of this approach to regions apart from Britain needs to be validated.

Taiwan is an island with different environmental characteristics from Britain. It is located along the south-eastern coast of mainland Asia and was connected with the main continent several times through land bridges during the glacial periods (Voris 2000). Fauna and flora in Taiwan is therefore partially inherited from the mainland Asia (Lee et al. 2004). On the other hand, the oceanic environment near the coast allows waders and seabirds to thrive. This is similar to the avian assemblage source and composition of Britain (Taiwan has 64 of the 76 families in Britain, with 208 species in common). However, in contrast to Britain, Taiwan is a subtropical island (latitude: 22 – 25 degree north) with an altitudinal range of nearly four thousand meters in a small area of 36,000 km² (Ding et al. 2005). In this research, the robustness of nested species accumulation curves and network based indicator species analysis was evaluated with the Breeding Bird Survey (BBS) data from Taiwan. Moreover, I looked at environmental determinants of species composition in Taiwan, as previous studies on the Taiwanese avian assemblage have focused on uncovering the environmental determinants of species richness (Lee et al. 2004, Ding et al. 2005, Koh et al. 2006) instead of species composition. Among the environmental attributes considered, including mean annual temperature, elevation, primary productivity (using a Normalised Difference Vegetation Index (NDVI) proxy) and urbanization, avian species richness was found to be associated with primary productivity in southern (Ding et al. 2005) and northern Taiwan (Koh et al. 2006) but elevation and urbanization played a more important role in explaining variation in avian species richness in the whole island of Taiwan (Lee et al. 2004). However, sites with similar species richness might have different species composition. Furthermore, sites with the highest species richness might contain only common species (e.g. in human disturbed areas) instead of any rare or threatened species. Therefore, focusing solely on species number ignores important information on species composition, with the latter usually more critical for conservation.

Neglecting information on species composition also confounds association of species richness with environmental attributes. For example, assume that there are two sites of the same avian species richness with distinct environmental characteristics, such as one under intensive anthropogenic disturbance while the other is pristine. Applying species richness to these two sites will rate them as equal and could lead to the conclusion that human disturbance is unimportant. By contrast, incorporating information on species composition is very likely to uncover the significance of human disturbance to the avian assemblage since composition usually varies with levels of human disturbance. Because the indicator species can identify groups of species that have similar environmental requirements, the other goal of the study was to investigate environmental associates of avian species groups in Taiwan after they were identified with network analysis.

4.3 Methods

4.3.1 Study site

Taiwan is a moderately sized island (35,873 km²) located in Southeast Asia. Elevation ranges from 0 to 3952 metres (a.s.l.) with the central mountain dividing Taiwan into eastern and western parts. Eastern Taiwan is dominated by mountains while western Taiwan is characterised by flat plains and intensive human disturbance. The Tropic of Cancer runs through southern Taiwan and the island is covered with tropical and subtropical vegetation. Small associated islands (Kin-men, Ma-tou, Pescadores, Little Liuchiu, Green and Orchid islands) were not included in this study, as I only consider mainland Britain in my other chapters.

4.3.2 Research data

The Taiwan BBS is a volunteer-based bird survey across the main island of Taiwan that started in 2009. Surveys are conducted in a 1x1 km grid-square system, using the point count method. Up to 2016, a total of 410 sites (*ca.* 1.1% of total area of Taiwan main island) have been surveyed and 283 species of breeding birds recorded, however there is a total of 626 species in Taiwan according to the most recent checklist (Ding et al. 2014). These species count data were transformed into an incidence matrix that contains 410 rows (sites) x 283 columns (species). The Taiwan island is divided into four regions: north, west, east and mid-high elevation (areas above 1,000 meters) for their distinct climate and geographic characteristics (Ko et al. 2013). In this study, all 410 squares served as the training data to predict avian species

richness in main island of Taiwan by using species accumulation models. The basic geographical unit used in this analysis is the 1 x 1 km square.

4.3.3 Calculating assemblage nestedness structure and network analysis

The methods (from *calculating nestedness* to *selecting the indicator species*) in this chapter are identical to the corresponded processes in Chapter 2 and 3. The section *environmental associates of site groups* is only implemented in this chapter.

4.3.4 Calculating nestedness

Nestedness temperature, a measure of community nestedness, takes unexpected presences and unexpected absences into account (Ulrich and Gotelli 2007, Ulrich et al. 2009). It is represented by a normalised sum of squared relative distance of absences above and presences below a hypothetical isocline that separates occupied from unoccupied areas in a perfect nested matrix (Atmar and Patterson 1993). According to Atmar and Patterson (1993), the calculation of nestedness is based on the unexpectedness, which is measured by the distance an unexpected presence or absence of a species lies in the matrix as compared to the perfectly nested matrix. Unexpectedness runs diagonally along a line running parallel to the skew diagonal. For a matrix with n species and m sites, the local unexpectedness (u_{ij}) is calculated as:

$$u_{ij} = \left(\frac{d_{ij}}{D_{ij}} \right)^2$$

D_{ij} is the length of the full line running through the j th species on the i th site and d_{ij} is the specific length along that line. The total unexpectedness (U) is then represented by:

$$U = \frac{1}{mn \sum_i \sum_j u_{ij}}$$

A perfectly ordered matrix should have no unexpectedness, thus $U=0$, and one with maximum unexpectedness always has $U_{max} \approx 0.04145$. The nestedness temperature T is then defined as:

$$T = kU$$

$$k = \frac{100}{U_{max}}$$

T ranges from 0-100°, with T=0° representing a perfect-nested matrix and T= 100° absolute randomness.

Ordering a presence-absence matrix in nested order therefore means re-arranging it into a new matrix where sites are organised from the most species-rich to the most species-poor. Nestedness of the Taiwan avian assemblage was estimated as a first step toward understanding whether using nested order can help improve the predictability of species accumulation curves.

4.3.5 Species accumulation curve and extrapolation

4.3.5.1 Ordering of sampled sub-squares for species accumulation curves

Taiwan avian assemblage data were arranged in two different orders in terms of adding in sampling sub-squares: 1) random order with the mean of 100 permutations (rarefaction curves;

sensu Gotelli & Colwell 2001); and 2) nested structure, that is, ordering sampling sub-squares from the most species-rich to the most species poor.

4.3.5.2 Functions for fitting species accumulation curve

Four functions for fitting species accumulation curves were compared for two kinds of sampling orders (random and nested) to evaluate their accuracy in terms of predicting overall species richness of Taiwan. Three of the four functions are based on Soberón & Llorente (1993) and the other from Ugland et al. (2003); one function, the power function (Equation 4), has been applied by Lennon et al. (2001) to describe the pattern of the British avifauna:

$$\text{Negative exponential function: } y = a \times \left(1 - e^{-\frac{x}{b}}\right) \quad (\text{Equation 4})$$

$$\text{Logarithmic function: } y = a + b \times \log(x) \quad (\text{Equation 5})$$

$$\text{Clench function: } y = \frac{ax}{1+bx} \quad (\text{Equation 6})$$

$$\text{Arrhenius function: } y = a \times x^z \quad (\text{Equation 4})$$

in which y is the species number and x the number of squares.

4.3.5.3 Calculating the predictive power of species accumulation curves

The four functions mentioned above were used for extrapolating and were compared for their ability to predict overall avian species richness across Taiwan. The datasets were fitted to four curve functions (i.e. negative exponential, logarithmic, Clench, and Arrhenius). The inaccuracy in the prediction of total species richness, that is, error rate, is defined as:

$$1 - (\text{predicted species richness} / \text{recorded species richness})$$

There are 626 avian species in Taiwan according to the most recent checklist of birds of Taiwan (Ding et al. 2014), so the recorded species richness in the calculation of error rate is set as 626. A positive error rate indicates an underestimation while negative value an overestimation. The calculation and statistical procedures were conducted in R (R Development Core Team 2013).

4.3.6 Network analysis data organisation

The incidence matrix was arranged by site vs. species, with marginal sums as the total number of species in a site and species prevalence as occurrence of specific species across all sites. Based on the matrix, a two-mode network (two types of nodes, with each representing site and species), describing which species resided in what site (linkage), was then plotted. To understand how sites clustered according to similarity in species composition, the network was projected into a one-mode network containing only nodes that represented sites. Three possibilities of linkages can occur in a pair of sites: no linkage, meaning no shared species; one linkage, meaning only one species in common; and multi-linkages, meaning more than one species is shared. A weighted network illustrating relationships among sites and based on the extent of species in common was constructed (Newman 2010).

4.3.7 Site group detection with network modularity

The modularity detection method termed randomtrap (Pons and Latapy 2005) is based on a random walk via the closest distance among neighbouring nodes (Fortunato 2010). In network analysis, the closest neighbour node is the node with only one-step linkage to the target node. The nodes then are organised into linked subgroup (that is, a module) that contain close neighbours. The modularity detected by the randomtrap method is similar to a person that randomly walks among nodes along the shortest distance; with limited steps, the walker would

be readily trapped in a closely linked subgroup (module). When this process is repeated, the module position can be recorded by plotting the dendrogram of random walks, which is an efficient and timesaving method for identifying groupings and is ideal for analysing large and complicated networks (Pons and Latapy 2005, Fortunato 2010).

4.3.8 Site group detection with k-means clustering versus network modularity

The efficiency of network modularity versus clustering in site group detection was compared using the same avian assemblage dataset. The non-hierarchical clustering k-means method is commonly applied in indicator species analysis (Dufrêne and Legendre 1997). For comparison purposes, the k value (the number of groups to be split) was set to be equal to the number of modules in modularity detection.

In this stage, the site map partitioned by network modularity and k-means clustering method was compared, and was termed population modularity and population clustering, respectively. The resulting site groups (based on whole dataset) were compared with site groups determined by partial sampling of the whole dataset (see the following paragraph) to investigate the reliability of these two partitioning methods.

4.3.9 Selecting the indicator species

The indicator species value for each species in each site (termed IndVal hereafter) was determined by two indices, A and B, which represents specificity (the *positive predictive value*) and frequency (the *sensitivity*) of species to the site, respectively (sensu Dufrêne and Legendre 1997; De Cáceres *et al.* 2012). A_{ij} is the proportion of species i present in specific site group j ($N_{presence_{ij}}$) relative to presence of species i in all site groups ($N_{presence_i}$), and the higher

A_{ij} , the more species i is specific to site group j . Similarly, B_{ij} is the frequency of sites in site group j where species i is present ($N_{sites_{ij}}$) among all sites in site group j (N_{sites_j}).

$$A_{ij} = N_{presence_{ij}} / N_{presence_i}$$

$$B_{ij} = N_{sites_{ij}} / N_{sites_j}$$

$$IndVal_{ij} = A_{ij} \times B_{ij} \times 100$$

$$IndVal_i = \max[IndVal_{ij}]$$

Significance of $IndVal_i$ was evaluated by permutation tests that randomly reallocated sites among site groups and was calculated by the difference between the observed value and the mean results of permutations, weighted by standard deviation of the values obtained by permutations. Each $IndVal$ value was run for 999 times, which is more than recommended (>200 times; Dufrêne and Legendre 1997).

For selecting the indicator species, the square root of indicator value ($\sqrt{IV^g}$) was used to measure the association between species and sites (*sensu* De Cáceres and Legendre 2009). The g denotes group equalisation, to correct for differences in group size among indicator species when summing A_{ij} values in J areas.

$$A_{pa}^g = \frac{N_{presence_{ij}} / N_{presence_i}}{\sum_{j=1}^J N_{presence_{ij}} / N_{presence_i}}$$

An effective indicator is defined as $A \geq 0.6$ (the positive predictive value) and $B \geq 0.2$ (the sensitivity) (DeCáceres et al. 2012). Since in comparison with a single species, a group of species could better serve as indicator species (DeCáceres et al. 2012), up to a four-species combination was selected as candidate species. It is necessary to set a limit for the number of indicator species, otherwise sensitivity decreases and uncertainty of positive predictive value increases. The A value of indicators also represents the likelihood of an unsampled site to be

predicted as a site group when it contains a specific indicator. For example, if an unsampled site contains indicator species i that can indicate presence of site group I and is with an A value of 0.7, this unsampled site has 70% likelihood of belonging to site group I , with the presence of species i . The aim is to search for the maximum value that indicates the most likely species-site association. Significance of the species-site association was tested by a percentile bootstrap method that resampled the observed data to generate an approximate distribution of the indicator values (DeCáceres and Legendre 2009, DeCáceres et al. 2012).

4.3.10 Environmental associates of site groups

Redundancy analysis (RDA) was applied to identify visually key environmental attributes that can discern site groups categorised by network modularity. The RDA method is mainly used for linear responses (comparing to canonical correspondence analysis: CCA, for unimodal ones). Because the chi-square distance used in CCA is calculated by Euclidean distance that considers relative abundances and is weighted by inverse of the species sums; that is, a common species contributes less to the calculated distance than a rare species, rare species may have a disproportionately large influence on the analysis result (Legendre and Gallagher 2001, Legendre and Legendre 2012). Legendre and Gallagher (2001) have demonstrated that the problems CCA commonly raises can be prevented by applying a transformation that allows data having non-linear response to be analysed by RDA. In this study, the dependent variable was the site x species matrix for Taiwanese BBS data, after Hellinger transformation (square root of relative species abundance) to prevent uneven contribution of common versus rare species and double-zero bias (Legendre and Gallagher 2001). The environmental attributes in this research included 13 variables: mean annual temperature (°C, as the mean of 12 monthly mean temperatures), range of monthly temperature (°C, as the difference between maximum

and minimum monthly mean temperatures within an year), mean annual precipitation (mm, as the average of 12 monthly total precipitation), range between maximum and minimum annual precipitation (mm, as the difference between maximum and minimum monthly total precipitation within an year), NDVI (as the monthly average of every 8 days' maximum value at a resolution of 250 meter), range of elevation (m), mean elevation (m), maximum elevation (m), minimum elevation (m), number of landcover types (number of different landcover types), population per county (persons/county), population density (person/km²), and nearest distance to road (m, the nearest distance to a national or provincial road). Climatic data were extracted from Taiwan Central Weather Bureau (<http://www.cwb.gov.tw>), NDVI based on MODIS images (Moderate Resolution Image Spectroradiometer, NASA), and elevation derived from a 40-m digital elevation model from Aerial Survey Office (Taiwan Forestry Bureau). Landcover types were based on those defined by National Land Surveying and Mapping Center (Ministry of the Interior, Taiwan), population data derived from Ministry of the Interior, Taiwan, and distance to road was retrieved from Directorate General of Highways (Ministry of Transportation and Communications, Taiwan). These variables were generated at a spatial resolution of 1 km. Temperature, precipitation and NDVI were calculated over the period of 2009 to 2016 while population calculated over the 2009-2010 period. Multinomial logistic regression (MLR), with response variable a categorical variable (Kempen et al. 2009), was applied to identify environmental attributes important for categorisation of avian indicator species groups. MLR is an extension of logistic regression, which analyses binomial categorical dependents. When the dependent variables have more than two levels and they are not ranked data then the MLR should be more appropriate than the ordinal logistic regression model (Agresti and Kateri 2011). Firstly, among highly correlated variables (Spearman's rank correlation > 0.7, the same criteria to avoid multicollinearity, Dormann et al. 2013), only the variable with the lowest Akaike

information criterion (AIC) value in MLR (with only the selected independent variable in the model) was retained for further analysis. Variables not highly associated with other variables were also included in the final MLR analyses. AIC was then used to identify the combination of environmental variables that can best discern species groups.

All analyses were conducted in the R environment (R Development Core Team 2013) using the R packages “vegan” (Oksanen et al. 2013) “igraph” (Csardi and Nepusz 2006), “indicspecies” (DeCáceres and Legendre 2009), “nnet” (Venables and Ripley 2002), and “dendextend” (Fowlkes and Mallows 1983).

4.4 Results

4.4.1 Nestedness of Taiwan Breeding Bird Survey data

The nestedness temperature for birds in Taiwan was 10.92° (Figure 4. 1).

4.4.2 Nestedness and species accumulation curve

Among the four extrapolation functions, the Arrhenius model had the lowest error rates, with 507.8 species (18.88% error rate) and 763.6 species (-21.98% error rate, overestimated) predicted based on nestedness order and random order, respectively. The average of these two data inputting orders is 635.7 species (-1.55% error rate). In comparison, the other three extrapolation functions underestimated overall species richness when based on either nestedness or random order: logarithmic model, 427.3 (31.74% error rate, nestedness order)

and 480.3 species (23.27% error rate, random order); negative exponential model, 282.1 (54.94%) and 278.4 (55.53%); Clench model, 285.0 (54.47%) and 285.7 (54.36%).

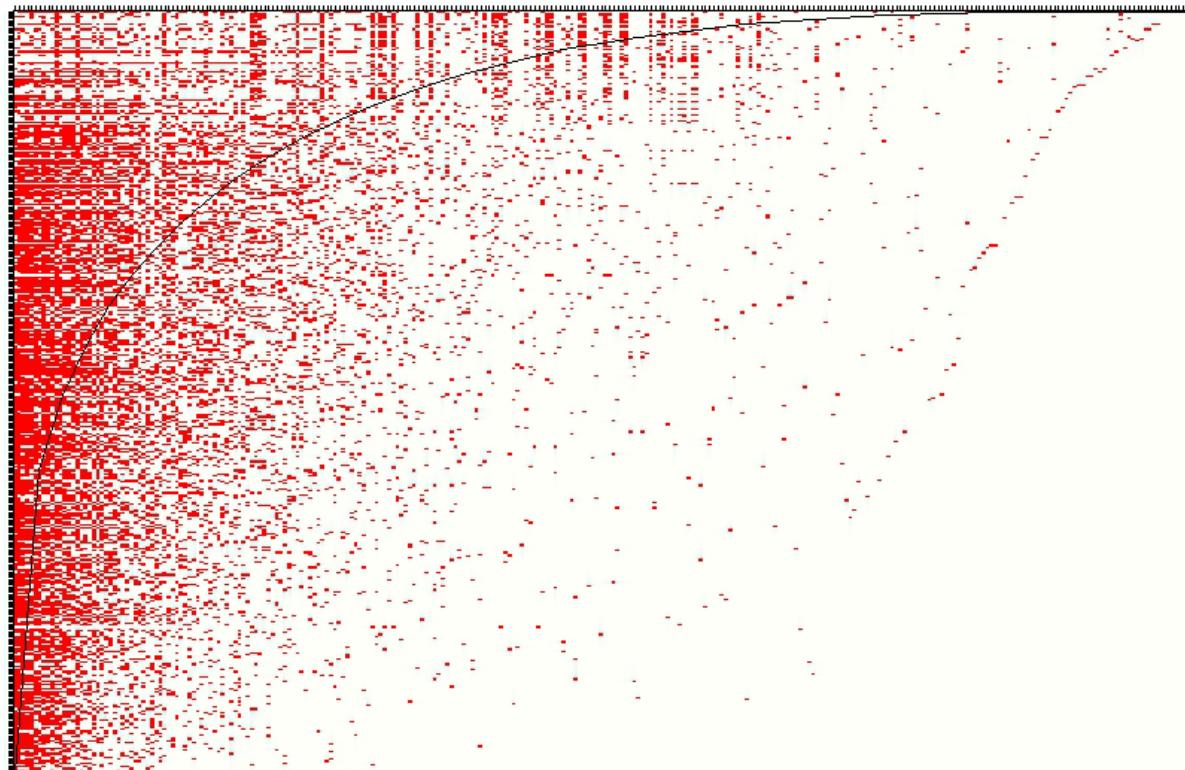


Figure 4. 1 The nestedness matrix of Taiwan Breeding Bird Survey data. The x-axis represent sites (sub-squares) and the y-axis represent species. No site or species names are shown here as there are not legible in this figure; Appendix A provides full site and species lists in nested order for this presence-absence matrix. Red cells indicate species occurrence and white ones, species absence. The black concave diagonal curve represents the isocline that delineates the hypothetically perfect nested matrix. The white cells locating at the left hand side of the diagonal curve represent the unexpected absence and the red ones at the right hand side, unexpected presence.

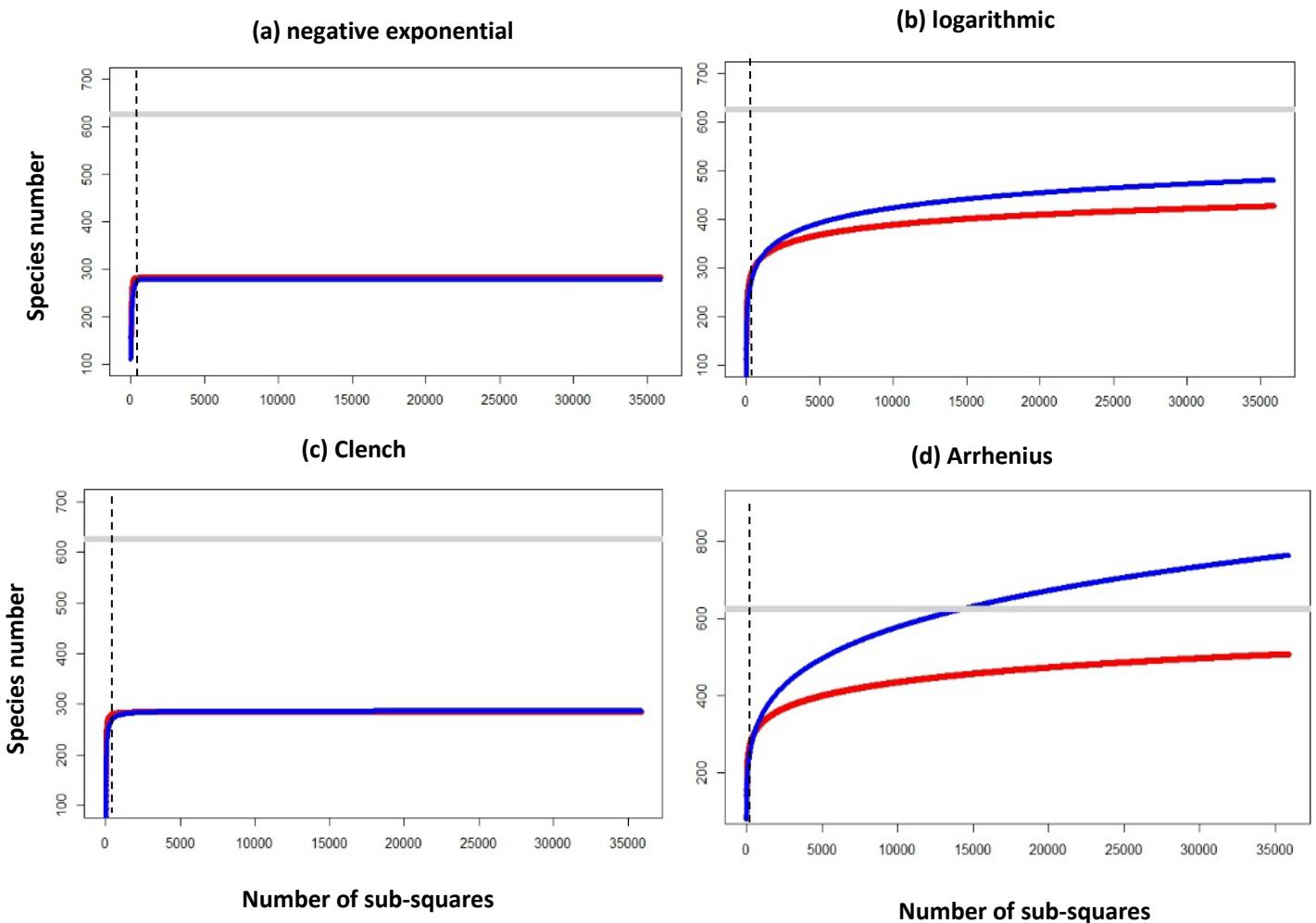


Figure 4.2 Prediction of Taiwan avian species based on four species accumulation curve functions (a: exponential; b: logarithmic; c: Clench; d: Arrhenius) with 410 sampling sites under two data arrangement orders (blue: random; red: nested). The

grey horizontal line indicates the total number of species (626 species). The vertical dash line indicates the number of sampling sites.

4.4.3 Subgroups detected by modularity versus clustering algorithms

The network of Taiwan BBS data contained 283 avian species residing in 410 nodes (sites), with 5658 edges representing linkages among sites that harboured the same species. Four network modules were identified, each containing 6, 35, 131, or 238 sites (represented by the purple, red, blue and green group respectively in Figure 4. 3 left). In comparison, the four clusters classified with the k-means clustering method contained 53, 141, 92, 124 sites (represented by the purple, red, blue and green group respectively in Figure 4. 3 right) (For species lists of each site group, see Appendix F).

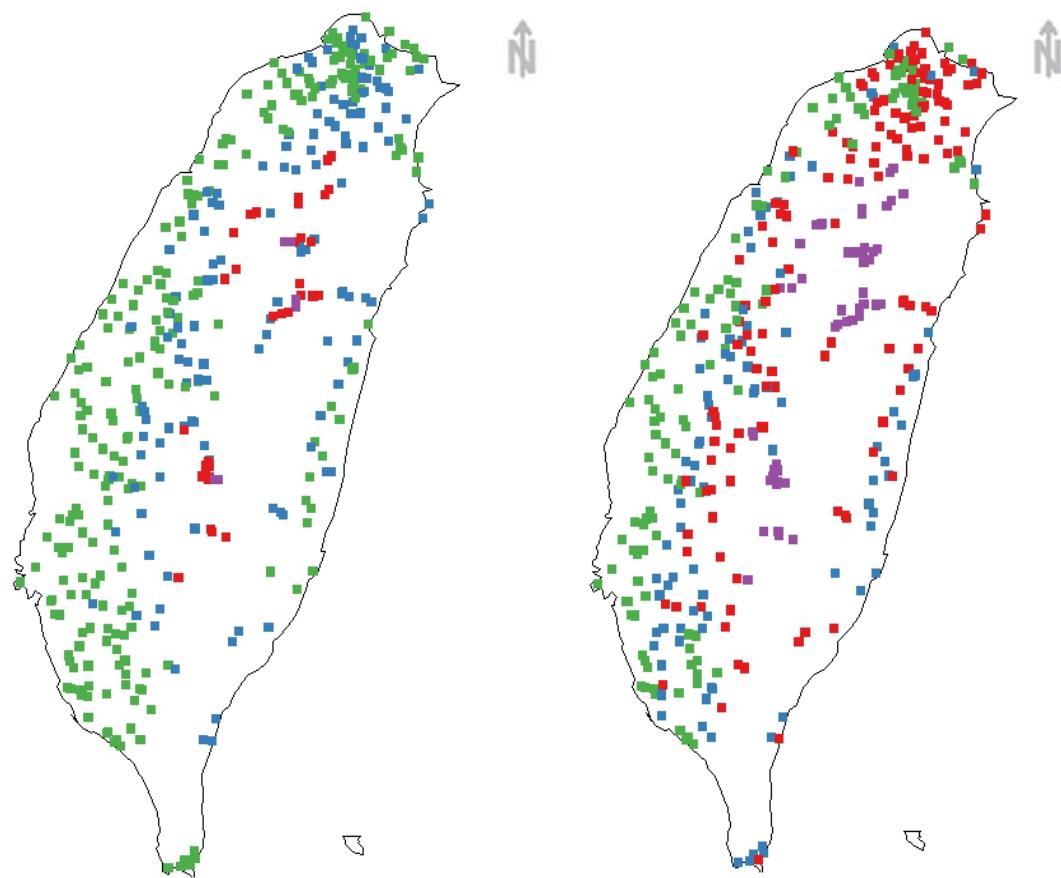


Figure 4. 3 Results of modularity detection (left) and k-means clustering (right) from the Taiwan BBS dataset. Different colours represented different modules or clusters. Colours and order of module (or cluster) are arbitrary. Each square is 1x1 km.

The indicator species selected by modularity and clustering methods are listed in Table 4.

1. These four network modules include: (1) the high elevation zone (purple) with indicator species *Tarsiger indicus*, *Pyrrhula erythaca*, *Troglodytes troglodytes*, *Regulus goodfellowi*, *Carpodacus formosanus*, and *Trochalopteron morrisonianum*. These six species form three combinations of four-species indicator groups (see Table 4. 1, left column of purple group),

with the first three species always included; (2) the mid to high elevation zone (red), represented by indicators *Yuhina brunneiceps*, *Aegithalos concinnus* and *Liocichla steerii*, which are similar to indicators species identified based on clustering method (purple in Fig. 4.3b); (3) the low elevation zone (blue) with indicator species of *Psilopogon nuchalis*, *Hypsipetes leucocephalus*, *Alcippe morrisonia* and *Schoeniparus brunneus*; and (4) the plain and urban area (green) with indicator species of *Streptopelia tranquebarica*, *Passer domesticus*, *Streptopelia chinensis* and *Dicrurus macrocercus*. Different indicator species were identified when based on clustering algorithm (Table 4. 1, right column): (1) high elevation zone (purple in Fig. 4.3b): indicators species were the same as those in mid to high elevation zone (red in Fig. 4.3a) for network modularity; (2) mid to high elevation zone (red) included six species, with three species also included in low elevation zone for network modularity (blue); (3) low elevation zone (blue) included five species, with only one species (*H. leucocephalus*) the same as low elevation zone (blue) for network modularity; two of the species (*H. leucocephalus* and *Pomatorhinus musicus*) are also the indicator species for mid to high elevation zone in clustering method; (4) the plain and urban area (green) included four indicator species, with one species (*P. domesticus*) shared with the network modularity in urban area.

Higher A and $sqrt{IV}^g$ values indicate higher success in predicting site group of unknown sites, and higher B value represents a higher detection rate, thus more efficient indicators. All $sqrt{IV}^g$ are significant with $p < 0.01$, but A, B, and $sqrt{IV}^g$ values were generally higher in network modularity than in clustering method (Table 4. 1).

Table 4. 1 The indicator groups selected by modularity (left) and clustering (right) methods of Taiwan Breeding Birds Survey (BBS) data. *SP*= species name codes; *A* = positive predictive value to a site group of each indicator group; *B* = sensitivity of each species group to a site group; *sqrtIV^g* = grouped equalised square root value of *A* X *B*.

Modules	Indicator species group				Clusters	Indicator species group			
	<i>SP</i>	<i>A</i>	<i>B</i>	<i>sqrtIV^g</i>		<i>SP</i>	<i>A</i>	<i>B</i>	<i>sqrtIV^g</i>
Purple	<i>Regulus goodfellowi</i>				Purple	<i>Yuhina brunneiceps</i>			
	<i>Tarsiger indicus</i>	0.90	1	0.95		<i>Aegithalos concinnus</i>		0.97	0.81
	<i>Pyrrhula erythaca</i>					<i>Liocichla steerii</i>			0.86
	<i>Troglodytes troglodytes</i>					<i>Aegithalos concinnus</i>		0.97	0.81
	<i>Carpodacus formosanus</i>					<i>Liocichla steerii</i>			0.86
	<i>Tarsiger indicus</i>	0.90	1	0.95		<i>Yuhina brunneiceps</i>		0.94	0.83
	<i>Pyrrhula erythaca</i>					<i>Aegithalos concinnus</i>			0.88
	<i>Troglodytes troglodytes</i>					<i>Megapomatorhinus erythrocemis</i>		0.60	0.77
	<i>Trochalopteron morrisonianum</i>					<i>Psilopogon nuchalis</i>			0.68
Red	<i>Tarsiger indicus</i>	0.90	1	0.95		<i>Alcippe morrisonia</i>			
	<i>Pyrrhula erythaca</i>								
	<i>Troglodytes troglodytes</i>								
Red	<i>Yuhina brunneiceps</i>	0.86	0.91	0.89					
	<i>Aegithalos concinnus</i>								

	<i>Aegithalos concinnus</i>	0.86	0.91	0.89		<i>Megapomatorhinus erythrocnemis</i>			
	<i>Yuhina brunneiceps</i>					<i>Hypsipetes leucocephalus</i>			
	<i>Aegithalos concinnus</i>	0.88	0.86	0.88		<i>Dendrocitta formosae</i>			
	<i>Liocichla steerii</i>					<i>Alcippe morrisonia</i>			
	<i>Psilopogon nuchalis</i>					<i>Megapomatorhinus erythrocnemis</i>			
	<i>Hypsipetes leucocephalus</i>	0.77	0.93	0.85		<i>Pomatorhinus musicus</i>			
	<i>Alcippe morrisonia</i>					<i>Dendrocitta formosae</i>			
	<i>Psilopogon nuchalis</i>					<i>Alcippe morrisonia</i>			
Blue	<i>Hypsipetes leucocephalus</i>	0.84	0.85	0.84	Blue	<i>Dicrurus macrocercus</i>			
	<i>Schoeniparus brunneus</i>					<i>Pomatorhinus musicus</i>			
	<i>Alcippe morrisonia</i>					<i>Lonchura punctulata</i>			
	<i>Psilopogon nuchalis</i>					<i>Hypothymis azurea</i>			
	<i>Hypsipetes leucocephalus</i>	0.82	0.87	0.84		<i>Dicrurus macrocercus</i>			
	<i>Schoeniparus brunneus</i>					<i>Pomatorhinus musicus</i>			
	<i>Streptopelia tranquebarica</i>	0.91	0.86	0.88		<i>Lonchura punctulata</i>			
	<i>Passer domesticus</i>					<i>Pycnonotus sinensis</i>			
Green	<i>treptopelia chinensis</i>	0.84	0.89	0.87	Green	<i>Acridotheres tristis</i>			
	<i>Passer domesticus</i>					<i>Hirundo rustica</i>			

<i>Dicrurus macrocercus</i>	0.87	0.86	0.87		<i>Pycnonotus sinensis</i>	0.81	0.67	0.74
<i>Passer domesticus</i>					<i>Acridotheres tristis</i>			

4.4.4 Environmental associates of site groups

The result of RDA for Taiwan BBS (site groups categorised based on network modularity) is illustrated in Figure 4. 4. There are 13 environmental variables, which means that we get 12 constrained ordination axes (one as dummy variable). 30.37% of total variance is explained by environmental factors (constrained axes) (Table 4. 2), with $r^2 = 0.31$ for the global model and the adjusted $r^2 = 0.29$. Along the RDA1, the plain and urban area (green group) was separated from the other three groups, with temperature, elevation, and NDVI as the most influential attribute (Figure 4.4). For the RDA2, the three site groups (purple, red, and blue) were separated mainly along the gradients in elevation, number of land cover types, and NDVI (Figure 4.4).

Table 4. 2 Redundancy analysis f Taiwan Breeding Birds Survey (BBS) data.

	Inertia	Proportion	Rank
Total	0.6237	1	
Constrained	0.1920	0.3079	12
Unconstrained	0.4317	0.6921	265

Inertia is variance

Eigenvalues for constrained axes:

RDA1	RDA2	RDA3	RDA4	RDA5	RDA6	RDA7	RDA8	RDA9	RDA10	RDA11	RDA12
0.10399	0.05217	0.01553	0.00439	0.00409	0.00314	0.00228	0.00200	0.00156	0.00120	0.00091	0.00077

Eigenvalues for unconstrained axes:

PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
0.03163	0.01924	0.01827	0.01365	0.01118	0.00945	0.00900	0.00883

(Showed only 8 of all 266 unconstrained eigenvalues)

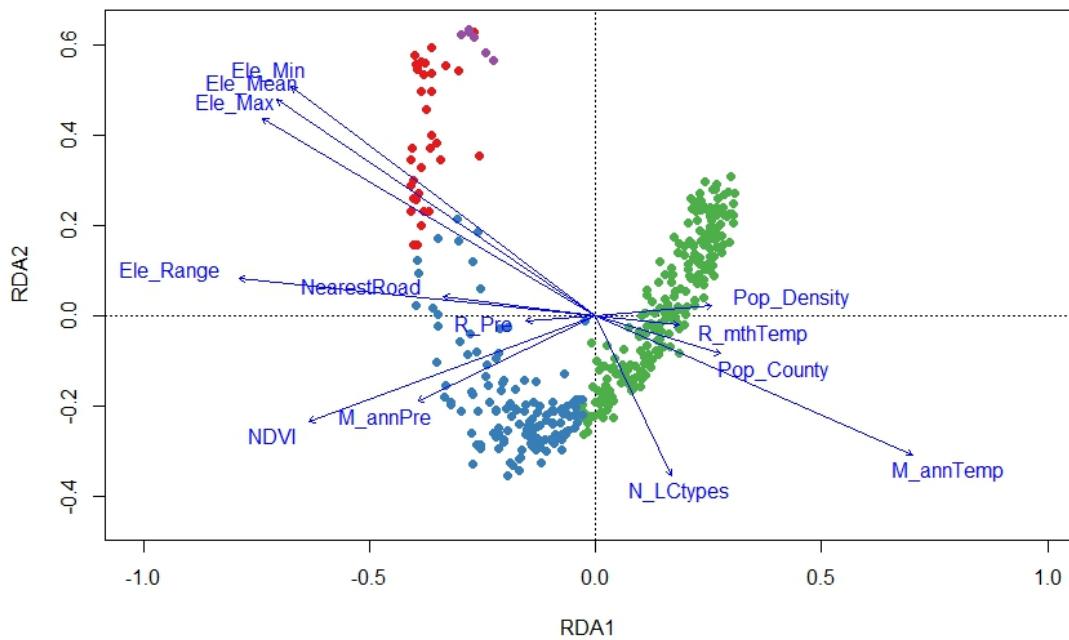


Figure 4. 4 Plot of redundancy analysis (RDA) for environmental associates with site groups of Taiwan BBS data. Points represent sites and different colours represented different modules by the modularity-based indicator species analysis (colours correspond to those in Figure 4.3 left). Environmental attributes included: mean annual temperature (M_annTemp) ($^{\circ}$ C), range of monthly temperature (R_mthTemp) ($^{\circ}$ C), mean annual precipitation (M_annPre) (mm), range between maximum and minimum annual precipitation (R_Pre) (mm), Normalised Difference Vegetation Index (NDVI), range of elevation (Ele_Range) (m), mean elevation (Ele_Mean) (m), maximum elevation (Ele_Max) (m), minimum elevation (Ele_Min) (m), number of landcover types (N_LCtypes), population per county (Pop_County) (persons/county), population density (Pop_Density) (person/km²), nearest distance to road (NearestRoad) (m) for each 1x1 km square.

Five of the 13 environmental variables were removed from further MLR analyses due to high collinearity with retained variables that had lower AIC values (Table 4. 3). Among the eight variables that were analysed in the MLR, the model including maximum elevation height and NDVI had the lowest AIC value (Table 4. 4). The second best model contained maximum elevation height, NDVI, and population density, but the difference in AIC with the best model was > 2 (Table 4. 4).

Table 4. 3 Akaike information criterion (AIC) value for the multinomial logistic regression, with site groups as dependent variable and each single environmental variable as independent variable.

Environmental attributes	AIC
Maximum elevation (m)	305.27
Mean elevation (m) *	337.49
Minimum elevation (m) *	388.23
Range of elevation (m) *	428.75
Mean annual temperature (° C) *	464.72
Normalised Difference Vegetation Index (NDVI)	518.37
population density (person/km ²)	642.89
population per county (persons/county) *	713.50
Nearest distance to road (m)	734.84
Mean annual precipitation (mm)	737.64
Number of landcover types	741.01
Range of monthly temperature (° C)	768.50
Range between maximum and minimum annual precipitation (mm)	785.08

* dropped in further analyses due to correlation ($r_s > 0.7$) with other variable of lower AIC value

Table 4. 4 The model selection table for Taiwan Breeding Birds Survey (BBS) data. Only the top ten models with low AIC values are shown. The environmental attributes applied in the model selection were: mean annual temperature (M_annTemp) (° C), range of monthly temperature (R_mthTemp) (° C), mean annual precipitation (M_annPre) (mm), range between maximum and minimum annual precipitation (R_Pre) (mm), Normalised Difference Vegetation Index (NDVI), range of elevation (Ele_Range) (m), mean elevation (Ele_Mean) (m), number of landcover types (N_LCtypes), population per county (Pop_County) (persons/county), population density (Pop_Density) (person/km²), nearest distance to road (NearestRoad) (m) for each 1x1 km square.

Model no.	(Int)	Ele_Max	M_annPre	N_LCtypes	NDVI	Pop_Density	R_mthTemp	R_Pre	df	logLik	AICc	delta	weight
10	+	+			+				9	-124.983	268.4	0	0.352
42	+	+			+	+			12	-123.021	270.8	2.41	0.105
138	+	+			+			+	12	-123.172	271.1	2.71	0.09
14	+	+		+	+				12	-123.199	271.2	2.77	0.088
26	+	+			+	+			12	-123.517	271.8	3.41	0.064
74	+	+			+			+	12	-124.084	273	4.54	0.036
46	+	+		+	+		+		15	-121.05	273.3	4.9	0.03
140	+	+	+		+			+	15	-121.055	273.3	4.91	0.03
12	+	+	+		+				12	-124.48	273.7	5.33	0.024
58	+	+			+	+	+		15	-121.545	274.3	5.89	0.018

4.5 Discussion

In this study, it was found that the Arrhenius power function had lower error rates than the other three extrapolation functions in the prediction of Taiwan avian species richness. Moreover, while overestimation of species richness occurred when the data were inputted in random order as was conventionally practiced, species richness was underestimated when the data were inputted in nested order; low error rate (-1.55% error rate) was achieved when estimation of these two inputting orders was averaged (see chapter 2 and 4). Comparing with traditional clustering methods, network modularity had higher success in predicting species groups for unknown sites, and the four avian species groups were associated with variation in elevation and NDVI.

The power function (Arrhenius 1921, Preston 1962a, 1962b) and logarithmic function (often erroneously termed the exponential function; Gleason 1922) are commonly applied in the extrapolation of species accumulation curve (Dengler 2009). Selection of an appropriate extrapolation function is critical for satisfactory prediction of species richness. When species are not randomly distributed or when an area is characterised with high environmental heterogeneities, species number increases swiftly with an increase in sampled area (Williams 1943, He and Legendre 1996, Scheiner 2003). In the present study, the Arrhenius power function was better at predicting avian species richness in Taiwan; in comparison, the logarithmic function was the most suitable model for predicting avian species richness in Britain (Chapter 2). This difference is in agreement with previous studies that show the power model is the most appropriate extrapolation function when sampling effort is low and species richness is still far from saturated (Soberón and Llorente 1993, Tjørve 2003). In Taiwan, when

many avian species are still not detected in Taiwan BBS, the fast-growing curve of the power function should be more appropriate than log or other functions.

Both the power and the logarithmic functions lead to a convex upward species accumulation curve that lacks upper asymptotes (Dengler and Boch 2008, Dengler 2009), thus risking an overestimation of species richness (Ugland et al. 2003). The sequence of adding in new species affects the curve shape and leads to different predictive results (Ugland et al. 2003). As expected, when data are inputted in random order as conventionally applied, the power function overestimates species richness (Figure 4.2d). However, data input based on nestedness orders provides a novel way in constraining potential overshooting of power functions and helps set a lower bound to the extrapolation curve (Figure 4.2d). A similar moderating effect was observed in the British study (Chapter 2) when the logarithmic function was applied. Interestingly, when species richness predicted based on nestedness order and random order is averaged, the mean is 635.7 species, which is very close to the documented avian species (626 species) in Taiwan, considering that only 410 1x1 km plots out of Taiwan's 36,000 km² area (about 1%) are sampled. This accurate estimate of species richness is due to the underestimation and overestimation when data are inputted in nestedness and random orders respectively, so combining them will errors out. The same cancelling-out effect was also observed in the BTO study (Chapter 2); as such, combining nestedness and random orders has potential to become a novel and important approach for predicting species richness, but requires further validation.

The k-means clustering method is descriptive in nature, its robustness is hard to validate and is also an indirect method, relying on distance (difference) between species rather than directly measuring co-occurrence patterns (Milligan 1980, Clarke 1993, Legendre and

Legendre 2012). It is also sensitive to double-zero issue, which is very common in ecological datasets and may cause group misclassification (Dufrêne and Legendre 1997, Legendre and Legendre 2012). The double-zero effect might be particularly severe in a heterogeneous environment (e.g. tropical areas) because the fact that a species is absent in two sites does not indicate that these two sites have similar environments. In this study, indicator species groups in Taiwan had clearer group boundaries when selected by network modularity than by the clustering method. Species composition is different when the site groups are determined based on network module vs. clustering: species overlap is less in module-based than clustering-based site groups (that is, most species occurred in >1 clusters if the site groups are classified based on the cluster algorithm, see species list in Appendix F). My previous study (Chapter 2) also demonstrated the superiority of network modularity over the clustering method, indicating the higher utility of network analysis. Compared with clustering, the British modularity groups also had clearer geographical boundaries, less overlap in species compositions, and higher predictability in unsampled sites.

Taiwan BBS data have been divided into four groups (north, west, east and mid-high elevation) based on geography and altitudes (Ko et al. 2013). By contrast, group classification by indicator value derived from similarity in species composition among sites (De Cáceres and Legendre 2009) can result in a more objective group categorisation. Indeed, the four groups identified by the indicator species algorithms are different to the four groups determined by geography and altitudes (Ko et al. 2013). A similar difference was also found in coral-fungi symbiosis study (Amend et al. 2012), in which indicator species analysis revealed a different classification from the conventional classification methods (e.g. coral phylogeny, environmental attributes such as water temperatures...etc.). Composition of fungal species was

highly variable in colonies of a single coral species and capitalising on subjectively selected classification might not reveal factors that determine fungal species composition. Instead, indicator species analysis indicated that several fungal species were only statistically associated with specific corals which thrive in warm water (Amend et al. 2012). Therefore, indicator species analysis is valuable in categorising meaningful species groups, which in turn helps reveal the environmental determinants that define and differentiate communities.

Indicator species in the four sites groups were generally very different between the modularity and clustering method. The exception is the modularity mid to high elevation zone contained the same indicator species as clustering high elevation zone (Table 4.1). These indicator species include *Y. brunneiceps*, *A. concinnus* and *L. steerii* that are commonly observed in mid to high elevations in Taiwan. These three common species are included in the zones of the highest elevation by the clustering method, but are included in the second highest elevation group by the modularity method. An extra site group (high elevation zone) that is attitudinally higher than mid to high elevation zone (Figure 4.4) is identified when based on the network modularity. The six species included in the modularity high elevation zone are generally distributed at higher altitudes but are more spatially limited than *Y. brunneiceps*, *A. concinnus* and *L. steerii*. The two methods might classify indicator species in different ways: the modularity method highlights species of more limited distribution whereas the clustering method favours common species. Therefore, the modularity method may also be valuable in identifying species of conservation concern.

Previous studies on environmental determinants of Taiwan's birds have focused on avian species richness (Lee et al. 2004, Ding et al. 2005, Koh et al. 2006), leaving unexplored how avian species assemblages are environmentally differentiated. While species richness can be

easily documented, objective classification of species assemblages is challenging. Capitalising on network analysis, for the first time, Taiwan's avian species assemblage is differentiated, and it is further demonstrated that such differentiation is based primarily on elevation and NDVI. Primary productivity (with NDVI as a surrogate), elevation, and urbanization are also found to be associated with avian species richness in Taiwan (Lee et al. 2004, Ding et al. 2005, Koh et al. 2006), indicating that birds in Taiwan are largely characterised by elevation and NDVI. Similarly, during several glacial periods, high mountain areas in Taiwan were the refugia of Palearctic and Himalayan species which migrated from the continent via landbridges (Tsukada 1966, 1967, Lee et al. 2004). Mountains in Taiwan might thus shelter species that are different from those in the plain areas, leading to a differentiation in bird assemblage with elevation. The difference in NDVI might reflect a difference in primary productivity or human disturbance, which can both affect avian species richness in Taiwan (Lee et al. 2004, Ding et al. 2005, Koh et al. 2006). Places with lower NDVI are typically where a higher degree of human disturbance is experienced, which commonly harbour different species. In Taiwan it is often hard to disentangle the effect of elevation, NDVI, level of urbanization, and temperature, because an increase in elevation is typically accompanied with an increase in NDVI and a decrease in urbanization and temperature. However, altitude should not be taken as a direct driver for biodiversity, because its relationship with biodiversity is not causal. The underlying environmental factors of interest (NDVI, temperature and urbanization here) are the ones to focus on (Hawkins and Felizola Diniz-Filho 2004, Kluge et al. 2006, Field et al. 2009, Fattorini and Ulrich 2012).

Chapter 5: General discussion

A change in community structure reflects underlying environmental variation, and can potentially advance our understanding of biotic communities. In this study, I focused on two community properties: nestedness and co-occurrence. Nestedness is a non-random species distribution pattern in which species in depauperate sites are contained in species-rich sites. On the other hand, co-occurrence networks categorise species assemblages as different units that reflect differential habitat requirements. Capitalising on these community structures can improve conventionally utilised predictive models such as species accumulation curves and indicator value analysis.

Predicted species richness based on species accumulation curves varies markedly with the functions applied. For example, Soberón and Llorente (1993) compared negative exponential, logarithmic, and Clench functions and concluded that functions vary in their performance. Selection of the appropriate extrapolation function is thus critical for satisfactory prediction of species richness, but there is no universal principle for the selection of the optimum function. In general, negative exponential and Clench functions perform better in homogenous environments due to that both functions belong to saturation model; that is, there is an upper asymptote and the accumulation curve eventually approaches a saturation point (Dengler 2009). In comparison, the power function (Arrhenius 1921, Preston 1962a, 1962b) and logarithmic function will create unbounded curves without mathematical asymptotes, and are more suitable for heterogeneous environments where new species continue to be found for longer, despite the fact that this function tends to overestimate species number due to an infinite increase

(Tjørve, 2003; Dengler, 2009). Furthermore, although both logarithmic and power functions are unsaturated curves without asymptotes, the power function outgrows other curves because it follows the power trend, i.e. a variable base is raised to a fixed exponent. In this dissertation, I have shown that accuracy in the prediction of British avian species richness increased with sampling effort and error rates were much lower when fitted with logarithmic function than with exponential or Clench function under both British and 100 km squares spatial scales (Chapter 2). In comparison, the Arrhenius power function had lower error rate than the other three extrapolation functions in the prediction of Taiwan's avian species richness (Chapter 4). Such difference is in agreement with previous studies that the power model is the most appropriate extrapolation function when sampling effort is low and species richness is still far from saturated (Soberón and Llorente 1993, Tjørve 2003). In Taiwan, when many avian species have still not been detected in Taiwan BBS, the fast-growing curve of power function should be more appropriate than logarithmic or other functions. A method to estimate completeness of sample (i.e. the proportion of species observed) derived from Alan Turing's frequency formula has recently been developed (Chao et al. 2013, Chao and Jost 2015). Completeness can be accurately estimated based on the proportion of 'singletons' (species with only one individual in the sample), with more singletons representing low levels of completeness. Such estimation of sampling completeness might help inform how far species richness is away from saturation and is thus helpful in the selection of optimal extrapolation function. Further studies including information of sampling completeness might help to determine the criteria for function selection.

I also demonstrated that ordering data based on nestedness could improve predictability of species richness. Most recent research on nestedness has focused on a depiction of

community structure (Picazo et al. 2012, Herczeg and Horvath 2015, Chaves and Ariez 2016) or on an improvement of the algorithms for calculating the nestedness index (Almeida-Neto et al. 2008, Podani et al. 2014). The current study, by capitalising on nestedness, provides a novel approach for improving the predictive power of species accumulation curves. Specifically, while species richness is usually overestimated when the data are inputted in random order as is conventionally practiced, species richness is underestimated when the data are inputted in nested order. An average of projected species richness of these two inputting orders remarkably lowers prediction error rate in Britain and Taiwan even though the two countries have distinctive topographic characteristics, suggesting a general applicability of this novel method and is thus worthy of further validation in other study sites and other taxonomic groupings.

The nestedness-ordered dataset applied in this study can similarly lead to a better prediction when combined with the best fit extrapolation functions (e.g. the logarithmic function for British birds and the power function for Taiwanese birds). For instance, the error rate was <5% based on nestedness order compared with 12% based on random method when logarithmic functions were applied for the estimation of British avian species richness in 100 km squares with 10% sampling effort. This suggests that incorporating data structure (e.g. nestedness) into the analysis could help improve the efficiency of sampling effort, particularly useful in area with limited resource available for field survey (Pearman and Weber 2007, Ashcroft et al. 2010). In the findings for the Taiwan avian data were similar: using approximately 1% sampling data, with the power function, could predict overall species richness with less than 20% error rate. Moreover, conventionally intensive randomisation procedures are needed for the species accumulation curve to achieve higher predictive power (Ugland et al. 2003; Chao & Shen 2004; Gray et al. 2004) by reducing the probability of

including extreme values with a large number of replications. I show here that sampling based on nestedness order is a novel way for capitalising on community structure for the prediction of total species richness. Results of this study have demonstrated that, overall, sampling according to nested order is more favourable than based on random order. The nestedness method applied in this study captures information about community composition and can accumulate as many species with lower sampling effort/areas. Thus taking advantage of the nested structure has the potential to predict community composition by focusing on the most species-rich sub-squares. However, because both British and Taiwan avian assemblages demonstrate a similar level of nestedness, it is not possible here to assess the relationship between the level of nestedness and the predictability of species accumulation curve. More studies that consider different levels of nestedness (e.g. including simulated datasets) are needed to test for the general applicability of nested order.

Relative to spatial nestedness, examination of nestedness over time is less studied, although it can provide additional information on temporal species coexistence (Elmendorf and Harrison 2009, Heino et al. 2009). When studying Britain's avian species nestedness, species with more limited occurrence include vagrants which occur less frequently in time rather than in space. In other taxonomic groups, such species may have interannual effects on co-existence (e.g. early-geminating and fast-growing exotic plants outcompete the slow-growing local species). Application of nestedness species accumulation curves could potentially be extended temporally for predicting interannual variation and could have important implications for long-term conservation or monitoring.

Compared with k-means clustering, indicator species identified by network modularity can more successfully assign unsampled sites to the correct species groups. Indicator species

analysis is useful for recognising representative species and has been applied to various research topics, such as plant species composition (Flinn et al. 2008, Willerslev et al. 2014), vector ecology (Obsomer et al. 2013), mycological community (Taylor et al. 2014, Varela-Cervero et al. 2015) and intestinal microflora ecology (Seedorf et al. 2014, Planer et al. 2016). The accuracy of site type prediction relies on robust classification of sampled species and sites (Dufrêne and Legendre 1997). The results of clustering, however, can be easily influenced by other factors. Firstly, because cluster analysis is based on dissimilarity among members, the clustering outcome depends on which sites are sampled. Different sampled sites lead to different clustering outcomes, resulting in inconsistent species-site associations. In comparison, network analysis measures species co-occurrence directly and partitions the subgroup objectively and is therefore an efficient substitute for group partitioning in the indicator species analysis. The second concern is that subgroups partitioned by clustering methods are arbitrarily defined by user-defining cut off thresholds and may create artefact groups (Legendre and Legendre 2012). Although k-means clustering is recommended to be utilised in indicator species analysis (Dufrêne and Legendre 1997), this method can be easily affected by the identity of the group to which the original node is assigned (Celebi et al. 2013). Even though Dufrêne and Legendre (1997) suggested repeating the partitioning process until the indicator values of all species are decreasing to find the appropriate number of clusters, there is still no reliable criterion to decide the cluster numbers, and the number of indicator species groups classified by the k-mean clustering needs to be subjectively decided. As such, indicator value does not take into account species absences (DeCáceres et al. 2010); different numbers of site group are repeatedly attempted until the optimal number for acquiring the most confident indicator species value is found (Dufrêne and Legendre 1997, DeCáceres and Legendre 2009). In comparison, the number of site groups is objectively determined by network modularity.

Network analysis with spatial modelling (i.e. the spatial network analysis) has been frequently applied in many fields (Barthélemy 2011), however in ecological research, incorporating ecological processes such as dispersal, competition, or food web into network analysis to uncover geographic pattern remains challenging (e.g. Cumming et al. 2010) and most of the research focus on single species or individual (e.g. Saura and Rubio 2010, Pereira et al. 2011). This study illustrates that network analysis could efficiently classify subgroups of co-occurring avian species in Britain according to both species co-occurrence and the geographical distribution. The complete bird assemblage is sorted into subgroups according to occurrence in coastal or inland area, along the north-south gradient. The sites are divided into several groups, and sites within a module are usually geographically connected compared to the geographical mosaic pattern of clustering results. Also, the Taiwan BBS data have been divided into four groups (plain-urban areas, low elevation zones, mid-high elevations, and high elevations) based on geography and altitudes. This suggests the ability to combine species (co-occurrence) and spatial information by network analysis. This technique has also been used for analysing the large-scale European fauna structure (Araújo et al. 2011) and successfully revealed the robustness of each faunal group by the geographical distribution and the resistance to climate change. Regarding indicator species analysis, it delivers more consist result in defining species-site associations therefore better basis for the predictability. However, such capability has not attracted enough attention and more future research is required.

Scale also affects the predictability of community composition. For example, it has been shown that the most species-rich areas shift northward when the research spatial scale enlarged although the mechanism underlying the shift remains elusive (Lennon et al. 2001, Willis 2002) and biological similarity typically decreases with geographical distance (Soininen et al. 2007).

In the British avian study, the finest spatial scale used for indicator species was 10 km. However, for a mobile taxon such as birds, when data of finer resolution are available, more relations among modules may be uncovered. This increases the robustness of the site group classification and may improve predictability of species composition. How to decide the most appropriate spatial scale requires further research.

In this study, I have demonstrated that it is feasible to utilise orderliness in an assemblage to improve predictability of species richness in unsampled areas. Also I have shown that network analysis can help classify indicator species group. An investigation of both British and Taiwanese bird data supported these conclusions. An assessment of other areas or countries could validate the generality of these pattern-based algorithms. Future research should also explore topics regarding nestedness along the temporal dimension and the significance of scale in predicting species richness and composition.

Appendix A

A.1 Nestedness order of 10 km sub-squares in Britain

* Codes are listed in nested order, from the species-richest site to the depauperate. Read by row, left to right.

* For complete grid reference and map, see <http://www.bto.org/volunteer-surveys/birdatlas/methods/correct-grid-references/know-your-place>

ND27	TL87	TF74	TF84	TF62	TQ77	TM47	SZ19	TR06	SU70	TM46	SK80	TG50	SU56	NG82	TG04	TL91	SD47	SZ39	NR26
SU86	SH37	TG40	NC96	NT48	TL77	NH80	NR64	TL78	TQ81	SU40	SE27	TL89	NT96	TG30	NS48	TQ58	NC55	SU10	TQ96
NT67	TL19	ND35	NT16	TG31	SD84	SU50	SH57	NY22	TL15	TG42	TL97	TR26	NR78	NT25	NU00	NS47	NO35	TM45	NR86
SD27	SU66	SD41	SU31	SJ24	TG32	NR39	SZ49	TL29	NH62	SU11	SU67	SE74	TM11	NH85	TR35	TM34	TF63	TR16	NC86
NM45	SH28	TQ86	TM22	ND06	SN69	TQ49	SU30	SU94	TF92	NU22	SU97	TQ91	NX66	SU36	SK46	NN80	SU77	NT86	SH48
SD48	NZ71	TL48	SK47	SE30	TL88	NZ52	SU76	TQ06	NC82	NR98	SU60	SK32	SY68	NN79	SD72	SD83	TR36	SD18	NH95
TF55	TQ40	NH79	TL31	NH91	NX67	NS28	NC76	NR97	NR83	SU01	NG77	SU84	TM57	NR73	SD57	NH52	SD17	NS83	TQ87
SK29	SU32	NN81	NO59	NR89	SZ29	TF61	NR84	SJ58	SD26	SK20	NC14	SP29	SU75	TM23	NS37	NO04	TM01	ND05	SH38
SD75	SK12	NS03	SJ61	SO96	NR88	NM48	SK28	TM28	SP92	TL57	SK27	TL08	NH63	TM35	SK22	TQ98	SZ59	TQ55	SY67
TF71	TM59	NH33	TF70	TL21	ND34	TM02	NB43	SJ68	TL56	NR25	NN17	NT68	TQ76	TF10	SN20	SK67	TL30	NT84	NG25

Appendices

TQ92	TF00	NS07	NY36	SK07	NO42	NM94	TL99	NZ04	SE36	SO78	NS57	NH45	TL92	SX97	SE40	NC13	SJ07	NX74	SJ85
NJ01	NY00	SE20	SE82	NJ05	TG41	ST55	SU73	ND37	SJ69	TL39	TL37	SK51	TQ16	SU42	NS35	SD59	SU20	NH54	NX06
NY55	NM55	SD62	SU46	NM54	TQ00	TA14	SD55	SD65	NR99	SP93	SJ96	NT06	SU96	NH70	SJ04	NY25	SU21	NY60	TQ07
SU88	SH87	NT42	NX46	NK02	HY20	NM86	NY15	TL03	SH46	SC27	NX76	TR01	NJ06	SE64	SZ38	TL81	TL14	SJ18	SJ81
NS94	NH77	TA04	TQ59	NO10	SP91	NC36	NM83	SP77	NY01	NT35	TM58	TL10	NY86	NJ26	NO65	SU80	SO70	NM82	NR57
NL94	NY95	SJ92	NK05	NH53	NH55	NG99	TL09	NR36	NR72	TL11	NT77	TR05	NO66	SN52	ST44	SZ68	SO30	NS38	TF11
SH63	NH90	ND16	SP89	NR96	NX96	NR77	TQ19	SK21	NH59	NX68	SJ74	NS77	NN51	SC49	SZ07	NC46	SN96	ND25	NC26
TQ64	SE24	TM13	SU83	SJ75	SH97	NN96	SO39	SY89	HY44	NS27	NZ43	SK53	SH61	NC02	SV81	TQ78	TQ57	TL04	NM42
NX40	SK60	SR99	NN85	NZ35	SO60	SU44	SE26	SU85	TQ08	SN42	SD96	TQ09	SU62	NR75	NO36	TF81	SJ80	NX15	SK11
TF80	TA16	NM71	NS65	TF64	NN72	NR95	NH20	TR25	NH78	NR85	SY58	TQ01	NG08	NT27	TL98	ND01	SU47	SK78	SD85
NC85	SD38	NM66	SU26	TM24	SU33	NX85	NH42	SJ73	NT58	NT19	TQ67	SO12	NM44	SD39	NR34	NC53	NS89	SE92	NH43
NF72	SU82	NH64	SU58	SH71	NG74	NR46	SK90	SH47	NT24	NO25	NY02	NX37	NY51	SN79	SK36	TM49	NT17	SN62	NH30
NN53	SJ37	TL28	SD29	NO40	SO61	NH65	SY99	NG32	SS42	SD28	SU93	NR79	NF75	SJ30	SZ08	SD31	NJ04	SC28	TQ66
SU09	NC64	NH32	SO15	TF30	SJ50	TR04	SU57	NR63	SD74	SJ51	SD95	TF52	SJ17	TQ33	NM73	SD82	NU20	NO16	SU34
NO06	SH39	NC91	SJ08	TM39	SJ95	NO53	SD64	NY54	SK26	HY22	SH76	SU41	SE09	NC80	SK87	TL22	SJ31	SO57	SU12
NO14	ND03	NO01	SH44	SE91	TL20	SC39	TL26	SD56	NN18	SU87	SD32	NS68	NN95	ND23	NR65	NN69	SE35	NO00	NH69
NO03	SK69	NG88	SN77	NC21	NM81	SJ72	NZ10	NY03	TQ63	NC60	NX16	SH36	SE05	SN63	ND49	SU43	NM93	NM49	SN40
SU91	SD09	NN55	SE63	SU72	SU55	ND26	NX91	NX89	NS29	SD67	SJ63	NY08	SK00	NT07	SU00	NC56	NR15	NN75	TG14
SK68	SX64	TL02	NC25	NS41	NH87	NZ42	SD86	NX45	NC71	SK02	HY50	SE29	SU22	NM15	NT15	NR35	NX25	NZ00	NT83
NZ29	TQ79	NT92	NS93	NS40	NY30	TQ68	NT47	SU53	SD61	HY45	SY78	NZ27	NN84	HY32	NH67	TF94	SE73	NJ41	TQ73

Appendices

HY42	SN14	NS75	SE19	SH56	NS58	SE50	NJ13	TA17	NM62	SN30	SX98	NY12	SD60	HY75	NC45	NH93	NH89	SK79	SO38
NJ46	SK18	NH94	NR87	NH22	SH75	NS98	ST59	SJ43	NH26	NR74	SJ87	SP97	TQ39	HU31	NS49	SZ09	SK48	NN48	NY45
NM76	SU18	SK09	NT31	SE80	SH43	SJ41	TL86	SE17	NH12	SJ71	SK57	SD69	SU37	NJ14	NZ36	SO79	SN31	TL58	TL44
NG92	NO49	TF82	NZ37	NY35	NN34	NY37	NH46	NR45	SD54	NX44	SD58	HY62	NT74	TG10	SK39	NF99	ND04	NC65	HY30
TM14	NX56	NF76	NB24	SH12	SE34	NY94	NZ16	NM70	SJ57	TQ65	SJ40	SK66	NH68	NM64	NX98	NY06	SH77	NN83	SJ91
SY08	SJ60	HY51	TQ72	TA27	NT26	SY98	TF44	HY43	NR44	SD46	NF74	NS09	SH95	NX35	NH10	TG01	NS36	SE88	NJ02
SU61	NT43	NK14	NC03	NR47	NH51	NJ24	NN86	NS05	NT05	SJ53	SO28	SJ22	NM56	NZ05	NN71	NO41	TL70	NR62	SK43
ST56	NM04	NY75	NX57	NT00	TM03	SD73	SO51	SJ46	TL05	SJ14	NS18	NM67	SE18	SU98	NH75	NS61	TQ23	ND13	TL69
SE10	SX87	ST84	TQ93	SJ62	NY65	SO31	SP44	NR71	NN82	TQ46	HY21	SP86	SO84	SN95	NY52	SH27	SD90	NJ03	SK13
NM52	NY87	NC66	NH82	NC31	NT65	TL13	HU35	NT56	NX69	NU21	NR68	NC75	SN41	TQ53	NT37	SD78	SU27	NN30	TF93
TL59	NT82	NG30	SS59	NB13	SU03	NS19	SJ66	NN06	NZ03	SU65	NT95	TQ13	NZ15	TQ75	SP28	TF72	TQ04	NS46	NF73
NC35	NX78	SS43	SJ82	NY41	SK91	NM34	NH66	NB03	SJ45	SP58	SD91	SK86	SH52	SN67	TF16	SH70	TM12	NO37	TQ43
TQ27	SO77	NX27	SE83	NC90	NG20	TQ70	NN28	NH56	NO02	NT13	NZ61	NY13	TG22	SE87	NH49	NT66	SN54	NN91	NW96
NY63	NT73	SO11	NG09	TL41	SP45	SN84	SO47	NN59	HY31	NT44	NH76	SP46	NH81	TQ29	SH72	NM35	SO67	TQ25	NS86
TQ89	SN74	NX95	TQ44	NG36	NX64	SZ48	SO02	HY53	NC44	NR27	TR34	HY64	HY33	SK19	TL71	NN74	NC30	NX34	NS08
SH53	SU13	TF60	SJ84	NH19	TM44	SP37	ST90	NR70	ST60	NG89	NS55	NO21	SJ78	NO45	SE25	NN45	SE01	NF87	SK54
NG42	TL96	NG33	NG91	NG41	TL60	NY97	SK94	TR15	TV59	TQ56	NH41	SP48	SH50	NX18	NN00	NR94	TQ54	NT04	SU52
TL84	ND29	SJ20	SX84	SK08	SO83	HY74	NN65	TG21	TL12	NY76	ST49	NJ15	NZ02	NO30	ST24	NY91	NT14	SN50	HY40
SJ02	SU59	NH72	ND15	NT33	SU17	NY92	NR61	NY16	NX77	SJ94	NX43	NO13	NY70	NB54	NM97	SE98	NS76	SH74	NT18
NC01	NS67	TQ05	NS32	TQ45	SN78	NO50	NY42	NM53	NT45	SN51	SP50	NC74	TQ17	SD97	ND48	NS02	NH96	SJ93	NG83

Appendices

NG73	NC11	SH73	NT29	NN94	NJ36	NC84	NT90	NN93	NY11	TF14	NJ50	SJ83	SO69	SO50	SM70	NY40	NR37	NO55	NT34
SP25	TQ14	NZ01	TL52	TQ41	TA02	ST87	SO37	SU51	SP55	NH48	NM46	SY09	NS15	ST93	NH06	NC51	NC24	NX47	SO34
NF96	NH98	SJ33	NC37	SE16	NN92	TF21	TF22	SO27	TM29	SJ39	SD88	NG61	SJ23	TR03	NN76	SU63	NC23	SJ76	SD45
SK56	SJ70	SP95	NH73	NS63	NT64	SU99	ST36	SU14	SO98	SH49	NJ33	NC70	TQ35	SP74	SZ79	SE07	SO58	NO24	TA05
SM93	SX99	SY97	NR92	SK55	SK15	SK50	SO48	SN57	SE21	SK63	NN70	TQ26	HU32	NZ51	NJ35	TL06	NM74	ST50	NN38
ST57	SE90	SK75	SO71	SH33	NT75	SC16	HU58	NJ25	NS45	NN10	SO88	NS66	SK71	NT71	NS39	TL16	NJ32	SC26	SJ97
SN68	SO62	NO64	NO31	SD66	SH60	NT30	SU23	SN35	SJ52	TQ84	SO94	HU44	SD49	NX29	SZ58	SN66	SE37	SP34	NC50
TL46	NN19	NS84	NT12	NH15	SJ99	NH92	NN31	HY63	TF02	NG85	NY50	SP40	SH68	SO49	ST47	NZ07	SJ06	SN58	SN65
NT02	SU45	NZ21	SK37	NO76	SU81	NS04	NT03	HP61	SD81	NR49	HP50	SU74	SK35	NX55	NJ66	NG52	SK58	SS21	NT28
TL76	TL24	ST61	NC83	SO93	TL79	SD89	ND02	SN92	SE61	SN82	NN90	SE14	ST66	SU54	ST39	SP85	NX87	TR37	SP10
SK24	SU15	SD93	NM43	NM75	TF01	NC63	NS85	TA22	SO59	SC48	NM96	TF25	NF98	SE28	NM69	SO09	NU04	SO87	SN61
NN24	SU90	SD76	TQ42	SP94	NM63	NG94	SD37	NJ31	SE42	ST51	NZ13	NG72	NC10	SP90	SO73	NC54	SO95	NG87	SP76
SN99	TG23	SO05	TL00	SP75	SS53	SH85	NM32	NZ28	SD87	TF26	NY88	SU28	TL18	NR69	SP35	NG35	NH25	NZ06	SX88
NS72	TF09	SO04	SD79	NY56	NH18	NR56	SK65	SH94	NG44	SJ01	ST23	NR58	SO40	TM21	NT60	TL32	TQ32	ND07	NT23
SE43	TQ15	TL68	NN63	TQ97	NY62	HU69	SK59	SH96	NS91	SP19	NH23	SK96	SJ86	TQ85	SH84	SU08	TG02	SS44	NT57
SE15	NS17	TM15	SP01	NJ83	NS96	ST04	SH64	NJ40	SN89	SK64	NT22	NT53	ST69	TM38	SE86	TL72	TL50	NN68	SK41
NZ41	NM80	SO68	SN94	SE60	SK44	SD50	TL82	TQ74	NN89	NS64	SK33	TF33	NS56	NH31	NN07	TL94	TM33	SZ69	SX05
SP13	SX73	NM39	SU71	NF97	NB53	NT54	NR60	NY90	TQ48	SK49	SO20	SS78	NN50	NT55	SP99	HT93	ND14	TL53	SX17
NT32	SH81	SN86	NC40	TF73	TG11	NO12	SK61	TQ62	SD30	ST46	TR13	SJ55	SS22	NH44	NH74	TG33	SJ42	TF06	SU19
SJ32	SY59	NG96	NS73	SH58	NU02	NT62	SE00	NG53	SJ90	SO21	TF83	NT52	TQ71	TR09	SK06	NX99	SS88	NS95	NY14

Appendices

SO92	SS54	SK45	SE95	ST95	NS99	SK38	NS71	NY99	NH35	NN29	NX38	TQ50	SH92	SN73	NF86	SU92	SP09	NO05	SU79
ST32	SE31	SP65	NB56	SD19	NC95	NY38	SK34	SH65	SJ11	SS79	NR38	TL74	NS06	NT63	NY33	TL80	SE49	NY17	TM05
SE72	NM84	NN33	TF49	NF71	SC37	NN41	ST35	NX65	NZ08	NC22	SO86	NU23	NT36	ST20	SO14	ST38	NT61	NY34	SK14
NS92	SC38	SH67	NZ24	SX77	SP05	SN81	NY57	NO20	TQ02	TQ47	SO36	TM07	TQ11	TQ03	SP64	TL27	SH83	ST29	NR76
TL01	NT08	SO41	SP54	TA15	NY23	SE85	NY24	NX75	SO13	SP12	TQ38	SN76	ND39	NC81	TL83	SE33	TQ24	TM04	NG93
TM25	NY48	NG81	NS97	SO82	SD68	SS49	ND12	SU07	NO54	SJ79	NN54	TG13	NO68	SH22	NR93	SE46	NY53	NT39	NY96
NX79	NN46	SE65	SE44	SU35	HU43	TQ61	SP06	SK04	NN04	HU68	SU02	TF20	SH93	TF91	SO46	SO89	NZ09	NX92	SO91
NJ91	SJ67	NY47	SO75	NT70	ST13	SK25	SJ59	SU95	SE71	SK03	TQ22	SJ49	NY32	NO26	NX04	SE69	NN40	NG62	NT94
TA26	SE06	SD99	SO43	SN72	NG70	SO35	SD42	NM26	SP53	SW87	NH84	ST94	SS64	SD92	SN75	SO01	SZ89	NX84	NT10
SP32	SH55	NJ65	NM65	NM85	SH62	NH39	NH40	NH34	ST58	SO08	SO65	NU03	SP68	SD34	SP36	HP51	NY80	SK88	NT76
NX97	SO24	SK83	ST96	SD77	SE97	SV91	SS84	SK05	NH05	SE62	SP51	TF15	NH09	NX58	NX86	HY52	SE54	SE47	NN64
ST98	NZ31	SO72	NN20	TA11	SP42	NF77	ST74	TM48	SE08	HU34	SP47	ST48	NS81	NZ25	HU49	TL67	NS90	NY26	NS33
SP30	ST45	TQ99	NO15	NC00	NO46	SO90	SE58	SO63	TL75	SO26	TL23	SN12	SK74	SP22	NZ40	HY41	NX59	SO55	SO74
SP80	SE75	ST11	ND24	HU15	ST76	NY85	SE51	NG97	SU24	NJ81	SE89	TA21	NO19	NM25	NY21	NZ19	SN53	SE45	TL66
NB45	NU13	NO47	SP88	NT20	SO53	NJ92	ST03	TF50	HU46	TL65	SE02	NB32	SJ28	NU01	NZ23	TL90	NS62	SP17	NZ20
TG03	SN83	ST08	NO69	NY31	NS69	NY93	NO27	NR24	TQ34	SS48	SO97	SN98	TL45	SE53	ST14	TF39	SO19	NY66	NN09
SY88	SN64	ST54	TQ94	SK84	HU36	NO99	NG78	SY79	SM83	SJ05	TL93	TA13	NK03	NG24	TG00	HU25	ST79	SS80	SE39
SN03	SD98	NY81	SX59	SE57	SO44	NY43	SU78	TL25	NG26	NS82	NM98	NT85	TA30	ST28	SP84	NN01	HU42	SO52	SU29
HU45	SS94	NB91	SO29	NR82	SP70	TQ10	SO42	NN43	SD71	NX30	SH90	NY82	NX05	TR24	SN25	NM77	SU16	SD63	TL34
SP15	NS79	TQ36	TA08	SE79	ST80	TQ12	TL36	NG60	NB35	SK85	SN87	SD51	HU54	HU27	SN43	SJ21	SN85	SE55	NS59

Appendices

SO22	SP83	NT46	SN33	SD70	SS19	SO45	HU33	TQ82	NG50	NS51	TL42	SJ03	TF34	NY59	ST92	NO34	SO76	SY49	NS78
HU24	SP52	SH86	SO18	TL47	NG45	SK17	NF67	NF84	NX07	SN45	NC12	SW32	NZ11	TL61	NB55	TQ60	SW62	ST33	NX26
SN34	SP18	HU59	SJ65	NY98	SP56	SP81	SJ54	SU64	SS73	SN46	NG55	SJ98	NC52	NS30	NT93	SO99	SU05	NY74	TL07
NF66	NJ16	SK40	NM72	NO11	HU56	NC27	NT51	ST81	SY69	NC73	SD08	NM79	NX36	SP38	SP07	NM78	ST43	SH45	NC34
SK30	TM26	SJ27	NF70	SK01	HU37	SW53	SO33	NM91	NB44	SU48	TF41	NH08	SE03	SM72	NX88	HZ27	NN11	SP04	SY19
NX13	NJ34	SO03	TR14	ND36	NY89	TQ83	SK82	SH91	NO08	NJ22	NM90	SP43	SP26	SU38	NY10	NG51	NT72	SN71	SK23
SU89	SP69	TA20	SS74	SX69	TM00	HU39	NC20	NT41	SO32	TA31	SW72	NO57	SE93	NJ70	TG12	TM18	SJ64	NY73	NJ56
SJ15	SV80	SK98	TF47	SX35	NG71	NU11	TM09	SN55	SE11	SP11	SX96	TQ95	NY61	NO75	NH86	NZ22	SN93	HY55	NO51
SO23	NS74	TL55	SE67	NO23	NJ27	SX56	ST77	SP96	SN32	SE99	SP73	NM31	ST83	NB46	NN56	TM17	NH83	ST89	SX78
SK42	SK70	NM22	NH88	TA18	SX46	NM95	NY71	SE78	SD94	TR02	NL69	SN44	SO10	NT80	TM36	SE32	TF48	NJ45	TF17
SE81	HU28	SH66	TQ52	SP87	TL40	NN66	NN52	SS97	NF95	NN57	SZ57	SM80	SN56	SU39	ST78	SS69	NO33	NH21	NJ90
NF82	NH58	HP60	NM60	SE66	NN23	ST70	TQ30	SW86	SJ13	SX83	ST16	NO67	TQ51	TA00	SP16	NB21	NH47	ST06	ST65
TA06	NT21	SD44	NY67	NZ30	NM89	SM82	TL49	SN04	NN67	NG14	TF27	SN21	SJ77	HU38	SJ34	SH80	SN24	HU41	NN87
NU10	SK81	NG76	ND38	SY39	TL35	ST99	SN91	NC92	NM68	NC42	NN62	NZ17	SP49	NJ86	SP57	TF43	SE04	HU16	SJ56
SU06	TF04	HT94	SO64	SS93	TL51	NS14	TQ28	NU12	SU49	SP82	NJ23	SO81	TM08	SX89	SJ12	TG51	HU48	SP02	ST91
NY78	NC94	SX74	NW95	NJ12	NL58	NG19	NY44	NN49	SO56	NM88	NB23	SC47	TL95	NY84	NG95	SX68	SW83	NT87	SS91
SX86	SS09	SH34	TF36	TF05	SE96	NB00	SU04	SJ48	ST75	NY18	NO39	SK16	SK73	NN35	ST00	SP98	NN15	SH23	SU69
SK97	TL33	SE48	HU53	SK89	SN97	NH04	NN22	TF57	HY60	ND28	NS80	NM40	SX15	SP24	SE56	ST71	NN73	ND17	ST97
NX48	TF51	SO06	SE70	SO85	ST18	TM37	SS92	ST85	NN02	NY49	NA92	NB12	ST34	NU05	NG98	NB22	SD20	SS89	SW73
NO88	NN16	NY64	NS26	HU47	NO60	ST09	NJ30	SR89	NO63	NN44	NG43	NO17	NC15	SE23	NH01	SJ36	NO29	NO44	SP61

Appendices

HY61	NS24	NX08	NJ11	SP00	SN60	NX19	SE68	NT01	NO87	SO54	SX54	TQ31	NJ61	NZ80	TF19	ST01	TF90	SX06	TF07
TF42	SJ26	HP40	TA10	NG34	SP39	NN77	SS71	ND19	SS41	NS31	NM24	TQ37	SK93	NF85	NY69	SM81	NB01	SK72	SP62
SE77	SS90	NK06	SE38	ND47	SX85	ST30	NN27	HY54	NX17	SS87	SK77	SD33	SH13	TG20	NJ42	SP72	TQ21	NN32	NC61
NS52	SJ25	NN58	TA07	NZ62	SJ88	SK52	SW75	SP21	SW93	NB34	NO07	SN80	SP71	NG80	SP63	SS98	SN22	SX65	TQ20
SY29	NG15	SW84	SE59	SX37	SP67	SJ00	NB41	SH82	TA23	NO22	TM06	SW64	NT09	SE84	SS72	SE12	NX33	SS51	SP78
NY39	SN90	NS60	SP23	ST68	NX90	NS70	SW43	SJ44	NT11	SD53	HU57	SS40	NG54	SX95	TQ69	NO32	NN12	NS54	SS31
SO66	NO56	SS82	TL62	SP66	SO16	ST22	TM27	SP33	NG46	TF35	TL54	SX63	NB31	SU25	NT81	TA03	SX04	SX36	NY72
NY77	SX18	NT50	NH17	SS70	SO25	NH57	SJ35	NB90	ST82	NJ96	NT91	SX27	NG47	SX08	TL43	TF45	TF12	NS34	SO80
NF81	NH27	NH29	NN21	SS61	TL17	SJ16	SN15	ST42	NW97	SX67	NF60	SO00	NY20	SP27	NB14	SK10	NZ45	TF37	NG84
ST88	ST12	NH36	NS42	TF28	NN37	SS81	SS83	NA91	SS32	NN39	SD52	NY09	NJ20	HU14	NY83	SX79	ST86	SP08	SX45
HY10	SE76	NN47	HU26	SJ38	NJ10	NJ80	SP79	NZ26	SX44	NA74	SX47	SP60	NO18	SS96	NZ50	NZ33	SK76	NX09	NN36
TL64	NL93	NC41	NG75	SW42	NJ95	SN88	TF56	NS53	NR67	ST67	SD43	NZ34	ST07	SK99	NM87	SH54	SX16	SX48	ST19
SZ47	ST10	NH28	TA01	SN01	NF88	NJ51	SH32	NC16	SK31	NX14	TF40	TF38	NB42	TL63	SE13	SS58	NF09	NT40	SK62
SS50	NY58	NX39	NO89	SX66	SP03	SH98	SH88	NN61	TR23	NY04	NN60	NS25	SO07	TQ88	NF83	SJ47	SX76	SS60	NY46
NJ44	ST37	NJ00	TF18	ST63	SY66	ST73	NS87	NZ14	ST25	SX25	NK04	SP41	TL85	SP31	NA00	TA12	ST21	NG23	ST72
NZ70	TQ18	NY28	NO48	NH02	NH11	SX55	NL57	SC17	NC93	SD80	SD16	NJ55	SN11	NS16	SU68	NS20	SW71	TF32	NY19
NY68	SE94	NH71	NJ93	NJ43	NJ75	NN97	NM99	SW61	NO28	SP59	SE52	NN08	NO61	SX28	SX19	NN13	SD40	NB02	SX39
ST64	TL38	SS52	NM57	SW95	NJ17	NM41	NN42	ST27	NB10	SN00	SS62	ST40	TA32	NB30	NO43	NH00	NO38	NO79	NZ18
NZ90	NM61	SS14	NG90	NF19	NJ84	NS44	NX49	NO52	SM92	NJ71	ND59	NG79	SW74	SY77	NR50	NH37	NG40	NN03	NC43
ST31	NZ32	NA10	SX57	NH24	TM19	NB33	NC33	NG56	SX58	SH29	NJ73	NY29	NZ81	NT69	NX03	TF29	NX28	SK92	NM92

Appendices

TF24	NM47	NY07	SN59	SW85	TG24	ST41	NC32	TL73	NJ54	TM16	NN78	TA40	HZ17	SH78	SZ99	NG65	SP20	NJ76	SM94
SJ89	NJ60	SS30	SS20	NZ53	NO78	SY87	HU67	SN36	SY48	NO09	NR59	TA24	SW98	NY79	NH13	ST52	NZ46	TF58	NS43
HU40	TR07	NJ72	SN13	NZ44	NZ60	SY18	SX49	NC62	NH60	SS63	HU30	SO17	SW63	NY27	ST02	NN26	SW54	NJ64	SJ10
NG38	SN70	NH16	NA93	HU55	NB20	ST53	SX75	NR51	NG49	SM91	SN23	NJ62	NH07	SX07	SH51	NR16	HY73	NB11	NN99
NS88	NG29	TF46	TF13	SD21	HW83	SP14	SW97	HU66	NJ74	SY28	TF03	SW33	SN10	TA09	TA41	NG37	NK15	SC36	SX38
NH14	NG64	NC72	NG31	NK13	NX54	NJ94	TF08	TF31	SW96	NJ21	HX62	NF56	ST62	NH50	NG86	NO58	ST17	TQ80	SM90
NM33	SW76	NH38	TF23	NN14	ND33	NJ53	SM84	SX26	SS75	SH24	NJ52	HZ26	NN98	NB52	NS21	SX29	NO74	SW52	NX24
NM21	SS68	SW94	SK95	NZ72	NX93	SM50	NH03	NH61	NN88	NO86	NJ85	NF68	NG66	SJ29	NU14	NS50	HZ16	SE41	NJ82
SN02	NG18	NJ63	TV49	NN05	NA90	NG63	HW63	NS10	SS99	TV69	NX23	TA33	TR33	SS38	NA64	NM29	NO77	SY07	HY34
ST26	NG39	NF89	NS01	HP62	SE22	NF80	SX94	NZ12	HU77	NM59	NL68	NH97	NG07	NM23	SZ28	NM51	NM37	NM38	NG13
NM19	NZ91	SM62	NN25	TR12	HX51	SV90	SX09	HY23	SW82	SM73	NM16	NZ38	SD36	SW44	SM71	NB40	SS39	NT49	SS10
NZ39	NL79	NM05	HY35	NF61	NA81	SY38	SS11	SW65	TR46										

Appendices

A.2 Nestedness order of species in Britain

* Codes are listed in nested order, from the most abundant species to the rarest. Read by row, left to right.

* For reference of Latin and common names to the two-letter code, see <http://www.bto.org/about-birds/birdfacts/british-list>

WR	S.	PW	B.	R.	SG	SL	ST	CH	WW	MA	MP	HS	WP	D.	BT	K.	GT	C.	HM
CK	M.	JD	SF	GR	LI	CT	GC	L.	H.	RO	PH	SI	Y.	GO	WH	CD	BF	FP	SH
CC	RB	TC	MG	LT	BC	MH	GL	TO	GS	CU	SD	BH	GW	SW	W.	J.	OC	SN	HG
BZ	LR	P.	G.	CO	TP	MS	LB	DI	SM	CS	WC	NH	TS	RN	TU	LW	RK	CM	RT
LO	WO	MT	KF	RL	WT	CG	PE	GB	GH	SK	SC	LG	YW	BO	RG	WK	CB	TD	RP
T.	CA	GP	HC	F.	SU	RC	Q.	PF	GG	LS	RW	TW	SA	ML	GD	CN	RM	RZ	CR
DN	SE	HY	TY	GJ	E.	EA	KI	HH	AE	N.	BK	RH	GU	RA	PO	LE	LP	GK	SV
PU	WA	PM	HB	HF	WN	BV	RY	NJ	GI	AC	GA	GX	NX	TE	MN	CE	DO	OP	RE
AF	TM	KT	WM	CF	GN	FF	BX	SB	FC	MX	MR	CP	CW	CY	EG	GY	WL	CX	TT
CL	RI	TN	CI	ND	PT	OL	TL	WS	WE	DW	XB	GF	BY	RS	BW	DC	MO	KR	BN
BR	HZ	BL	AK	MU	SZ	NK	MW	RU	PG	ED	SP	AV	NS	VI	HP	OD	RQ	SQ	SO
SJ	BA	DR	RX	LM	BG	LN	WY	LU	PS	RF	SS	NG	GV	WX	BJ	SR	IG	GE	JS
TK	GZ	IC	UG	AN	AA	IN	TF	LV	BI	MY	KN	PD	HD	WG	NB	UD	LX	RV	EO
VS	BU	DT	EM	HN	KE	FW	FV	ET	AS	OQ	SY	WJ							

A.3 Nestedness order of 10 km sub-squares in Taiwan

* Codes are listed in nested order, from the species-richest site to the depauperate. Read by row, left to right.

* For complete site reference and map, see <https://sites.google.com/a/birds-tesri.twbbs.org/bbs-taiwan/method-1/yang-qu-de-tu>

A03-01	A18-02	B16-01	B30-01	B32-11	B13-02	C37-04	A19-05	B16-02	B32-01	A09-33	B14-04	B13-03	C14-04	B32-10
A27-04	B30-04	B21-01	B11-01	B13-01	A27-19	B37-02	A19-06	C30-03	B14-01	C37-05	C14-01	C37-01	A19-02	B10-01
C16-01	A27-28	B10-02	A18-03	B32-04	A32-04	C37-02	A16-05	A33-14	B14-02	A34-07	A09-08	B38-04	B32-03	B06-07
C30-02	B29-02	B14-03	A33-26	C30-04	A35-06	A16-04	A27-20	C14-02	A33-15	A20-01	C14-03	B28-01	C30-01	A04-16
A21-01	B37-01	A09-31	A40-11	A28-06	A17-04	A19-04	B10-03	A01-12	A34-24	A40-12	A29-03	A09-29	A28-05	A36-05
C28-01	B30-02	A32-02	A33-04	B38-03	A26-02	A09-04	A18-04	B38-07	A12-02	A29-06	B30-07	B35-01	A28-08	A34-02
A19-03	A07-02	A35-03	C37-03	A35-04	A40-03	B06-01	A27-40	A29-01	A40-16	B22-01	B32-02	A34-03	A39-02	A34-05
B10-14	A34-23	A20-03	A35-05	B30-03	A34-06	A09-13	A34-08	A20-05	A04-48	A26-03	A36-01	A40-15	A32-06	A33-09
A39-01	A18-01	A34-49	A17-02	A24-02	B28-06	A04-31	A01-07	A37-05	A34-38	A09-50	A33-07	B38-01	A33-16	A20-02
A09-46	A40-02	B28-04	A09-24	A36-15	A22-01	A41-01	B06-06	A37-01	A26-01	A33-08	A37-02	A29-16	A17-10	A20-04
A33-02	A37-11	B10-13	A19-01	A41-02	A40-14	A17-01	A27-02	A04-45	A05-02	A35-15	A09-57	A03-20	B13-04	A28-02
A04-50	A09-15	A12-01	A04-02	A29-04	A05-01	A09-56	A36-02	A40-01	A27-41	A09-20	A27-15	A28-01	A33-01	A21-02
A34-48	A37-10	A09-25	A04-28	A34-21	A10-01	A04-44	A27-07	A32-07	A09-52	A36-03	A39-08	A33-11	A36-14	A29-02

Appendices

A02-01	A27-03	A29-12	A24-01	A28-15	B38-02	A29-05	A29-20	A27-12	A37-03	A32-03	A37-04	A05-15	A09-05	A33-06
A09-01	A35-02	A35-19	A16-01	A16-03	B33-01	A27-27	A33-27	A04-26	A16-02	A38-01	A04-30	A28-10	A33-10	A32-01
A10-03	A04-34	A27-31	A36-16	A33-13	A35-16	A04-33	A09-14	A05-17	A27-32	A34-04	A36-04	A29-17	A09-30	A27-25
A32-08	A04-06	A10-02	A02-03	A17-09	B39-01	B33-02	A09-19	A09-55	A37-09	A34-32	A34-01	A28-04	A01-02	A03-16
A09-45	A04-11	A09-03	A33-22	A28-16	A34-35	A33-18	A27-29	A27-33	A04-41	A34-43	A33-28	A04-49	A02-02	A09-36
A35-08	A35-01	A29-08	A33-03	B32-05	A01-05	A27-22	A10-10	A27-01	A04-03	A28-09	A17-03	A28-03	A29-18	A09-48
A40-10	A27-17	A04-01	A05-04	A34-14	A02-05	A09-26	A35-13	A09-40	A04-12	A34-45	A17-11	A27-39	A33-05	A39-03
A27-05	A19-13	A17-20	A37-08	A27-10	A34-20	A09-06	A01-01	A40-09	A04-43	A27-30	A09-02	A03-07	A03-19	A34-17
A04-27	A34-40	A04-23	A27-06	A09-17	A03-18	A04-32	A29-23	A04-18	A33-21	A29-07	A28-07	A35-12	A40-04	A35-09
A03-03	B14-09	A09-51	A12-06	A04-51	A04-09	A34-39	A27-43	A09-27	A09-54	A09-18	A26-04	A27-24	A04-20	A10-09
A25-01	A34-44	A34-42	A04-19	A09-22	A05-05	A04-24	A22-02	A04-04	A34-18	A35-22	A10-07	A29-19	A09-35	A09-38
A27-21	A09-39	A09-58	A37-07	A35-07	A34-26	A35-18	A04-35	A09-41	A34-47	A01-08	A04-10	A04-05	A34-41	A39-07
A05-06	A27-38	A33-12	A34-22	A09-32	A04-46	A09-53	A04-25	A04-22	A34-27	A05-14	A04-36	A01-03	A09-37	A29-21
A34-31	A35-17	A36-10	A09-43	A28-14	A28-13	A04-21	A09-16	A28-12	A04-17	A07-01	A27-18	A35-10	A09-44	A09-49
A33-19	A12-10	A34-33	A33-29	A34-34										

A.4 Nestedness order of species in Taiwan

* Codes are listed in nested order, from the most abundant species to the rarest. Read by row, left to right.

* For reference of Latin and common names to the code, see

<https://docs.google.com/viewer?a=v&pid=sites&srcid=YmlyZHMtdGVzcmkudHdiYnMub3JnfGJicy10YWl3YW58Z3g6NWQyZDAxN2M2Njg1NTc0NA>

C406	C468	C372	C408	C331	C277	C621	C471	C366	C361	C470	C045	C387	C276	C388
C474	C460	C097	C549	C472	C459	C473	C355	C100	C625	C333	C119	C358	C319	C274
C571	C551	C364	C371	C390	C271	C344	C570	C404	C505	C154	C104	C107	C320	C624
HODI	C293	C541	C299	C476	C128	C146	C283	C456	C373	MOTS	C280	C481	C379	C415
C044	C428	C360	C464	C131	C542	C384	C173	C509	C385	C178	C356	C094	C457	C466
C430	C521	C093	C526	C342	C405	C524	C602	C091	C548	C458	C482	C053	C496	C418
C508	C397	C187	C225	C491	C561	C552	C562	C175	C048	C400	C490	C626	C479	C089
DOAN	C394	C226	C022	C183	C535	C318	C314	C272	C116	C369	C392	C398	C480	C149
C414	C359	C577	C306	C134	C170	C419	C161	C499	C401	C115	C179	C109	C288	C165
C547	C607	C455	C555	C046	C556	C448	C413	C395	C103	C478	C483	C489	DOCA	C487
C124	DOAP	C101	C512	C114	C335	C347	C334	C611	C142	C402	C608	C623	C412	C463
C475	C087	C302	HYBU	C573	C507	C486	C301	C579	C511	C217	C098	C374	C544	C518
C620	C028	C403	C477	C180	B004	C340	C336	C258	C622	C297	C465	C383	C082	C139

Appendices

ACGA	C550	C121	C130	C208	C613	C434	C132	C129	C219	C565	C263	C581	C096	C416
C186	C595	C294	DOCY	C349	C539	C284	B013	C558	C427	C367	C386	C308	C606	C312
C291	C162	C329	C200	B008	DOGO	B011	C569	C171	BYBU	C598	C143	C560	C155	B012
C120	STNI	C594	C204	C409	C423	C510	HYGA	C019	C316	C203	C266	B009	C519	C578
C176	B020	C617	C133	C024	C322	C262	C168	C016	C591	C559	C047	ZODA	C615	C188
C250	B018	C527	C092	C202	C034	C193	C026	C177	C113	C246	C025	C206		

*HYGA: *Garrulax canorus* X *Garrulax taewanus*; ZODA: *Zoothera dauma dauma*; STNI: *Strix nivicola*; DOGO: *Anser domestica*; ACGA: *Acridotheres grandis*; DOCA: *Cairina moschata* (domestic); HODI: *Horornis diphone/canturians*; DOAP: *Anas platyrhynchos* var. *domestica*; MOTS: *Motacilla tschutschensis*; DOCY: *Cygnus atratus* (Domestic); DOAN: *Anas platyrhynchos* (Domestic); BYBU: *Bycanistes bucinator*; HYBU: *Pycnonotus sinensis* X *Pycnonotus taivanus*.

Appendix B

B.1 Minimum set for estimating species number by assemblage structure

To identify how many sub-squares were required to predict 90% and 100% of the total number of species in Britain; species accumulation was calculated with increasing number of sub-squares, using two orderliness: random and nested order.

B.1.1 Randomly-select method

From each 100 km square in Britain, we randomly selected one of 10 km sub-square and recorded the number of species in it. Continued to randomly select the second sub-square other than the previous one and added number of new species to form a new species subset. This process was repeated until all species were included. Lastly, repeated the whole procedure (i.e. species accumulate from 1 sub-square to maximum number of sub-squares in the 100 km square) 1000 times and calculated the average number of minimum sub-squares needed to include 90% or 100% species. The minimum number for including 90% or 100% species was calculated in all fifty-five 100 km square.

An example using only 10 sub-squares was demonstrated in Table A- 1. Each time we randomly selected one of the 10 sub-squares and their species composition recorded. The minimum number of sub-squares required to include the whole community (species A to G) can then be calculated. For the real data set, similar process was implemented except that all sub-squares in a 100 km square were included.

Appendices

Table A- 1 Example of randomly-select method. (a) A 10-cell square containing species A to G; (b) the randomly selected sub-squares are combined to create a new species subset. This process is repeated until the whole community (species A to G) has been recorded. In this sample, four sub-squares are the minimum required for recording all seven species in this square.

(a)

Sub-square	I	II	III	IV	V	VI	VII	VIII	IX	X
Species composition	ABD	BDF	ABC	AB	ABCD E	BEF	CEFG	ACF	ABCF G	BCDEFG
Total species number	3	3	3	2	5	3	4	3	5	6

(b)

Round of select	1	2	3	4	5	6	7	8	9	10
New sub-square selected	VI	VIII	IX	V	VII	X	I	III	IV	II
New subset of species	BEF	BEFA								
Total species number	3	5	6	7	7	7	7	7	7	7

B.1.2 Nestedness-select method

For this method, we selected sub-square based on the nested structure of the 100 km square, which was rearranged by local unexpectedness in descending order according to its nestedness. The procedure was similar to the randomly-select method except that the sub-squares were chosen according to the nested order, starting from the most species-rich site until at least 90% or 100% species were included.

B.2 Minimum sub-squares required for estimating species richness: result

A mean of $29.2 \pm 5.7\%$ ($\pm SD$) of 10 km sub-squares was required for the random-selection method to include 90% of all species within the 100 km square (ranging from $16.3 \pm 3.3\%$ to $40.2 \pm 7.6\%$ for each square). Including all species requires 74.3 ± 7.9 to $93.7 \pm 6.0\%$ of sub-squares (with a mean of $86.2 \pm 6.9\%$). Comparatively, only 4.0%-28.8% (with mean = $14.8 \pm 7.1\%$) of all sub-squares were required to incorporate 90% of species using nestedness-selection method, but including all species needs much more sub-squares (41.6%-100.0%, with a mean of $76.9 \pm 15.7\%$). The nestedness-selection method required fewer sub-squares to estimate 90% of species than random method, but had larger variation in minimum number for these sub-squares.

Appendix C

C.1 Determining the number of clusterings in indicator species value analysis

Dufrêne and Legendre (1997) is followed for the determination of the optimal number of clusterings for the indicator species value analysis. This method firstly calculates the indicator value (IndVal) of each avian species for each clustering level (e.g. IndVal for species 1 to species 273 at clustering level 2, 3, 4 etc.). The difference in IndVal between consecutive cluster levels for each species is then calculated (e.g. the difference in IndVal between cluster 2 and cluster 3 for species a) and plotted. Because larger IndVal represents a better predictor, the optimal clustering level is when the difference in IndVal (cluster $n+1$ minus cluster n) is the largest and is most positive. In this case (Figure A-1), because the value (difference in IndVal, y axis) is the highest between cluster 2 and cluster 3, and is of similar high value between cluster 4 and cluster 5 (both also have smaller negative value unlike between cluster 7 and cluster 8), it is most optimal to divide the avian assembly into three or five clusters. However, either three or five clusters has lower predictability than the method based on network modularity, as demonstrated briefly in Figure A-2 (below, for three clusters) and comprehensively in Chapter 3 (for five clusters).

Appendices

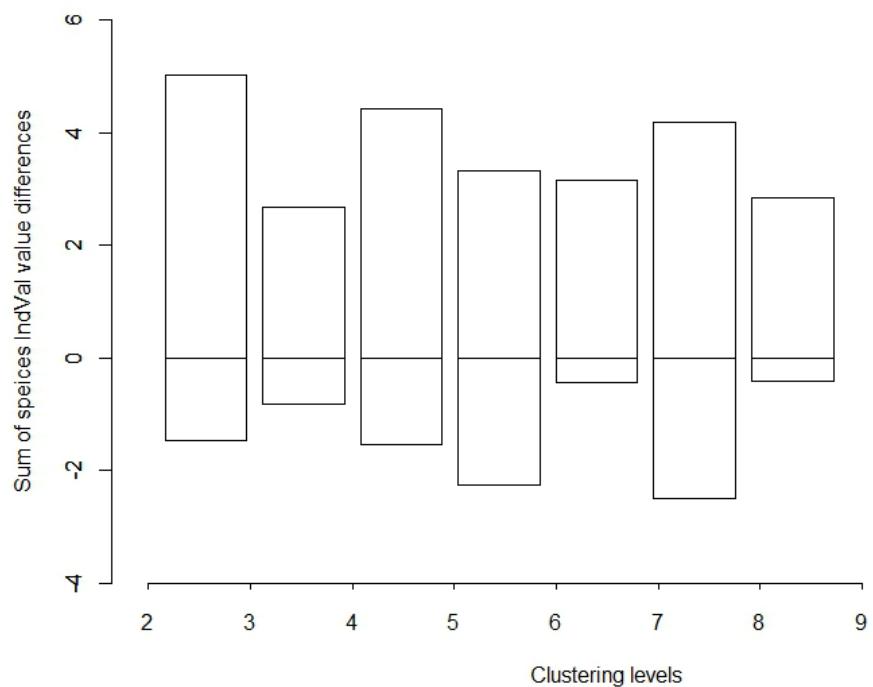


Figure A- 1 Sum of species indicator value (IndVal) differences consecutive cluster levels for each species in the BTO dataset.

Appendices

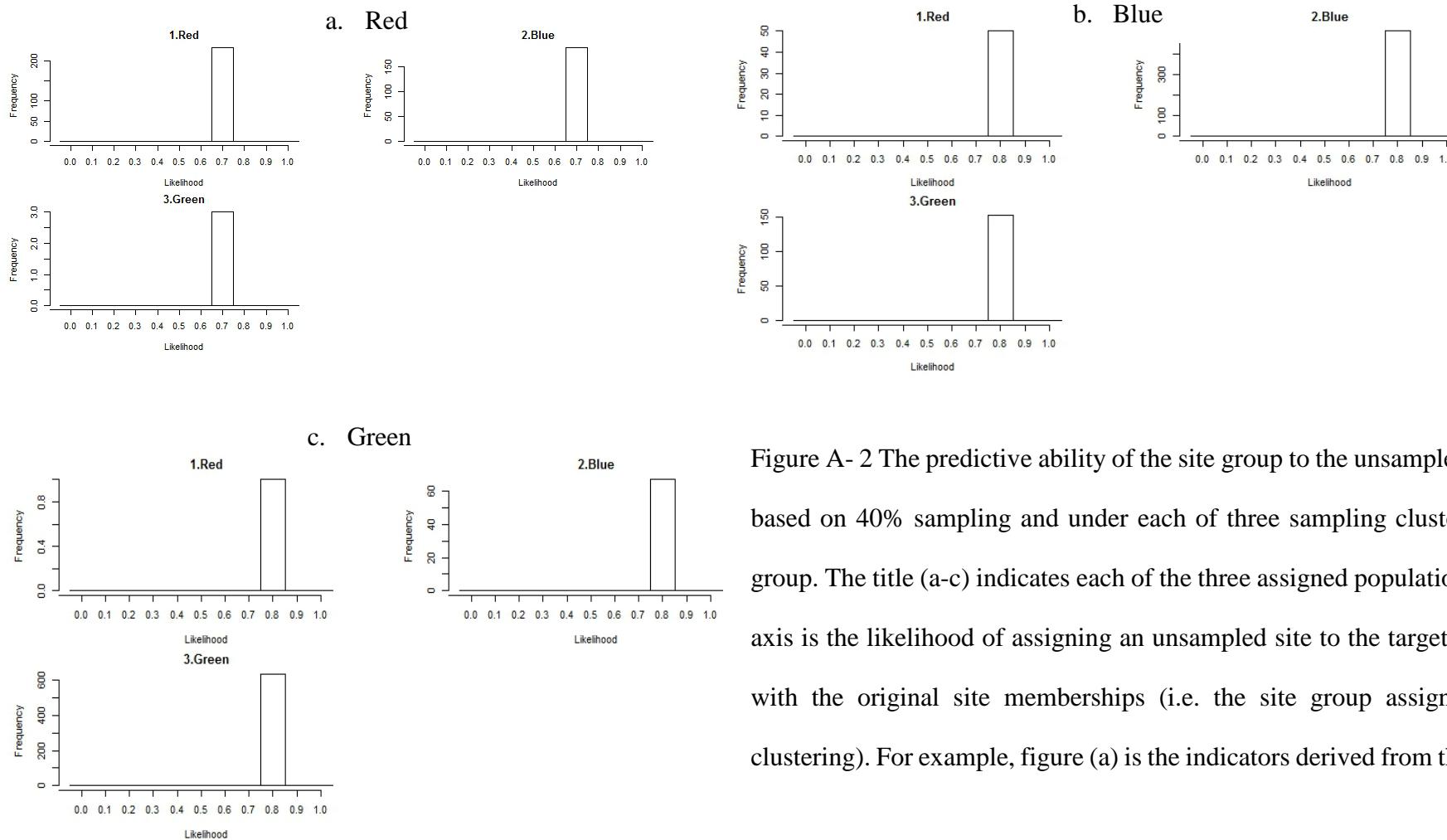


Figure A-2 The predictive ability of the site group to the unsampled sites when predicted based on 40% sampling and under each of three sampling clustering indicator species group. The title (a-c) indicates each of the three assigned population clustering and the x-axis is the likelihood of assigning an unsampled site to the target site group, comparing with the original site memberships (i.e. the site group assigned by the population clustering). For example, figure (a) is the indicators derived from the red group and figure

Appendices

(a.1) is the likelihood to assign an unsampled site, which is originally assigned to the red group in population clustering, to the red site group by the red indicators.

Appendix D

D.1 Sensitivity analysis for sampling size of site group detecting

A preliminary test has done for deciding the sampling size to effectively represent popular modularity, before the site group detecting process. 10%, 20%, and 40% random samplings from the whole BTO dataset were partitioned based on network modularity randomtrap method. The three sampling modularity (10%, 20%, and 40%) was compared with the corresponding sampling sites in population modularity using the *Fowlkes-Mallows index (FM index)* (Fowlkes and Mallows 1983).

D.2 Sensitivity analyses for sampling size of site group detecting: result

The result of sensitivity analysis showed the 10% and 20% sampling both had four modules whereas the 40% sampling had five. The green module that represents a small coastal site group was hardly detected in the 10% and 20% sampling for its sparse and scatter distribution. Table A- 2 showed the FM index of 10% and 20% sampling were both lower than 40% sampling. The module distribution was illustrated in Figure A- 1. There was no green module in either 10% or 20% sampling modularity result.

Table A- 2 The Fowlkes-Mallows index of 10%, 20%, and 40% sampling modularity when comparing the similarity to population modularity. FM= the Fowlkes-Mallows index; E= expected value of the Fowlkes-Mallows index; V= the variance under the assumption of no relation between the sampling and population modularity.

Sampling size	FM	E	V
10%	0.71	0.43	<0.01
20%	0.73	0.33	<0.01
40%	0.83	0.34	<0.01

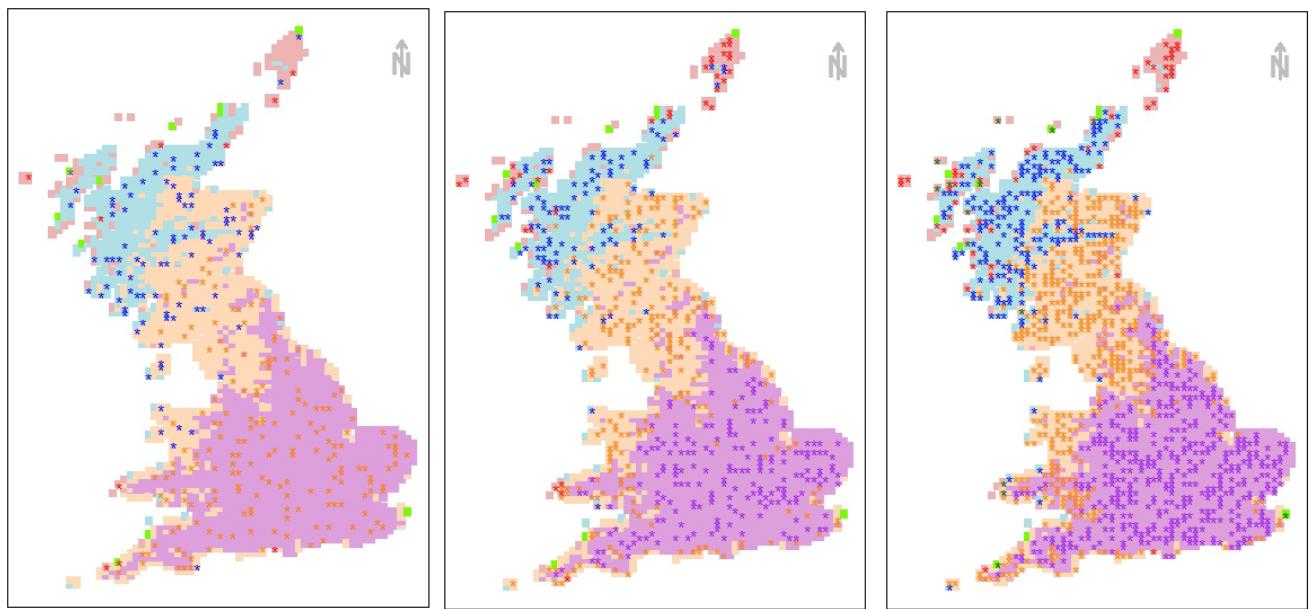


Figure A- 3 Assigned module of sites based on 10%, 20%, and 40% (left to right) sampling (colour asterisk) and whole sampling (background colour) of BTO dataset with randomtrap algorithm. Different colours represented different modules. Each square is a 10 km sub-square.

Appendix E

E.1 Species composition in determined network modules and k-means clusters in Britain.

Table A- 3 Species list for the four indicator groups selected by modularity method (left) and k-means clusters (right).

*Species names represented by two-letter code (see <http://www.bto.org/about-birds/birdfacts/british-list>)

** Module and cluster colours are assigned arbitrary.

Modules	Species	Clusters	Species
Red	AA AC AE AF B. BC BH BV BW BZ C. CA CB CD CE CF CH CK CL CM CN CR CS CU CX D. DI DN DO E. EA F. FP GB GJ GK GL GP GU GX H. HB HC HG HH HM HS JD K. KI L. LB LG LI LR LW MA MH ML MP MS MX ND NK NX OC OD PE PH PM PU PW Q. R. RA RB RC RE RG RH RK RM RN RO RP RS RZ S. SA SB SC SD SE SF SG SI SL SN SO SQ ST SU SV SW T. TE TL TM TT TU TW TY W. WC WE WH WM WN WP WR WS WW Y.	Red	AE AF AK AN AS AV B. BA BC BF BG BH BI BJ BK BL BN BO BR BT BU BW BX BY BZ C. CA CB CC CD CE CF CG CH CI CK CL CM CN CO CP CR CS CT CU CW CX CY D. DC DI DN DR DT DW E. ED EG EM ET F. FC FF FP FV FW G. GA GB GC GD GE GF GG GH GI GJ GL GN GO GP GR GS GT GU GV GW GX GY H. HB HC HD HF HG HH HM HP HS HY HZ J. JD K. KF KI KN KR L. LB LE LG LI LM LN LO LP LR LS LT LU LW LX M. MA MG MH ML MN MO MP MR MS MT MU MW MY N. NB NG NH NJ NS OC OL OP OQ P. PE PF PG PH PO PT PU PW Q. R. RA RB RC RE RG RI RK RL RM RN RO RP RQ RS RT RU RV RW RX RY RZ S. SA SC SD SE SF SG SH SI SJ SK SL SM SN SP SS ST SU SV SW SZ T. TC TD TE TN TO TP TS TT TU TW TY UD UG VI VS W. WA WC WG WH WK WL WN WO WP WR WS WT WW XB Y. YW

Appendices

<p>Blue</p> <p>AC AE AF AK B. BA BC BF BG BH BJ BK BL BO BT BV BW BY BZ C. CA CB CC CD CE CF CG CH CI CK CM CN CO CP CR CS CT CU CX CY D. DI DN DO DR E. EA ED EO ET F. FF FP G. GA GB GC GD GF GG GH GI GJ GK GL GN GO GP GR GS GT GU GV GW GX GY GZ H. HB HC HD HF HG HH HM HS IC IG IN J. JD JS K. KF KI KT L. LB LE LG LI LN LR LT LW M. MA MG MH ML MN MP MR MS MX ND NJ NK NX OC OD OL OP P. PE PF PH PM PO PS PT PU PW Q. R. RA RB RC RE RF RG RH RK RL RM RN RO RP RS RT RU RZ S. SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SS ST SU SV SW SY SZ T. TC TD TE TK TL TM TO TP TS TT TU TW TY W. WA WC WE WH WJ WK WM WN WO WP WR WS WT WW Y. YW</p> <p>F. GB GU GX KI PU RA RC RH SA TY</p> <p>Green</p> <p>AE AF AK AN AS AV B. BA BC BF BG BH BI BJ BK BL BN BO BR BT BU BW BX BY BZ C. CA CB CC CD CE CF CG CH CI CK CL CM CN CO CP CR CS CT CU CW CX CY D. DC DI DN DO DR DT DW E. ED EG EM ET F. FC FF FP FW G. GA GB GC GD GE GF GG GH GI GJ GL GN GO GP GR GS GT GU GW GX GY H. HB HC HF HG HH HM HN HP HS HY HZ J. JD JS K. KF KI KR KT L. LB LE LG LI LM LO LP LR LS LT LV LW M. MA MG MH ML MN MO MP MR MS MT MU MW MX N. NG NH NJ NS OC OL OP P. PE PF PG PH PO PT PU PW Q. R. RA RB RC RE RG RI RK RL RM RN RO RP RQ RS RT RU RV RW RX RY RZ S. SA SC SD SE SF SG SH SI SJ SK SL SM SN SR SS ST SU SV SW T. TC TD TE TN TO TP TS TT TU TW UD UG VI VS W. WA WC WG WH WK WL WN WO WP WR WS WT WW WX Y. YW</p>	<p>Blue</p> <p>AA AC AE AF AK B. BA BC BF BG BH BK BL BO BT BV BW BY BZ C. CA CB CC CD CE CF CG CH CI CK CL CM CN CO CP CR CS CT CU CX CY D. DI DN DO DR E. EA ED F. FF FP GA GB GC GD GF GG GH GI GJ GK GL GN GO GP GR GS GT GU GV GW GX GY H. HB HC HG HH HM HS IC IG J. JD K. KI L. LB LE LG LI LN LR LT LW M. MA MG MH ML MP MR MS MX ND NK NX OC OD OL OP P. PE PF PH PM PO PS PT PU PW Q. R. RA RB RC RE RF RG RH RK RL RM RN RO RP RS RT RU RW RZ S. SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SS ST SU SV SW SZ T. TC TD TE TL TM TO TP TS TT TU TW TY W. WA WC WE WH WK WM WN WO WP WR WS WW Y.</p> <p>Green</p> <p>AF AK AN B. BC BF BH BK BL BN BO BR BT BW BX BY BZ C. CA CB CC CD CE CF CG CH CI CK CL CM CN CO CR CS CT CU CW CX D. DC DI DN DO DR DW E. ED EG F. FC FF FP G. GA GB GC GD GE GF GG GH GI GJ GL GN GO GP GR GS GT GU GW GX GY H. HB HC HF HG HH HM HN HP HS HY HZ J. JD JS K. KF KI KR KT L. LB LE LG LI LM LO LP LR LS LT LV LW M. MA MG MH ML MN MO MP MR MS MT MU MW MX N. NG NH NJ NS OC OL OP P. PE PF PG PH PO PT PU PW Q. R. RA RB RC RE RG RI RK RL RM RN RO RP RT RW RY RZ S. SA SC SD SE SF SG SH SI SK SL SM SN SR ST SU SV SW T. TC TD TN TO TP TS TT TU TW TY W. WA WC WH WK WL WN WO WP WR WT WW WX Y. YW</p> <p>Purple</p> <p>AC AE AF AK B. BC BF BH BJ BK BL BN BO BT BV BW BX BY BZ C. CA CB CC CD CE CF CG CH CI CK CM CN CO CP CR CS CT CU CX CY D. DI DN DO E. EA ED EG EO ET F. FC FF FP G. GA GB GC GD GF GG GH GI GJ GK GL GN GO GP GR GS GT GU GW GX GY GZ H. HB HC HD HF HG HH HM HP HS HY HZ IN J. JD JS K. KF KI KR KT L. LB LE LG LI LN LO LP LR LS LT LU LW M. MA MG MH ML MN MP MR MS MT MX ND NG NH NJ NK NX OC OD OL OP P. PD PE PF PG PH PM PO PS PT PU PW Q. R. RA RB RC RE RG RH RI RK RL RM RN RO RP RS RT RU RW RX RY RZ S. SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR ST SU SV SW SY SZ T. TC TD TE TK TM TO TP TS TT TU TW TY W. WA WC WE WG WH WJ WK WL WM WN WO WP WR WS WT WW WY XB Y. YW</p>
---	---

Appendices

Orange	AC AE AF AK AV B. BA BC BF BG BH BK BL BN BO BR BT BV BW BX BY BZ C. CA CB CC CD CE CF CG CH CI CK CL CM CN CO CP CR CS CT CU CW CX CY D. DI DN DO DR DW E. EA ED EG F. FC FF FP G. GA GB GC GD GF GG GH GI GJ GK GL GN GO GP GR GS GT GU GV GW GX GY GZ H. HB HC HD HF HG HH HM HP HS HY HZ IN J. JD K. KE KF KI KN KR KT L. LB LE LG LI LM LN LO LP LR LS LT LU LW LX M. MA MG MH ML MN MO MP MR MS MT MU MW MX N. NB ND NG NH NJ NS OC OD OL OP P. PD PE PF PG PH PM PO PS PT PU PW Q. R. RA RB RC RE RG RH RI RK RL RM RN RO RP RS RT RU RW RX RY RZ S. SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR SS ST SU SV SW SZ T. TC TD TE TF TK TL TM TO TP TS TT TU TW TY UD VI VS W. WA WC WE WG WH WK WL WM WN WO WP WR WS WT WW WY XB Y. YW
--------	---

Appendix F

F.1 Species composition in determined network modules and k-means clusters in Taiwan.

Table A- 4 Species list for the four indicator groups selected by modularity method in Taiwan

Site group	Species
Purple	<i>Dendrocopos leucotos, Brachypteryx montana, Regulus goodfellowi, Cuculus optatus, Carpodacus formosanus, Trochalopteron morrisonianum, Locustella alishanensis, Corvus macrorhynchos, Heterophasia auricularis, Cinclidium leucurum, Tarsiger indicus, Pyrrhula erythaca, Prunella collaris, Delichon dasypus, Parus monticolus, Yuhina brunneiceps, Nucifraga caryocatactes, Muscicapa ferruginea, Tarsiger johnstoniae, Actinodura morrisoniana, Sitta europaea, Horornis acanthizoides, Suthora verreauxi, Phylloscopus inornatus, Liocichla steerii, Periparus ater, Fulvetta formosana, Troglodytes troglodytes</i>
Red	<i>Apus pacificus, Dendrocopos leucotos, Dicrurus macrocercus, Spilornis cheela, Megapomatorhinus erythroclemis, Cuculus poliocephalus, Dicrurus aeneus, Zoothera dauma dauma, Apus nipalensis, Enicurus scouleri, Dendrocopos canicapillus, Brachypteryx montana, Horornis fortipes, Pomatorhinus musicus, Cyanoderma ruficeps, Megalaima nuchalis, Accipiter gularis, Regulus goodfellowi, Cuculus optatus, Arborophila crudigularis, Ianthocincla ruficeps, Carpodacus formosanus, Myophonus insularis, Trochalopteron morrisonianum, Locustella alishanensis, Pnoepyga formosana, Corvus macrorhynchos, Heterophasia auricularis, Cinclidium leucurum, Tarsiger indicus,</i>

Turdus pallidus, Turdus poliocephalus, Motacilla alba, Columba pulchricollis, Pericrocotus solaris, Pyrrhula erythaca, Bambusicola thoracicus, Poecile varius, Turdus chrysolaus, Delichon dasypus, Accipiter virgatus, Garrulus glandarius, Ictinaetus malayensis, Cinclus pallasii, Fringilla montifringilla, Zoothera dauma, Streptopelia orientalis, Parus monticolus, Yuhina brunneiceps, Nucifraga caryocatactes, Muscicapa ferruginea, Dicaeum ignipectus, Ficedula parva, Hypsipetes leucocephalus, Aegithalos concinnus, Tarsiger johnstoniae, Streptopelia chinensis, Actinodura morrisoniana, Sitta europaea, Horornis acanthizoides, Abroscopus albogularis, Ianthocincla poecilorhyncha, Horornis diphone/canturians, Parus holsti, Suthora verreauxi, Ficedula hyperythra, Liocichla steerii, Spinus spinus, Niltava vivida, Otus spilocephalus, Hypothymis azurea, Syrmaticus mikado, Emberiza spodocephala, Periparus ater, Falco peregrinus, Phoenicurus fuliginosus, Picus canus, Erpornis zantholeuca, Treron sieboldii, Zosterops japonicus, Otus lettia, Accipiter trivirgatus, Fulvetta formosana, Prinia inornata, Pyrrhula nipalensis, Dendrocitta formosae, Schoeniparus brunneus, Glaucidium brodiei, Alcippe morrisonia, Lophura swinhoii, Troglodytes troglodytes, Hierococcyx sparverioides

Blue *Pitta nympha, Acridotheres cristatellus, Apus pacificus, Ardea alba, Dendrocopos leucotos, Dicrurus macrocercus, Spilornis cheela, Megapomatorhinus erythroclemis, Egretta garzetta, Dicrurus aeneus, Zoothera dauma dauma, Apus nipalensis, Eophona migratoria, Enicurus scouleri, Dendrocopos canicapillus, Charadrius dubius, Brachypteryx montana, Emberiza pusilla, Horornis fortipes, Pomatorhinus musicus, Tachybaptus ruficollis, Cyanoderma ruficeps, Passer rutilans, Megalaima nuchalis, Regulus goodfellowi, Cuculus optatus, Arborophila crudigularis, Ianthocincla ruficeps, Caprimulgus affinis, Garrulax taewanus, Myophonus insularis, Trochalopteron morrisonianum, Locustella alishanensis, Urocissa caerulea, Pnoepyga*

formosana, *Corvus macrorhynchos*, *Heterophasia auricularis*,
Acridotheres javanicus, *Cinclidium leucurum*, *Lonchura striata*, *Tringa ochropus*, *Copsychus malabaricus*, *Amaurornis phoenicurus*, *Turdus pallidus*, *Pycnonotus sinensis*, *Turdus poliocephalus*, *Spizixos semitorques*, *Motacilla alba*, *Oriolus traillii*, *Pericrocotus divaricatus*, *Riparia riparia*, *Strix nivicola*, *Columba pulchricollis*, *Butastur indicus*, *Pericrocotus solaris*, *Hirundapus cochinchinensis*, *Rallina eurizonoides*, *Prinia flaviventris*, *Motacilla cinerea*, *Pyrrhula erythaca*, *Bambusicola thoracicus*, *Cecropis striolata*, *Poecile varius*, *Turdus chrysolaus*, *Accipiter soloensis*, *Nycticorax nycticorax*, *Delichon dasypus*, *Pernis ptilorhynchus*, *Accipiter virgatus*, *Garrulus glandarius*, *Acridotheres fuscus*, *Ictinaetus malayensis*, *Cinclus pallasii*, *Coracina macei*, *Fringilla montifringilla*, *Zoothera dauma*, *Streptopelia orientalis*, *Parus monticolus*, *Phylloscopus coronatus*, *Yuhina brunneiceps*, *Nucifraga caryocatactes*, *Hirundo tahitica*, *Lanius cristatus*, *Muscicapa ferruginea*, *Dicaeum ignipectus*, *Streptopelia tranquebarica*, *Hypsipetes leucocephalus*, *Urocissa erythrorhyncha*, *Aegithalos concinnus*, *Acridotheres tristis*, *Hirundo rustica*, *Ixobrychus cinnamomeus*, *Pycnonotus taivanus*, *Streptopelia chinensis*, *Sinosuthora webbiana*, *Actinodura morrisoniana*, *Sitta europaea*, *Horornis acanthizoides*, *Calliope calliope*, *Columba livia*, *Pandion haliaetus*, *Passer montanus*, *Pica pica*, *Lonchura punctulata*, *Prinia crinigera*, *Riparia chinensis*, *Lanius schach*, *Abroscopus albogularis*, *Cisticola juncidis*, *Ianthocincla poecilorhyncha*, *Centropus bengalensis*, *Urosphena squameiceps*, *Horornis diphone/canturians*, *Terpsiphone atrocaudata*, *Parus holsti*, *Phoenicurus auroreus*, *Phylloscopus inornatus*, *Ficedula hyperythra*, *Liocichla steerii*, *Phylloscopus proregulus*, *Niltava vivida*, *Anthus rubescens*, *Otus spilocephalus*, *Cisticola exilis*, *Bubulcus ibis*, *Motacilla tschutschensis*, *Hypothymis azurea*, *Gorsachius melanolophus*, *Ianthocincla chinensis*, *Milvus migrans*, *Emberiza spodocephala*, *Phylloscopus borealis*, *Periparus ater*, *Cacatua galerita*, *Phoenicurus fuliginosus*, *Nisaetus nipalensis*, *Picus canus*, *Dicaeum minullum*, *Erpornis zantholeuca*, *Treron sieboldii*, *Butorides striata*, *Anas*

platyrhynchos (*Domestic*), *Zosterops japonicus*, *Alcedo atthis*, *Chalcophaps indica*, *Accipiter gentilis*, *Ardea cinerea*, *Otus lettia*, *Accipiter trivirgatus*, *Muscicapa latirostris*, *Strix leptogrammica*, *Prinia inornata*, *Pyrrhula nipalensis*, *Dendrocitta formosae*, *Anthus hodgsoni*, *Glareola maldivarum*, *Schoeniparus brunneus*, *Aix galericulata*, *Phasianus colchicus*, *Actitis hypoleucos*, *Glaucidium brodiei*, *Alcippe morrisonia*, *Lophura swinhoii*, *Monticola solitarius*, *Pycnonotus sinensis* X *Pycnonotus taivanus*, *Buteo buteo*, *Copsychus saularis*, *Hierococcyx sparverioides*

Green *Gracula religiosa*, *Pitta nympha*, *Acridotheres cristatellus*, *Apus pacificus*, *Ardea alba*, *Dicrurus macrocercus*, *Anthus richardi*, *Spilornis cheela*, *Garrulax canorus*, *Garrulax canorus* X *Garrulax taewanus*, *Megapomatorhinus erythroclemis*, *Anas crecca*, *Egretta garzetta*, *Cuculus poliocephalus*, *Dicrurus aeneus*, *Apus nipalensis*, *Tringa stagnatilis*, *Enicurus scouleri*, *Dendrocopos canicapillus*, *Alauda gulgula*, *Larus fuscus*, *Sternula albifrons*, *Charadrius dubius*, *Horornis fortipes*, *Pomatorhinus musicus*, *Tachybaptus ruficollis*, *Cyanoderma ruficeps*, *Passer rutilans*, *Mesophoyx intermedia*, *Gallinago megala*, *Calidris temminckii*, *Megalaima nuchalis*, *Recurvirostra avosetta*, *Xenus cinereus*, *Pluvialis fulva*, *Accipiter gularis*, *Horornis diphone*, *Hydrophasianus chirurgus*, *Lonchura oryzivora*, *Cuculus optatus*, *Accipiter nisus*, *Arborophila crudigularis*, *Caprimulgus affinis*, *Garrulax taewanus*, *Myophonus insularis*, *Trochlopteron morrisonianum*, *Urocissa caerulea*, *Cuculus micropterus*, *Corvus macrorhynchos*, *Emberiza rustica*, *Gallinago gallinago*, *Heterophasia auricularis*, *Acridotheres javanicus*, *Cinclidium leucurum*, *Fulica atra*, *Anas querquedula*, *Emberiza tristrami*, *Anthus gustavi*, *Chlidonias leucopterus*, *Euodice malabarica*, *Lonchura striata*, *Tringa ochropus*, *Copsychus malabaricus*, *Amaurornis phoenicurus*, *Turdus pallidus*, *Pycnonotus sinensis*, *Turdus poliocephalus*, *Ianthocincla sannio*, *Spizixos semitorques*, *Motacilla alba*, *Anas acuta*, *Calidris acuminata*,

Oriolus traillii, Ardeola bacchus, Pericrocotus divaricatus, Riparia riparia, Columba pulchricollis, Sturnia sinensis, Butastur indicus, Gallirallus striatus, Pericrocotus solaris, Muscicapa griseisticta, Sturnus cineraceus, Rallina eurizonoides, Sturnia malabarica, Prinia flaviventris, Motacilla cinerea, Bambusicola thoracicus, Eurystomus orientalis, Tringa totanus, Anthus cervinus, Cecropis striolata, Turdus chrysolaus, Accipiter soloensis, Halcyon coromanda, Anas penelope, Nycticorax nycticorax, Egretta sacra, Acrocephalus orientalis, Delichon dasypus, Pernis ptilorhynchus, Charadrius alexandrinus, Accipiter virgatus, Acridotheres fuscus, Anas zonorhyncha, Zoothera dauma, Streptopelia orientalis, Chloris sinica, Calidris subminuta, Tringa nebularia, Yuhina brunneiceps, Hirundo tahitica, Lanius cristatus, Gallinula chloropus, Dicaeum ignipectus, Calidris ruficollis, Falco tinnunculus, Streptopelia tranquebarica, Psittacula krameri, Hypsipetes leucocephalus, Treron formosae, Egretta eulophotes, Threskiornis aethiopicus, Acridotheres tristis, Hirundo rustica, Anser domestica, Ixobrychus cinnamomeus, Acridotheres grandis, Pycnonotus taivanus, Streptopelia chinensis, Sinosuthora webbiana, Himantopus himantopus, Rostratula benghalensis, Calliope calliope, Columba livia, Pandion haliaetus, Passer montanus, Pica pica, Lonchura punctulata, Prinia crinigera, Turdus eunomus, Turnix suscitator, Hypsipetes amaurotis, Riparia chinensis, Lanius schach, Abroscopus albogularis, Cisticola juncidis, Anas clypeata, Cairina moschata (domestic), Centropus bengalensis, Urosphena squameiceps, Horornis diphone/canturians, Terpsiphone atrocaudata, Ardea purpurea, Sturnus sericeus, Anas platyrhynchos var. domestica, Ixobrychus sinensis, Phoenicurus auroreus, Tringa brevipes, Phylloscopus inornatus, Phylloscopus proregulus, Cisticola exilis, Motacilla citreola, Bubulcus ibis, Motacilla tschutschensis, Oriolus chinensis, Cygnus atratus (Domestic), Larus crassirostris, Limosa limosa, Hypothymis azurea, Gorsachius melanolophus, Platalea minor, Elanus caeruleus, Saxicola maurus, Chlidonias hybrida, Calidris alpina, Gracupica nigricollis, Milvus migrans, Lonchura atricapilla, Emberiza spodocephala, Phylloscopus

borealis, Acridotheres burmannicus, Cacatua galerita, Falco peregrinus, Phoenicurus fuliginosus, Dicaeum minullum, Erpornis zantholeuca, Treron sieboldii, Butorides striata, Anas platyrhynchos (Domestic), Zosterops japonicus, Porzana fusca, Alcedo atthis, Chalcophaps indica, Charadrius mongolus, Ardea cinerea, Otus lettia, Accipiter trivirgatus, Aythya fuligula, Muscicapa latirostris, Alauda arvensis, Sturnus vulgaris, Phylloscopus fuscatus, Prinia inornata, Ninox japonica, Aplonis panayensis, Emberiza rutila, Bycanistes bucinator, Eudynamys scolopaceus, Dendrocitta formosae, Anthus hodgsoni, Estrilda melpoda, Estrilda astrild, Glareola maldivarum, Sterna hirundo, Schoeniparus brunneus, Phasianus colchicus, Charadrius hiaticula, Actitis hypoleucos, Glaucidium brodiei, Alcippe morrisonia, Tarsiger cyanurus, Monticola solitarius, Pycnonotus sinensis X Pycnonotus taivanus, Copsychus saularis, Calidris ferruginea, Troglodytes troglodytes, Tringa glareola, Phalacrocorax carbo

Table A- 5 Species list for the four indicator groups selected by clustering method in Taiwan

Site group	Species
Purple	<i>Apus pacificus, Dendrocopos leucotos, Dicrurus macrocercus, Spilornis cheela, Megapomatorhinus erythroclemis, Egretta garzetta, Cuculus poliocephalus, Dicrurus aeneus, Zoothera dauma dauma, Apus nipalensis, Enicurus scouleri, Dendrocopos canicapillus, Brachypteryx montana, Horornis fortipes, Pomatorhinus musicus, Cyanoderma ruficeps, Passer rutilans, Megalaima nuchalis, Accipiter gularis, Regulus goodfellowi, Cuculus optatus, Arborophila crudigularis, Ianthocincla ruficeps, Carpodacus formosanus, Myophonus insularis,</i>

Trochalopteron morrisonianum, Locustella alishanensis, Urocissa caerulea, Pnoepyga formosana, Corvus macrorhynchos, Heterophasia auricularis, Cinclidium leucurum, Tarsiger indicus, Turdus pallidus, Pycnonotus sinensis, Turdus poliocephalus, Spizixos semitorques, Motacilla alba, Columba pulchricollis, Pericrocotus solaris, Hirundapus cochininchinensis, Prinia flaviventris, Motacilla cinerea, Pyrrhula erythaca, Bambusicola thoracicus, Cecropis striolata, Poecile varius, Turdus chrysolaus, Prunella collaris, Delichon dasypus, Accipiter virgatus, Garrulus glandarius, Ictinaetus malayensis, Cinclus pallasii, Fringilla montifringilla, Zoothera dauma, Streptopelia orientalis, Parus monticolus, Phylloscopus coronatus, Yuhina brunneiceps, Nucifraga caryocatactes, Hirundo tahitica, Muscicapa ferruginea, Dicaeum ignipectus, Ficedula parva, Hypsipetes leucocephalus, Urocissa erythrorhyncha, Aegithalos concinnus, Tarsiger johnstoniae, Streptopelia chinensis, Sinosuthora webbiana, Actinodura morrisoniana, Sitta europaea, Horornis acanthizoides, Calliope calliope, Passer montanus, Prinia crinigera, Abroscopus albogularis, Ianthocincla poecilorhyncha, Horornis diphone/canturians, Parus holsti, Suthora verreauxi, Phoenicurus auroreus, Phylloscopus inornatus, Ficedula hyperythra, Liocichla steerii, Spinus spinus, Niltava vivida, Otus spilocephalus, Hypothymis azurea, Syrmaticus mikado, Gorsachius melanolophus, Emberiza spodocephala, Phylloscopus borealis, Periparus ater, Falco peregrinus, Phoenicurus fuliginosus, Picus canus, Erpornis zantholeuca, Treron sieboldii, Zosterops japonicus, Chalcophaps indica, Otus lettia, Accipiter trivirgatus, Fulvetta formosana, Prinia inornata, Pyrrhula nipalensis, Dendrocitta formosae, Schoeniparus brunneus, Aix galericulata, Glaucidium brodiei, Alcippe morrisonia, Lophura swinhoii, Troglodytes troglodytes, Hierococcyx sparverioides

Red *Pitta nympha, Acridotheres cristatellus, Apus pacificus, Ardea alba, Dicrurus macrocercus, Spilornis cheela, Megapomatorhinus*

erythrocnemis, *Egretta garzetta*, *Dicrurus aeneus*, *Apus nipalensis*, *Enicurus scouleri*, *Dendrocopos canicapillus*, *Alauda gulgula*, *Charadrius dubius*, *Brachypteryx montana*, *Emberiza pusilla*, *Horornis fortipes*, *Pomatorhinus musicus*, *Tachybaptus ruficollis*, *Cyanoderma ruficeps*, *Passer rutilans*, *Mesophoyx intermedia*, *Megalaima nuchalis*, *Accipiter gularis*, *Cuculus optatus*, *Accipiter nisus*, *Arborophila crudigularis*, *Ianthocincla ruficeps*, *Caprimulgus affinis*, *Garrulax taewanus*, *Myophonus insularis*, *Trochalopteron morrisonianum*, *Locustella alishanensis*, *Urocissa caerulea*, *Corvus macrorhynchos*, *Emberiza rustica*, *Heterophasia auricularis*, *Acridotheres javanicus*, *Cinclidium leucurum*, *Lonchura striata*, *Copsychus malabaricus*, *Amaurornis phoenicurus*, *Turdus pallidus*, *Pycnonotus sinensis*, *Spizixos semitorques*, *Motacilla alba*, *Oriolus traillii*, *Pericrocotus divaricatus*, *Riparia riparia*, *Strix nivicola*, *Columba pulchricollis*, *Butastur indicus*, *Pericrocotus solaris*, *Hirundapus cochininchensis*, *Muscicapa griseisticta*, *Rallina eurizonoides*, *Prinia flaviventris*, *Motacilla cinerea*, *Bambusicola thoracicus*, *Cecropis striolata*, *Poecile varius*, *Turdus chrysolaus*, *Accipiter soloensis*, *Nycticorax nycticorax*, *Egretta sacra*, *Delichon dasypus*, *Pernis ptilorhynchus*, *Accipiter virgatus*, *Garrulus glandarius*, *Acridotheres fuscus*, *Ictinaetus malayensis*, *Cinclus pallasi*, *Coracina macei*, *Fringilla montifringilla*, *Anas zonorhyncha*, *Zoothera dauma*, *Streptopelia orientalis*, *Parus monticolus*, *Phylloscopus coronatus*, *Yuhina brunneiceps*, *Hirundo tahitica*, *Lanius cristatus*, *Muscicapa ferruginea*, *Gallinula chloropus*, *Dicaeum ignipectus*, *Streptopelia tranquebarica*, *Hypsipetes leucocephalus*, *Aegithalos concinnus*, *Acridotheres tristis*, *Hirundo rustica*, *Pycnonotus taivanus*, *Streptopelia chinensis*, *Sinosuthora webbiana*, *Actinodura morrisoniana*, *Horornis acanthizoides*, *Calliope calliope*, *Columba livia*, *Pandion haliaetus*, *Passer montanus*, *Pica pica*, *Lonchura punctulata*, *Prinia crinigera*, *Riparia chinensis*, *Lanius schach*, *Abroscopus albogularis*, *Cisticola juncidis*, *Ianthocincla poecilorhyncha*, *Centropus bengalensis*, *Urosphena squameiceps*, *Horornis diphone/canturians*, *Terpsiphone atrocaudata*, *Parus holsti*, *Phoenicurus auroreus*,

Phylloscopus inornatus, Ficedula hyperythra, Liocichla steerii, Phylloscopus proregulus, Niltava vivida, Anthus rubescens, Otus spilocephalus, Bubulcus ibis, Motacilla tschutschensis, Oriolus chinensis, Hypothymis azurea, Gorsachius melanolophus, Ianthocincla chinensis, Milvus migrans, Emberiza spodocephala, Phylloscopus borealis, Cacatua galerita, Phoenicurus fuliginosus, Nisaetus nipalensis, Picus canus, Dicaeum minullum, Erpornis zantholeuca, Treron sieboldii, Butorides striata, Anas platyrhynchos (Domestic), Zosterops japonicus, Porzana fusca, Alcedo atthis, Chalcophaps indica, Ardea cinerea, Otus lettia, Accipiter trivirgatus, Muscicapa latirostris, Strix leptogrammica, Prinia inornata, Pyrrhula nipalensis, Eudynamys scolopaceus, Dendrocitta formosae, Anthus hodgsoni, Schoeniparus brunneus, Phasianus colchicus, Actitis hypoleucos, Glaucidium brodiei, Alcippe morrisonia, Lophura swinhoii, Monticola solitarius, Pycnonotus sinensis X Pycnonotus taivanus, Buteo buteo, Copsychus saularis, Hierococcyx sparverioides

Blue *Pitta nympha, Acridotheres cristatellus, Apus pacificus, Ardea alba, Dicrurus macrocercus, Anthus richardi, Spilornis cheela, Garrulax canorus, Megapomatorhinus erythroclemis, Anas crecca, Egretta garzetta, Cuculus poliocephalus, Dicrurus aeneus, Apus nipalensis, Tringa stagnatilis, Eophona migratoria, Dendrocopos canicapillus, Alauda gulgula, Sternula albifrons, Charadrius dubius, Horornis fortipes, Pomatorhinus musicus, Tachybaptus ruficollis, Cyanoderma ruficeps, Mesophoyx intermedia, Calidris temminckii, Megalaima nuchalis, Xenus cinereus, Pluvialis fulva, Horornis diphone, Cuculus optatus, Arborophila crudigularis, Caprimulgus affinis, Garrulax taewanus, Myophonus insularis, Urocissa caerulea, Cuculus micropterus, Corvus macrorhynchos, Gallinago gallinago, Heterophasia auricularis, Acridotheres javanicus, Cinclidium leucurum, Fulica atra, Anas querquedula, Emberiza tristrami, Euodice malabarica, Lonchura striata, Tringa ochropus, Copsychus malabaricus,*

Amaurornis phoenicurus, Turdus pallidus, Pycnonotus sinensis, Turdus poliocephalus, Ianthocincla sannio, Spizixos semitorques, Motacilla alba, Anas acuta, Calidris acuminata, Oriolus traillii, Ardeola bacchus, Pericrocotus divaricatus, Riparia riparia, Columba pulchricollis, Sturnia sinensis, Butastur indicus, Gallirallus striatus, Pericrocotus solaris, Muscicapa griseisticta, Rallina eurizonoides, Sturnia malabarica, Prinia flaviventris, Motacilla cinerea, Bambusicola thoracicus, Eurystomus orientalis, Tringa totanus, Anthus cervinus, Cecropis striolata, Turdus chrysolaus, Accipiter soloensis, Halcyon coromanda, Anas penelope, Nycticorax nycticorax, Acrocephalus orientalis, Delichon dasypus, Pernis ptilorhynchus, Charadrius alexandrinus, Accipiter virgatus, Ictinaetus malayensis, Anas zonorhyncha, Zoothera dauma, Streptopelia orientalis, Calidris subminuta, Tringa nebularia, Parus monticolus, Yuhina brunneiceps, Hirundo tahitica, Lanius cristatus, Gallinula chloropus, Dicaeum ignipectus, Calidris ruficollis, Falco tinnunculus, Streptopelia tranquebarica, Psittacula krameri, Hypsipetes leucocephalus, Aegithalos concinnus, Treron formosae, Acridotheres tristis, Hirundo rustica, Ixobrychus cinnamomeus, Pycnonotus taivanus, Streptopelia chinensis, Sinosuthora webbiana, Himantopus himantopus, Rostratula benghalensis, Calliope calliope, Columba livia, Pandion haliaetus, Passer montanus, Pica pica, Lonchura punctulata, Prinia crinigera, Turdus eunomus, Turnix suscitator, Hypsipetes amaurotis, Riparia chinensis, Lanius schach, Abroscopus albogularis, Cisticola juncidis, Anas clypeata, Cairina moschata (domestic), Centropus bengalensis, Urosphena squameiceps, Horornis diphone/canturians, Terpsiphone atrocaudata, Ardea purpurea, Sturnus sericeus, Ixobrychus sinensis, Phoenicurus auroreus, Tringa brevipes, Phylloscopus inornatus, Liocichla steerii, Phylloscopus proregulus, Niltava vivida, Cisticola exilis, Bubulcus ibis, Motacilla tschutschensis, Oriolus chinensis, Larus crassirostris, Limosa limosa, Hypothymis azurea, Gorsachius melanolophus, Platalea minor, Elanus caeruleus, Chlidonias hybrida, Gracupica nigricollis, Milvus migrans, Lonchura atricapilla, Emberiza

spodocephala, Phylloscopus borealis, Acridotheres burmannicus, Falco peregrinus, Phoenicurus fuliginosus, Picus canus, Erpornis zantholeuca, Treron sieboldii, Butorides striata, Anas platyrhynchos (Domestic), Zosterops japonicus, Porzana fusca, Alcedo atthis, Chalcophaps indica, Charadrius mongolus, Accipiter gentilis, Ardea cinerea, Otus lettia, Accipiter trivirgatus, Aythya fuligula, Muscicapa latirostris, Phylloscopus fuscatus, Prinia inornata, Ninox japonica, Aplonis panayensis, Emberiza rutila, Bycanistes bucinator, Dendrocitta formosae, Anthus hodgsoni, Estrilda melpoda, Glareola maldivarum, Schoeniparus brunneus, Phasianus colchicus, Actitis hypoleucos, Glaucidium brodiei, Alcippe morrisonia, Monticola solitarius, Pycnonotus sinensis X Pycnonotus taivanus, Calidris ferruginea, Tringa glareola, Phalacrocorax carbo

Green *Gracula religiosa, Acridotheres cristatellus, Ardea alba, Dicrurus macrocercus, Anthus richardi, Spilornis cheela, Garrulax canorus, Garrulax canorus X Garrulax taewanus, Megapomatorhinus erythrocnemis, Anas crecca, Egretta garzetta, Dicrurus aeneus, Apus nipalensis, Tringa stagnatilis, Enicurus scouleri, Dendrocopos canicapillus, Alauda gulgula, Larus fuscus, Sternula albifrons, Charadrius dubius, Pomatorhinus musicus, Tachybaptus ruficollis, Cyanoderma ruficeps, Mesophoyx intermedia, Gallinago megala, Megalaima nuchalis, Recurvirostra avosetta, Pluvialis fulva, Hydrophasianus chirurgus, Lonchura oryzivora, Cuculus optatus, Caprimulgus affinis, Garrulax taewanus, Myophonus insularis, Trochalopteron morrisonianum, Urocissa caerulea, Corvus macrorhynchos, Gallinago gallinago, Acridotheres javanicus, Fulica atra, Anthus gustavi, Chlidonias leucopterus, Euodice malabarica, Lonchura striata, Tringa ochropus, Copsychus malabaricus, Amaurornis phoenicurus, Turdus pallidus, Pycnonotus sinensis, Spizixos semitorques, Motacilla alba, Calidris acuminata, Ardeola bacchus, Sturnia sinensis, Butastur indicus, Gallirallus striatus, Pericrocotus*

solaris, Muscicapa griseisticta, Sturnus cineraceus, Sturnia malabarica, Prinia flaviventris, Motacilla cinerea, Bambusicola thoracicus, Tringa totanus, Anthus cervinus, Cecropis striolata, Turdus chrysolaus, Anas penelope, Nycticorax nycticorax, Egretta sacra, Acrocephalus orientalis, Delichon dasypus, Charadrius alexandrinus, Accipiter virgatus, Acridotheres fuscus, Anas zonorhyncha, Streptopelia orientalis, Chloris sinica, Calidris subminuta, Tringa nebularia, Yuhina brunneiceps, Hirundo tahitica, Lanius cristatus, Gallinula chloropus, Falco tinnunculus, Streptopelia tranquebarica, Hypsipetes leucocephalus, Egretta eulophotes, Threskiornis aethiopicus, Acridotheres tristis, Hirundo rustica, Anser domestica, Ixobrychus cinnamomeus, Acridotheres grandis, Pycnonotus taivanus, Streptopelia chinensis, Sinosuthora webbiana, Himantopus himantopus, Rostratula benghalensis, Calliope calliope, Columba livia, Pandion haliaetus, Passer montanus, Pica pica, Lonchura punctulata, Prinia crinigera, Turdus eunomus, Turnix suscitator, Riparia chinensis, Lanius schach, Abroscopus albogularis, Cisticola juncidis, Anas clypeata, Cairina moschata (domestic), Centropus bengalensis, Horornis diphone/canturians, Sturnus sericeus, Anas platyrhynchos var. domestica, Ixobrychus sinensis, Phoenicurus auroreus, Tringa brevipes, Phylloscopus inornatus, Cisticola exilis, Motacilla citreola, Bubulcus ibis, Motacilla tschutschensis, Cygnus atratus (Domestic), Hypothymis azurea, Gorsachius melanolophus, Elanus caeruleus, Saxicola maurus, Chlidonias hybrida, Calidris alpina, Gracupica nigricollis, Milvus migrans, Lonchura atricapilla, Emberiza spodocephala, Phylloscopus borealis, Acridotheres burmannicus, Cacatua galerita, Falco peregrinus, Phoenicurus fuliginosus, Treron sieboldii, Butorides striata, Anas platyrhynchos (Domestic), Zosterops japonicus, Porzana fusca, Alcedo atthis, Charadrius mongolus, Ardea cinerea, Otus lettia, Accipiter trivirgatus, Muscicapa latirostris, Alauda arvensis, Sturnus vulgaris, Prinia inornata, Aplonis panayensis, Eudynamys scolopaceus, Dendrocitta formosae, Estrilda melpoda, Estrilda astrild, Glareola maldivarum, Sterna hirundo, Phasianus colchicus, Charadrius hiaticula,

*Actitis hypoleucos, Alcippe morrisonia, Tarsiger cyanurus, Monticola
solitarius, Copsychus saularis, Troglodytes troglodytes, Tringa glareola*

Glossary of Terms

Affiliation network are two mode networks that describe not only the direct linkage between members but also the events these members attend to (biologically, the habitat that species occupy) and the relationship among events.

Asymptote (of species accumulation curve) represents the saturation point in species richness, it can help determine the least sampling effort for estimating total richness in ecologically similar regions.

Clench function is derived from the **Michaelis-Menten kinetics** which is an enzymatic reaction rate curve based on the concentration of a substrate. Biologically, this means that the probability of adding new species increases (up to an asymptote) as more time is spent in the field.

Edge (in a network) represents the connection by a relationship between a pair of node (the basic unit of network).

Fowlkes-Mallows index is an index compares two clusters and evaluates the extent of similarity or dissimilarity between the clusters.

Indicator species define characteristics of habitat and can be applied to predict the habitat type of unknown or unsampled sites.

Michaelis-Menten kinetics is an equation in biochemistry describing the rate of enzymatic reactions by relating reaction rate to the concentration of a substrate. The reaction plot is a saturate curve with asymptote representing maximum reaction rate achieved by the system.

Modularity defines subgroups (termed modules) in a network. The connections between nodes (the basic unit of network) are measured and nodes possess a higher degree of connections are assigned in the same module, with lower degree of connections to nodes in other modules.

Mode (in a network) means the type of nodes (e.g. two-mode network), or the type of network (e.g. default mode network).

Modules (in a network) are subgroups within a network. Nodes in one module have stronger or more frequent connections among them comparing to nodes outside this module.

Module hub is the node with the highest degree in a module and represents the most dominant member (i.e. the member that links to most other members). This type of node can efficiently indicate the presence of other members in this module.

Network (ecological) representing biological interactions in an ecological communities. In this type of network nodes usually are species and the edges stands for interactions between species. The property of ecological networks can be used to illustrate the stability or fragility of ecological communities.

Nestedness is a measure of structure in an ecological system. In a species-sites system, species richness in each site are arranged from speciose site to depauperate site and the species in depauperate site are a subset of those in speciose ones. Nestedness is measured by 'temperature' which indicates the system entropy. Therefore low nestedness reflects high turnover of species in space or time whereas high nestedness means ordered accumulation or loss.

Node (in a network) is the basic element for constructing a network.

Rarefaction curve is a technique to assess species richness from a given number of individual samples, based on rarefaction which reduce the curve length for comparing species richness data among sets with different sample sizes. This curve is a plot of the number of species as a function of the number of samples by multiple random re-sampling process.

Species accumulation curve is a plot describes the relationship between species richness and sampling effort or area. Species number accumulates along with the increase of sampling size or sampling area.

Species distribution model applies environmental variables to modelling species spatial distribution based on species' environment requirements (realized ecological niche).

Glossary

TWINSPAN is a short form of Two Way Indicator Species Analysis which is a numerical method on habitat association of species assemblage.

List of References

Ackerly, D. D. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. *International Journal of Plant Sciences* 164:164–184.

Agresti, A., and M. Kateri. 2011. Categorical data analysis. Springer, Berlin Heidelberg.

Allan, E., P. Manning, F. Alt, J. Binkenstein, S. Blaser, N. Blüthgen, S. Böhm, F. Grassein, N. Hölzel, V. H. Klaus, T. Kleinebecker, E. K. Morris, Y. Oelmann, D. Prati, S. C. Renner, M. C. Rillig, M. Schaefer, M. Schloter, B. Schmitt, I. Schöning, M. Schrumpf, E. Solly, E. Sorkau, J. Steckel, I. Steffen-Dewenter, B. Stempfhuber, M. Tschapka, C. N. Weiner, W. W. Weisser, M. Werner, C. Westphal, W. Wilcke, and M. Fischer. 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. *Ecology Letters* 18:834–843.

Almeida-Neto, M., P. R. J. Guimarães, R. D. Loyola, and W. Ulrich. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. *Oikos* 117:1227–1239.

Amend, A. S., D. J. Barshis, and T. A. Oliver. 2012. Coral-associated marine fungi form novel lineages and heterogeneous assemblages. *The ISME Journal* 6:1291–1301.

de Araújo, C. B., L. O. Marcondes-Machado, and G. C. Costa. 2014. The importance of biotic interactions in species distribution models: A test of the Eltonian noise hypothesis using parrots. *Journal of Biogeography* 41:513–523.

Araújo, M. B., A. Rozenfeld, C. Rahbek, and P. A. Marquet. 2011. Using species co-occurrence networks to assess the impacts of climate change. *Ecography* 34:897–908.

List of References

Araújo, M. B., W. Thuiller, and R. G. Pearson. 2006. Climate warming and the decline of amphibians and reptiles in Europe. *Journal of Biogeography* 33:1712–1728.

Arita, H. T., J. Andrés Christen, P. Rodríguez, and J. Soberón. 2008. Species diversity and distribution in presence-absence matrices: mathematical relationships and biological implications. *The American Naturalist* 172:519–32.

Arrhenius, O. 1921. Species and Area. *The Journal of Ecology* 9:95.

Ashcroft, M. B., J. R. Gollan, D. P. Faith, G. A. Carter, S. A. Lassau, S. G. Ginn, M. W. Bulbert, and G. Cassis. 2010. Using generalised dissimilarity models and many small samples to improve the efficiency of regional and landscape scale invertebrate sampling. *Ecological Informatics* 5:124–132.

Atmar, W., and B. D. Patterson. 1993. The measure of order and disorder in the distribution of species in fragmented habitat. *Oecologia* 96:373–382.

Austin, M. P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. *Ecological Modelling* 157:101–118.

Austin, M. 2007. Species distribution models and ecological theory: A critical assessment and some possible new approaches. *Ecological Modelling* 200:1–19.

Baber, J. M., E. Fleishman, K. J. Babbitt, and T. L. Tarr. 2004. The relationship between wetland hydroperiod and nestedness patterns in assemblages of larval amphibians and predatory macroinvertebrates. *Oikos*, 107: 16-27.

List of References

Balvanera, P., I. Siddique, L. Dee, A. Paquette, F. Isbell, A. Gonzalez, J. Byrnes, M. I. O'Connor, B. A. Hungate, and J. N. Griffin. 2014. Linking biodiversity and ecosystem services: Current uncertainties and the necessary next steps. *BioScience* 64:49–57.

Banerjee, S., A. E. Gelfand, A. O. Finley, H. Sang, S. Banerjee, and A. O. Finley. 2008. Gaussian predictive process models for large spatial data sets. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)* 70:825–848.

Barthélemy, M. 2011. Spatial networks. *Physics Reports* 499:1–101.

Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. *Global Ecology and Biogeography* 19:134–143.

Baselga, A., and M. B. Araújo. 2010. Do community-level models describe community variation effectively? *Journal of Biogeography* 37:1842–1850.

Bebber, D. P., F. H. C. Marriott, K. J. Gaston, S. A. Harris, and R. W. Scotland. 2007. Predicting unknown species numbers using discovery curves. *Proceedings of the Royal Society B* 274:1651–8.

Béguinot, J. 2015. Extrapolation of the species accumulation curve for incomplete species samplings: a new nonparametric approach to estimate the degree of sample completeness and decide when to stop sampling. *Annual Research and Review in Biology* 8:1–9.

Biella, P., J. Ollerton, M. Barcella, and S. Assini. 2017. Network analysis of phenological units to detect important species in plant-pollinator assemblages: can it inform conservation strategies? *Community Ecology* 18:1–10.

List of References

Bloch, C. P., C. L. Higgins, and M. R. Willig. 2007. Effects of large-scale disturbance on metacommunity structure of terrestrial gastropods : temporal trends in nestedness. *Oikos* 116:395–406.

Blondel, V. D., J. Guillaume, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. *Journal of Statistical Mechanics: Theory and Experiment* 2008:10008.

Borcard, D. 1992. Partialling out the spatial component of ecological variation. *Ecology* 73:1045–1055.

Braun-Blanquet. 1932. Plant Sociology. McGraw-Hill Book Company, New York.

Brose, U., N. D. Martinez, R. J. Williams, U. Brose, N. E. O. D. Martinez, and R. J. Williams. 2003. Estimating species richness: sensitivity to sample coverage and insensitivity to spatial patterns. *Ecology* 84:2364–2377.

Bruald, R. A., and J. G. Sanderson. 1999. Nested species subsets, gaps, and discrepancy. *Oecologia* 119:256–264.

Bruun, H. H., and J. Moen. 2003. Nested communities of alpine plants on isolated mountains: relative importance of colonization and extinction. *Journal of Biogeography* 30:297–303.

Bunge, J., and M. Fitzpatrick. 1993. Estimating the number of species: a review. *Journal of the American Statistical Association* 88:364–373.

De Cáceres, M., and P. Legendre. 2009. Associations between species and groups of sites : indices and statistical inference. *Ecology* 90:3566–3574.

List of References

De Cáceres, M., P. Legendre, and M. Moretti. 2010. Improving indicator species analysis by combining groups of sites. *Oikos* 119:1674–1684.

De Cáceres, M., P. Legendre, S. K. Wiser, and L. Brotons. 2012. Using species combinations in indicator value analyses. *Methods in Ecology and Evolution* 3:973–982.

Cardoso, P., F. Rigal, P. A. V. Borges, and J. C. Carvalho. 2014. A new frontier in biodiversity inventory: a proposal for estimators of phylogenetic and functional diversity. *Methods in Ecology and Evolution* 5:452–461.

Cardoso, P., N. Scharff, C. Gaspar, S. S. Henriques, R. Carvalho, P. H. Castro, J. B. Schmidt, I. Silva, T. Szüts, A. DeCastro, and L. C. Crespo. 2008. Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: a case study in a Mediterranean forest. *Insect Conservation and Diversity* 1:71–84.

Cassini, M. H. 2011. Ecological principles of species distribution models: the habitat matching rule. *Journal of Biogeography* 38:2057–2065.

Cayuela, L., N. J. Gotelli, and R. K. Colwell. 2015. Ecological and biogeographic null hypotheses for comparing rarefaction curves. *Ecological Monographs* 85:437–455.

Celebi, M. E., H. A. Kingravi, and P. A. Vela. 2013. A comparative study of efficient initialization methods for the k-means clustering algorithm. *Expert Systems with Applications* 40:200–210.

Chao, A., N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma, R. K. Colwell, and A. M. Ellison. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. *Ecological Monographs* 84:45–67.

List of References

Chao, A., and L. Jost. 2015a. Estimating diversity and entropy profiles via discovery rates of new species. *Methods in Ecology and Evolution* 6:873–882.

Chao, A., and L. Jost. 2015b. Estimating diversity and entropy profiles via discovery rates of new species. *Methods in Ecology and Evolution* 6:873–882.

Chao, A., and T. -J. Shen. 2004. Nonparametric prediction in species sampling. *Journal of Agricultural, Biological, and Environmental Statistics* 9:253–269.

Chao, A., Y. T. Wang, and L. Jost. 2013. Entropy and the species accumulation curve: A novel entropy estimator via discovery rates of new species. *Methods in Ecology and Evolution* 4:1091–1100.

Chave, J. 2004. Neutral theory and community ecology. *Ecology Letters* 7:241–253.

Chaves, L. F., and N. Ariez. 2016. Nestedness patterns of sand fly (Diptera: Psychodidae) species in a neotropical semi-arid environment. *Acta Tropica* 153:7–13.

Cheruvelil, K. S., S. Yuan, K. E. Webster, P. N. Tan, J. F. Lapierre, S. M. Collins, C. E. Fergus, C. E. Scott, E. N. Henry, P. A. Soranno, C. T. Filstrup, and T. Wagner. 2017. Creating multithemed ecological regions for macroscale ecology: Testing a flexible, repeatable, and accessible clustering method. *Ecology and Evolution* 7:3046–3058.

Chytrý, M., L. Tichý, J. Holt, and Z. Botta-Dukát. 2002. Determination of diagnostic species with statistical fidelity measures. *Journal of Vegetation Science* 13:79–90.

Clark, J. S., A. E. Gelfand, C. W. Woodall, and K. Zhu. 2014. More than the sum of the parts: Forest climate response from joint species distribution models. *Ecological Applications* 24:990–999.

List of References

Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. *Australian Journal of Ecology* 18:117–143.

Clench, H. K. 1979. How to make regional lists of butterflies: some thoughts. *Journal of the Lepidopterist's Society* 33:216–231.

Colwell, R. K., A. Chao, N. J. Gotelli, S. Y. Lin, C. X. Mao, R. L. Chazdon, and J. T. Longino. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. *Journal of Plant Ecology* 5:3–21.

Colwell, R. K., and J. A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* 345:101–18.

Connolly, S. R., M. Dornelas, D. R. Bellwood, and T. P. Hughes. 2009. Testing species abundance models: a new bootstrap approach applied to Indo-Pacific coral reefs. *Ecology* 90:3138–3149.

Cook, R. R., and J. F. Quinn. 1995. The influence of colonization in nested species subsets. *Oecologia* 102:413–424.

Cousins, S. H. 1991. Species diversity measurement: choosing the right index. *Trends in Ecology and Evolution* 6:190–192.

Csardi G, N. T. 2006. The igraph software package for complex network research. *InterJournal, Complex Systems* 1695.

List of References

Cumming, G. S., Ö. Bodin, H. Ernstson, and T. Elmquist. 2010. Network analysis in conservation biogeography: challenges and opportunities. *Diversity and Distributions* 16:414–425.

Cutler, A. 1991. Nested faunas and extinction in fragmented habitats. *Conservation Biology* 5:496–505.

D'Amen, M., C. Rahbek, N. E. Zimmermann, and A. Guisan. 2017. Spatial predictions at the community level: from current approaches to future frameworks. *Biological Reviews* 92:169–187.

Dengler, J. 2009. Which function describes the species-area relationship best? A review and empirical evaluation. *Journal of Biogeography* 36:728–744.

Dengler, J., and S. Boch. 2008. Sampling-design effects on properties of species-area relationships - A case study from Estonian dry grassland communities. *Folia Geobotanica* 43:289–304.

Devoto, M., S. Bailey, P. Craze, and J. Memmott. 2012. Understanding and planning ecological restoration of plant-pollinator networks. *Ecology Letters* 15:319–328.

Diamond, J. M. 1975. Assembly of species communities. Pages 342–444 in M. L. Cody and J. M. Diamond, editors. *Ecology and evolution of communities*. Harvard University Press, Cambridge, Massachusetts, USA.

Díaz-Francés, E., and J. Soberón. 2005. Statistical estimation and model selection of species-accumulation functions. *Conservation Biology* 19:569–573.

List of References

Ding, T., C. Juan, R. Lin, Y. Tsai, J. Wu, and Y. Yang. 2014. The 2014 CWBF Checklist of the Birds of Taiwan. Taipei, Taiwan.

Ding, T. S., H. W. Yuan, S. Geng, Y. S. Lin, and P. F. Lee. 2005. Energy flux, body size and density in relation to bird species richness along an elevational gradient in Taiwan. *Global Ecology and Biogeography* 14:299–306.

Dirnböck, T. 2003. A regional impact assessment of climate and land-use change on alpine vegetation. *Journal of Biogeography* 30:401–417.

Doncaster, C. P., V. A. Chávez, C. Viguier, R. Wang, E. Zhang, X. Dong, J. A. Dearing, P. G. Langdon, and J. G. Dyke. 2016. Early warning of critical transitions in biodiversity from compositional disorder. *Ecology* 97:3079–3090.

Dufrêne, M., and P. Legendre. 1997. Species assemblages and indicator species : the need for a flexible asymmetrical approach. *Ecological Monographs* 67:345–366.

Dunne, J. A., R. J. Williams, and N. D. Martinez. 2002. Food-web structure and network theory: The role of connectance and size. *Proceedings of the National Academy of Sciences* 99:12917–22.

Ehouman, N. M., S. Tiho, and M. Dagnogo. 2012. Co-occurrence of earthworms in Lamto savanna: A null model analysis of community structure. *European Journal of Soil Biology* 53:40–47.

Elith, J., and J. Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. *Annual Review of Ecology, Evolution, and Systematics* 40:677–697.

List of References

Elmendorf, S. C., and S. P. Harrison. 2009. Temporal variability and nestedness in California grassland species composition. *Ecology* 90:1492–1497.

Engen, S., V. Grøtan, and B. E. Sæther. 2011. Estimating similarity of communities: A parametric approach to spatio-temporal analysis of species diversity. *Ecography* 34:220–231.

Estrada-peña, A., and J. DeFuente. 2016. Species interactions in occurrence data for a community of tick-transmitted pathogens. *Scientific Data* 3:1–13.

Estrada, E. 2007. Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution. *Journal of Theoretical Biology* 244:296–307.

Farine, D. R., C. J. Garroway, and B. C. Sheldon. 2012. Social network analysis of mixed-species flocks: exploring the structure and evolution of interspecific social behaviour. *Animal Behaviour* 84:1271–1277.

Fattorini, S., and W. Ulrich. 2012. Drivers of species richness in European Tenebrionidae (Coleoptera). *Acta Oecologica* 43:22–28.

Ferrier, S., and A. Guisan. 2006. Spatial modelling of biodiversity at the community level. *Journal of Applied Ecology* 43:393–404.

Ficetola, G. F., W. Thuiller, and C. Miaud. 2007. Prediction and validation of the potential global distribution of a problematic alien invasive species - the American bullfrog. *Diversity and Distributions* 13:476–485.

Field, R., B. A. Hawkins, H.V. Cornell, D. J. Currie, J. A. F. Diniz-Filho, J. F. Guégan, D. M. Kaufman, J. T. Kerr, G. G. Mittelbach, T. Oberdorff, E. M. O'Brien, and J. R. G. Turner.

List of References

2009. Spatial species-richness gradients across scales: A meta-analysis. *Journal of Biogeography* 36:132–147.

Fischer, J., and D. B. Lindenmayer. 2002. Treating the nestedness temperature calculator as a “black box” can lead to false conclusions. *Oikos* 99:193–199.

Fischer, J., and D. B. Lindenmayer. 2005. Nestedness in fragmented landscapes: a case study on birds, arboreal marsupials and lizards. *Journal of Biogeography* 32:1737–1750.

Fleishman, E., R. B. Blair, and D. D. Murphy. 2001. Empirical validation of a method for umbrella species selection. *Ecological Applications* 11:1489–1501.

Fleishman, E., and D. D. Murphy. 1999. Patterns and processes of nestedness in a Great Basin butterfly assemblages: applications to conservation planning. *Oecologia* 119:133–139.

Fleishman, E., and R. Mac Nally. 2002. Topographic determinants of faunal nestedness in Great Basin butterfly assemblages: applications to conservation planning. *Conservation Biology* 16:422–429.

Fleishman, E., C. J. Betrus, R. B. Blair, R. Mac Nally, and D. D. Murphy. 2002. Nestedness analysis and conservation planning: the importance of place, environment, and life history across taxonomic groups. *Oecologia* 133: 78-89.

Flinn, K. M., M. J. Lechowicz, and M. J. Waterway. 2008. Plant species diversity and composition of wetlands within an upland forest. *American Journal of Botany* 95:1216–1224.

Fortunato, S. 2010. Community detection in graphs. *Physics Reports* 486:75–174.

List of References

Fowlkes, E. B., and C. L. Mallows. 1983. A method for comparing two hierarchical clusterings. *Journal of the American Statistical Association* 78:553–569.

García-Callejas, D., and M. B. Araújo. 2016. The effect of model and data complexity on predictions from species distributions models. *Ecological Modelling* 326:4–12.

Gavish, Y., C. J. Marsh, M. Kuemmerlen, S. Stoll, P. Haase, and W. E. Kunin. 2017. Accounting for biotic interactions through alpha-diversity constraints in stacked species distribution models. *Methods in Ecology and Evolution* Online fir.

Genini, J., M. C. Côrtes, P. R. J. Guimarães, and M. Galetti. 2012. Mistletoes play different roles in a modular host–Parasite network. *Biotropica* 44:171–178.

Gibbons, D. W., J. B. Reid, and R. A. Chapman. 1993. The new atlas of breeding birds in Britain and Ireland: 1988–1991. Poyser, London.

Gilbert, A. J. 2009. Connectance indicates the robustness of food webs when subjected to species loss. *Ecological Indicators* 9:72–80.

Gilman, S. E., M. C. Urban, J. Tewksbury, G. W. Gilchrist, and R. D. Holt. 2010. A framework for community interactions under climate change. *Trends in Ecology and Evolution* 25:325–331.

Gleason, H. A. 1922. On the relation between species and area. *Ecology* 3:158–162.

Godsoe, W., and L. J. Harmon. 2012. How do species interactions affect species distribution models? *Ecography* 35:811–820.

List of References

Gotelli, N. J. 2000. Null model analysis of species co-occurrence patterns. *Ecology* 81:2606–2621.

Gotelli, N. J., M. J. Anderson, H. T. Arita, A. Chao, R. K. Colwell, S. R. Connolly, D. J. Currie, R. R. Dunn, G. R. Graves, J. L. Green, J.-A. Grytnes, Y.-H. Jiang, W. Jetz, S. Kathleen Lyons, C. M. McCain, A. E. Magurran, C. Rahbek, T. F. L. V. B. Rangel, J. Soberón, C. O. Webb, and M. R. Willig. 2009. Patterns and causes of species richness: a general simulation model for macroecology. *Ecology letters* 12:873–86.

Gotelli, N. J., and R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. *Ecology Letters* 4:379–391.

Gotelli, N. J., and D. J. McCabe. 2002. Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. *Ecology* 83:2091–2096.

Gray, J. S., K. I. Ugland, and J. Lambshead. 2004. On species accumulation and species-area curves. *Global Ecology and Biogeography* 13:567–568.

Grimm, V., and S. F. Railsback. 2012. Pattern-oriented modelling: a “multi-scope” for predictive systems ecology. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* 367:298–310.

Grundel, R., K. J. Frohnapple, D. N. Zaya, G. A. Glowacki, C. J. Weiskerger, T. A. Patterson, and N. B. Pavlovic. 2014. Geographic coincidence of richness, mass, conservation value, and response to climate of U.S. land birds. *Ecological Applications* 24:791–811.

Guillera-Arroita, G., J. J. Lahoz-Monfort, J. Elith, A. Gordon, H. Kujala, P. E. Lentini, M. A. McCarthy, R. Tingley, and B. A. Wintle. 2015. Is my species distribution model fit for

purpose? Matching data and models to applications. *Global Ecology and Biogeography* 24:276–292.

Guimerà, R., and L. A. N. Amaral. 2005. Cartography of complex networks: modules and universal roles. *Journal of Statistical Mechanics* 2005:1–13.

Guisan, A., C. H. Graham, J. Elith, F. Huettmann, M. Dudik, S. Ferrier, R. Hijmans, A. Lehmann, J. Li, L. G. Lohmann, B. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, S. E. Williams, M. S. Wisz, and N. E. Zimmermann. 2007. Sensitivity of predictive species distribution models to change in grain size. *Diversity and Distributions* 13:332–340.

Guisan, A., and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. *Ecology Letters* 8:993–1009.

Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. *Ecological Modelling* 135:147–186.

Gwinn, D. C., M. S. Allen, K. I. Bonvechio, M. V. Hoyer, and L. S. Beesley. 2015. Evaluating estimators of species richness: The importance of considering statistical error rates. *Methods in Ecology and Evolution* 7:294–302.

Harms, K. E., R. Condit, S. P. Hubbell, and R. B. Foster. 2001. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. *Journal of Ecology* 89:947–959.

Hawkins, B. A., and J. A. Felizola Diniz-Filho. 2004. “Latitude” and geographic patterns in species richness. *Ecography* 27:268–272.

List of References

He, F., and P. Legendre. 1996. On species-area relations. *American Naturalist* 148:719–737.

He, F., P. Legendre, and J.V LaFrankie. 1996. Spatial pattern of diversity in a tropical rain forest in Malaysia. *Journal of Biogeography* 23:57–74.

Heino, J., H. Mykrä, and T. Muotka. 2009. Temporal variability of nestedness and idiosyncratic species in stream insect assemblages. *Diversity and Distributions* 15:198–206.

Herczeg, R., and G. F. Horvath. 2015. Species composition and nestedness of small mammal assemblages in two disturbed marshlands. *North-Western Journal of Zoology* 11:183–193.

Higgins, C. L., M. R. Willig, and R. E. Strauss. 2006. The role of stochastic processes in producing nested patterns of species distributions. *Oikos* 114:159–167.

Hill, J. K., M. A. Gray, C. V. Khen, S. Benedick, N. Tawatao, and K. C. Hamer. 2011. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness? *Philosophical Transactions of the Royal Society B: Biological Sciences*: 366: 3265-3276.

Hill, M. O. 1979. TWINSPAN: a fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, New York, USA.

Holt, A. R., K. J. Gaston, and F. He. 2002. Basic and applied ecology occupancy-abundance relationships and spatial distribution : a review. *Basic and Applied Ecology* 13:1–13.

Holt, R. D. 2009. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. *Proceedings of the National Academy of Sciences* 106:19659–19665.

List of References

Holt, R. D., and M. Barfield. 2009. Trophic interactions and range limits: the diverse roles of predation. *Proceedings of the Royal Society B* 276:1435–1442.

Hortal, J., P. Garcia-Pereira, and E. García-Barros. 2004. Butterfly species richness in mainland Portugal : predictive models of geographic distribution patterns. *Ecography* 27:68–82.

Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.

Hubbell, S. P. 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. *Functional Ecology* 19:166–172.

Hubbell, S. P. 2006. Neutral theory and the evolution of ecological equivalence. *Ecology* 87:1387–1398.

Hylander K., C. Nilsson, B. Gunnar Jonsson, and T. Göthner. 2005. Differences in habitat quality explain nestedness in a land snail meta-community. *Oikos*: 108: 351-361.

Jeong, H., S. P. Mason, A.L. Barabási, and Z. N. Oltvai. 2001. Lethality and centrality in protein networks. *Nature* 411:41–2.

Johnson, J. B., and K. S. Omland. 2004. Model selection in ecology and evolution. *Trends in Ecology and Evolution* 19:101–108.

Joseph, K., C. H. Tan, and K. M. Carley. 2012. "Beyond local, categories and friends: clustering foursquare users with latent topics. Pages 22–29Proceedings of the 2012 ACM conference on ubiquitous computing. ACM.

List of References

Keeling, M. J. 2001. Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. *Science* 294:813–817.

Kéfi, S., E. L. Berlow, E. A. Wieters, L. N. Joppa, S. A. Wood, U. Brose, and S. A. Navarrete. 2015. Network structure beyond food webs: Mapping non-trophic and trophic interactions on Chilean rocky shores. *Ecology* 96:291–303.

Kempen, B., D. J. Brus, G. B. M. Heuvelink, and J. J. Stoorvogel. 2009. Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. *Geoderma* 151:311–326.

Kissling, W. D., C. F. Dormann, J. Groeneveld, T. Hickler, I. Kühn, G. J. Mcinerny, J. M. Montoya, C. Römermann, K. Schiffers, F. M. Schurr, A. Singer, J. C. Svenning, N. E. Zimmermann, and R. B. O'Hara. 2012. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. *Journal of Biogeography* 39:2163–2178.

Kluge, J., M. Kessler, and R. R. Dunn. 2006. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. *Global Ecology and Biogeography* 15:358–371.

Ko, C. J., M. W. Fan, Y. X. Jiang, W. J. Yu, Y. Y. Lo, K. W. Huang, R. S. Lin, C. C. Cheng, and P. F. Lee. 2013. 2012 Taiwan Breeding Bird Survey Annual Report. Nantou, Taiwan.

Koh, C. N., P. F. Lee, and R. S. Lin. 2006. Bird species richness patterns of northern Taiwan: primary productivity, human population density, and habitat heterogeneity. *Diversity and Distributions* 12:546–554.

List of References

Koleff, P., K. J. Gaston, and J. J. Lennon. 2003. Measuring beta diversity for presence-absence. *Journal of Animal Ecology* 72:367–382.

Krause, A. E., K. A. Frank, D. M. Mason, R. E. Ulanowicz, and W. W. Taylor. 2003. Compartments revealed in food-web structure. *Nature* 426:282–5.

Larsen, P. E., D. Field, and J. A. Gilbert. 2012. Predicting bacterial community assemblages using an artificial neural network approach. *Nature Methods* 9:621–5.

Latimer, A. M., S. Banerjee, H. Sang, E. S. Mosher, and J. A. Silander. 2009. Hierarchical models facilitate spatial analysis of large data sets: A case study on invasive plant species in the northeastern United States. *Ecology Letters* 12:144–154.

LeLay, G., R. Engler, E. Franc, and A. Guisan. 2010. Prospective sampling based on model ensembles improves the detection of rare species. *Ecography* 33:1015–1027.

Leathwick, J. R., and M. P. Austin. 2001. Competitive interactions between tree species in New Zealand’s old-growth indigenous forests. *Ecology* 82:2560–2573.

Lee, P., T. Ding, F. Hsu, and S. Geng. 2004. Breeding bird species richness in Taiwan : distribution on gradients of elevation , primary productivity and urbanization. *Journal of Biogeography* 31:307–314.

Legendre, P., and E. D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. *Oecologia* 129:271–280.

Legendre, P., and L. Legendre. 2012. Numerical Ecology. 3rd Editio. Elsevier, Oxford.

Lehmann, A., J. M. Overton, and J. R. Leathwick. 2002. GRASP: generalized regression analysis and spatial prediction. *Ecological Modelling* 157:189–207.

Lennon, J. J., P. Koleff, J. J. D. Greenwood, and K. J. Gaston. 2001. The geographical structure of British bird distributions: diversity, spatial turnover and scale. *Journal of Animal Ecology* 70:966–979.

Levy, R., and E. Borenstein. 2013. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. *Proceedings of the National Academy of Sciences* 110:12804–12809.

Lischke, H., N. E. Zimmermann, J. Bolliger, S. Rickebusch, and T. J. Löffler. 2006. TreeMig: A forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. *Ecological Modelling* 199:409–420.

Lusseau, D. 2003. The emergent properties of a dolphin social network. *Proceedings of the Royal Society B: Biological Sciences* 270 Suppl: S186-8.

MacArthur, R. H. 1967. The theory of island biogeography. Princeton University Press, Princeton NJ.

Magnussen, S. 2014. Species richness estimation from probabilities of observing new species. *Journal of Forest Research* 19:194–204.

Magura, T. 2002. Carabids and forest edge: Spatial pattern and edge effect. *Forest Ecology and Management* 157:23–37.

McAbendroth, L., A. Foggo, S. D. Rundle, and D. T. Bilton. 2005. Unravelling nestedness and spatial pattern in pond assemblages. *Journal of Animal Ecology* 74:41–49.

List of References

McGill, B., and C. Collins. 2003. A unified theory for macroecology based on spatial patterns of abundance. *Evolutionary Ecology Research* 5:469–492.

McInerny, G. J., and D. W. Purves. 2011. Fine-scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice. *Methods in Ecology and Evolution* 2:248–257.

Meier, E. S., F. Kienast, P. B. Pearman, J. C. Svenning, W. Thuiller, M. B. Araújo, A. Guisan, and N. E. Zimmermann. 2010. Biotic and abiotic variables show little redundancy in explaining tree species distributions. *Ecography* 33:1038–1048.

Melo, A. S., R. A. S. Pereira, A. J. Santos, G. J. Shepherd, G. Machado, H. F. Medeiros, and R. J. Sawaya. 2003. Comparing species richness among assemblages using sample units : why not use extrapolation methods to standardize different sample sizes ? *Oikos* 101:398–410.

Merow, C., M. J. Smith, and J. A. Silander. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. *Ecography* 36:1058–1069.

Miller, R. I. ., and R. G., Wiegert. 1989. Documenting completeness, species-area relations, and the species-abundance distribution of a regional flora. *Ecology* 70:16–22.

Milligan, G. W. 1980. An examination of the effect of six types of error perturbation on fifteen clustering algorithms. *Psychometrika* 45:325–342.

List of References

Mokany, K., and S. Ferrier. 2011. Predicting impacts of climate change on biodiversity: a role for semi-mechanistic community-level modelling. *Diversity and Distributions* 17:374–380.

Mokany, K., T. D. Harwood, J. M. Overton, G. M. Barker, and S. Ferrier. 2011. Combining α - and β -diversity models to fill gaps in our knowledge of biodiversity. *Ecology letters* 14:1043–51.

Montoya, J. M., and R.V. Sol. 2002. Small world patterns in food webs. *Journal of Theoretical Biology* 214:405–12.

Moody, J., D. Mcfarland, and S. Bender. 2005. Dynamic network visualization. *American Journal of Sociology* 110:1206–1241.

Moody, J., and D. R. White. 2003. Structural cohesion and embeddedness: a hierarchical concept of social groups. *American Sociological Review* 68:103–127.

Moreno, C. E., and G. Halffter. 2000. Assessing the completeness of bat biodiversity inventories using species accumulation curves. *Journal of Applied Ecology* 37:149–158.

Morin, P. J. 1999. Community Ecology. Blackwell Science, Inc.

Mouton, A. M., B. DeBaets, and P. L. M. Goethals. 2010. Ecological relevance of performance criteria for species distribution models. *Ecological Modelling* 221:1995–2002.

Mutshinda, C. M., R. B. O’Hara, and I. P. Woiwod. 2009. What drives community dynamics? *Proceedings of the Royal Society B* 276:2923–2929.

List of References

Mutshinda, C. M., R. B. O'Hara, and I. P. Woiwod. 2011. A multispecies perspective on ecological impacts of climatic forcing. *Journal of Animal Ecology* 80:101–107.

Mac Nally, R., G. Horrocks, and A. F. Bennett. 2002. Nestedness in fragmented landscapes : birds of the box-ironbark forests of south-eastern Australia. *Ecography* 6:651–660.

Navia, A. F., E. Cortés, and P. A. Mejía-Falla. 2010. Topological analysis of the ecological importance of elasmobranch fishes: A food web study on the Gulf of Tortugas, Colombia. *Ecological Modelling* 221:2918–2926.

Newman, M. 2004. Analysis of weighted networks. *Physical Review E* 70:56131.

Newman, M. E. J. 2010. Networks: An Introduction. Oxford University Press.

Newman, M., and M. Girvan. 2004. Finding and evaluating community structure in networks. *Physical Review E* 69:26113.

Ney-Nifle, M., and M. Mangel. 1999. Species–Area Curves Based on Geographic Range and Occupancy. *Journal of Theoretical Biology* 196:327–342.

Norton, J., J. W. Lewis, and D. Rollinson. 2004. Temporal and spatial patterns of nestedness in eel macroparasite communities. *Parasitology* 129:203–211.

Obsomer, V., M. Dufrêne, P. Defourny, and M. Coosemans. 2013. *Anopheles* species associations in Southeast Asia: indicator species and environmental influences. *Parasites and Vectors* 6:136.

List of References

Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, and H. Wagner. 2013. *vegan: Community Ecology Package*. R package version 2.0-7.

Olden, J. D., J. J. Lawler, and N. L. Poff. 2008. Machine learning methods without tears: a primer for ecologists. *The Quarterly Review of Biology* 83:171–193.

Olesen, J. M., J. Bascompte, Y. L. Dupont, and P. Jordano. 2007. The modularity of pollination networks. *Proceedings of the National Academy of Sciences* 104:19891–6.

Olito, C., and J. W. Fox. 2015. Species traits and abundances predict metrics of plant-pollinator network structure, but not pairwise interactions. *Oikos* 124:428–436.

Oppel, S., A. Meirinho, I. Ramírez, B. Gardner, A. F. O'Connell, P. I. Miller, and M. Louzao. 2012. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. *Biological Conservation* 156:94–104.

Ovaskainen, O., J. Hottola, and J. Shtonen. 2010. Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. *Ecology* 91:2514–2521.

Ovaskainen, O., and J. Soininen. 2011. Making more out of sparse data: hierarchical modeling of species communities. *Ecology* 92:289–295.

Paine, R. T. 1966. Food web complexity and species diversity. *The American Naturalist* 100:65–75.

Paine, R. T. 1974. Intertidal community structure. *Oecologia* 15:93–120.

List of References

Patterson, B. D. 1990. On the temporal development of nested subset patterns of species composition. *Oikos* 59:330–342.

Patterson, B. D., and W. Atmar. 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. *Biological Journal of Linnen Society* 28:65–82.

Pearman, P. B., and D. Weber. 2007. Common species determine richness patterns in biodiversity indicator taxa. *Biological Conservation* 138:109–119.

Pearson, R. G., and T. P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? *Global Ecology and Biogeography* 12:361–371.

Pearson, R. G., W. Thuiller, M. B. Araújo, E. Martinez-Meyer, L. Brotons, C. McClean, L. Miles, P. Segurado, T. P. Dawson, and D. C. Lees. 2006. Model-based uncertainty in species range prediction. *Journal of Biogeography* 33:1704–1711.

Pereira, M., P. Segurado, and N. Neves. 2011. Using spatial network structure in landscape management and planning: a case study with pond turtles. *Landscape and Urban Planning* 100:67–76.

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. *Ecological Modelling* 190:231–259.

Picazo, F., D. T. Bilton, J. L. Moreno, D. Sánchez-Fernández, and A. Millán. 2012. Water beetle biodiversity in Mediterranean standing waters: assemblage composition, environmental drivers and nestedness patterns. *Insect Conservation and Diversity* 5:146–158.

List of References

Planer, J. D., Y. Peng, A. L. Kau, L.V. Blanton, I. M. Ndao, P. I. Tarr, B. B. Warner, and J. I. Gordon. 2016. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. *Nature* 534:263–266.

Podani, J. 2006. Braun-Blanquet's legacy and data analysis in vegetation science. *Journal of Vegetation Science* 17:113–117.

Podani, J., F. Jordan, and D. Schmera. 2014. A new approach to exploring architecture of bipartite (interaction) ecological networks. *Journal of Complex Networks* 2:168–186.

Podani, J., and D. Schmera. 2011. A new conceptual and methodological framework for exploring and explaining pattern in presence - absence data. *Oikos* 120:1625–1638.

Pons, P., and M. Latapy. 2005. Computing communities in large networks using random walks. *Journal of Graph Algorithms Application* 10:284–293.

Poore, M. E. D. 1955. The use of phytosociological methods in ecological investigations: I. The Braun-Blanquet system. *Journal of Ecology* 43:226–244.

Prell, C. 2011. Social network analysis: history, theory and methodology. SAGE Publications Ltd.

Prendergast, J. R. 1997. Species richness covariance in higher taxa: empirical tests of the biodiversity indicator concept. *Ecography* 20:210–217.

Prendergast, J. R., R. M. Quinn, J. H. Lawton, B. Eversham, and D. W. Gibbons. 1993. Rare species, the coincidence of diversity hotspots and conservation strategies. *Nature* 365:335–337.

List of References

Prentice, I. C., A. Bondeau, W. Cramer, S. Harrison, T. Hickler, W. Lucht, S. Sitch, B. Smith, and M. T. Sykes. 2007. Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. In *Terrestrial Ecosystems in a Changing World* (pp. 175-192). Springer Berlin Heidelberg.

Preston, F. W. 1962a. The canonical distribution of commonness and rarity: Part I. *Ecology* 43:185–215.

Preston, F. W. 1962b. The canonical distribution of commonness and rarity: Part II. *Ecology* 43:410–432.

Prober, S. M., J. W. Leff, S. T. Bates, E. T. Borer, J. Firn, W. S. Harpole, E. M. Lind, E. W. Seabloom, P. B. Adler, J. D. Bakker, E. E. Cleland, N. M. Decrappeo, E. Delorenze, N. Hagenah, Y. Hautier, K. S. Hofmockel, K. P. Kirkman, J. M. H. Knops, K. J. LaPierre, A. S. Macdougall, R. L. Mcculley, C. E. Mitchell, A. C. Risch, M. Schuetz, C. J. Stevens, R. J. Williams, and N. Fierer. 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. *Ecology Letters* 18:85–95.

R Development Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <http://www.R-project.org/>.

Randin, C. F., T. Dirnböck, S. Dullinger, N. E. Zimmermann, M. Zappa, and A. Guisan. 2006. Are niche-based species distribution models transferable in space? *Journal of Biogeography* 33:1689–1703.

Ricotta, C., M. Carboni, and A. T. R. Acosta. 2015. Let the concept of indicator species be functional! *Journal of Vegetation Science* 26:839–847.

List of References

Ricotta, C., and S. Pavoine. 2015. A multiple-site dissimilarity measure for species presence/absence data and its relationship with nestedness and turnover. *Ecological Indicators* 54:203–206.

Rodríguez-Gironés, M. A., and L. Santamaría. 2006. A new algorithm to calculate the nestedness temperature of presence-absence matrices. *Journal of Biogeography* 33:924–935.

Rollinson, C. R., M. W. Kaye, and C. D. Canham. 2016. Interspecific variation in growth responses to climate and competition of five eastern tree species. *Ecology* 97:1003–1011.

Romdal, T. S., R. K. C. Olwell, and C. Rahbek. 2005. The influence of band sum area, domain extent, and range sizes on the latitudinal mid-domain effect. *Ecology* 86:235–244.

Rosenzweig, M. L., and Ziv. 1999. The echo pattern of species diversity: pattern and processes. *Ecography* 22:614–628.

Rosindell, J., S. P. Hubbell, and R. S. Etienne. 2011. The Unified Neutral Theory of Biodiversity and Biogeography at Age Ten. *Trends in Ecology and Evolution* 26:340–348.

Rudolf, V. H. W., and N. L. Rasmussen. 2013. Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. *Ecology* 94:1046–1056.

Ruhí, A., E. Chappuis, D. Escoriza, M. Jover, J. Sala, D. Boix, S. Gascón, and E. Gacia. 2014. Environmental filtering determines community patterns in temporary wetlands: A multi-taxon approach. *Hydrobiologia* 723:25–39.

List of References

Sattler, T., G. B. Pezzatti, M. P. Nobis, M. K. Obrist, T. Roth, and M. Moretti. 2014. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity. *Conservation Biology* 28:414–426.

Saura, S., and L. Rubio. 2010. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. *Ecography* 33:523–537.

Scheiner, S. M. 2003. Six types of species-area curves. *Global Ecology and Biogeography* 12:441–447.

Schouten, M. A., P. A. Verweij, A. Barendregt, R. J. Kleukers, and P. C. De Ruiter. 2007. Nested assemblages of Orthoptera species in the Netherlands: the importance of habitat features and life-history traits. *Journal of Biogeography* 34: 1938–1946.

Schröder, B., and R. Seppelt. 2006. Analysis of pattern-process interactions based on landscape models-Overview, general concepts, and methodological issues. *Ecological Modelling* 199:505–516.

Seedorf, H., N. W. Griffin, V. K. Ridaura, A. Reyes, J. Cheng, F. E. Rey, M. I. Smith, G. M. Simon, R. H. Scheffrahn, D. Woebken, A. M. Spormann, W. VanTreuren, L. K. Ursell, M. Pirrung, A. Robbins-Pianka, B. L. Cantarel, V. Lombard, B. Henrissat, R. Knight, and J. I. Gordon. 2014. Bacteria from diverse habitats colonize and compete in the mouse gut. *Cell* 159:253–266.

Segurado, P., and M. B. Araújo. 2004. An evaluation of methods for modelling species distributions. *Journal of Biogeography* 31:1555–1568.

List of References

Sinclair, S. J., M. D. White, and G. R. Newell. 2010. How useful are species distribution models for managing biodiversity under future climates? *Ecology and Society* 15:8–20.

Skelly, D. K., E. E. Werner, and S. A. Cortwright. 1999. Long-term distributional dynamics of a Michigan amphibian assemblage. *Ecology* 80:2326–2337.

Smith, E. P., and G. van Belle. 1984. Nonparametric estimation of species richness. *Biometrics* 40:119–129.

Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. *Ecology Letters* 10: 1115-1123.

Soberón, J. M., and J. B. Llorente. 1993. The use of species accumulation functions for the prediction of species richness. *Conservation Biology* 7:480–488.

Socolar, J. B., J. J. Gilroy, W. E. Kunin, and D. P. Edwards. 2016. How Should Beta-Diversity Inform Biodiversity Conservation? *Trends in Ecology and Evolution* 31:67–80.

Soininen, J., R. McDonald, and H. Hillebrand. 2007. The distance decay of similarity in ecological communities. *Ecography* 30:3–12.

Solé, R.V., and J. Bascompte. 2006. Spatial self-organization: from pattern to process. *Self-Organization in Complex Ecosystems* (MPB-42) (Pages 65–126). Princeton University Press, Princeton.

Stone, L., and A. Roberts. 1990. The checkerboard score and species distributions. *Oecologia* 85:74–79.

List of References

Sutherland, W. J. 2006. Predicting the ecological consequences of environmental change: a review of the methods. *Journal of Applied Ecology* 43:599–616.

Taylor, D. L., T. N. Hollingsworth, J. W. McFarland, N. J. Lennon, C. Nusbaum, and R. W. Ruess. 2014. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. *Ecological Monographs* 84:3–20.

Tews, J., U. Brose, V. Grimm, K. Tielbörger, M. C. Wichmann, M. Schwager, and F. Jeltsch. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. *Journal of Biogeography* 31:79–92.

Thompson, G. G., and P. C. Withers. 2003. Effect of species richness and relative abundance on the shape of the species accumulation curve. *Austral Ecology* 28:355–360.

Thompson, G. G., P. C. Withers, E. R. Pianka, and S. A. Thompson. 2003a. Assessing biodiversity with species accumulation curves; inventories of small reptiles by pit-trapping in Western Australia. *Austral Ecology* 28:361–383.

Thompson, G. G., P. C. Withers, E. R. Pianka, and S. A. Thompson. 2003b. Assessing biodiversity with species accumulation curves; inventories of small reptiles by pit-trapping in Western Australia. *Austral Ecology* 28:361–383.

Thuiller, W. 2003. BIOMOD: Optimising predictions of species distributions and projecting potential future shift under global change. *Global Change Biology* 9:1353–1362.

Thuiller, W., M. B. Araújo, and S. Lavorel. 2004. Do we need land-cover data to model species distributions in Europe? *Journal of Biogeography* 31:353–361.

Tichý, L., and M. Chytrý. 2006. Statistical determination of diagnostic species for site groups of unequal size. *Journal of Vegetation Science* 17:809–818.

Tjørve, E. 2003. Shapes and functions of species – area curves : a review of possible models. *Journal of Biogeography* 30:827–835.

Trainor, A. M., O. J. Schmitz, J. S. Ivan, and T. M. Shenk. 2014. Enhancing species distribution modeling by characterizing predator-prey interactions. *Ecological Applications* 24:204–216.

Ugland, K. I., J. S. Gray, and K. E. Ellingsen. 2003. The species-accumulation curve and estimation of species richness. *Journal of Animal Ecology* 72:888–897.

Ulrich, W., M. Almeida-Neto, and N. J. Gotelli. 2009. A consumer's guide to nestedness analysis. *Oikos* 118:3–17.

Ulrich, W., and J. Buszko. 2007. Sampling design and the shape of species-area curves on the regional scale. *Acta Oecologica* 31:54–59.

Ulrich, W., and N. J. Gotelli. 2007. Null model analysis of species nestedness patterns. *Ecology* 88:1824–31.

Ulrich, W., and M. Zalewski. 2007. Are ground beetles neutral? *Basic and Applied Ecology* 8:411–420.

Václavík, T., J. A. Kupfer, and R. K. Meentemeyer. 2012. Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). *Journal of Biogeography* 39:42–55.

List of References

Varela-Cervero, S., M. Vasar, J. Davison, J. M. Barea, M. Öpik, and C. Azcón-Aguilar. 2015. The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. *Environmental Microbiology* 17:2882–2895.

Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics with S. Fourth Edi. Springer, New York.

Voris, H. K. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. *Journal of Biogeography* 27:1153–1167.

Voytek, J. B., and B. Voytek. 2012. Automated cognome construction and semi-automated hypothesis generation. *Journal of Neuroscience Methods* 208:92–100.

Waddle, J. H., R. M. Dorazio, S. C. Walls, K. G. Rice, J. Beauchamp, M. J. Schuman, and F. J. Mazzotti. 2010. A new parameterization for estimating co-occurrence of interacting species. *Ecological Applications* 20:1467–75.

Walther, B. A., and J. L. Moore. 2005. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. *Ecography* 28:815–829.

Ward, D. F. 2006. Modelling the potential geographic distribution of invasive ant species in New Zealand. *Biological Invasions* 9:723–735.

Watt, A. S. 1947. Pattern and process in plant community. *Journal of Ecology* 35:1–22.

List of References

Watt, M. S., J. K. Stone, I. A. Hood, and L. K. Manning. 2011. Using a climatic niche model to predict the direct and indirect impacts of climate change on the distribution of Douglas-fir in New Zealand. *Global Change Biology* 17:3608–3619.

Webb, N. R. 1989. Studies on the invertebrate fauna of fragmented heathland in Dorset, UK, and the implications for conservation. *Biological Conservation* 47:153–165.

Wethered, R., and M. Lawes. 2005. Nestedness of bird assemblages in fragmented Afromontane forest: the effect of plantation forestry in the matrix. *Biological Conservation* 123:125–137.

White, D. R., and F. Harary. 2001. The cohesiveness of blocks in social networks: Node connectivity and conditional density. *Sociological Methodology* 31:305–359.

Whitehead, H. 1995. Investigating structure and temporal scale in social organizations using identified individuals. *Behavioral Ecology* 6:199–208.

Whittaker, R. 1975. Communities and Ecosystems. 2nd edition. Macmillan, New York.

Wiegand, T., F. Jeltsch, I. Hanski, and V. Grimm. 2003. Using pattern-oriented modeling for revealing hidden information : a key for reconciling ecological theory and application *Oikos* 65:209–222.

Willerslev, E., J. Davison, M. Moora, M. Zobel, E. Coissac, M. E. Edwards, E. D. Lorenzen, M. Vestergard, G. Gussarova, J. Haile, J. Craine, L. Gielly, S. Boessenkool, L. S. Epp, P. B. Pearman, R. Cheddadi, D. Murray, K. A. Brathen, N. Yoccoz, H. Binney, C. Cruaud, P. Wincker, T. Goslar, I. G. Alsos, E. Bellemain, A. K. Brysting, R. Elven, J. H. Sonstebo, J. Murton, A. Sher, M. Rasmussen, R. Ronn, T. Mourier, A. Cooper, J. Austin, P. Moller,

List of References

D. Froese, G. Zazula, F. Pompanon, D. Rioux, V. Niderkorn, A. Tikhonov, G. Savvinov, R. G. Roberts, R. D. E. MacPhee, M. T. P. Gilbert, K. H. Kjaer, L. Orlando, C. Brochmann, and P. Taberlet. 2014. Fifty thousand years of Arctic vegetation and megafaunal diet. *Nature* 506:47–51.

Williams, C. B. 1943. Area and number of species. *Nature* 152:264–267.

Willis, K. J. 2002. Species Diversity--Scale Matters. *Science* 295:1245–1248.

Wilson, R. J. 1996. Introduction to Graph Theory. Longman, Harlow.

Woodcock, B. A., J. Redhead, A. J. Vanbergen, L. Hulmes, S. Hulmes, J. Peyton, M. Nowakowski, R. F. Pywell, and M. S. Heard. 2010. Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. *Agriculture, Ecosystems and Environment* 139:181–186.

Wright, D. H. 1998. A comparative analysis of nested subset patterns of species composition. *Oecologia* 113:1–20.

Wright, D. H., and J. H. Reeves. 1992. On the meaning and measurement of nestedness of species assemblages. *Oecologia* 92:416–428.

Yackulic, C. B., J. Reid, J. D. Nichols, J. E. Hines, R. Davis, and E. Forsman. 2014. The roles of competition and habitat in the dynamics of populations and species distributions. *Ecology* 95:265–279.

Yiu, M. L., and N. Mamoulis. 2004. Clustering Objects on a Spatial Network. Pages 443–454. Proceedings of the 2004 ACM SIGMOD international conference on Management of data. ACM.

List of References

Yuan, S., P. N. Tan, K. S. Cheruvellil, S. M. Collins, and P. A. Soranno. 2015. Constrained spectral clustering for regionalization: Exploring the trade-off between spatial contiguity and landscape homogeneity. Page 1-10. Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). Paris, France.

Zhang, H., M. Korayem, E. You, and D. J. Crandall. 2012. Beyond co-occurrence: discovering and visualizing tag relationships from geo-spatial and temporal similarities. Pages 33–42. Proceedings of the fifth ACM international conference on Web search and data mining. ACM.

Zimmermann, N. E., T. C. Edwards, C. H. Graham, P. B. Pearman, and J. C. Svenning. 2010. New trends in species distribution modelling. *Ecography* 33:985–989.

