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Prediction of Avian Species Composition from Assemblage Structure

Jing-Lun Huang

This research focuses on how capitalising on community pattern, a character of ecological
communities, could improve the predictability of community models, thus facilitating research
in conservation. Patterns of communities not only depict phenomena but are also useful for
predicting potential changes in species composition when patterns are governed by specific
mechanisms. Most conventional prediction models do not take community pattern into
consideration, despite the fact that incorporating community patterns into conventional models
for predicting species richness and composition may enhance predictability. In this thesis, |
assessed if incorporating two community patterns, nestedness and species co-occurrence, into
conventional prediction models could improve the model predictability. Nestedness is a non-
random species distribution pattern in which species in depauperate sites are contained in
species-rich sites. Co-occurrence networks categorise species assemblages that reflect
differential habitat requirements. | demonstrate that capitalising on nestedness provides a novel
approach for improving the predictive power of species accumulation curves for species

richness in unsampled areas. Specifically, while species richness is usually overestimated when



the data are inputted in random order (the conventional approach), species richness is
underestimated when the data are inputted in nested order. Taking an average of projected
species richness of these two inputting orders dramatically lowers the prediction error rate,
indicating that using nestedness in addition to random orders can greatly improve the predictive
power of species distribution curves. | also show that network analysis can improve the ability
to correctly classify site groups, which is the basis for calculating the indicator species value,
by accurately reflecting similar ecological requirements of co-occurred species. Indicator
species identified by network modularity, comparing to conventionally based on the k-means
clustering method, can more successfully assign unsampled sites to the correct species groups
and recognise representative species for the groups. These methods were tested using both
British and Taiwanese bird assemblages. Both case studies supported the above conclusions,
suggesting that the methods developed in this thesis have real promise for conservation
applications. However, further work is required to assess whether these two novel pattern-

based approaches are similarly applicable in other geographic regions or taxas.
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Chapter 1 General Introduction

Chapter 1: General Introduction -- Ecological
communities, community pattern and the theories

derived from these patterns

1.1 Ecological communities and community patterns

Community ecology is one of the major disciplines in ecology, focusing primarily on how
and why specific species occur in one area and the interactions among species. Communities
support the biodiversity that underpins ecosystem function, which regulates the ecosystem
services on which human wellbeing depends (Cardinale et al. 2012, Balvanera et al. 2014,
Allan etal. 2015). Changes to community structure therefore have repercussions on the survival
and welfare of wildlife on earth including human beings. Therefore research on community
pattern, which is one way to detect environmental change, matters. A community can be
characterised by some attributes, including diversity, species richness, species-abundance
relationships, and species composition (Morin 1999). The former three depict the numerical
relations among species and provide the basis for comparison among communities. For
example, alpha-diversity measures species richness and abundance in one site while beta-
diversity is defined as species turnover among communities (Morin 1999, Socolar et al. 2016) .
Community composition, on the other hand, is the collection of species that occur in each

community.

Community composition is typically determined by abiotic factors and biotic interactions
among species (Watt 1947). For example, species composition of a grassland community can

be affected by soil properties (abiotic factor) and competition among grass species for similar
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resources (biotic factor). Patterns of community composition will vary with the processes
involved in the formation of a community. Some well-known patterns of community include,
for instance, the distribution-abundance relationship which describes how broadly distributed
species are also more locally abundant (Holt et al. 2002); island biogeography theory which
postulates that species number is determined by habitat size and remoteness (MacArthur 1967);
and the species rank-abundance distribution which illustrates different descending distribution
slopes (e.g. broken stick distribution, geometric series, and lognormal distribution) for species
abundance in a community (Whittaker 1975). In general, the main goal of community ecology
is not only to identify patterns of community, but also to elucidate the underlying mechanisms

of these patterns.

1.2 Predictive models simulated at the community level

Patterns of communities not only depict phenomena but are also useful for predicting
potential changes in species composition. This is particularly true when patterns are governed
by specific mechanisms. If there are changes in the background mechanism, changes in the
patterns can be predicted (D’Amen et al. 2017). For example, understanding how food
resources are allocated would allow the prediction of the distribution of an animal which relies
on particular food resources. There are various approaches for constructing species distribution
models based on community patterns or the processes leading to them. Conventional methods
rely on environmental attributes for the prediction of species distributions and are currently the
most prevalent method for constructing species distribution models (Sinclair et al. 2010,
Zimmermann et al. 2010, Ruhi et al. 2014). However, it has been argued that ecological
processes, such as inter-specific interactions, are also crucial for building predictive models
(Austin 2002, Godsoe and Harmon 2012) and that the determinants of species distributions

may change over time (Skelly et al. 1999, Ackerly 2003). Different approaches have been
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utilised for building species distribution models but there are strengths and weaknesses inherent

in each method, which | review here.

1.3 Predictive models based on environmental constraints

The last few decades have seen much interest in the development of species distribution
models (SDMs) (Guisan and Thuiller 2005, Elith and Leathwick 2009, Calabrese et al. 2014,
Guillera-Arroita et al. 2015) and their application in the prediction of potential change in
distribution following environment variations such as climate or land-use changes (Dirnbéck
2003). Typically, SDMs associate environmental variables to distribution of individual species
to help reveal how environmental factors may govern distribution of wildlife (Guisan and
Zimmermann 2000). SDMs have proven effective in associating and predicting species’
distributions (Zimmermann et al. 2010) and have been widely applied to ecological and
environmental studies, such as the validation of biogeographical (Romdal et al. 2005, Randin
et al. 2006, Mclnerny and Purves 2011) and ecological (Mouton et al. 2010, Meier et al. 2010,
Godsoe and Harmon 2012) hypotheses, prediction of range expansion of invasive species
(Ward 2006, Ficetola et al. 2007, Véclavik et al. 2012), and provision of predictions and
solutions for conservation related issues, such as potential shifts in species distributions
following land use or global climate change (Pearson and Dawson 2003, Thuiller et al. 2004,
Watt et al. 2011). SDMs could also be very useful for ecological surveys and for establishing
conservation strategies. For example, the efficiency of detecting rare species (LeLay et al. 2010)
can be improved by modelling potentially suitable habitat. SDMs also help predict how species
distribution may shift with climate change, such as projection of amphibian and reptile

distributions under global warming (Aradjo et al. 2006).

SDMs are also known as environmental niche models or ecological niche models (Elith and

Leathwick 2009). The environmental attributes that constrain the distribution of a species
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reflect the preference and the realistic niche of a species (Austin 2007). The commonly used
algorithms for SDMs are generalised linear models (GLM) (Thuiller 2003, Segurado and
Araujo 2004, Pearson et al. 2006, Guisan et al. 2007, Oppel et al. 2012, Garcia-Callejas and
Araujo 2016), generalised additive models (GAM) (Lehmann et al. 2002, Thuiller 2003,
Segurado and Aradjo 2004, Pearson et al. 2006, Guisan et al. 2007, Oppel et al. 2012, Garcia-
Callejas and Araujo 2016), maximum entropy (Maxent) (Phillips et al. 2006, Guisan et al. 2007,
Oppel et al. 2012, Merow et al. 2013, Garcia-Callejas and Aradjo 2016), artificial neural
networks (ANN) (Thuiller 2003, Aradjo et al. 2006, Olden et al. 2008, Larsen et al. 2012),
classification and regression trees (CART) (Thuiller 2003, Olden et al. 2008), and boosted
regression trees (BRT) (Oppel et al. 2012, Garcia-Callejas and Araujo 2016). Developing these
models is challenging and each has its own statistical background and limitation. Some models
(especially mechanistic models that synthesise individual responses into demographic models)
require further field experiments or observations to estimate key parameters (Johnson and

Omland 2004, Guisan and Thuiller 2005, Holt 2009).

The SDM approach has two major limitations in terms of predictions. One is that these
distribution models focus almost exclusively on separate species instead of considering all
species as a whole. Detailed information on abundance and distribution of the majority of
species is thus a prerequisite for a satisfactory performance of SDM, which may not be
available for less common species or places with less extensive survey (Ferrier and Guisan
2006). Moreover, SDMs typically consider only abiotic factors and treat the study as a closed
and isolated system while neglecting the importance of biotic interactions, such as competition,
predation, or mutualism, in shaping species distribution and the reality is that ecological
systems are more or less interconnected (Cassini 2011, Gavish et al. 2017). This is similar to
the contrast between the Grinnellian niche and the Eltonian niche, with the former considering

environmental variables only (e.g. temperature, precipitation, solar radiation, etc.) but
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neglecting biotic interactions (e.g. competition, predation and parasitism) as emphasised in the
Eltonian niche (Soberén 2007). SDMs only reflect the Grinnelian but not the Eltonian niche,
thus missing important components of the full niche (Hutchinsonian n-dimensional

hyperspace).

Modelling at the community level investigates environmental correlations of biodiversity
from a different perspective than single-species modelling. While species-level modelling
could be useful for predicting occurrence of single species, taxonomic groups are typically
considered for real world conservation issues. For example, when investigating the impact of
climate change on a community containing numerous plant and animal species, the response
of each individual species may vary, and the overall effect is not simply the sum of separate
species but also includes the interactions among them. Species-level modelling may thus

become inappropriate under such circumstance (Mokany and Ferrier 2011).

Species-level data can still assist community-level models because: (a) species-level data
can serve as groundwork, providing individual distribution maps to be assembled and analysed;
(b) predictors for each individual distribution can be established first, then with the species-
level base maps assembled; or (c) species-level data can be applied to disparate statistical
models in order to detect the predictor variables and ensemble at the same time (Ferrier and
Guisan 2006). However, none of these methods could accurately predict community
composition (Baselga and Aradjo 2010). Moreover, these three predicting methods rely largely
on environmental factors, which will lead to low predictability when environments cannot
reliably reflect species distribution. Furthermore, exclusion of biotic factors may further reduce

predictability of these models.
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1.4 Community-level modelling based on interspecific interaction

Biotic interactions are usually neglected in classical SDMs (Elith and Leathwick 2009,
Kissling et al. 2012, De Aradjo et al. 2014). Predictive models with limited incorporation of
biotic interactions might fail to predict the consequences of global change for species and
ecosystems (Guisan and Thuiller 2005, Gilman et al. 2010, Kissling et al. 2012, Clark et al.
2014). Different from species distribution modelling based on environmental factors, some
ecologists attempt to predict distribution of species by focusing on interspecific interactions. A
classic example of how community composition can be affected by interspecific interaction is
Robert Paine’s observations from the tidal pools of the Pacific rocky shore that presence of top
predators could lead to the coexistence of its prey (Paine 1966). Starfish (Pisaster ochraceus)
is a generalist predator preying on most mollusc species in the tidal pool. With intermediate
predation intensity the biodiversity is the highest since no species can dominate the resources,
thus leading to coexistence of several species. However, species richness is greatly reduced
after manual removal of starfish (Paine 1974). This example, termed keystone predation
(Gilman et al. 2010, Rudolf and Rasmussen 2013), demonstrates how biotic factors such as

predation could shape community composition.

Besides predation, competition has also been included in the modelling of species
distributions. Diamond (1975) stresses the importance of competition for species assemblage,
which leads to much debate on the generality of this theme (Gotelli and McCabe 2002,
Yackulic et al. 2014, Rollinson et al. 2016). According to Diamond, related species would be
less likely to coexist due to competition, thus fewer species are likely to occur at a given site
than by chance. Leathwick and Austin (2001) evaluated the importance of competition for the
distribution of New Zealand tree species and found that including competition leads to higher

predictability in species distribution model than relying simply on environmental factors. The
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model with inclusion of competition also helps explain disjunct species distributions in the

middle of the temperature gradient.

Examples of including biotic factors in SDMs, such as applying Lotka—Volterra models
(Solé and Bascompte 2006, Holt and Barfield 2009), population dynamic models (Mutshinda
et al. 2009, 2011), epidemiological models (Keeling 2001, Estrada-pefia and Fuente 2016),
multivariate regression models (Banerjee et al. 2008, Latimer et al. 2009, Ovaskainen et al.
2010, Ovaskainen and Soininen 2011), trophic interaction distribution model (Trainor et al.
2014) and dynamic vegetation models (Lischke et al. 2006, Prentice et al. 2007) can be found

in the literature (Kissling et al. 2012).

A contrasting approach is neutral theory (Hubbell 2001), which posits that the role of
trophically similar species in the assembly of ecological community is neutral (equal). The
distributions of species are determined by chance and are unrelated to their niche. It is a null
simplification of competitive interactions that works well for tropical forests in particular —
random processes are more important than deterministic differentiation. (Hubbell 2001, 2005,
2006). Neutral theory has been repeatedly investigated, but is not validated in many empirical
studies (McGill and Collins 2003, Chave 2004). However, neutral theory provides a valuable
baseline for a comparison with empirical data or other models. If a set of data is not consistent
with prediction from a neutral model, some biological factors might be needed to be considered

(Rosindell et al. 2011).

Despite recent advances, translating species’ niches into geographic distributions remains a
complex and difficult task (Holt 2009), and the modelling of spatio-temporal dynamics in
multispecies communities remains a significant challenge in ecology (Solé and Bascompte
2006). Modelling large spatial and temporal datasets with multiple interacting species, coupled

with spatially (and maybe temporally) varying parameter estimation and non-stationary



Chapter 1 General Introduction

covariance structures clearly pose considerable challenges for statistical modelling. Indeed, the
complexity of multispecies models renders estimating all parameters at the same time
impractical (Kissling et al. 2012). The key is therefore to reduce the complexity and there are

established methods to achieve this goal.

1.5  Community-level modelling community structure based on

quantitative analysis

Quantitative characterisation of community structure involves interpretation of biological
survey data from a community perspective. Recognising and analysing community structure
can help unravel mechanisms (such as environmental gradients) underpinning community
composition and allows the prediction of how composition will change (Wiegand et al. 2003,
Schroder and Seppelt 2006, Grimm and Railsback 2012). Many indices have been developed
(Stone and Roberts 1990, Atmar and Patterson 1993, Koleff et al. 2003, Podani and Schmera
2011), including nestedness and beta-diversity, which are commonly applied to depict
community structure. Nestedness illustrates an ordered decrease in species richness among
sites caused by some non-random factors (species loss), while beta-diversity stresses how
species are replaced among different sites (species turnover). These two characteristics, species
loss and species turnover, are essential for depicting community structure. Therefore, it is often
sufficient to use only these two indices to distinguish two communities with distinct structures

(Baselga 2010).

15.1 Nestedness

The concept of nestedness was firstly proposed by Patterson and Atmar (1986) to explain
the peculiar insular fauna structure: island species abundances decrease with distance from the

continent; moreover, species on distant islands are a subset of species on proximate ones. A
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perfect nested matrix indicates that a community is arranged in an absolute mathematical order,
in which species within a depauperate site also occur in a species-rich site and thus constitute
a sequentially shorter ladder. Therefore in a strongly nested community, species composition
is predictable from knowledge of the rare species, since any samples from the community taken
at different points in space or time tend to share all of the more common species (Doncaster et
al. 2016). This nestedness index took the idea of matrix system disorder or entropy. The
relationship between entropy and heat led the nestedness index to quantify matrix randomness
in terms of temperature (Norton et al. 2004), which ranges from 0-100°, with T=0° representing
a perfect-nested matrix (minimum entropy) and T= 100° absolute randomness (maximum
entropy) (Rodriguez-Gironés and Santamaria 2006). This relationship is like the three phases
of water, the liquid phase scaling between phases of maximal structure as ice and maximal
disorder as vapour, and low nestedness reflects high turnover of species in space or time
whereas high nestedness means ordered accumulation or loss (Doncaster et al. 2016). The
concept of nestedness has been widely applied to terrestrial communities (Atmar and Patterson
1993), including small mammals (Cutler 1991), birds (Mac Nally et al. 2002), reptiles (Fischer
and Lindenmayer 2005), and invertebrates (Fleishman and Mac Nally 2002). Various
hypotheses have been proposed to explain the proximate cause of nestedness, including passive
sampling (Fischer and Lindenmayer 2002, Higgins et al. 2006), neutrality (Ulrich and Zalewski
2007), colonization (Patterson 1990, Cook and Quinn 1995, McAbendroth et al. 2005),
extinction (Patterson and Atmar 1986, Wright and Reeves 1992, Bruun and Moen 2003,
Wethered and Lawes 2005), nested habitat (Brualdi and Sanderson 1999, Fleishman and Mac
Nally 2002), and habitat hospitability (Bloch et al. 2007). Among these, the extinction
hypothesis, which states that differential local extinction rate among species is the main driving
force for nested structure, attracts the most attention (Fleishman and Murphy 1999). Although

the mechanisms underlying nestedness patterns are not well elucidated, pattern of nestedness
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are frequently investigated in studies of species conservation. For example, with a further
decrease in habitat size or with a further deterioration in habitat quality, the remnant species
are often a non-random subset of the total pool species, and are generally dominated by
generalist species that can tolerate more degrees of environmental variance (Cutler 1991,
Fleishman and MacNally 2002, Fleishman et al. 2002, Baber et al. 2004, Hylander et al. 2005,

Schouten et al. 2007, Hill et al. 2011).

1.6 Applying community orderliness to species richness prediction

Rather than focusing on environmental or intraspecific factors, an alternative approach to
predicting community composition is based on intrinsic community pattern. This approach has
the advantage that it avoids involving specific processes that may not yet be known. For
example, the relationship between species range size and species diversity helps reveal non-
random pattern in community structure (Arita et al. 2008). A negative relationship occurs
between species diversity and species distribution range of small mammals in North America
based on species presence-absence matrix. Species with restricted distribution (rare species)
tend to occur in sites with higher species diversity. In other words, “hotspots” that contain more
species are mostly the result of presence of more rare species. Another example is that structure
indices such as community alpha- (species richness in sites at a local scale) and beta-diversity
(species turnover between regional or local species diversity) might potentially be used to
predict community composition derived from limited ground survey data (Mokany et al. 2011,

Prober et al. 2015, Socolar et al. 2016, Gavish et al. 2017).

From a different perspective, some analyses utilise the property of community structure such
as alpha diversity or beta diversity, to predict the pattern underlying the structure. For instance,
species accumulation curves use the rate of species accumulation (species number per sampling

area, performance of beta-diversity) to predict the overall species richness (the point value of
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a species pool, one common index of alpha-diversity) based on extrapolation of accumulation
curve to an asymptote. Species richness is the basic outline of a community, providing
fundamental measurement of community and regional diversity. It is the foundation of many
ecological models and conservation strategies. In spite of its importance, ecologists have not
always appreciated the influence of abundance and sampling effort on estimated species
richness (Gotelli and Colwell 2001). Information on species richness relies mainly on field
surveys and requires significant sampling effort. Implementation limitations, such as the
difficulty in accessing remote areas and the high costs in surveying a large region, has rendered
the determination of the most efficient and reliable sampling scenario a priority in community
ecology research. Indeed, several methods have been designed to achieve this goal (Bunge and
Fitzpatrick 1993, Colwell andCoddington 1994, Chao and Shen 2004, Gotelli et al. 2009, Chao
and Jost 2015a). In recent decades, there have been many attempts to estimate species richness
based on species accumulation curves, where species richness is projected based on its
relationship with sampling effort or area. With an increase in sampling effort, the number of
species initially increases, but typically reaches an asymptote (Soberdn and Llorente 1993,
Ugland et al. 2003). The steepness of the curve specifies species dissimilarity among sampled
areas, which is also useful in estimating species abundance in unsampled areas. In addition, a
slight raise in extended tail that typically occurs in species accumulation curves suggests the
existence of undetected rare species. An asymptote in the curve indicates that the increase in
the species richness of an area is not unlimited, thus making extrapolating total richness from
species accumulation curve possible (Morin 1999). Finally, as the asymptote represents the
saturation point in species richness, it can help determine the least sampling effort for

estimating total richness without all areas being sampled.

One area that has received little attention to date is to investigate how well general insights

into community structure can be used to predict species richness, based on the species presence-
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absence orderliness. For example, nestedness describes community structure by sorting species
richness non-randomly from species-rich to species-poor area (Smith and van Belle 1984,
Patterson and Atmar 1986, Gotelli 2000, Podani and Schmera 2011, Ricotta and Pavoine 2015).
Nestedness might be helpful for improving the predictive power of the species accumulation
curve because a nested-order curve includes proportionally more uncommon species in the
initial samplings, followed by a decelerating rate of increase in species richness due to fewer
uncommon species remaining undetected. Therefore the curve is a constantly upward convex
shape with a flattened tail. The first data chapter of my PhD (Chapter 2) focuses on how
nestedness structure in a community can improve the predictability of species richness from

species accumulation curves.

1.7 The importance of species identity in community composition

prediction

Mapping community nested structure gives the ‘big picture’ of how community patterns
vary spatially. Although nested structure improves predictability of species richness in an area
(see Chapter 2), the species composition in specific sites within the area remains unknown.
Information on the consistency in species composition, particularly the repeated co-occurrence
of certain species group, is helpful for the prediction of unknown species because the
observation of one or more common species can predict the occurrence of other species within

each group.

Braun-Blanquet's work (1932) on plant sociology was one of the first attempts to classify
communities efficiently (Poore 1955). Fidelity, how frequently a species occurs in a specific
community, is critical for assigning species into distinct communities (Braun-Blanquet 1932).
A species with higher fidelity means it occurs more frequently in one community and is less

likely to be found in the other community. This method sorts the community member based on
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abundance/dominant scoring (AD score) and the community is represented by a combination
of species with the highest score. Subjectivity and arbitrariness in the Braun-Blanquet’s scoring
system can lead to biased results (Podani 2006). Nevertheless, the idea of species occurrence
probability proposed by Braun-Blanquet is still a useful concept for predicting community

composition, and lends itself to more quantitative analysis via network analysis.

Network analysis is ideal for analysing complicated relationship among members within
communities. Nodes and edges in a network represent members in the community and their
interrelations, respectively. Network analysis is based on mathematical algorithms of graph
theory and can disentangle complicated relationships even with large amount of data and
interactions, so is widely adopted in various academic disciplines such as sociology,
information science and biology (Newman 2010). For example, network analysis is adopted in
protein research for identifying amino acids co-expressing in the same metabolism pathways
(Jeong et al. 2001) and in neural sciences for classifying brain cells and ganglia according to
probabilities of participating in the same brain function (Voytek and Voytek 2012). In
ecological research, network analysis helps clarify relationship among predators and prey in
the food web (Dunne et al. 2002, Krause et al. 2003, Navia et al. 2010, Kéfi et al. 2015) or
plant and animal interactions in pollination networks (Olesen et al. 2007, Devoto et al. 2012,
Olito andFox 2015, Biella et al. 2017). These studies all involve numerous members (nodes)

and complex relationships (edges).

Based on Braun-Blanquet, a community can be defined by simultaneous attendance of the
same event (co-occurrence of species in the same location) (Braun-Blanquet 1932, Podani
2006). That is, species with more frequent co-existence should belong to the same community.
One type of network analysis termed an affiliation network is capable of sorting large amounts

of species data according to this rule. An affiliation network is one kind of two-mode networks
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which contain two sorts of nodes. Therefore this type of network describes not only the direct
linkage between members but also the events these members “attend” (biologically, events
attended correspond to the habitat that species occupy) and the relationship among events.
Once this member-event relationship is projected into a one-node network that contains only
member relationships, the co-membership through attending to the same event will be revealed.
When applied to ecological research, such projections can help categorise communities based

on species co-occurrence.

1.7.1 Network and network modularity

The first step to define a community network structure is to identify subgroups in a network
and there are numerous ways to do this, based on different concepts and algorithms (Guimera
and Amaral 2005, Fortunato 2010) derived from graph theory (Wilson 1996, White and Harary
2001). Nodes with more frequent links indicate cohesion of these nodes. Nodes that link to
each other with at least one path are defined as a component, which is the most essential part
of a subgroup (White and Harary 2001, Moody and White 2003). In a graph component, all
nodes are linked to each other in this component by at least one path. A path is the complete
linkage route between two nodes. If the path length is larger than one, it means linkages
between two nodes are going through other nodes. For example, there are two components in
Figure 1, comprising nodes {1, 2 and 3} and {4, 5, 6 and 7} respectively. Component {1, 2 and
3} is termed a strong component because members all directly link to each other. However
component {4, 5, 6 and 7} is a weak component because it contains linkages with a path length
greater than one. The edge between node 3 and 7 is the only route connecting these two
components and is regarded as a bridge. Calculating relationships among all nodes and edges

allows sub-groups to be identified.
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Figure 1. 1 A sample network graph composing two components, {1, 2 and 3} and {4, 5, 6

and 7}

One approach for identifying subgroups is to calculate the network modularity (Newman
2004). This concept has been adopted in ecological research to reveal intricate interactions and
to detect heterogeneous structure within ecological communities or ecosystems (Olesen et al.
2007, Genini et al. 2012). Modularity not only measures linkages within a module but also
considers linkages among modules. A module is a group of nodes, and within-module nodes
possess a higher “degree” (the sum of edges link to the node) than other members in the same
module but a lower degree to members belonging to other modules (Blondel et al. 2008,
Newman 2010). In each module, the node with the highest degree represents the most dominant
member (i.e. the member that links to most other members). This node is called a module hub
and can efficiently indicate the presence of other members in this module (Guimera and Amaral

2005, Olesen et al. 2007).
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1.8  Applying community identification to community composition

prediction

Compared to niche modelling that requires environmental attributes, using species
information solely to predict species composition is based on the assumption that when a group
of species is closely associated with specific ecological requirements, this group of species can
be taken as “indicator species” to predict characteristics of unsampled sites (Harms et al. 2001,
DeCéceres and Legendre 2009). A method developed by Dufréne and Legendre (1997), called
“indicator species value”, stresses species-habitat associations. Dufréne and Legendre’s
indicator species are selected based on two characteristics: 1) the degree to which the species
is associated with specific habitat. The ideal situation is that a species only occurs in one
specific habitat, thus reflecting its ecological preference or requirement; 2) the abundance of
the species; that it is abundant enough to be effective as an indicator. Although a rare species

can fit the first requirement, it would be hard to observe and therefore not a useful indicator.

Identifying indicator species requires classifying sites (or samplings) into different habitat
types that each contains unique species composition. Each species is then assigned an indicator
value for each habitat type. For instance, if three habitat types are classified, each species will
have three indicator values corresponding to each of the three habitats. Indicator species for
each habitat are defined as the species with the highest indicator value. However, the site
groups are typically classified based on a clustering method especially non-hierarchical method
such as k-means clustering which is a descriptive method whose robustness is hard to validate.
It is also an indirect method, relying on distance (difference) between species rather than
directly measuring co-occurrence patterns (Milligan 1980, Legendre and Legendre 2012).
Clustering is also sensitive to the double-zero issue, which is very common in ecological

datasets and may cause group misclassification (Dufréne and Legendre 1997, Legendre and
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Legendre 2012). The double-zero issue happens when comparing two site with the presence or
absence of specific species. Presence in both sites of species indicates resemblance of sites, but
absence in both sites does not necessarily represent resemblance because the absence of species
in two sites may be due to different reasons. Distance metrics calculated in conventional
clustering methods cannot reflect this fact. In comparison, a direct measure of species co-
occurrence could improve the efficiency of the indicator species method. To improve efficiency
of site group classification, site groups based on a modularity algorithm would be a substitute
for the clustering groups in the indicator species analysis, with the merit of directly measuring
species co-occurrence. Although species co-occurrence has been investigated before, this is the
first study to quantify species co-occurrence with network analysis and to apply network-based
co-occurrence groups for indicator species analysis. Hence for the second data chapter of my
Ph.D (Chapter 3), | apply network analysis and modularity detection techniques for identifying

indicator species.

1.9 Utilising orderliness of structure to predict species richness and

composition

Knowledge on species richness and species composition is essential for the study of
community ecology and is also critical for conservation biology and in conservation policy-
making. Community pattern is a defining character of ecological communities and is also
useful for predicting potential changes in species composition. Incorporating information on
community pattern could improve the effectiveness of predictive community models, thus
facilitating research in conservation. My PhD research focuses on how community structure
with specific pattern (e.g. the non-random order of nestedness and the structure identified by
network analysis) can be applied to improve predictability of conventional mathematic models

that focus on community structure, such as species accumulation curve (beta-diversity) and
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indicator species index (alpha- and beta- diversity). The species accumulation curve is applied
to predict overall species richness. In my PhD | show that because nestedness represents
orderliness in a community, it is feasible to utilise nestedness analysis to improve the
predictability of species richness in unsampled areas (Chapter 2). | show that nested structure
in a community could improve predictability of community richness and composition based on
a non-random mathematical relationship. In the second part of my thesis, | focus on prediction
of species composition. The commonly applied indicator species value requires classification
of habitat types that reflect ecological requirements of individual species. | show that network
analysis can help produce a better classification of species (Chapter 3). British bird data are
utilised to develop the methodologies in chapters 2 and 3 due to the quality of the data available.
The last part of my PhD dissertation (Chapter 4) evaluates these methodologies in another
island — Taiwan — as a test of the extent to which my findings in Britain can be applicable in a
tropical setting. Overall, the methodologies | develop for my PhD study have the potential to
increase predictability of the two components (Species richness and species composition) that
are essential for defining a community and has important applications for conservation research.
The two datasets applied in the thesis, British bird data and Taiwanese bird data, include only
a single taxon (i.e. birds). Under such a circumstance, using the term ‘assemblage’ is more
appropriate than community. For the following chapters, assemblage is therefore used in lieu

of community.
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Chapter 2: The utility of nestedness structure for

predicting species richness

2.1 Abstract

A species accumulation curve is frequently applied to predict the overall species richness
of a given area when resources for surveying the whole region are unavailable. It typically
involves plotting a species accumulation against sampling effort, choosing a mathematical
function to fit the curve, and extrapolating final species richness based on the function. Both
the order of inputting in sampling data and the selected function affect the shape of the curve
and the predicted species richness. Conventionally a randomisation process is used to minimise
the prediction error caused by the order of data input. However, this randomisation process
means that useful additional information on community structure is lost that may increase the
predictive power of species accumulation curves. In this study, the degree to which
incorporating nested structure (that is, inputting data from the most species rich to species poor
sites, rather than randomly) improves the predictive power of species accumulation functions
was assessed, with British avian data as an example. Two methods of ordering input data
(randomly and based on nested structure) each for three levels of sampling efforts (10%, 20%,
40%) were fitted to three species accumulation curves functions (negative exponential,
logarithmic, and Clench) under two spatial scales (the whole British island and 100 km square).
While inputting data based on nested order had similar performance as random order under
British island scale, inputs based on nestedness order detectably increase the predictability of
total species richness at the 100 km square scale, especially coupled with the logarithmic
function. This is probably because there is only one possible curve when ranking sites by nested

order (starting with the most species-rich sites) whereas there are many possible curves when
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ranking sites based on random order. This study demonstrated that sampling according to
nested order is generally more favourable than when based on random order. More studies
considering different species and study site characteristics are needed to test for the general

applicability of using nested order in species accumulation curves.
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2.2 Introduction

2.2.1 Estimating species richness and species accumulation curves

Species richness provides a basic outline of a community and is an essential piece of
information for species conservation. Information on species richness relies mainly on field
surveys and requires significant sampling effort. Implementation limitations, such as the
difficulty in accessing remote areas and the high costs of surveying a large region, have
rendered the determination of the most efficient and reliable sampling scenario a priority in
community ecology research. Indeed, several methods have been developed to estimate species
richness based on individual abundance (individual based) or presence-absence data (sample-
based) (Bunge and Fitzpatrick 1993, Colwell and Coddington 1994, Gotelli and Colwell 2001).
These have mainly included species accumulation curve-fitting (Soberon and Llorente 1993,
Diaz-Francés and Soberdn 2005), parametric model fitting (Hortal et al. 2004, Connolly et al.
2009, Engen et al. 2011), nonparametric extrapolation from species accumulation curves
(Colwell et al. 2012, Chao et al. 2014), or asymptotic estimators (Colwell and Coddington 1994,
Chao and Shen 2004, Cardoso et al. 2014). Among these four methods, when only presence-
absence data are available, the accumulation curve-fitting method is the most commonly

applied approach.

There have been many attempts to estimate species richness based on species accumulation
curves. Species accumulation curves take advantage of the relationship between species
richness and sampling effort or area. As sampling effort is increased, the number of species
initially increase, but typically reaches an asymptote (Soberdn and Llorente 1993, Ugland et al.
2003). The steepness of the curve can be used to quantify how rapidly species dissimilarity

changes between sampled areas, as well as to estimate species richness in non-sampled areas.
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In addition, a slight raise in extended tail that typically occurs in species accumulation curves
suggests the existence of undetected rare species. As the species richness of an area will not
increase infinitely with increasing sampling effort, the species accumulation curve eventually
reaches an asymptote and once this is reached, the total species richness of the area can be
predicted (Morin 1999). Finally, as the asymptote represents the saturation point in species
richness, it can help determine the least sampling effort for estimating total richness in other,

ecologically similar regions.

A species accumulation curve can be constructed based on one-time sampling data or mean
value of multiple samplings; the latter is called a rarefaction curve (Gotelli and Colwell 2001).
The one-time accumulation curve uses original values collected randomly from a series of
samples or along a gradient. However, the shape of the curve is largely determined by the order
of adding additional samples (Ugland et al. 2003, Gray et al. 2004). For example, samples
entered in the order of ascending richness leads to a smoothly growing curve while samples
entered in the order of descending richness results in a steeply upward curve. Therefore,
repeatedly randomly selecting the order in which samples are added, and building a curve based
on the mean value of these randomly ordered sampling curves (that is, rarefaction) is necessary

to eliminate the arbitrariness of one-time sampling (Colwell and Coddington 1994).

Species accumulation (or rarefaction) curves allow for the prediction of undetected species
through the generation of a prediction function based on curve fitting and extrapolation. Again,
the shape of the extrapolated species accumulation curve affects final predicted results and
relies on choosing the appropriate equation for extrapolation. Soberon and Llorente (1993)
proposed three prediction functions - exponential, logarithmic and Clench functions. The
exponential (specifically negative exponential) (Miller and Wiegert 1989) and logarithmic

(Gleason 1922) functions have long been adopted for fitting species accumulation curves
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(Tjerve 2003, Dengler 2009). The Clench function originates from the Michaelis-Menten
kinetics function in biochemistry, and was later applied to species accumulation curves by
Clench (1979). The shape of the species accumulation curve determines which prediction
function is most appropriate. The logarithmic curve is a continuously growing, concave
downward curve without an upper asymptote while the negative exponential and Clench curves
are saturation curves that decrease at an increasing rate until finally reaching an asymptote. The
latter two curves vary in their rate of decrease and thus different turning angles, which is where

the tangent slope along the curve has the greatest shift.

It is critical but difficult to select an appropriate fitting function for extrapolation because
there is no universal recipe for deciding on which function to use (Soberon and Llorente 1993).
A thorough understanding of the biological process governing a specific community is helpful
for choosing the most appropriate function (Tjgrve 2003). For instance, Thompson et al. (2003)
suggested that a species accumulation curve was influenced by the proportion of common to
rare species in a community. A community with more common species increases more rapidly
in the early sampling stage, leading to an initially steep accumulation curve and then saturates
(Thompson and Withers 2003). In contrast, a community with more rare species results in an
accumulation curve with flatter slope and prolonged period of slow increase until reaching an
asymptote. Therefore, studying community structure can potentially improve the predictive
power of species accumulation functions as it provides additional information on orderliness

and dynamics of communities that simple species accumulation curves fail to capture.

2.2.2 Community structure and nestedness subset

Quantifying community structure can be defined as considering biological survey data
from a community perspective. For example, indices such as beta-diversity and nestedness are

commonly adopted to describe the dissimilarity along sites. Recognising and analysing
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community structure can help reveal mechanisms (such as environmental gradients)
underpinning community composition and allow the prediction of how species composition
will vary based on these mechanisms. Many indices for quantifying community structure have
been developed (Stone and Roberts 1990, Atmar and Patterson 1993, Koleff et al. 2003, Podani
and Schmera 2011), including nestedness. The concept of nestedness was first proposed by
Patterson and Atmar (1986) to explain a common phenomenon in the structure of insular fauna:
species richness on islands decreases with distance from the continent; moreover, species on
distant islands are a subset of those on proximate ones. Nestedness takes account of both
species richness and species occurrence and is calculated through arranging community data
into a matrix of study sites and species presence-absence data for each site. By arranging
species and sites in a matrix, species composition can be compared among sites or the
frequency of occurrence can be compared among species (Ulrich et al. 2009). A perfect nested
matrix indicates that a community is arranged in an absolute mathematical order, in which
species within a depauperate site also occur in a species rich site and thus constitute a
sequentially shorter ladder (Figure 2. 1). Owing to such a unique order, a nestedness index can
potentially improve predictability of species accumulation curves, because no other indices (ex.
beta-diversity) provide similar information, but such a novel idea has never been applied for
enhancing species richness predictability. Also by using this index, it should be possible to
stabilise the shape of accumulation curves in a way other than using the conventional
randomisation method, which can possibly lose biological information inherent in community
structure. Because the uncertainty in predicting species number based on species accumulation
curve largely comes from the randomisation processes (Gray et al. 2004) and the initial stage
of curve shaping (Bebber et al. 2007), incorporating nested structure should decrease the

uncertainty of species accumulation curve and increase the accuracy of predictive results.
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Community nestedness can be represented with several indices but all involve counting
the “surprises’ in the study matrix against a perfectly-nested matrix (Ulrich et al. 2009). Here
the “surprise’ represents ‘unexpected absence’ and ‘unexpected presence’ - species that would
be present/absent from the site in a perfectly nested assemblage. For example, the index
“nestedness temperature” is calculated by identifying unexpected absences in species-rich site
or unexpected presences in a species-poor site. By summing these ‘surprises’ in each
community sub-unit, the extent to which the community is perfectly nested can be determined
so that a higher temperature represents more ‘surprises’ and less orderliness in a community.

In other words, a higher temperature indicates lower nestedness.
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Figure 2. 1 A sample matrix representing a theoretical community of species A to Z in sites 1
to 26. Grey cells indicate which species are contained in each site. This virtual community
provides an example of a perfectly nested community. For example, species U occurs only in
the 6 species richest sites (sites 1-6).
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2.2.3 Utilising nestedness to predict species richness

As mentioned earlier, the idea presented here is that the predictive power of species
accumulation curve can be enhanced by a better understanding of the community structure. As
a measure of community structure (orderliness of the community), nestedness could be helpful
for improving the predictive power of the species accumulation curve when there is a moderate
degree of nestedness in the community. This is because in a perfectly nested community, the
site with the greatest species richness includes all species and each of the other sites is a non-
random subset of the most speciose site (Wright 1998). Figure 2.1 gives a theoretical example.
The species accumulation curve of a perfectly nested assemblage is very steep, but then level
off very quickly because no more new species can be added after the first site, as the first site
contains all species in the community. Such a species-rich to species-poor order will
consistently result in an asymptotic curve with little variation. In other words, incorporating
nested orderliness results in a more consistent species accumulation curve than the other
commonly used rarefaction curve, which is derived from randomised multi-sampling data
(Soberén and Llorente 1993, Scheiner 2003). For example, when based on nestedness order,
sampling the example matrix (Figure 2. 1) only by sites of even numbers produces a curve
similar to when sampling all sites. If species accumulation curves based on nested order do
indeed give a more consistent curve shape than rarefaction curves, this could mean that such
nestedness-based species accumulation curves also have higher predictive accuracy than the

standard rarefaction curve approach.

224 Aim of this study

This study aims to evaluate whether building species accumulation curves based on
ordering samples by their nestedness structure improves their utility for predicting species

richness. British avian assemblage data (Gibbons et al. 1993) were examined because it
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contains a complete avian species list for Britain which provide a solid base for model
validation (Ugland et al. 2003). In this study, differences in the predictive accuracy of three
species accumulation curve functions (exponential, logarithmic, and Clench functions;
Soberon & Llorente 1993) based on random vs. nested order in the addition of the sampling
sites were compared. Three levels of sampling efforts (10%, 20%, or 40% of all sampling sites)
were selected as the cut-off points for a comparison of accuracy in predicting species richness.
All analyses were run at two spatial scales (whole of the British mainland vs. 100 km squares,

see Methods) to evaluate whether predictive power is scale-dependent.
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2.3 Methods

2.3.1 Avian data

The British Trust for Ornithology (BTO) 1988-1991 survey data (Gibbons et al. 1993)
cover Britain and Ireland. In this study, only the British data were used, which were divided
into 55 squares (Figure 2. 2) and each 100 km square was further divided into at most one
hundred sub-squares (10 km x10 km). The entire BTO dataset contains 273 avian species in
2830 sub-squares. Presence-absence data for every species are available at the sub-square level
and were inputted in a species-site matrix. The sub-square is the basic unit for the analyses of

community structure of the British avian assemblage.
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Figure 2. 2 Arrangement of British 100 km squares (http://www.bto.org/volunteer-

surveys/birdatlas/taking-part/correct-grid-references/know-your-place)

28


http://www.bto.org/volunteer-surveys/birdatlas/taking-part/correct-grid-references/know-your-place
http://www.bto.org/volunteer-surveys/birdatlas/taking-part/correct-grid-references/know-your-place

Chapter 2 Methods

2.3.2 Calculating nestedness

Nestedness temperature, a measure of community nestedness, takes unexpected presences
and unexpected absences into account (Ulrich and Gotelli 2007, Ulrich et al. 2009). It is
represented by a normalised sum of squared relative distance of absences above and presences
below a hypothetical isocline that separates occupied from unoccupied areas in a perfect nested
matrix (Atmar and Patterson 1993). According to Atmar and Patterson (1993), the calculation
of nestedness is based on the unexpectedness, which is measured by the distance an unexpected
presence or absence of a species lies in the matrix as compared to the perfectly nested matrix.
Unexpectedness runs diagonally along a line running parallel to the skew diagonal. For a matrix

with n species and m sites, the local unexpectedness (ujj) is calculated as:

dij\*
w-(8)

Dj; is the length of the full line running through the jth species on the ith site and djj is

the specific length along that line. The total unexpectedness (U) is then represented by:

_ 1
mny;¥juij

A perfectly ordered matrix should have no unexpectedness, thus U=0, and a matrix with
maximum unexpectedness always has U,,,, = 0.04145. The nestedness temperature T is then

defined as:
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100

Um ax

T ranges from 0-100°, with T=0° representing a perfect-nested matrix and T= 100° absolute

randomness.

Ordering a presence-absence matrix in nested order therefore means re-arranging it into a
new matrix where sites are organized from the most species-rich to the most species-poor. The
nestedness of the avian assemblage of all of Britain and of each of the fifty-five 100 km squares
was calculated as a first step in understanding whether using nested order can help improve the

predictions of species accumulation curves.

2.3.3 Species accumulation curve and extrapolation

2331 Orders of sampling sub-squares for species accumulation curves

British avian assemblage data were arranged in three different types of order in terms of
adding in sampling sub-squares: 1) random order with the mean of 100 permutations
(rarefaction curves; sensu Gotelli & Colwell 2001); 2) nested structure — that is, ordering
sampling sub-squares from the most species-rich to the most species poor. 3) reverse nested
structure — that is, ordering sampling sub-squares from the most species-poor to the most

species-rich.

2.3.3.2 Functions for fitting species accumulation curve

Three functions for fitting species accumulation curves were compared for all three types

of orders of sample sub-squares (random, nested, reversed nested) to evaluate their accuracy
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in terms of predicting overall species richness of Britain and of each 100 km square. These

three functions are based on Soberén & Llorente (1993):

Negative exponential function: y = a x (1 — e"%) (Equation 1)
Logarithmic function: y = a + b X log(x) (Equation 2)
Clench function: y = lj’;x (Equation 3)
In which y is the species number and x the number of sub-squares.
2.3.3.3 Calculating the predictive power of species accumulation curve

The three functions mentioned above were used for extrapolating species richness in non-
sampled areas. The ability of the three species accumulation functions to predict total species
richness across Britain and within each 100 km square was compared based on three levels of
sampling effort: 10%, 20%, and 40% of sub-squares from each 100 km square (termed 10%,
20% and 40% sampling data henceforth). For example, for the 20% sampling effort, 20% of
sub-squares in each 100 km square were randomly selected to form 20% sampling data. This
selected sampling data was randomly shuffled 100 times to calculate a mean value (random
order) or rearranged according to a nestedness order (nestedness order). This procedure was
conducted in two spatial scales to see whether predictability is scale dependent: the whole
British mainland and within each of the fifty-five 100 km squares in Britain. At the scale of
Britain as a whole, randomly selected data from each of the fifty-five 100 km squares were
pooled together. For example, for 20% sampling data, 20% sub-squares from each 100 km
square were selected and combined to form the total 20% sampling data of Britain. For the 100
km square scale, 20% of each sub-square were selected and predictability then assessed
separately for each of the fifty-five 100 km squares. The three percentages were chosen based

on the minimum sub-squares needed for estimating 90% and 100% of all species
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(approximately 20% for 90% of species and 80% for 100% of species, detail see Appendix B).
However as 80% sampling is unrealistic in most instances, comparisons were conducted

starting at 10% sampling effort (half of 20%).

To summarise, each of the datasets (two orders of sampling each for three levels of
sampling efforts) was fitted to three curve functions (i.e. negative exponential, logarithmic and
Clench) under two spatial scales (whole British mainland and 100 km square). The procedure
of randomly selecting samples or re-arranging according to nestedness order and then
extrapolation from fitting curves was repeated 50 times (therefore 50 random samples) and
each combination of two orderliness and three levels of sampling efforts for three functions, in
two different geographic scales), to access a mean predicting value for species richness. The

inaccuracy in the prediction of total species richness, that is, error rate, is defined as:

1-(predicted species richness/observed species richness)

A positive value indicates an underestimation while a negative value indicates an
overestimation of results. The error rate was correlated with nestedness temperature (at 100 km
square scale) using Spearman’s correlation test to assess any association between nestedness
temperature and error rate. Error rates (absolute value) with nestedness versus random order
data were compared using t-tests (compare 50 repeats in whole British mainland) and paired t-
test (compare mean results in each 100 km square). The calculation and statistical procedures

are conducted in R (R Development Core Team 2013).
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2.4 Results

24.1 Nestedness of British avian assemblage

The nestedness temperature of Britain as a whole for avifauna is 21.24° while the
temperature for each of the 55 squares (100 km x 100 km) ranges from 1.58° to 26.95°, with >40%
squares with a temperature in the range of 20°-25° (Figure 2. 3). These indicate a moderate
level of nestedness (against the 0° to 100° scale) for Britain and most of the 100 km squares
(Wright 1998). Figure 2. 4 illustrates an overview of the presence-absence matrix for the entire
British avian assemblage (Appendix A provides detailed axes information for the presence-
absence matrix and gives the site and species lists respectively in nested order) and one 100
km square from southern England with a typical nestedness temperature (23.85°). Species
generally cluster in the upper-left corner but are more scattered in the lower-right side,
indicating a trend of nestedness, with species in more species rich sub-squares (on the top)
encompassing those in depauperate sub-squares (on the bottom). The isocline delineates the
hypothetically perfect nested structure (Figure 2. 4). The white cells above the isocline are the
“unexpected absences”, while the red cells below the isocline are the “unexpected presences”;

both reduce the nested structure and increase the nestedness temperature.

The 10 most species rich sub-squares are: ND27, TL87, TF74, TF84, TF62, TQ77, TM47,
SZ19, TR06, and SU70, with each sub-square containing >120 avian species. Except for ND27
located in north-eastern Scotland, and SZ19 and SU70 located in southern England, all other
sites are in south-eastern England, which is close to the European Continent. In contrast, the
10 most species depauperate sub-squares are: NZ39, NL79, NF61, NA81, NMO05, HY 35, SY 38,
SW65, SS11, and TR46. Roughly half of these sites are located at in the far north and the other

half in south-western England except for TR46 (Figure 2. 5).
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The 10 most commonly occuring avian species among the 2830 sub-squares are: wren
(Troglodytes troglodytes), skylark (Alauda arvensis), pied/white wagtail (Motacilla alba),
blackbird (Turdus merula), robin (Erithacus rubecula), starling (Sturnus vulgaris), swallow
(Hirundo rustica), song thrush (Turdus philomelos), chaffinch (Fringilla coelebs), and willow
warbler (Phylloscopus trochilus). The 10 most limited occurrence species are: emperor goose
(Chen canagica), swan goose (Anser cygnoides), king eider (Somateria spectabilis), helmeted
guineafowl (Numida meleagris), red-footed falcon (Falco vespertinus), little egret (Egretta
garzetta), black swan (Cygnus atratus), northern bobwhite (Colinus virginianus), white-

winged black tern (Chlidonias leucopterus), and smew (Mergellus albellus).
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Figure 2. 3 Frequency distribution of nestedness temperature for the fifty five 100 km square

of Britain.
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Figure 2. 4 Presence-absence matrix of British avian assemblage. The x-axis represent sites
(sub-squares) and the y-axis represent species. No site or species names are shown
here as there are not legible in this figure; Appendix A provides full site and species
lists in nested oreder for this presence-absence matrix. Red cells indicate species
occurrence and white ones, species absence. The black concave diagonal curve
represents the isocline that delineates the hypothetically perfect nested matrix. The
white cells locating at the left hand side of the diagonal curve represent the

unexpected absence and the red ones at the right hand side, unexpected presence.
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Figure 2. 5 Species richness at 10 km scale. Darker area is with higher species richness.

2.5  Species accumulation curve and data orderliness

The avian assemblage of entire British sub-squares were arranged according to three orders:
nested structure, mean of random order after 100 permutations, and reverse nested structure.
Species accumulation curve varied with orders of adding in sub-squares (Figure 2. 6). Curves
based on nested structure quickly saturated while curves based on reverse nested structure
increased slowly and barely saturated. Random sampling curve was situated between the
curves based on nested and reversed nested structure which represented the upper and lower

limit, respectively (Figure 2. 6).
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Figure 2. 6 Species accumulation curves based on three orders of data arrangement. Black dots
(@): data arranged by nested order, species richness from high to low; dark grey
dots (@®): mean of 100 randomly arranged data; light grey dots (' ): data arranged
by reverse nested order, species richness from low to high. The red dash line

indicates the real total number of species (273 species).

2.6 Species richness extrapolation for Britain

Because predictability based on reverse nestedness for all three species accumulation curve
functions was 20-30% less efficient than random and nestedness orders, only results for random
and nestedness orders are presented in the following section. Total species richness for Britain
was predicted based on three species accumulation curve functions (exponential, logarithmic,
and Clench) with three level of sampling efforts (10%, 20%, and 40% of total sites) under two

data arrangement orders (random and nestedness) each with 50 replicates. Figure 2. 7 depicts
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species accumulation curves and Figure 2. 8 summarises the predicted total species richness.
For all three levels of sampling effort, projections based on the logarithmic function was more
accurate than those based on exponential and Clench functions irrespective of data arrangement
orders. However, predictions with random data order tended to overestimate total species
richness whereas those with nested order were more likely to underestimate total species
richness when based on the logarithmic function (Figure 2. 7 and 2. 8). There was significant
difference in error rate (absolute value, p< 0.05) between random and nestedness orders for
exponential or Clench prediction function but not for logarithmic function (p>0.05). Overall,
the method based on nestedness order had lower or equal error rate in the prediction of species

richness than that based on random order.

Error rate decreased with sampling effort for both nestedness and random order (Figure 2.
8). Among the three functions, accuracy based on logarithmic curves increased the least when
sampling efforts doubled from 10% to 20% or from 20% to 40%, with < 2% of decrease in
error rates for both random and nestedness order. This was mostly due to the already high
accuracy under the 10% sampling efforts (3.5% error rate, absolute values) and the 20%
sampling efforts (<2.7% error rate, absolute values). In comparison, although doubling
sampling efforts comparatively improved predictability of exponential and Clench functions,

error rates were higher than 7% even under the 40% sampling effort.
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Figure 2. 7 Prediction of whole British avian species based on three species accumulation curve functions (a: exponential; b: logarithmic: c:
Clench) with three levels of sampling effort (1:10%; 2: 20%; 3: 40%, of total sites) under two data arrangement orders (blue:
random; red: nested). Each prediction was repeated 50 times. The grey herizontal line indicates the real total number of species (273

species). The vertical dash line indicates the number of sampling sites.
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Figure 2. 8 Predicted total species richness (+sd) for a combination of two dataset orders (solid circle: random order; open circle: nested order),

three prediction functions (Exp. = negative exponential function; Log = logarithmic function; and Clh. = Clench function), and three sampling
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efforts (10%, 20%, and 40%). The percentage above the bars represented the mean error rate. Red dash line represented the observed species

richness (273 species).
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2.7 Species richness extrapolation for 100 km squares

The total species richness of each of the fifty-five 100 km squares was also predicted based
on three species accumulation curve functions with three level of sampling efforts under two

data arrangement orders each with 50 replicates.

Under nestedness order, logarithmic function had lower error rates (4.6+5.3%, 3.4+3.5%,
1.4+2.7% for 10%, 20%, 40% sampling efforts, respectively) than exponential (20.912.9%,
13.7+11.7%, 9.6+2.2%) and Clench functions (19.0+2.3%, 14.8%+3.1%, 9.0+1.9%) for all three
levels of sampling efforts. Error rates did not differ with geography (e.g. northern vs. southern,
coast vs. inland), but squares containing full sub-squares (100 sub-squares) tended to be more
accurate than squares in the periphery of Britain that encompassed < 100 sub-squares (Figures
2.9,2.10, 2. 11). There was no correlation (Spearman’s correlation coefficient r=-0.69 to 0.04,
p>0.05) between nestedness temperature and error rates among the 55 squares; however, the

error rate increased with lower nestedness when it approaches random order.

Similarly, under random order, logarithmic function had lower error rates (-12.0+6.8%, -
7.0+£5.3%, 3.913.2%) than exponential (20.5+2.2%, 9.1+30.8%, 10.4+1.8%) and Clench
functions (14.912.5%, 12.5+4.8%, 9.6+2.3%) when the comparisons were based on absolute
values. There was no correlation (r= -0.66 to 0.38, p>0.05) between nestedness temperature
and error rates among the 55 squares; however, the error rate increased with lower nestedness

when it approaches random order.

Error rates varied considerably among different combinations of arrangement orders, curve
functions and sampling efforts (Table 2.1). However, error rates were generally lower when

based on nestedness order than when based on random order (p<0.05), especially under
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logarithmic function that had much lower error rates than exponential and Clench functions

(Table 2. 1).

Table 2. 1 Comparison of error rate between nestedness order (N) v.s random order (R) under

Results

three functions (Exp. = negative exponential function; Log = logarithmic function;

and Clh. = Clench function) and three levels of sampling efforts (10%, 20%, and

40%) at 100km x 100km scale. Bold type indicates significant differences at p=0.05

level (with absolute value).

Functions  Sampling effort

10%
Exp. 20%

40%

10%
Log 20%

40%

10%
Clh. 20%

40%

Error rate*

N

20.912.9%

13.7£11.7%

9.612.2%

4.61%5.3%

3.4+3.5%

1.4£2.7%

19.0+2.3%

14.8+3.1%

9.0£1.9%

R

20.5+2.2%

9.1+30.8%

10.4+1.8%

-12.0+6.8%

-7.0£5.3%

3.9+3.2%

14.9£2.5%

12.5+4.8%

9.6+£2.3%

t**

1.05

-1.29

-2.45

-4.53

-3.85

-4.05

7.52

3.84

-3.43

df

28
41

42

35
39

42

28
35

42

p-value

0.30
0.20

0.02

<0.01
<0.01

<0.01

<0.01
<0.01

<0.01

*positive value indicates an underestimation while negative an overestimation of species richness

**positive indicates higher error rate for nested order and vice versa (comparison based on absolute

value)
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Figure 2. 9 Error rate (mean of 50 repeats) based on exponential accumulation curve function
for fifty five 100 km squares with three level of sampling efforts (1% row: 10%; 2"%: 20%; 3:
40% of total sites). The left column shows results by random order and right column,
nestedness order. Blue areas indicate underestimation and grey areas overestimation of
prediction results. Darker colours represent better predictive results (lower error rates). Beige

areas indicate sub-squares without enough data for extrapolation.
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Figure 2. 10 Error rate (mean of 50 repeats) based on logarithmic accumulation curve
function for fifty five 100 km squares with three level of sampling efforts
(row 1st: 10%; 2nd: 20%; 3rd: 40% of total sites). Left column showed
results by random order and right column, nestedness order. Blue areas
indicate underestimation and grey areas overestimation of prediction results.
Darker colours represent better predictive results (lower error rates). Beige

areas indicate sub-squares without enough data for extrapolation.
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Figure 2. 11 Error rate (mean of 50 repeats) based on Clench accumulation curve
function for fifty five 100 km squares with three level of sampling efforts
(row 1st: 10%; 2nd: 20%; 3rd: 40% of total sites). Left column showed
results by random order and right column, nestedness order. Blue areas
indicate underestimation and grey areas overestimation of prediction results.
Darker colours represent better predictive results (lower error rates). Beige

areas indicate sub-squares without enough data for extrapolation.
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2.8 Discussion

In the current study of the British avian assemblage, it was found that accuracy in
the projections of species richness increased with sampling effort, and error rates were
much lower when fitted with logarithmic function than with exponential or Clench
function for both British and 100 km square spatial scales (Figure 2.8, Table 2.1).
More importantly, when fitted with the best performing logarithmic function,
prediction was at least as good or better when data were arranged based on nestedness

order than based on random order (Figure 2.8, Table 2.1).

28.1 Species accumulation curve with nestedness structure

Extrapolation from species accumulation curves is a commonly adopted and
relatively simple solution to estimate species richness with limited information.
Approaches based on asymptotic estimators (Walther and Moore 2005, Magnussen
2014, Béguinot 2015, Chao and Jost 2015, Gwinn et al. 2015) or nonparametric
extrapolation from species accumulation curves (Colwell et al. 2012, Chao et al. 2014)
require further information on species abundance (instead of presence-absence data
only) and are considered to be more accurate in estimating species richness (Brose et
al. 2003, Cayuela et al. 2015) than curve fitting method that could be estimated based
solely on presence-absence data. The biggest challenge in curve fitting method comes
from selecting the optimal extrapolation function (Soberén and Llorente 1993, Dengler
2009b) or randomisation process (Ugland et al. 2003, Gray et al. 2004), which might
be improved after the incorporation of information on community structure. In this
study, we have demonstrated that ordering data based on nestedness could potentially

improve predictability. Most recent research on nestedness has focused on describing
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community structure (Picazo et al. 2012, Herczeg and Horvath 2015, Chaves and Ariez
2016) or how to improve the algorithms of calculating nestedness indexes (Almeida-
Neto et al. 2008, Podani et al. 2014). This study is a new attempt to incorporate
nestedness index to improve the predictive power of the species accumulation curve
fitting method. Compared with random order, inputs based on nestedness order would
enhance the ability of species accumulation curves to predict avian species richness in
Britain at the 100 km square scale, especially coupled with logarithmic function.
Accuracy in the prediction of total species richness for both the entire British island and
100 km squares could be >95% for 10% sampling effort when logarithmic species
accumulation curve function are fitted with data based on nestedness order. In
comparison, the accuracy was less than 90% when data were arranged randomly for 10%

sampling effort under logarithmic function at spatial scale of 100 km square.

2.8.2 Nestedness application in sampling design

Owing to the limited resources available for field surveys, it is worthwhile to
improve the efficiency of sampling efforts (Ashcroft et al. 2010). Both mathematical
pattern and biological mechanism can potentially improve the efficacy of sampling
effort. For example, Pearman and Weber (2007) found that including widely distributed
species can better predict overall richness than when species of limited distribution
were contained. The nestedness-order dataset applied in this study can similarly lead to
a better prediction when combined with the best fit extrapolation functions. For instance,
error rate was <5% based on nestedness order compared with 12% based on random
method when logarithmic functions were applied for the estimation of British avian

species richness in 100 km squares with 10% sampling effort.
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Conventionally, intensive randomisation procedures are needed for the species
accumulation curve to achieve higher predictive power (Ugland et al. 2003; Chao &
Shen 2004; Gray et al. 2004). The randomisation procedure reduces the probability of
including extreme values and attempts to simulate real conditions by considering a large
number of replications. Alternatively, sampling based on nestedness order is a novel
attempt for capitalising on community structure for the prediction of total species
richness. Results of this study have demonstrated that overall, sampling according to
nested order is more favourable than based on random order. Melo et al. (2003)
compared predicted species richness from species accumulation curve in different taxa
and indicated at least 40% of sampling effort is needed to acquire above 90% accuracy.
The nestedness method applied in this study captured information about assemblage
composition and used it to achieve better accuracy with lower sampling effort. Thus
taking advantage of the nested structure can potentially help predict assemblage
composition by focusing on information in the most species-rich sub-squares. However,
these findings may be related to the fact that the British avian assemblage demonstrates
a moderate level of nestedness at two spatial scales: the entire British island and 100
km squares. More studies considering different species and study site characteristics,
as well as different levels of nestedness, are needed to test for the general applicability

of nested order.

2.8.3 Species accumulation curve functions for British avian species

Selecting appropriate species accumulation curve function to predict species
richness is difficult, as there is no universal principle for the selection of the optimal
function. Ugland et al. (2003) suggested that the exponential model is suitable for small

scale data, while Diaz-Francés and Soberdn (2005) proposed that the power model and
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logistic model are ideal for median and larger scale data or when information on taxa
is scarce. This study indicates that predictability does vary remarkably with functions
and selecting the optimal function would greatly improve the predictability. Soberdn
and Llorente (1993) compared predictability of negative exponential, logarithmic, and
Clench functions (but not incorporating information on nestedness) and also concluded
that functions vary in their performance. For instance, negative exponential function
tends to approach asymptote too soon and typically underestimates overall species
richness; however, the same function would also avoid species overestimation under
homogenous environment. Indeed, negative exponential function fitted Mexican
butterfly data better than logarithmic and Clench functions and this was likely due to
the relatively homogenous environment in the Mexican study (Diaz-Francés and

Soberon 2005).

The fact that negative exponential function, along with Clench function, usually
perform better under homogenous environment is due to both functions belonging to
the saturation model (Dengler 2009). That is, there is an upper asymptote and the
accumulation curve eventually approaches a saturation point. Compared with negative
exponential function, Clench function fits better when homogenous area contains more
rare species (Soberén and Llorente 1993, Moreno and Halffter 2000) although both
functions tend to underestimate overall species richness (Soberon and Llorente 1993,
Cardoso et al. 2008). In comparison, logarithmic function creates a unbounded curve
without mathematical asymptote and is more suitable for heterogeneous environment
despite this function tending to overestimate species number due to an infinite increase

(Tjerve 2003, Dengler 2009).
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In this study, logarithmic function performed the best for both the whole British
island and 100 km square spatial scales. This agrees with the findings of Lennon et al.
(2001) in which they assessed the British avian assemblage and found that the
logarithmic function, on average, predicted total species richness better than the power
function for 10 km to 90 km spatial scales. Because the whole British island and most
of the 100 km squares also cover coastal areas (Figure 2.2) that contain water birds,
both spatial scales are relatively heterogeneous in the species composition (i.e. they
contain both water and land birds), hence the better predictability of logarithmic
function than negative exponential or Clench function. In this study, the basic unit of
assemblage is the grid square, which is an artificial unit, but the constant size of each
grid square avoids the confounding effects of area on species richness and allows a
comparison of input order in the species accumulation curve. Besides, if nestedness
order can enhance predictability in artificial square data (which may contain more than
two real communities), it might perform even better in real communities. In other words,
the advantage of nestedness order might be underestimated when based on the artificial

square grid data here.

Logarithmic function tends to overestimate species richness (Tjgrve 2003, Dengler
2009). Species overestimation does occur in the current study when the prediction is
based on logarithmic function with conventionally applied random order. However,
replacing random order with nested order instead underestimates total species richness.
This is probably because when compared with random order, data input based on nested
order include proportionally more uncommon species in the initial samples (Figure 2.1),
followed by a decelerating rate of increase in species richness (Figure 2.6, 2.7) because
fewer uncommon species remain undetected. Such deceleration might lead to an
underestimation of total species richness. On the contrary, fewer species are included
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in the initial samples when based on random order (Figure 2.6, 2.7). This is later
compensated by an accelerating rate of increase, causing an overshoot in the prediction
of total species richness. Owing to similar but opposite levels of error rates with random
versus nestedness order for logarithmic function under British scale (Figure 2.8), it is
interesting to test whether combining results from both random and nested order leads
to better predictions. Indeed, a test showed that predicted species richness can be as low
as 0.07% using logarithmic function in 40% sampling at British scale due to the error
rates cancelling each other out when using the mean of both estimates. Further studies
should test whether incorporating both random and nestedness orders further increases

success in the prediction of species richness.

Relative to random order, data input based on nestedness order have better
predictive power at small spatial scale (100 km square) when both are fitted with
logarithmic function (the most accurate function). Such superiority in prediction does
not occur under large spatial scale (e.g. British island), where both ordering approaches
lead to similar predictability. Comparatively, new species are more likely to be
encountered in larger areas (Ney-Nifle and Mangel 1999, Tjerve 2003, Ulrich and
Buszko 2007), thus increasing the uncertainty of including new species and decreasing
the prediction accuracy. Under such circumstance, input based on nestedness order
might not be more favourable than when based on random order. In comparison, the
chance of including new species is lower in smaller areas, especially when the species-
rich sites are included in the first samples (i.e. nestedness order), thus the higher
prediction accuracy of nestedness ordered data input. However, whether the superiority

of nested order is scale-dependent deserves further investigation.
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Chapter 3: Incorporating network analysis in the
identification of indicator species of the British

avian assemblage

3.1 Abstract

Predicting species identity instead of species richness alone is of significant value
particularly with species of conservation concerns. The indicator species approach is
commonly applied to predict species composition in unsampled sites, but the conventional
clustering method can often lead to inconsistent and misleading results due to that this method
measuring the relative dissimilarities among species. In this study, we applied network analysis
that directly measures co-occurrence among species to improve the predictive power of
indicator species, with British birds as an example. Five indicator species groups identified
among British avian species across all sites differed between two approaches of site group
detection, clustering method and network analysis, with the latter showing clear geographical
demarcation. Selected indicator species based on 40% study sites also differed between
clustering method and network analysis; however, species in unsampled sites were better
predicted by network analysis than by clustering method. Our study demonstrates that
incorporating network analysis can improve predictability of indicator species and this novel

method can be of broad applicability to other study systems.
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3.2 Introduction

Results from the previous chapter showed that incorporating information on assembly
structure, such as nestedness, can improve predictability of species richness in comparison with
capitalising simply on mathematical equations that lack any biological underpinning. Based on
the aforementioned approach, only species richness but not species composition can be
predicted; nevertheless, information on species identity is frequently more important than
species richness, particularly with species of conservation concerns (Webb 1989, Cousins
1991). For example, two sites with similar species richness merit different management plans
when one harbours species that are endangered or have a limited distribution while the other is
composed primarily of exotic species. Furthermore, conservation strategy focusing solely on
areas with the highest species richness (i.e. hotspots) sometimes neglects the requirement of
rare species that happen not to occur in the hotspot; for example, rare liverworts and aquatic
plants have environmental requirements distinctive from other terrestrial flora (Prendergast et
al. 1993). Evidently, information merely on species number might be misleading, particularly
when concerning conservation or policy legislation (Prendergast et al. 1993, Prendergast 1997,

Grundel et al. 2014).

In this chapter, | take a step further and focus on species identity and composition instead
of species richness only. Community structure, including species co-existence information, is
analysed to see if simply having limited information on species identity but no environmental
attributes can predict overall species composition. Compared to niche modelling that requires
environmental attributes, using species information solely to predict species composition is
based on the assumption that when a group of species is closely associated with specific
ecological requirements, this group of species can be taken as “indicator species” to predict
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characteristics of unsampled sites (Harms et al. 2001, DeCéceres and Legendre 2009). This

method is called “indicator species value” and was developed by Dufréne and Legendre (1997).

An interest in associations between habitat and species assemblage can be traced back to
Two Way Indicator Species Analysis (TWINSPAN) (Hill 1979), which is the earliest
numerical method on habitat association of species assemblage (Dufréne and Legendre 1997).
However, TWINSPAN has two main weaknesses. Firstly, it is based on correspondence
analysis (CA) or detrended correspondence analysis (DCA) that projects sampled species onto
an assumed linear-gradient axis, which might not in fact be linear. Furthermore, this analysis
retrieves information only from the first axis of CA or DCA and neglects the second axis which
might also affect the ordination result. Secondly, TWINSPAN is a top-down division process,
clustering and arbitrarily dividing the first axis of CA (or DCA) into two even groups. This
process might misclassify species near the centre of the axis. Moreover, the two-group method
may not always be suitable for classification, for example in categorizing a xeric to hydric
gradient into either group because in-between there exists mesophytic plants. Therefore,
classification by TWINSPAN may be inappropriate and lead to low predictability when
associations between species and habitats are weak. To solve these problems, a method termed
“indicator species value” (Dufréne and Legendre 1997) was devised to provide a more efficient

way for identifying indicator species.

The indicator species concept has roots in the idea of representative diversity (Webb 1989,
Cousins 1991), which argues that species assemblages are associated with specific habitat types.
Such species assemblages help characterise habitats based on Species—Environment
Relationships (SER) analysis, which categorizes species assemblage according to spatial and
environmental factors (Borcard 1992). The SER analysis also involves measuring

environmental attributes and relies on multivariate methods for modelling species distribution.
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Instead, the indicator species value method stresses measuring association between species and
habitats, using hierarchical or nonhierarchical classification method (e.g. clustering) (Dufréne
and Legendre 1997). In contrast to TWINSPAN, indicator species are not classified along a
gradient but are selected based on two characteristics: 1) the degree to which the species is
associated with specific habitat. The ideal situation is that a species only occurs in one specific
habitat, thus reflecting its ecological preference or requirement. This character is usually
designated as A in indicator species value calculation; 2) the abundance of the species; that is,
is it abundant enough to be effective as an indicator. Although a rare species can fit the first
requirement, its lower numbers mean a lower detection rate. This is usually designated as B in
the calculation. These two indices can be applied and interpreted individually or jointly.
According to Dufréne and Legendre (1997), the indicator value is the product of A and B and
a higher value suggests more feasibility as an indicator species. In contrast to species
distribution modelling that relies on environmental variables to model species richness or
composition, the indicator species method depends solely on information inherent in species
groups (DeCaceres and Legendre 2009). For example, research on carabid spatial distribution
shows that this taxon has strong habitat preference and clear distributional boundaries. Based
on the indicator species value, a new habitat type was identified and indicator species were

found to possess species indicator values (Magura 2002).

Identifying indicator species requires classifying sites (or samples) into different habitat
types that each contains unique species composition. Each species will then be assigned an
indicator value for each habitat type. For instance, if three habitat types are classified, each
species has three indicator values corresponding to each of the three habitats. The indicator
species for each habitat are defined as the species with the highest indicator value. However,

the habitats are typically classified based on clustering methods (especially non-hierarchical
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methods such as k-means clustering), which is a descriptive method with its robustness hard to
validate and it is also an indirect method, relying on distance (difference) between species
rather than directly measuring co-occurrence patterns (Milligan 1980, Legendre and Legendre
2012). Itis also sensitive to the double-zero issue, which is very common in ecological datasets
and may cause group misclassification (Dufréne and Legendre 1997, Legendre and Legendre
2012). A double-zero issue happens when comparing two sites with the presence or absence of
specific species. Presence in both sites of species indicates resemblance of sites, but absence
in both sites does not necessarily represent resemblance, for the absence of species in two sites
may due to different reasons. However the distance calculations in conventional clustering
methods cannot reflect this fact. In comparison, a direct measure of species co-occurrence

could improve the efficiency of indicator species method.

Numerous field observations have revealed that species co-occurrence is not a random
process but instead one species tends to occur more frequently with certain species (Waddle et
al. 2010). Such co-occurrence may reflect similar environmental requirements such as food
and habitats, thus forming functional groups (Woodcock et al. 2010, Ehouman et al. 2012). It
is also likely to be due to cooperation or mutualism such as the formation of feeding flocks
(Farine et al. 2012). If such a relationship is stable through space and time, whole groups of
co-occurring species could potentially be predicted when one of the members is observed. Until
now, most studies have focused on measuring negative species co-occurrence, such as the
checkerboard score (Gotelli 2000). The checkerboard scores emphasise how two species do
not co-occur due to competition although predictability of species is likely to be enhanced when
instead based on how and how often species co-occur (Gotelli 2000, Gotelli and McCabe 2002).

Under such circumstance, network analysis may serve as a valuable tool, because of its
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efficiency in disentangling complex relationships among members in an assemblage or

community.

Network analysis has now been widely used in social, biological, and many other fields to
help illustrate and disentangle complicated interactions and relationships among members
(Whitehead 1995, Lusseau 2003, Newman and Girvan 2004). It is particularly useful for
managing large amounts of data (Blondel et al. 2008) and can usually be visualised to help
reveal entangled relationships (Moody et al. 2005). A network contains two essential elements:
nodes and edges. Each node is an individual member in a network, and the edge represents
relation among them. For example, food webs are one kind of network that is composed of
plants and animals (nodes) with each interaction representing an edge. Such complicated
interactions, common in ecological studies, are usually difficult to analyse by conventional
methods. Network analysis, instead, can tackle the problems even with a community

comprising thousands of interactions (Montoya andSol 2002, Estrada 2007, Gilbert 2009).

When information on sites is incorporated into analyses of interactions among species, a
specific network type called multi-mode network should be used (here, a two-mode network
containing species and sites). Multi-mode networks encompass more than one type of node
(Newman 2010). For example, a two-mode network can represent the relationship among
species and their resident sites, and there are two types of nodes representing species and sites
harbouring the species respectively. The community data can then be arranged into an
“incidence matrix” to reveal whether some groups of species coexist more frequently on
particular sites than others. Such network analysis reveals relationships among species that co-
occur in various sites. When the analysis focuses on only one aspect of a relationship (e.g.
relationship among species in the same sites or sites containing similar species group), a two-

mode network can be projected into a one-mode network to facilitate analysis (Prell 2011). For
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example, when the network is projected along the site axis, it emphasises how sites containing
similar species can aggregate to form site groups (i.e. subgroup in network analysis) that reflect
similar ecological requirements. For instance, sites containing puffins and petrel species form
a subgroup that represents rocky-coastal habitat. If the associations between site groups and
species are robust and repeatable, the habitat type or species composition of an unsampled site
can potentially be predicted based on observed species or habitat. This is in accordance with
the concept of indicator species value (Dufréne and Legendre 1997). Furthermore, network
analysis has the potential to improve the predictability of the latter method by its superior

analytical capability in (site) group detection.

Based on different concepts and algorithms (Guimera and Amaral 2005, Fortunato 2010)
derived from graph theory (Wilson 1996, White and Harary 2001), there are various ways to
identify subgroups in a network. One approach is to calculate the network modularity (Newman
2004). This concept has been adopted in ecological research to reveal complicated interactions
and to detect heterogeneous structure within ecological communities or ecosystems (Olesen et
al. 2007, Genini et al. 2012). For example, network analysis has been used to analyse the
European fauna structure (Aradjo et al. 2011) and successfully reveal the robustness of each
fauna group by geographical distribution and resistance to climate change. Modularity
measures not only linkages within a module but also the linkages among modules. Nodes
possess a higher “degree” (the sum of edges link to the node) than other members in the same
module, but a lower degree with members in other modules (Blondel et al. 2008, Newman

2010).

The aim of this chapter is to investigate the possibility of substituting clustering methods
with network modularity in indicator species analysis, in the hope of improving predictability

of species composition or habitat type in unsampled sites. In this research, the sites were sorted
63



Chapter 3 Introduction

into groups according to their linkage levels (i.e. the number of sharing species). Site groups
based on the modularity algorithm would be a substitute for the clustering groups in the
indicator species analysis. This new method was compared with conventional clustering-based

indicator species to investigate its merits in directly measuring species co-occurrence.
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3.3 Methods

3.3.1 Species data

The species dataset is the same as Chapter 2, which is termed the BTO dataset hereafter.
In this study, the analytic unit is the 10 km square (a site), with species represented by presence
(designated as 1) or absence (designated as 0). No species abundance data were used in the

current study.

3.3.2 Network analysis data organisation

The incidence matrix was arranged by site vs. species, with marginal sums as the total
number of species in a site and species prevalence as occurrence of specific species across all
sites. Based on the matrix, a two-mode network (two types of nodes, with each representing
site and species), describing which species resided in what site (linkage), was then plotted. To
better understand how sites clustered according to similarity in species composition, the
network was projected into a one-mode network containing only nodes that represented sites.
Three possibilities of linkages can occur in a pair of sites: no linkage meaning no shared species,
one linkage meaning only one species in common, and multi-linkages meaning sharing more
than one species. A weighted network illustrating relationship among sites and based on the

extent of species in common can then be constructed (Newman 2010).

3.3.3 Site group detection with network modularity

The modularity detection method termed randomtrap (Pons and Latapy 2005) is based on
random walk via the closest distance among neighbouring nodes (Fortunato 2010). In network

analysis, the closest neighbour node is the node with only one-step linkage to the target node.
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The nodes are then organized into linked subgroup (that is, a module) that contain closer
neighbours. The modularity detected by the randomtrap method may be visualized as a person
walking randomly among nodes along the shortest distance; with limited steps, the walker
would readily be trapped in a closely linked subgroup (module). When this process is repeated,
the nodes are gradually assigned into different modules and this can be recorded by plotting a
dendrogram of random walks. This random-walk method aggregate nodes in an agglomerative
direction and measures the similarity between nodes to detect modules. It is an efficient and
timesaving method, ideal for analysing large and complicated networks (Pons and Latapy 2005,

Fortunato 2010).

3.34 Site group detection with k-means clustering versus network modularity

The efficiency of network modularity versus clustering in site group detection was
compared within the same avian assemblage dataset. Dufréne and Legendre's (1997) method
was followed for determination of the optimal number of clusters for the indicator species value
analysis. This method firstly calculates the indicator value (IndVal) of each avian species for
each clustering level (e.g. IndVal for species 1 to species 273 at clustering level 2, 3, 4 etc.).
The difference in IndVal between consecutive cluster levels for each species is then calculated
(e.g. the difference in IndVal between cluster 2 and cluster 3 for species a) and plotted. Because
larger IndVal represents a better predictor, the optimal clustering level is when the difference
in IndVal (cluster n+1 minus cluster n) is the largest and is most positive (Appendix C). For
comparison purposes, the k value (the number of groups to be split) was set to equal to the
number of modules in modularity detection. In this case (Appendix C, Figure A-1), because
the value (difference in IndVal, y axis) is the highest between cluster 2 and cluster 3, and is of

similar high value between cluster 4 and cluster 5 (both also have smaller negative value unlike
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between cluster 7 and cluster 8), it is most optimal to divide the avian assembly into three or
five clusters. However, either three or five clusters has lower predictability than the method
based on network modularity, as demonstrated briefly in Figure A-2 (below, for three clusters)
and comprehensively in Chapter 3 (for five clusters).

In this stage, the site map partitioned by network modularity and k-means clustering
method was compared, and was termed population modularity and population clustering,
respectively. The resulting site groups (based on the whole dataset) were compared with site
groups determined by partial sampling of whole dataset (see the following paragraph) to

investigate the reliability of these two partitioning methods.

3.35 Sampling site and sampling site groups

For deciding the sampling size used in this analysis, a preliminary sensitivity analysis was
done to estimate the sampling size for effectively representing population modularity. The
analysis showed when using 10% and 20% sampling, the sub-squares belong to a small coastal
site group would usually be missed and not be included in the modularity result, but in 40%
sampling these sub-squares would be selected more often and had more representativeness of
the population modularity (for details see Appendix D). Also, in the previous chapter, a 40%
sampling effort can accurately predict species richness, therefore the 40% sampling effort was
applied here. To assess the predictability of indicator species, 40% random samples from the
whole BTO dataset were partitioned based on network modularity and k-means clustering and
were called sampling modularity and sampling clustering, respectively. Assigned modularity
based on 40% sampling was compared with assigned modularity based on the whole population
using the Fowlkes-Mallows index (FM index) (Fowlkes and Mallows 1983) to see whether the

sampling sites were classified in the same module as when the assignment was based on the
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whole population. The same process was applied to compare sampling clustering and
population clustering. The FM index compares two clusters and evaluates the extent of
similarity or dissimilarity between the clusters. Assuming that two clusters X1 and X both with
n objects and k clusters. X1 (k=1...i) and X2 (k=1...j) are compared and a matching matrix (mj;)

can be created as (when k=2):

mij=
X2
1 2
1 mi1 Mmyj
X1
2 Mi1 Mmij
The FM index is defined as:
FM_Ind T
_Index =
Py - Q

Where Ty = X, X5 m2 —n, P =YX, mi> —n, Q. = Xf.;m;* —n. The FM index

ranges from zero to one, with higher value indicating more similarity between two clusters.

1
Significance of the FM Index is evaluated against E(FM) + 2(var(FM)) /2, where E(FM) is

the mean and var(FM) is the variance under the assumption of no relation between X1 and Xo.

3.3.6 Selecting the indicator species

Based on 40% sampling effort, the indicator species value for each species in each site
(termed IndVal hereafter) is determined by two indices, A and B, which represent specificity

(the positive predictive value) and frequency (the sensitivity) of species to the site, respectively
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(sensu Dufréne and Legendre 1997; De Céceres et al. 2012). Ajj is the proportion of species i
present in specific site group j (Npresence;jj) relative to presence of species i in all site groups
(Npresencei), and the higher Ajj, the more species i is specific to site group j. Similarly, Bjj is
the frequency of sites in site group j where species i is present (Nsites;j) among all sites in site
group j (Nsites;).
A;; = Npresence;; /Npresence;
B;j = Nsites;; /Nsites;
IndVal;; = A;j X B;; X 100

IndVal; = max[lndVali]-]

Significance of IndVal; was evaluated by bootstrapping: 1000 randomly resampled
observed sites were used to generate an approximate distribution for the observed data and
confidence interval for A, B and IndVal.

For selecting the indicator species, the square root of indicator value (sqrtlV9%) was used to
measure the association between species and sites (sensu De Céaceres and Legendre 2009). The
g denotes group equalisation, to correct for differences in group size among indicator species
when summing Aj; values in J areas.

g Npresence;; /Npresence;

pa = 5J
ijl Npresence;; /Npresence;

A threshold of A=0.6 (the positive predictive value) and B=0.2 (the sensitivity) was set to
select effective indicators (DeCaceres et al. 2012). Because in comparison with single species,
a combination of species could be more efficient in being indicator species (DeCaceres et al.
2012), a combination of four-species was selected as candidate species. It is necessary to set a

limit for the number of indicator species, otherwise sensitivity of indicator will decrease and
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uncertainty of positive predictive value will increase with too many indicator species. Indicator
species based on two grouping methods, network modularity and k-means clustering, were then
used to predict unsampled sites. The A value of indicators also represented the likelihood of an
unsampled site to be predicted as a site group including the selected indicators. For example,
if an unsampled site contained indicator species i indicating site group | with an A value of 0.7,
then this unsampled site had 0.7 likelihood of belonging to site group | by the presence of
species i. The aim is to search for the maximum value that indicates the most likely species-
site association. Significance of the species-site association can be tested by the percentile
bootstrap method, which resampled the observed data to generate an approximate distribution
of the indicator values (DeCaceres and Legendre 2009, DeCaceres et al. 2012).

All analyses were conducted in the R environment (R Development Core Team 2013)
using the R packages “igraph” (Csardi and Nepusz 2006) (for the network analysis),
“indicspecies” (DeCaceres and Legendre 2009) (for the indicator values), and “dendextend”

(Fowlkes and Mallows 1983) (for the Fowlkes-Mallows index).
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3.4 Results

The network of the BTO dataset contained 273 bird species in 2830 nodes (sites). The
population network included 3,957,073 edges, with each edge representing a linkage among

sites with the same species.

34.1 Subgroups detected by population modularity and k-means clustering

34.1.1 Modularity

The Randomtrap method identified five modules in the BTO dataset (population
modularity) (Figure 3. 1 left panel), with each module containing 133, 475, 11, 1345 and 866
sites, respectively. Sites in the same module had similar species composition (species list in
Table 3. 1 left). There was a clear latitudinal segregation among these five modules (Figure 3.
1 left). One small module was located mainly at the northern coast and a few islets (red module
in Figure 3. 1 left). Three modules (blue, orange, and purple modules in Figure 3. 1 left) were
distributed primarily in highland Scotland, middle to west coast area, and south-eastern area,
respectively. There was also a small module (with 11 sites) that was scattered at some coastal
areas (green module). The avian species contained in each module are listed in Appendix E,

left.

3.4.1.2 Clustering

Because the difference in IndVal is the highest between cluster 2 and cluster 3, and is of
similar high value between cluster 4 and cluster 5 (both also have smaller negative value unlike
between cluster 7 and cluster 8, Figure A-1 in Appendix C), it is optimal to divide the avian

assembly into three or five clusters. However, since the network modularity identified five
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modules, for comparison purposes, the number of groups to be split was set to five (results for
three clusters are briefly demonstrated in Figure A-2 of Appendix C, and also had lower
predictability than the method based on network modularity).

The five clusters determined by k-means clustering method each contained 513, 436, 775,
748 and 358 sites (Figure 3. 1 right). Likewise, sites in the same cluster had species with shorter
distance (less dissimilar) among themselves than with those outside the cluster. The five
clusters were also located approximately from north to south, but the geographic demarcation
was less clear-cut than those modules determined by randomtrap method. The northern coast
and islands were assigned to the same cluster (blue cluster in Figure 3. 1 right), but the Highland
area was partitioned into two clusters (green and orange clusters). The green cluster represented
most coastal areas except the northern coast, however the range was larger than the green
coastal module in the modularity result. The southern urban area was also divided into two
clusters (purple and red clusters) but cannot be easily segregated. Avian species contained in

each cluster are listed in Appendix E, right.
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Figure 3. 1 Results of modularity detection (left) and k-means clustering (right) from the entire
BTO dataset. Different colours represented different modules or clusters. Colours

and order of module (or cluster) are arbitrary. Each square is a 10 km sub-square.
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Figure 3. 2 Assigned module of sites based on 40% sampling (colour asterisk) and whole
sampling (background colour) of BTO dataset with randomtrap modularity
algorithm. Different colours represented different modules. Each square is a 10 km

sub-square.

3.4.2 Subgroups detected by sampling modularity and k-means clustering

The Randomtrap method also identified five modules in random sampling of 40% BTO
dataset (Figure 3. 2). Sampled sites were largely assigned to the same modules (based on 40%
sampling) as those based on the whole dataset (i.e. 100% sampling) (Figure 3. 2), with a FM

index of 0.83 and an expected value of 0.34 and variance less than 0.01. In comparison, there
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was less overlap in the assigned clusters between those sites based on 40% vs. 100% sampling
using k-means clustering method (Figure 3. 3), with a lower FM index of 0.62 and an expected

value of 0.28 and variance less than 0.01.

Figure 3. 3 Assigned cluster of sites based on 40% sampling (colour asterisk) and whole
sampling (background colour) of BTO dataset with k-means clustering method.

Different colours represented different modules. Each square is a 10 km sub-square.

75



Chapter 3 Results

34.3 Indicator species selected by sampling modularity and k-means clustering

Each of the five sampling modules and sampling clusters contained groups of indicator
species (up to four avian species in each species group, Table 3. 1) that all had significant
indicator values (p <0.05, except the green group), but modularity and clustering gave different
indicator species combinations (Table 3. 1). For instance, the blue module and the blue cluster
were located in approximately the same area but have different indicator species groups with
different positive predictive values (Table 3. 1). When all indicator species of a specific site
group are observed in an unsampled site, the chance that this site belongs to the site group is
higher. For example, in the red sampling modularity, the indicator group comprising fulmar
(Fulmarus glacialis), meadow pipit (Anthus pratensis), shag (Phalacrocorax aristotelis) and
black guillemot (Cepphus grille) has the highest positive predictive value of 0.69. This is
followed by fulmar, great black-backed gull (Larus marinus), meadow pipit and black
Guillemot with a positive predictive value of 0.68, and herring gull (Larus argentatus), fulmar,
meadow pipit, and shag with a value of 0.64. When an unsampled site contains one of the three
indicator groups, the site probably belongs to the northern coast area or coastal islands and
based on the indicator values, one can evaluate how confident the classification is. Nonetheless,
a very small module (green) does not meet the threshold of selecting valid indicator group. The
fulmar is the most suitable indicator species when no threshold is set, with a positive predictive

value of 0.51 (Table 3. 1 left).

The positive predictive values (A values) of sampling modularity range from 0.64 to 0.88
(except for the green group which is without an indicator group) and the sensitivity values (B
values) range from 0.70 to 0.86 (Table 3. 1 left). Aside from the green group, the rest of
indicator groups have high sqrtlV9 values (>0.7) so that site types can be confidently identified.

In comparison, the positive predictive values (A values) of sampling clustering range from 0.66
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to 0.87, with the mean higher than those of sampling modularity, but the sensitivity (B values)
varies significantly (from 0.31 to 0.87) (Table 3. 1 right). The value sgrtlV9 also varied

remarkably (from 0.47 to 0.87) (Table 3. 1 right).

3.4.4 Using indicator species to predict site groups in unsampled sites

3441 Modularity

Indicator species determined by 40% sampling were used to predict assigned modules in
unsampled sites and predictability was evaluated by comparing with the assigned module based

on population modularity (that is, the whole dataset).

Figure 3. 4 shows how well prediction based on 40% sampling matched those assigned
with population modularity. Except for the green and, to a lesser extent, red modules that both
contain fewer sites than the other three modules, prediction based on 40% sampling generally
matches assigned population modularity. For example, when predicted sites are known to
belong to the blue population modularity (Figure 3. 4b), the likelihood of unsampled sites also
to be assigned blue modularity is 0.8 (Figure 3. 4 b2), while the likelihood of unsampled sites
being assigned to the other four modules is O (Figure 3. 4 b1, 3, 4, 5). In terms of the red
population modularity (Figure 3. 4 a), the red group indicators successfully predicted the red
group to be red (Figure 3. 4 al) but falsely predicted the blue group to be red (Figure 3. 4 a2).
For the small green population modularity, the predictability was low (Figure 3. 4 d) because

of no suitable indicator species (Table 3. 2 left).

3.4.4.2 Clustering

Similarly, Figure 3. 5 illustrates frequency of occurrence of different clusters when

predicted based on 40% sampling under each of the five population clustering. However,
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prediction based on 40% sampling generally did not match assigned population clustering
except for the blue and green groups with mixed successes. While some predicted sites were
assigned the same clustering as the population clustering, there were also a large number of
sites that should be assigned blue or green clustering but failed to do so (Figure 3.5 b2, c3).
Also, the orange indicator group could predict unsampled sites correctly with lower levels of
false negatives (Figure 3. 5 e5), but still with chances of assigning unsampled sites to the wrong

colour groups.

Although the sampling clustering indicator group had almost the same level of square root
value (indicator species value) as the modularity approach, the power to predict unsampled
sites by sampling clustering indicator groups was weaker compared to the sampling modularity
indicator groups. Only the orange group was able to successfully predict the site groups without
confusion with other groups (Figure 3. 5e). This may due to the inconsistency of partitioning
results between the population clustering and sampling clustering (Figure 3. 3) and low level
of dissimilarity between species combination in clusters of sampling clustering result (Table 3.

1).
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Table 3. 1 The indicator groups selected by sampling modularity (left) and sampling clustering (right) of British Trust of Ornithology (BTO) dataset. SP=

species name codes; A = positive predictive value to a site group of each indicator group; B = sensitivity of each species group to a site group;

sgrtlVe = grouped equalised square root value of A X B.

*: The indicator values of the green module do not reach the threshold of A=0.6 and B=0.2. Under the circumstances no indicator species can be selected. The

result here is the result of when no threshold sets.
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Modules Indicator species group Clusters Indicator species group
SP A B sqrtlve SP A B sqrtlve
o Fringilla coelebs

Fulmarus gIaC|_aI|s Actitis hypoleucos
Anthus pratensis _ _ 0.69 0.82 0.75 Corvus cornix 0.77 0.76 0.77
Phalacrocorax aristotelis Erithacus rubecula
Cepphus grylle

Red Fulmarus glacialis Red Fringilla coelebs
Larus marinus Aquila chrysaetos
Anthus pratensis 0.68 0.82 0.75 Oenanthe oenanthe 0.84 0.69 0.77
Cepphus grylle Phylloscopus trochilus
Larus argentatus Fringilla coelebs
Anthus pratensis Aquila chrysaetos
Phalacrocorax aristotelis 0.64 0.86 0.74 Anthus pratensis 0.83 0.70 0.76
Cepphus grille Phylloscopus trochilus
COWU? SO Fulmarus glacialis

Blue  Motacilla alba 0.84 0.73 0.78 Blue LairiE farinLe 0.61 0.68 0.64
Oenanthe oenanthe_ Phalacrocorax aristotelis
Phylloscopus trochilus
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Green*

Purple

Actitis hypoleucos
Corvus cornix
Oenanthe oenanthe
Phylloscopus trochilus

Corvus cornix

Anthus pratensis
Motacilla alba
Phylloscopus trochilus

Fulmarus glacialis

Phalacrocorax aristotelis

Fulmarus glacialis
Larus marinus
Phalacrocorax aristotelis

Garrulus glandarius Sylvia
curruca

Gallinula chloropus
Phasianus colchicus

Turdus merula
Garrulus glandarius
Sylvia curruca
Gallinula chloropus

Sylvia atricapilla
Garrulus glandarius
Sylvia curruca
Gallinula chloropus

0.88

0.83

0.34

0.26

0.27

0.85

0.84

0.84

0.70

0.74

0.79

0.57

0.50

0.84

0.85

0.85

0.78

0.78

0.51

0.39

0.37

0.8

0.84

0.84
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Green

Purple

Fulmarus glacialis
Cepphus grylle

Fulmarus glacialis

Larus marinus

Larus argentatus
Phalacrocorax aristotelis

Corvus corone
Fulmarus glacialis
Carduelis carduelis
Passer domesticus

Corvus corone

Fulmarus glacialis
Carduelis carduelis
Erithacus rubecula

Corvus corone
Fulmarus glacialis
Carduelis chloris
Pica pica

Corvus corone
Phylloscopus collybita
Fulica atra
Streptopelia turtur

Phylloscopus collybita
Fulica atra

Carduelis carduelis
Streptopelia turtur

Corvus corone
Fulica atra
Corvus monedula
Streptopelia turtur

0.67

0.60

0.67

0.67

0.73

0.95

0.95

0.95

0.61

0.67

0.37

0.37

0.31

0.85

0.85

0.84

0.64

0.64

0.48

0.48

0.48

0.90

0.90

0.90
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Orange

Corvus corone
Numenius arquata
Apus apus
Oenanthe oenanthe

Numenius arquata
Corvus monedula
Apus apus
Oenanthe oenanthe

Corvus monedula
Alauda arvensis
Apus apus
Oenanthe oenanthe

0.74

0.73

0.69

0.70

0.70

0.74

0.72

0.71

0.72

Orange

Actitis hypoleucos

Cinclus cinclus 0.78 0.83
Carduelis carduelis

Carduelis cannabina

Actitis hypoleucos
Cinclus cinclus
Carduelis carduelis
Muscicapa striata

0.75 0.86

Actitis hypoleucos

Cinclus cinclus 0.77 0.83
Corvus monedula

Carduelis cannabina

0.80

0.80

0.80

Results
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Figure 3. 4 The predictive ability of the site group to the unsampled sites when predicted based on 40% sampling and under each of the five sampling modularity
indicator species group. The title (a-e) indicates each of the five assigned population modularity and the x-axis is the likelihood of assigning an
unsampled site to the target site group, comparing with the original site memberships (i.e. the site group assigned by the population modularity). For
example, figure (a) is the indicators derived from the red group and figure (a.1) is the likelihood to assign an unsampled site, which is originally

assigned to the red group in population modularity, to the red site group by the red indicators.
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Figure 3. 5 The predictive ability of the site group to the unsampled sites when predicted based on 40% sampling and under each of five sampling clustering
indicator species group. The title (a-e) indicates each of the five assigned population clustering and the x-axis is the likelihood of assigning an
unsampled site to the target site group, comparing with the original site memberships (i.e. the site group assigned by the population clustering). For
example, figure (a) is the indicators derived from the red group and figure (a.1) is the likelihood to assign an unsampled site, which is originally

assigned to the red group in population clustering, to the red site group by the red indicators.
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3.5 Discussion

351 Consistency in site-species association in the indicator species analysis

Compared with the k-means clustering method, indicator species identified by network
modularity detection can more successfully assign unsampled sites to correct species groups.
Indicator species analysis is an efficient tool for recognising representative species and has
been applied on various research topics such as plant species composition (Flinn et al. 2008,
Willerslev et al. 2014), vector ecology (Obsomer et al. 2013), mycological community (Taylor
et al. 2014, Varela-Cervero et al. 2015) and intestinal microflora ecology (Seedorf et al. 2014,
Planer et al. 2016). The accuracy of prediction of site types relies on robust classification of
sampled species and sites (Dufréne and Legendre 1997). The results of clustering, however,
can be easily influenced by several factors. Firstly, because cluster analysis is based on
dissimilarity distance among members, the clustering result depends on which sites are sampled.
Different sampled sites lead to different clustering outcomes, turning into inconsistent species-
site associations. The second concern is that subgroups partitioned by clustering methods are
arbitrarily delineated by user-defined cut off thresholds and may create artefact groups
(Legendre and Legendre 2012). Although k-means clustering is recommended to be utilised in
indicator species analysis (Dufréne and Legendre 1997), this method can be easily affected by
to which group the original node is assigned (Celebi et al. 2013). Even though Dufréne and
Legendre (1997) suggest repeating the partitioning process until the indicator values of all
species are decreasing to find the appropriate number of clusters, there is still no reliable

criterion to decide the number of clusters.

In comparison, network analysis measures species co-occurrence directly and partitions
the subgroups more objectively and is therefore an efficient substitute for group partitioning in
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the indicator species analysis. Moreover, a notable difference between network analysis and
clustering is that network analysis measures network distance while clustering measures
Euclidean distance. Network distance is the number of direct paths between two nodes (the
distance from one node to its nearest neighbour is one path away and nodes without direct
connection will have more than one path). The Euclidean distance is not identical to the
network distance and might not be suitable for measuring the relationship in a network
containing geographical information (which is a spatial network) (Yiu and Mamoulis 2004)
given that it neglects the relationships among nodes but focuses only on how different these
nodes are. It is thus unsurprising that clustering and network analysis lead to different
partitioning results and compared with clustering, network analysis is more consistent in

assigning species groups.

3.5.2 Geographical distribution of site groups

The spatial network has been frequently applied in fields such as transportation and
mobility networks, internet, mobile phone networks, power grids, social and contact networks
(Barthélemy 2011). For example, a spatial network of chain restaurants and their proximities
to the nearest road systems can help identify areas that are suitable to start a new branch (Yiu
and Mamoulis 2004). In social science, user distribution based on users’ social connection such
as check-in locations (Joseph et al. 2012) or online photo tag co-occurrence (Zhang et al. 2012)
can be revealed with geo-social networks. Similarly, network analyses have been adopted by
biologists and many biological studies have applied spatial networks to analyse co-occurrence
pattern of microbes in human bodies (Levy and Borenstein 2013). In ecological research,
incorporating ecological processes such as dispersal, competition, or food webs into network

analysis to uncover geographic pattern remains challenging (e.g. Cumming et al. 2010) and
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most of the research focuses on single species or individual (e.g. Saura and Rubio 2010, Pereira

etal. 2011).

The current study shows that network analysis can efficiently classify subgroups of co-
occurring avian species in Britain according to species co-occurrence. For example, the
complete bird assemblage is sorted into subgroups according to occurrence in coastal or inland
areas, along a north-south gradient. The sites are divided into several groups and sites within a
module are usually geographically connected compared to the geographical mosaic pattern of
clustering results. This suggests the ability to combine species (co-occurrence) and spatial
information by network analysis. In the indicator species analysis, it also provides more
ecological meaning and consistency to species-site associations. However, this ability has not
attracted enough attention and more research is required. Newly developed methods such as
constrained clustering (Yuan et al. 2015, Cheruvelil et al. 2017) have attempted to balance
spatial continuity with landscape homogeneity. In this method, it is not only similarities in
characteristics among sites that are considered; adjacency of sites is also stressed, which helps
delineate site groups. Incorporating this network modularity algorithm into geographical site

arrangement might be a novel direction for analysing geographical networks.

3.5.3 Indicator species value as surrogate in plant and animal research

This research tests a simple idea - utilising assemblage structure to predict species
composition. In most studies, predictions of species richness or community structure usually
involve environment attributes. However, environment attributes could be affected by so many
parameters that identifying the most important and disentangling their relative influence could
become difficult (Sutherland 2006, Arita et al. 2008). Capitalising simply on assemblage

structure has the advantage of avoiding confounding effects arising from various environment
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factors by focusing solely on the relationships among species. For indicator species analysis,
where only species information is considered, the question is how these indicator species can
be effective surrogate for whole flora or fauna. The indicator species value concept originates
from research on plant ecology (Dufréne and Legendre 1997), and is extensively adopted to
characterise plant communities (Ricotta et al. 2015), but indicator species value is not limited
to studies on plant communities (Tichy and Chytry 2006). However, whether a similar concept
can be applied to mobile animals remains little studied. Sattler et al. (2014) applied indicator
species analysis (with traditional clustering methods) to six taxa, including plants, insects, and
birds and compared the suitability for reflecting biodiversity measures (such as biodiversity
index, species richness, etc.). Overall, indicator suitability of plants was better than for birds.
Our study demonstrates that when incorporating network analysis, the indicator species value

concept can also be applied to mobile organisms.

The indicator species value aims to construct site typology by comparing species
difference instead of predicting existence of specific species. Research that commonly applies
this value, such as vegetation classification, thus stresses more the dominant plant composition
and community type (Chytry et al. 2002, Tichy and Chytry 2006). However, it will be
challenging to extend this method to predict the appearance of undetected species in an
unsampled site, for this value still lacks information on associations among detected species
and undetected species. More information, such as environmental attributes or non-random
numerical relationship like nestedness, is required to achieve the goal of predicting individual

species.
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3.54 Identifying indicator species and umbrella species

In this research, network analysis was applied to identify “key-members” among large
amounts of data and uncover complicated relationships. Conceptually, this is related to other
studies that have attempted to identify umbrella or focal species objectively. For example,
Fleishman et al. (2001) used percentage of co-occurrence as an umbrella species index. The
number of species co-occurring with the umbrella species was treated as the dependent variable
to investigate the efficiency of an umbrella species index. Umbrella species identified by this
index, however, did not cover more species than when umbrella species were randomly
selected. Simply using species richness reveals very limited information on species
composition which is essential for identifying umbrella species. Randomly selected species
may include more species but fail to identify whether they are common species with little
conservation value. In the present study, the concept was advanced with network analysis by
not only estimating the number of species each member is linked to but also the identity of the

linked species.
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Chapter 4: Prediction of Taiwan avian assemblage with

nestedness and network analyses

4.1 Abstract

Results of the previous studies on British avian species illustrate that incorporating
assemblage structure (nestedness) in species accumulation curve and network analysis of
indicator species value can improve predictability of avian species richness and species groups,
respectively. However, the general applicability of these methodologies remains unexplored.
Here, | apply the same methods developed for Britain to the birds of Taiwan based on the
Taiwanese Breeding Bird Survey. Taiwan is a small island (ca. 36,000 km?) but with elevation
ranging from sea level to nearly 4,000 meters. Moreover, past studies in Taiwan have focused
on environmental associates of avian species richness without considering species status (e.g.
common, exotic, or rare species), meaning that the environmental determinants of the
Taiwanese avian assemblage are not well understood. For the species accumulation curve result,
the Arrhenius power function was found to perform better than negative exponential,
logarithmic, or Clench function in the prediction of Taiwan avian species richness. This result
is different from the British avian assemblage in which the logarithmic function provides the
best prediction for species richness. In addition, a very high prediction rate (error rate = 1.55%)
was achieved when species richness estimation based on two curves, random and nestedness
ordered, was averaged; this was when only about 1% area of Taiwan has been surveyed (410
1x1 km plots out of Taiwan’s 36,000 km? area). For the indicator species analysis, selecting
indicator species by network modularity had better performance than by conventional k-means

clustering method. The resultant species groups can be best differentiated by elevation and
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Normalised Difference Vegetation Index. This study demonstrates that capitalising on
nestedness structure and network analysis can enhance predictability in Taiwan avian
assemblage. Moreover, in contrast to the conventional usage of species richness as a dependent
variable, associating environmental attributes with network-based indicator species groups is
informative in the recognition of factors critical for delineating community assemblage and is

valuable in the preservation of intact community structure and function.

4.2 Introduction

In previous chapters, | have discussed how species accumulation curves and indicator
species analysis can improve predictability of species richness and species composition,
respectively, by incorporating information on assemblage structure. Species accumulation
curves are commonly applied to predict species richness in unsampled areas, but conventional
species accumulation curves usually overestimate species richness, especially when the
sampling area is unknown or when the sample size is very small (Soberén and Llorente 1993,
Ugland et al. 2003). My previous analysis of British Trust for Ornithology (BTO) 1988-1991
survey data demonstrated that species accumulation curves that incorporate nestedness
structure can predict species richness more precisely than conventional curves and without
overestimation. However, it remains unclear how well the nested species accumulation curve
performs in areas with different environmental characteristics from Britain. In this chapter, |
investigate the performance of nested species accumulation curves in a very different setting -

Taiwan.
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Predicted species richness will depend on the extrapolation models, so choosing a suitable
formula is important for a precise prediction (Soberon and Llorente 1993). The suitability of
specific extrapolation models depends on the characteristics of the sampled area. For example,
the exponential function which approaches an asymptote more swiftly might be more suitable
for small or homogeneous areas or when there are few rare species (Soberén and Llorente 1993,
Tjegrve 2003, Diaz-Francés and Soberon 2005). By contrast, Clench or logarithmic models,
which grow more rapidly, are better for sampling areas with many unknown taxa or large,
heterogeneous areas with many rare species. The logarithmic model is also suitable for areas
comprising fauna or fauna that experience severe annual fluctuations (e.g. many tropical
butterfly species) (Soberon and Llorente 1993). Lastly, the commonly used power model
usually overestimates species richness (Thompson et al. 2003a) and is best suited to
intermediate to large sampling areas or islands (Preston 1962a, 1962b, He and Legendre 1996,
He et al. 1996, Rosenzweig and Ziv 1999, Tjerve 2003, Scheiner 2003). In previous studies
(Lennon et al., 2001 and my previous chapter), the logarithmic model was found to be best in
predicting British avian assemblage richness. However, the logarithmic model might not be
appropriate where environmental characteristics or coverage of the sampling area is different

from Britain.

On the other hand, some extrapolation models, such as the logarithmic or power model,
lack an asymptote, so their application is confined to medium-sized areas and is unsuitable for
very small or very large areas (Tjarve 2003). Applying functions without an asymptote to
predict species richness is risky (Ugland et al. 2003), as estimating species richness depends
on an user-defined boundary. Based on my previous BTO 1988-1991 survey study (Chapter 2),

when data are input based on nested order, proportionally more uncommon species accumulate
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in the initial stage of sampling, as the most species rich site has the most uncommon species,
followed by a decelerating rate of increase. Thus accumulation leads to a curve slowly
approaching an asymptote, making it possible to estimate the complete species pool from a
sample of the population. Comparatively fewer uncommon species are included in the initial
samples when data are input based on a random order. Compensation by an accelerating rate
of increase in the later stage of accumulation can cause an overshoot in the predicted species
richness. However, it remains unclear whether incorporating nested order can help stabilise

species accumulation curves and improve predictability in regions other than Britain.

Determining key parameters for modelling is typically the most important but difficult
issue in species distribution modelling (Johnson and Omland 2004, Guisan and Thuiller 2005)
and each model selection method has its own requirement and limitation (see reviews in Guisan
and Zimmermann 2000, Guisan and Thuiller 2005, Elith and Leathwick 2009). Indicator
species analysis can help identify groups of species that implicitly have similar ecological
requirement or have similar response to change in the environment (Dufréne and Legendre
1997, McGeoch 1998, De Caceres and Legendre 2009, De Caceres et al. 2010). These species
groups can then be associated with environmental attributes. This is in contrast to the
conventional method where researchers select specific environmental characteristics (e.g.
primary forests) first, followed by listing species commonly observed in selected habitats,
which is usually a subjective process. However, the classification of site group, which is the
basis for selecting indicator species, has to be coherent and robust. My previous study on the
BTO dataset (Chapter 3) has demonstrated that incorporating the concept of ecological
networks can improve the performance of conventional indicator species analysis. However,

the applicability of this approach to regions apart from Britain needs to be validated.
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Taiwan is an island with different environmental characteristics from Britain. It is located
along the south-eastern coast of mainland Asia and was connected with the main continent
several times through land bridges during the glacial periods (Voris 2000). Fauna and flora in
Taiwan is therefore partially inherited from the mainland Asia (Lee et al. 2004). On the other
hand, the oceanic environment near the coast allows waders and seabirds to thrive. This is
similar to the avian assemblage source and composition of Britain (Taiwan has 64 of the 76
families in Britain, with 208 species in common). However, in contrast to Britain, Taiwan is a
subtropical island (latitude: 22 — 25 degree north) with an altitudinal range of nearly four
thousand meters in a small area of 36,000 km? (Ding et al. 2005). In this research, the
robustness of nested species accumulation curves and network based indicator species analysis
was evaluated with the Breeding Bird Survey (BBS) data from Taiwan. Moreover, | looked at
environmental determinants of species composition in Taiwan, as previous studies on the
Taiwanese avian assemblage have focused on uncovering the environmental determinants of
species richness (Lee et al. 2004, Ding et al. 2005, Koh et al. 2006) instead of species
composition. Among the environmental attributes considered, including mean annual
temperature, elevation, primary productivity (using a Normalised Difference Vegetation Index
(NDVI) proxy) and urbanization, avian species richness was found to be associated with
primary productivity in southern (Ding et al. 2005) and northern Taiwan (Koh et al. 2006) but
elevation and urbanization played a more important role in explaining variation in avian species
richness in the whole island of Taiwan (Lee et al. 2004). However, sites with similar species
richness might have different species composition. Furthermore, sites with the highest species
richness might contain only common species (e.g. in human disturbed areas) instead of any
rare or threatened species. Therefore, focusing solely on species number ignores important

information on species composition, with the latter usually more critical for conservation.
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Neglecting information on species composition also confounds association of species richness
with environmental attributes. For example, assume that there are two sites of the same avian
species richness with distinct environmental characteristics, such as one under intensive
anthropogenic disturbance while the other is pristine. Applying species richness to these two
sites will rate them as equal and could lead to the conclusion that human disturbance is
unimportant. By contrast, incorporating information on species composition is very likely to
uncover the significance of human disturbance to the avian assemblage since composition
usually varies with levels of human disturbance. Because the indicator species can identify
groups of species that have similar environmental requirements, the other goal of the study was
to investigate environmental associates of avian species groups in Taiwan after they were

identified with network analysis.
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4.3 Methods

4.3.1 Study site

Taiwan is a moderately sized island (35,873 km?) located in Southeast Asia. Elevation
ranges from 0 to 3952 metres (a.s.l.) with the central mountain dividing Taiwan into eastern
and western parts. Eastern Taiwan is dominated by mountains while western Taiwan is
characterised by flat plains and intensive human disturbance. The Tropic of Cancer runs
through southern Taiwan and the island is covered with tropical and subtropical vegetation.
Small associated islands (Kin-men, Ma-tou, Pescadores, Little Liuchiu, Green and Orchid
islands) were not included in this study, as | only consider mainland Britain in my other

chapters.

4.3.2 Research data

The Taiwan BBS is a volunteer-based bird survey across the main island of Taiwan that
started in 2009. Surveys are conducted in a 1x1 km grid-square system, using the point count
method. Up to 2016, a total of 410 sites (ca. 1.1% of total area of Taiwan main island) have
been surveyed and 283 species of breeding birds recorded, however there is a total of 626
species in Taiwan according to the most recent checklist (Ding et al. 2014). These species count
data were transformed into an incidence matrix that contains 410 rows (sites) x 283 columns
(species). The Taiwan island is divided into four regions: north, west, east and mid-high
elevation (areas above 1,000 meters) for their distinct climate and geographic characteristics

(Ko etal. 2013). In this study, all 410 squares served as the training data to predict avian species
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richness in main island of Taiwan by using species accumulation models. The basic

geographical unit used in this analysis is the 1 x 1 km square.

4.3.3 Calculating assemblage nestedness structure and network analysis

The methods (from calculating nestedness to selecting the indicator species) in this
chapter are identical to the corresponded processes in Chapter 2 and 3. The section

environmental associates of site groups is only implemented in this chapter.

4.3.4 Calculating nestedness

Nestedness temperature, a measure of community nestedness, takes unexpected presences
and unexpected absences into account (Ulrich and Gotelli 2007, Ulrich et al. 2009). It is
represented by a normalised sum of squared relative distance of absences above and presences
below a hypothetical isocline that separates occupied from unoccupied areas in a perfect nested
matrix (Atmar and Patterson 1993). According to Atmar and Patterson (1993), the calculation
of nestedness is based on the unexpectedness, which is measured by the distance an unexpected
presence or absence of a species lies in the matrix as compared to the perfectly nested matrix.
Unexpectedness runs diagonally along a line running parallel to the skew diagonal. For a matrix

with n species and m sites, the local unexpectedness (uj) is calculated as:

dij\*
w-(8)

Dijj is the length of the full line running through the jth species on the ith site and dj; is

the specific length along that line. The total unexpectedness (U) is then represented by:
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mn Y ugj

A perfectly ordered matrix should have no unexpectedness, thus U=0, and one with
maximum unexpectedness always has U,,,, ~ 0.04145. The nestedness temperature T is then

defined as:

100

Um ax

T ranges from 0-100°, with T=0° representing a perfect-nested matrix and T= 100° absolute

randomness.

Ordering a presence-absence matrix in nested order therefore means re-arranging it into a
new matrix where sites are organised from the most species-rich to the most species-poor.
Nestedness of the Taiwan avian assemblage was estimated as a first step toward understanding

whether using nested order can help improve the predictability of species accumulation curves.

435 Species accumulation curve and extrapolation

4351 Ordering of sampled sub-squares for species accumulation curves

Taiwan avian assemblage data were arranged in two different orders in terms of adding in

sampling sub-squares: 1) random order with the mean of 100 permutations (rarefaction curves;
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sensu Gotelli & Colwell 2001); and 2) nested structure, that is, ordering sampling sub-squares

from the most species-rich to the most species poor.

4.35.2 Functions for fitting species accumulation curve

Four functions for fitting species accumulation curves were compared for two kinds of
sampling orders (random and nested) to evaluate their accuracy in terms of predicting overall
species richness of Taiwan. Three of the four functions are based on Sober6n & Llorente
(1993) and the other from Ugland et al. (2003); one function, the power function (Equation

4), has been applied by Lennon et al. (2001) to describe the pattern of the British avifauna:

Negative exponential function: y = a x (1 — e"%) (Equation 4)
Logarithmic function: y = a + b X log(x) (Equation 5)
Clench function: y = lj’;x (Equation 6)
Arrhenius function: y = a X x* (Equation 4)
in which y is the species number and x the number of squares.
4.35.3 Calculating the predictive power of species accumulation curves

The four functions mentioned above were used for extrapolating and were compared for
their ability to predict overall avian species richness across Taiwan. The datasets were fitted to
four curve functions (i.e. negative exponential, logarithmic, Clench, and Arrhenius). The

inaccuracy in the prediction of total species richness, that is, error rate, is defined as:

1-(predicted species richness/recorded species richness)
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There are 626 avian species in Taiwan according to the most recent checklist of birds of Taiwan
(Ding et al. 2014), so the recorded species richness in the calculation of error rate is set as 626.
A positive error rate indicates an underestimation while negative value an overestimation. The

calculation and statistical procedures were conducted in R (R Development Core Team 2013).

4.3.6 Network analysis data organisation

The incidence matrix was arranged by site vs. species, with marginal sums as the total
number of species in a site and species prevalence as occurrence of specific species across all
sites. Based on the matrix, a two-mode network (two types of nodes, with each representing
site and species), describing which species resided in what site (linkage), was then plotted. To
understand how sites clustered according to similarity in species composition, the network was
projected into a one-mode network containing only nodes that represented sites. Three
possibilities of linkages can occur in a pair of sites: no linkage, meaning no shared species; one
linkage, meaning only one species in common; and multi-linkages, meaning more than one
species is shared. A weighted network illustrating relationships among sites and based on the

extent of species in common was constructed (Newman 2010).

4.3.7 Site group detection with network modularity

The modularity detection method termed randomtrap (Pons and Latapy 2005) is based on
a random walk via the closest distance among neighbouring nodes (Fortunato 2010). In
network analysis, the closest neighbour node is the node with only one-step linkage to the target
node. The nodes then are organised into linked subgroup (that is, a module) that contain close
neighbours. The modularity detected by the randomtrap method is similar to a person that

randomly walks among nodes along the shortest distance; with limited steps, the walker would
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be readily trapped in a closely linked subgroup (module). When this process is repeated, the
module position can be recorded by plotting the dendrogram of random walks, which is an
efficient and timesaving method for identifying groupings and is ideal for analysing large and

complicated networks (Pons and Latapy 2005, Fortunato 2010).

4.3.8 Site group detection with k-means clustering versus network modularity

The efficiency of network modularity versus clustering in site group detection was
compared using the same avian assemblage dataset. The non-hierarchical clustering k-means
method is commonly applied in indicator species analysis (Dufréne and Legendre 1997). For
comparison purposes, the k value (the number of groups to be split) was set to be equal to the
number of modules in modularity detection.

In this stage, the site map partitioned by network modularity and k-means clustering
method was compared, and was termed population modularity and population clustering,
respectively. The resulting site groups (based on whole dataset) were compared with site
groups determined by partial sampling of the whole dataset (see the following paragraph) to

investigate the reliability of these two partitioning methods.

4.3.9 Selecting the indicator species

The indicator species value for each species in each site (termed IndVal hereafter) was
determined by two indices, A and B, which represents specificity (the positive predictive value)
and frequency (the sensitivity) of species to the site, respectively (sensu Dufréne and Legendre
1997; De Céceres et al. 2012). Ajj is the proportion of species i present in specific site group j

(Npresenceij) relative to presence of species i in all site groups (Npresencei), and the higher
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Aij, the more species i is specific to site group j. Similarly, Bjj is the frequency of sites in site
group j where species i is present (Nsitesij) among all sites in site group j (Nsites;).
A;; = Npresence;; /Npresence;
B;j = Nsites;; /Nsites;
IndVal;; = A;; X B;; X 100
IndVal; = max[lndValij]

Significance of IndVal; was evaluated by permutation tests that randomly reallocated sites
among site groups and was calculated by the difference between the observed value and the
mean results of permutations, weighted by standard deviation of the values obtained by
permutations. Each IndVal value was run for 999 times, which is more than recommended
(>200 times; Dufréne and Legendre 1997).

For selecting the indicator species, the square root of indicator value (sqrtlVV%) was used to
measure the association between species and sites (sensu De Céceres and Legendre 2009). The
g denotes group equalisation, to correct for differences in group size among indicator species

when summing Ajj values in J areas.

g Npresence;; /Npresence;

ra = §J
ijl Npresence;; /Npresence;

An effective indicator is defined as A>0.6 (the positive predictive value) and B>0.2 (the
sensitivity) (DeCéaceres et al. 2012). Since in comparison with a single species, a group of
species could better serve as indicator species (DeCaceres et al. 2012), up to a four-species
combination was selected as candidate species. It is necessary to set a limit for the number of
indicator species, otherwise sensitivity decreases and uncertainty of positive predictive value
increases. The A value of indicators also represents the likelihood of an unsampled site to be
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predicted as a site group when it contains a specific indicator. For example, if an unsampled
site contains indicator species i that can indicate presence of site group | and is with an A value
of 0.7, this unsampled site has 70% likelihood of belonging to site group I, with the presence
of species i. The aim is to search for the maximum value that indicates the most likely species-
site association. Significance of the species-site association was tested by a percentile bootstrap
method that resampled the observed data to generate an approximate distribution of the

indicator values (DeCaceres and Legendre 2009, DeCaceres et al. 2012).

4.3.10 Environmental associates of site groups

Redundancy analysis (RDA) was applied to identify visually key environmental attributes
that can discern site groups categorised by network modularity. The RDA method is mainly
used for linear responses (comparing to canonical correspondence analysis: CCA, for unimodal
ones). Because the chi-square distance used in CCA is calculated by Euclidean distance that
considers relative abundances and is weighted by inverse of the species sums; that is, acommon
species contributes less to the calculated distance than a rare species, rare species may have a
disproportionately large influence on the analysis result (Legendre and Gallagher 2001,
Legendre and Legendre 2012). Legendre and Gallagher (2001) have demonstrated that the
problems CCA commonly raises can be prevented by applying a transformation that allows
data having non-linear response to be analysed by RDA. In this study, the dependent variable
was the site x species matrix for Taiwanese BBS data, after Hellinger transformation (square
root of relative species abundance) to prevent uneven contribution of common versus rare
species and double-zero bias (Legendre and Gallagher 2001). The environmental attributes in
this research included 13 variables: mean annual temperature ("C, as the mean of 12 monthly

mean temperatures), range of monthly temperature ("C, as the difference between maximum

104



Chapter 4 Methods

and minimum monthly mean temperatures within an year), mean annual precipitation (mm, as
the average of 12 monthly total precipitation), range between maximum and minimum annual
precipitation (mm, as the difference between maximum and minimum monthly total
precipitation within an year), NDVI (as the monthly average of every 8 days’ maximum value
at a resolution of 250 meter), range of elevation (m), mean elevation (m), maximum elevation
(m), minimum elevation (m), number of landcover types (humber of different landcover types),
population per county (persons/county), population density (person/km?), and nearest distance

to road (m, the nearest distance to a national or provincial road). Climatic data were extracted

from Taiwan Central Weather Bureau (http://www.cwb.gov.tw), NDVI based on MODIS images
(Moderate Resolution Image Spectroradiometer, NASA), and elevation derived from a 40-m
digital elevation model from Aerial Survey Office (Taiwan Forestry Bureau). Landcover types
were based on those defined by National Land Surveying and Mapping Center (Ministry of the
Interior, Taiwan), population data derived from Ministry of the Interior, Taiwan, and distance
to road was retrieved from Directorate General of Highways (Ministry of Transportation and
Communications, Taiwan). These variables were generated at a spatial resolution of 1 km.
Temperature, precipitation and NDVI were calculated over the period of 2009 to 2016 while
population calculated over the 2009-2010 period. Multinomial logistic regression (MLR), with
response variable a categorical variable (Kempen et al. 2009), was applied to identify
environmental attributes important for categorisation of avian indicator species groups. MLR
is an extension of logistic regression, which analyses binomial categorical dependents. When
the dependent variables have more than two levels and they are not ranked data then the MLR
should be more appropriate than the ordinal logistic regression model (Agresti and Kateri 2011).
Firstly, among highly correlated variables (Spearman’s rank correlation > 0.7, the same criteria

to avoid multicollinearity, Dormann et al. 2013), only the variable with the lowest Akaike
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information criterion (AIC) value in MLR (with only the selected independent variable in the
model) was retained for further analysis. Variables not highly associated with other variables
were also included in the final MLR analyses. AIC was then used to identify the combination

of environmental variables that can best discern species groups.

All analyses were conducted in the R environment (R Development Core Team 2013)
using the R packages “vegan” (Oksanen et al. 2013) “igraph” (Csardi and Nepusz 2006),
“indicspecies” (DeCaceres and Legendre 2009), “nnet” (Venables and Ripley 2002), and

“dendextend” (Fowlkes and Mallows 1983).

4.4 Results

441 Nestedness of Taiwan Breeding Bird Survey data

The nestedness temperature for birds in Taiwan was 10.92° (Figure 4. 1).

4.4.2 Nestedness and species accumulation curve

Among the four extrapolation functions, the Arrhenius model had the lowest error rates,
with 507.8 species (18.88% error rate) and 763.6 species (-21.98% error rate, overestimated)
predicted based on nestedness order and random order, respectively. The average of these two
data inputting orders is 635.7 species (-1.55% error rate). In comparison, the other three
extrapolation functions underestimated overall species richness when based on either

nestedness or random order: logarithmic model, 427.3 (31.74% error rate, nestedness order)
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and 480.3 species (23.27% error rate, random order); negative exponential model, 282.1

(54.94%) and 278.4 (55.53%); Clench model, 285.0 (54.47%) and 285.7 (54.36%).

Figure 4. 1 The nestedness matrix of Taiwan Breeding Bird Survey data. The x-axis represent
sites (sub-squares) and the y-axis represent species. No site or species names are
shown here as there are not legible in this figure; Appendix A provides full site and
species lists in nested oreder for this presence-absence matrix. Red cells indicate
species occurrence and white ones, species absence. The black concave diagonal
curve represents the isocline that delineates the hypothetically perfect nested matrix.
The white cells locating at the left hand side of the diagonal curve represent the

unexpected absence and the red ones at the right hand side, unexpected presence.
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Figure 4. 2 Prediction of Taiwan avian species based on four species accumulation curve

functions (a: exponential; b: logarithmic; c: Clench; d: Arrhenius) with 410

sampling sites under two data arrangement orders (blue: random; red: nested). The
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grey horizontal line indicates the total number of species (626 species). The vertical

dash line indicates the number of sampling sites.

44.3 Subgroups detected by modularity versus clustering algorithms

The network of Taiwan BBS data contained 283 avian species residing in 410 nodes (sites),
with 5658 edges representing linkages among sites that harboured the same species. Four
network modules were identified, each containing 6, 35, 131, or 238 sites (represented by the
purple, red, blue and green group respectively in Figure 4. 3 left). In comparison, the four
clusters classified with the k-means clustering method contained 53, 141, 92, 124 sites
(represented by the purple, red, blue and green group respectively in Figure 4. 3 right) (For

species lists of each site group, see Appendix F).
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Figure 4. 3 Results of modularity detection (left) and k-means clustering (right) from the
Taiwan BBS dataset. Different colours represented different modules or clusters.

Colours and order of module (or cluster) are arbitrary. Each square is 1x1 km.

The indicator species selected by modularity and clustering methods are listed in Table 4.
1. These four network modules include: (1) the high elevation zone (purple) with indicator
species Tarsiger indicus, Pyrrhula erythaca, Troglodytes troglodytes, Regulus goodfellowi,
Carpodacus formosanus, and Trochalopteron morrisonianum. These six species form three

combinations of four-species indicator groups (see Table 4. 1, left column of purple group),
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with the first three species always included; (2) the mid to high elevation zone (red),
represented by indicators Yuhina brunneiceps, Aegithalos concinnus and Liocichla steerii,
which are similar to indicators species identified based on clustering method (purple in Fig.
4.3b); (3) the low elevation zone (blue) with indicator species of Psilopogon nuchalis,
Hypsipetes leucocephalus, Alcippe morrisonia and Schoeniparus brunneus; and (4) the plain
and urban area (green) with indicator species of Streptopelia tranquebarica, Passer domesticus,
Streptopelia chinensis and Dicrurus macrocercus. Different indicator species were identified
when based on clustering algorithm (Table 4. 1, right column): (1) high elevation zone (purple
in Fig. 4.3b): indicators species were the same as those in mid to high elevation zone (red in
Fig. 4.3a) for network modularity; (2) mid to high elevation zone (red) included six species,
with three species also included in low elevation zone for network modularity (blue); (3) low
elevation zone (blue) included five species, with only one species (H. leucocephalus) the same
as low elevation zone (blue) for network modularity; two of the species (H. leucocephalus and
Pomatorhinus musicus) are also the indicator species for mid to high elevation zone in
clustering method; (4) the plain and urban area (green) included four indicator species, with

one species (P. domesticus) shared with the network modularity in urban area.

Higher A and sqrtlV? values indicate higher success in predicting site group of unknown
sites, and higher B value represents a higher detection rate, thus more efficient indicators. All
sqrtlVv9 are significant with p < 0.01, but A, B, and sqrtlV9 values were generally higher in

network modularity than in clustering method (Table 4. 1).
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Table 4. 1 The indicator groups selected by modularity (left) and clustering (right) methods of Taiwan Breeding Birds Survey (BBS) data. SP=
species name codes; A = positive predictive value to a site group of each indicator group; B = sensitivity of each species group to a site

group; sgrtlVe = grouped equalised square root value of A X B.

Modules Indicator species group Clusters Indicator species group

SP A B sqrtlVve SP A B sqrtlve

Regu_lus googifellowi Yuhina brunneiceps

Pyrrhula erythaca Liocichla steerii
Troglodytes troglodytes

Carpodacus formosanus

Purple  Tarsiger indicus Purple  Aegithalos concinnus
Pyrrhula erythaca 0.90 1 0.95 Liocichla steerii 0.97 081 0.86
Troglodytes troglodytes
Trochalopteron morrisonianum
Tarsiger indicus Yuhina brunneiceps
0.90 1 0.95 0.94 0.83 0.88

Pyrrhula erythaca
Troglodytes troglodytes

Aegithalos concinnus

Megapomatorhinus erythrocnemis

0.86 0.91 0.89 Red  Psilopogon nuchalis 0.60 0.77 0.68
Alcippe morrisonia

Yuhina brunneiceps

Red  aegithalos concinnus
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Blue
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Alcippe morrisonia

Psilopogon nuchalis
Hypsipetes leucocephalus
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Passer domesticus

treptopelia chinensis
Passer domesticus
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Megapomatorhinus erythrocnemis
Hypsipetes leucocephalus
Dendrocitta formosae

Alcippe morrisonia

Megapomatorhinus erythrocnemis
Pomatorhinus musicus
Dendrocitta formosae

Alcippe morrisonia

Dicrurus macrocercus
Pomatorhinus musicus
Lonchura punctulata
Hypothymis azurea

Dicrurus macrocercus
Pomatorhinus musicus
Hypsipetes leucocephalus
Lonchura punctulata

Dicrurus macrocercus
Pomatorhinus musicus
Lonchura punctulata

Pycnonotus sinensis
Acridotheres tristis

Hirundo rustica

Pycnonotus sinensis
Acridotheres tristis

Hirundo rustica
Passer domesticus

0.62

0.61

0.87

0.88

0.86

0.83

0.86

0.72

0.73

0.86

0.85

0.86

0.66

0.65

Results

0.67

0.67
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0.86
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Dicrurus macrocercus
Passer domesticus

0.87

0.86

0.87

Pycnonotus sinensis
Acridotheres tristis
Passer domesticus

0.81

Results

0.74
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4.4.4 Environmental associates of site groups

The result of RDA for Taiwan BBS (site groups categorised based on network modularity)
is illustrated in Figure 4. 4. There are 13 environmental variables, which means that we get 12
constrained ordination axes (one as dummy variable). 30.37% of total variance is explained by
environmental factors (constrained axes) (Table 4. 2), with r2 = 0.31 for the global model and
the adjusted r? = 0.29. Along the RDAL, the plain and urban area (green group) was separated
from the other three groups, with temperature, elevation, and NDVI as the most influential
attribute (Figure 4.4). For the RDAZ2, the three site groups (purple, red, and blue) were separated

mainly along the gradients in elevation, number of land cover types, and NDVI (Figure 4.4).

Table 4. 2 Redundancy analysis f Taiwan Breeding Birds Survey (BBS) data.

Inertia Proportion Rank
Total 0.6237 1
Constrained 0.1920 0.3079 12
Unconstrained 0.4317 0.6921 265

Inertia is variance

Eigenvalues for constrained axes:
RDAl RDA2 RDA3 RDA4 RDAS RDA6 RDA7 RDAS8 RDA9 RDA10 RDAll
0.10399 0.05217 0.01553 0.00439 0.00409 0.00314 0.00228 0.00200 0.00156 0.00120 0.00091

Eigenvalues for unconstrained axes:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
0.03163 0.01924 0.01827 0.01365 0.01118 0.00945 0.00900 0.00883

(Showed only 8 of all 266 unconstrained eigenvalues)

RDA12

0.00077
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Figure 4. 4 Plot of redundancy analysis (RDA) for environmental associates with site groups

of Taiwan BBS data. Points represent sites and different colours represented
different modules by the modularity-based indicator species analysis (colours
correspond to those in Figure 4.3 left). Environmental attributes included: mean
annual temperature (M_annTemp) ( ° C), range of monthly temperature
(R_mthTemp) (° C), mean annual precipitation (M_annPre) (mm), range between
maximum and minimum annual precipitation (R_Pre) (mm), Normalised
Difference Vegetation Index (NDVI), range of elevation (Ele_Range) (m), mean
elevation (Ele_Mean) (m), maximum elevation (Ele_Max) (m), minimum
elevation (Ele_Min) (m), number of landcover types (N_LCtypes), population per
county (Pop_County) (persons/county), population density (Pop_Density)

(person/km?), nearest distance to road (NearestRoad) (m) for each 1x1 km square.
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Five of the 13 environmental variables were removed from further MLR analyses due to
high collinearity with retained variables that had lower AIC values (Table 4. 3). Among the
eight variables that were analysed in the MLR, the model including maximum elevation height
and NDVI had the lowest AIC value (Table 4. 4). The second best model contained maximum
elevation height, NDVI, and population density, but the difference in AIC with the best model

was > 2 (Table 4. 4).

Table 4. 3 Akaike information criterion (AIC) value for the multinomial logistic regression,
with site groups as dependent variable and each single environmental variable as

independent variable.

Environmental attributes AlC

Maximum elevation (m) 305.27
Mean elevation (m) * 337.49
Minimum elevation (m) * 388.23
Range of elevation (m) * 428.75
Mean annual temperature (° C) * 464.72
Normalised Difference Vegetation Index (NDVI) 518.37
population density (person/km?) 642.89
population per county (persons/county) * 713.50
Nearest distance to road (m) 734.84
Mean annual precipitation (mm) 737.64
Number of landcover types 741.01
Range of monthly temperature (° C) 768.50
Range between maximum and minimum annual precipitation (mm) 785.08

* dropped in further analyses due to correlation (rs >0.7) with other variable of lower AIC value
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Results

Table 4. 4 The model selection table for Taiwan Breeding Birds Survey (BBS) data. Only the

top ten models with low AIC values are shown. The environmental attributes

applied in the model selection were: mean annual temperature (M_annTemp) (°

C), range of monthly temperature (R_mthTemp) (° C), mean annual precipitation

(M_annPre) (mm), range between maximum and minimum annual precipitation

(R_Pre) (mm), Normalised Difference Vegetation Index (NDVI), range of

elevation (Ele_Range) (m), mean elevation (Ele_Mean) (m), number of landcover

types (N_LCtypes), population per county (Pop_County) (persons/county),

population density (Pop_Density) (person/km?), nearest distance to road

(NearestRoad) (m) for each 1x1 km square.
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45 Discussion

In this study, it was found that the Arrhenius power function had lower error rates than the
other three extrapolation functions in the prediction of Taiwan avian species richness.
Moreover, while overestimation of species richness occurred when the data were inputted in
random order as was conventionally practiced, species richness was underestimated when the
data were inputted in nested order; low error rate (-1.55% error rate) was achieved when
estimation of these two inputting orders was averaged (see chapter 2 and 4). Comparing with
traditional clustering methods, network modularity had higher success in predicting species
groups for unknown sites, and the four avian species groups were associated with variation in

elevation and NDV/I.

The power function (Arrhenius 1921, Preston 1962a, 1962b) and logarithmic function
(often erroneously termed the exponential function; Gleason 1922) are commonly applied in
the extrapolation of species accumulation curve (Dengler 2009). Selection of an appropriate
extrapolation function is critical for satisfactory prediction of species richness. When species
are not randomly distributed or when an area is characterised with high environmental
heterogeneities, species number increases swiftly with an increase in sampled area (Williams
1943, He and Legendre 1996, Scheiner 2003). In the present study, the Arrhenius power
function was better at predicting avian species richness in Taiwan; in comparison, the
logarithmic function was the most suitable model for predicting avian species richness in
Britain (Chapter 2). This difference is in agreement with previous studies that show the power
model is the most appropriate extrapolation function when sampling effort is low and species

richness is still far from saturated (Soberon and Llorente 1993, Tjgrve 2003). In Taiwan, when
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many avian species are still not detected in Taiwan BBS, the fast-growing curve of the power

function should be more appropriate than log or other functions.

Both the power and the logarithmic functions lead to a convex upward species
accumulation curve that lacks upper asymptotes (Dengler and Boch 2008, Dengler 2009), thus
risking an overestimation of species richness (Ugland et al. 2003). The sequence of adding in
new species affects the curve shape and leads to different predictive results (Ugland et al. 2003).
As expected, when data are inputted in random order as conventionally applied, the power
function overestimates species richness (Figure 4.2d). However, data input based on nestedness
orders provides a novel way in constraining potential overshooting of power functions and
helps set a lower bound to the extrapolation curve (Figure 4.2d). A similar moderating effect
was observed in the British study (Chapter 2) when the logarithmic function was applied.
Interestingly, when species richness predicted based on nestedness order and random order is
averaged, the mean is 635.7 species, which is very close to the documented avian species (626
species) in Taiwan, considering that only 410 1x1 km plots out of Taiwan’s 36,000 km? area
(about 1%) are sampled. This accurate estimate of species richness is due to the
underestimation and overestimation when data are inputted in nestedness and random orders
respectively, so combining them will errors out. The same cancelling-out effect was also
observed in the BTO study (Chapter 2); as such, combining nestedness and random orders has
potential to become a novel and important approach for predicting species richness, but

requires further validation.

The k-means clustering method is descriptive in nature, its robustness is hard to validate
and is also an indirect method, relying on distance (difference) between species rather than

directly measuring co-occurrence patterns (Milligan 1980, Clarke 1993, Legendre and
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Legendre 2012). It is also sensitive to double-zero issue, which is very common in ecological
datasets and may cause group misclassification (Dufréne and Legendre 1997, Legendre and
Legendre 2012). The double-zero effect might be particularly severe in a heterogeneous
environment (e.g. tropical areas) because the fact that a species is absent in two sites does not
indicate that these two sites have similar environments. In this study, indicator species groups
in Taiwan had clearer group boundaries when selected by network modularity than by the
clustering method. Species composition is different when the site groups are determined based
on network module vs. clustering: species overlap is less in module-based than clustering-based
site groups (that is, most species occurred in >1 clusters if the site groups are classified based
on the cluster algorithm, see species list in Appendix F). My previous study (Chapter 2) also
demonstrated the superiority of network modularity over the clustering method, indicating the
higher utility of network analysis. Compared with clustering, the British modularity groups
also had clearer geographical boundaries, less overlap in species compositions, and higher

predictability in unsampled sites.

Taiwan BBS data have been divided into four groups (north, west, east and mid-high
elevation ) based on geography and altitudes (Ko et al. 2013). By contrast, group classification
by indicator value derived from similarity in species composition among sites (De Caceres and
Legendre 2009) can result in a more objective group categorisation. Indeed, the four groups
identified by the indicator species algorithms are different to the four groups determined by
geography and altitudes (Ko et al. 2013). A similar difference was also found in coral-fungi
symbiosis study (Amend et al. 2012), in which indicator species analysis revealed a different
classification from the conventional classification methods (e.g. coral phylogeny,

environmental attributes such as water temperatures...etc.). Composition of fungal species was
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highly variable in colonies of a single coral species and capitalising on subjectively selected
classification might not reveal factors that determine fungal species composition. Instead,
indicator species analysis indicated that several fungal species were only statistically associated
with specific corals which thrive in warm water (Amend et al. 2012). Therefore, indicator
species analysis is valuable in categorising meaningful species groups, which in turn helps

reveal the environmental determinants that define and differentiate communities.

Indicator species in the four sites groups were generally very different between the
modularity and clustering method. The exception is the modularity mid to high elevation zone
contained the same indicator species as clustering high elevation zone (Table 4.1). These
indicator species include Y. brunneiceps, A. concinnus and L. steerii that are commonly
observed in mid to high elevations in Taiwan. These three common species are included in the
zones of the highest elevation by the clustering method, but are included in the second highest
elevation group by the modularity method. An extra site group (high elevation zone) that is
attitudinally higher than mid to high elevation zone (Figure 4.4) is identified when based on
the network modularity. The six species included in the modularity high elevation zone are
generally distributed at higher altitudes but are more spatially limited than Y. brunneiceps, A.
concinnus and L. steerii. The two methods might classify indicator species in different ways:
the modularity method highlights species of more limited distribution whereas the clustering
method favours common species. Therefore, the modularity method may also be valuable in

identifying species of conservation concern.

Previous studies on environmental determinants of Taiwan’s birds have focused on avian
species richness (Lee et al. 2004, Ding et al. 2005, Koh et al. 2006), leaving unexplored how

avian species assemblages are environmentally differentiated. While species richness can be
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easily documented, objective classification of species assemblages is challenging. Capitalising
on network analysis, for the first time, Taiwan’s avian species assemblage is differentiated, and
it is further demonstrated that such differentiation is based primarily on elevation and NDVI.
Primary productivity (with NDV1 as a surrogate), elevation, and urbanization are also found to
be associated with avian species richness in Taiwan (Lee et al. 2004, Ding et al. 2005, Koh et
al. 2006), indicating that birds in Taiwan are largely characterised by elevation and NDVI.
Similarly, during several glacial periods, high mountain areas in Taiwan were the refugia of
Palearctic and Himalayan species which migrated from the continent via landbridges (Tsukada
1966, 1967, Lee et al. 2004). Mountains in Taiwan might thus shelter species that are different
from those in the plain areas, leading to a differentiation in bird assemblage with elevation. The
difference in NDVI might reflect a difference in primary productivity or human disturbance,
which can both affect avian species richness in Taiwan (Lee et al. 2004, Ding et al. 2005, Koh
et al. 2006). Places with lower NDV1 are typically where a higher degree of human disturbance
is experienced, which commonly harbour different species. In Taiwan it is often hard to
disentangle the effect of elevation, NDVI, level of urbanization, and temperature, because an
increase in elevation is typically accompanied with an increase in NDVI and a decrease in
urbanization and temperature. However, altitude should not be taken as a direct driver for
biodiversity, because its relationship with biodiversity is not causal. The underlying
environmental factors of interest (NDVI, temperature and urbanization here) are the ones to
focus on (Hawkins and Felizola Diniz-Filho 2004, Kluge et al. 2006, Field et al. 2009, Fattorini

and Ulrich 2012).
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Chapter 5: General discussion

A change in community structure reflects underlying environmental variation, and can
potentially advance our understanding of biotic communities. In this study, | focused on two
community properties: nestedness and co-occurrence. Nestedness is a non-random species
distribution pattern in which species in depauperate sites are contained in species-rich sites. On
the other hand, co-occurrence networks categorise species assemblages as different units that
reflect differential habitat requirements. Capitalising on these community structures can
improve conventionally utilised predictive models such as species accumulation curves and

indicator value analysis.

Predicted species richness based on species accumulation curves varies markedly with the
functions applied. For example, Soberdn and Llorente (1993) compared negative exponential,
logarithmic, and Clench functions and concluded that functions vary in their performance.
Selection of the appropriate extrapolation function is thus critical for satisfactory prediction of
species richness, but there is no universal principle for the selection of the optimum function.
In general, negative exponential and Clench functions perform better in homogenous
environments due to that both functions belong to saturation model; that is, there is an upper
asymptote and the accumulation curve eventually approaches a saturation point (Dengler 2009).
In comparison, the power function (Arrhenius 1921, Preston 1962a, 1962b) and logarithmic
function will create unbounded curves without mathematical asymptotes, and are more suitable
for heterogeneous environments where new species continue to be found for longer, despite

the fact that this function tends to overestimate species number due to an infinite increase
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(Tjerve, 2003; Dengler, 2009). Furthermore, although both logarithmic and power functions
are unsaturated curves without asymptotes, the power function outgrows other curves because
it follows the power trend, i.e. a variable base is raised to a fixed exponent. In this dissertation,
I have shown that accuracy in the prediction of British avian species richness increased with
sampling effort and error rates were much lower when fitted with logarithmic function than
with exponential or Clench function under both British and 100 km squares spatial scales
(Chapter 2). In comparison, the Arrhenius power function had lower error rate than the other
three extrapolation functions in the prediction of Taiwan’s avian species richness (Chapter 4).
Such difference is in agreement with previous studies that the power model is the most
appropriate extrapolation function when sampling effort is low and species richness is still far
from saturated (Soberdn and Llorente 1993, Tjarve 2003). In Taiwan, when many avian species
have still not been detected in Taiwan BBS, the fast-growing curve of power function should
be more appropriate than logarithmic or other functions. A method to estimate completeness
of sample (i.e. the proportion of species observed) derived from Alan Turing’s frequency
formula has recently been developed (Chao et al. 2013, Chao and Jost 2015). Completeness
can be accurately estimated based on the proportion of ‘singletons’ (species with only one
individual in the sample), with more singletons representing low levels of completeness. Such
estimation of sampling completeness might help inform how far species richness is away from
saturation and is thus helpful in the selection of optimal extrapolation function. Further studies
including information of sampling completeness might help to determine the criteria for

function selection.

I also demonstrated that ordering data based on nestedness could improve predictability

of species richness. Most recent research on nestedness has focused on a depiction of
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community structure (Picazo et al. 2012, Herczeg and Horvath 2015, Chaves and Ariez 2016)
or on an improvement of the algorithms for calculating the nestedness index (Almeida-Neto et
al. 2008, Podani et al. 2014). The current study, by capitalising on nestedness, provides a novel
approach for improving the predictive power of species accumulation curves. Specifically,
while species richness is usually overestimated when the data are inputted in random order as
is conventionally practiced, species richness is underestimated when the data are inputted in
nested order. An average of projected species richness of these two inputting orders remarkably
lowers prediction error rate in Britain and Taiwan even though the two countries have
distinctive topographic characteristics, suggesting a general applicability of this novel method

and is thus worthy of further validation in other study sites and other taxonomic groupings.

The nestedness-ordered dataset applied in this study can similarly lead to a better
prediction when combined with the best fit extrapolation functions (e.g. the logarithmic
function for British birds and the power function for Taiwanese birds). For instance, the error
rate was <5% based on nestedness order compared with 12% based on random method when
logarithmic functions were applied for the estimation of British avian species richness in 100
km squares with 10% sampling effort. This suggests that incorporating data structure (e.g.
nestedness) into the analysis could help improve the efficiency of sampling effort, particularly
useful in area with limited resource available for field survey (Pearman and Weber 2007,
Ashcroft et al. 2010). In the findings for the Taiwan avian data were similar: using
approximately 1% sampling data, with the power function, could predict overall species
richness with less than 20% error rate. Moreover, conventionally intensive randomisation
procedures are needed for the species accumulation curve to achieve higher predictive power

(Ugland et al. 2003; Chao & Shen 2004; Gray et al. 2004) by reducing the probability of
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including extreme values with a large number of replications. | show here that sampling based
on nestedness order is a novel way for capitalising on community structure for the prediction
of total species richness. Results of this study have demonstrated that, overall, sampling
according to nested order is more favourable than based on random order. The nestedness
method applied in this study captures information about community composition and can
accumulate as many species with lower sampling effort/areas. Thus taking advantage of the
nested structure has the potential to predict community composition by focusing on the most
species-rich sub-squares. However, because both British and Taiwan avian assemblages
demonstrate a similar level of nestedness, it is not possible here to assess the relationship
between the level of nestedness and the predictability of species accumulation curve. More
studies that consider different levels of nestedness (e.g. including simulated datasets) are

needed to test for the general applicability of nested order.

Relative to spatial nestedness, examination of nestedness over time is less studied,
although it can provide additional information on temporal species coexistence (EImendorf and
Harrison 2009, Heino et al. 2009). When studying Britain’s avian species nestnedness, species
with more limited occurrence include vagrants which occur less frequently in time rather than
in space. In other taxonomic groups, such species may have interannual effects on co-existence
(e.g. early-geminating and fast-growing exotic plants outcompete the slow-growing local
species). Application of nestedness species accumulation curves could potentially be extended
temporally for predicting interannual variation and could have important implications for long-

term conservation or monitoring.

Compared with k-means clustering, indicator species identified by network modularity

can more successfully assign unsampled sites to the correct species groups. Indicator species
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analysis is useful for recognising representative species and has been applied to various
research topics, such as plant species composition (Flinn et al. 2008, Willerslev et al. 2014),
vector ecology (Obsomer et al. 2013), mycological community (Taylor et al. 2014, Varela-
Cervero et al. 2015) and intestinal microflora ecology (Seedorf et al. 2014, Planer et al. 2016).
The accuracy of site type prediction relies on robust classification of sampled species and sites
(Dufréne and Legendre 1997). The results of clustering, however, can be easily influenced by
other factors. Firstly, because cluster analysis is based on dissimilarity among members, the
clustering outcome depends on which sites are sampled. Different sampled sites lead to
different clustering outcomes, resulting in inconsistent species-site associations. In comparison,
network analysis measures species co-occurrence directly and partitions the subgroup
objectively and is therefore an efficient substitute for group partitioning in the indicator species
analysis. The second concern is that subgroups partitioned by clustering methods are arbitrarily
defined by user-defining cut off thresholds and may create artefact groups (Legendre and
Legendre 2012). Although k-means clustering is recommended to be utilised in indicator
species analysis (Dufréne and Legendre 1997), this method can be easily affected by the
identity of the group to which the original node is assigned (Celebi et al. 2013). Even though
Dufréne and Legendre (1997) suggested repeating the partitioning process until the indicator
values of all species are decreasing to find the appropriate number of clusters, there is still no
reliable criterion to decide the cluster numbers, and the number of indicator species groups
classified by the k-mean clustering needs to be subjectively decided. As such, indicator value
does not take into account species absences (DeCaceres et al. 2010); different numbers of site
group are repeatedly attempted until the optimal number for acquiring the most confident
indicator species value is found (Dufréne and Legendre 1997, DeCaceres and Legendre 2009).

In comparison, the number of site groups is objectively determined by network modularity.
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Network analysis with spatial modelling (i.e. the spatial network analysis) has been
frequently applied in many fields (Barthélemy 2011), however in ecological research,
incorporating ecological processes such as dispersal, competition, or food web into network
analysis to uncover geographic pattern remains challenging (e.g. Cumming et al. 2010) and
most of the research focus on single species or individual (e.g. Saura and Rubio 2010, Pereira
et al. 2011). This study illustrates that network analysis could efficiently classify subgroups of
co-occurring avian species in Britain according to both species co-occurrence and the
geographical distribution. The complete bird assemblage is sorted into subgroups according to
occurrence in coastal or inland area, along the north-south gradient. The sites are divided into
several groups, and sites within a module are usually geographically connected compared to
the geographical mosaic pattern of clustering results. Also, the Taiwan BBS data have been
divided into four groups (plain-urban areas, low elevation zones, mid-high elevations, and high
elevations) based on geography and altitudes. This suggests the ability to combine species (co-
occurrence) and spatial information by network analysis. This technique has also been used for
analysing the large-scale European fauna structure (Araujo et al. 2011) and successfully
revealed the robustness of each faunal group by the geographical distribution and the resistance
to climate change. Regarding indicator species analysis, it delivers more consist result in
defining species-site associations therefore better basis for the predictability. However, such

capability has not attracted enough attention and more future research is required.

Scale also affects the predictability of community composition. For example, it has been
shown that the most species-rich areas shift northward when the research spatial scale enlarged
although the mechanism underlying the shift remains elusive (Lennon et al. 2001, Willis 2002)

and biological similarity typically decreases with geographical distance (Soininen et al. 2007).
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In the British avian study, the finest spatial scale used for indicator species was 10 km. However,
for a mobile taxon such as birds, when data of finer resolution are available, more relations
among modules may be uncovered. This increases the robustness of the site group classification
and may improve predictability of species composition. How to decide the most appropriate

spatial scale requires further research.

In this study, | have demonstrated that it is feasible to utilise orderliness in an assemblage
to improve predictability of species richness in unsampled areas. Also | have shown that
network analysis can help classify indicator species group. An investigation of both British and
Taiwanese bird data supported these conclusions. An assessment of other areas or countries
could validate the generality of these pattern-based algorithms. Future research should also
explore topics regarding nestedness along the temporal dimension and the significance of scale

in predicting species richness and composition.
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Appendix A

A.1 Nestedness order of 10 km sub-squares in Britain

* Codes are listed in nested order, from the species-richest site to the depauperate. Read by row, left to right.

* For complete grid reference and map, see http://www.bto.org/volunteer-surveys/birdatlas/methods/correct-grid-references/know-your-place

ND27 TL87 TF74 TF84 TF62 TQ77 TM47 SZ19 TR06 SU70 TM46 SK80 TG50 SU56 NG82 TG04 TL91 SD47 SZ39 NR26
SU86 SH37 TG40 NC96 NT48 TL77 NH80 NR64 TL78 TQ81 SU40 SE27 TL89 NT96 TG30 NS48 TQS58 NC55 SUI0 TQ96
NT67 TL19 ND35 NT16 TG31 SD84 SU50 SHS7 NY22 TL15 TG42 TL97 TR26 NR78 NT25 NUOO NS47 NO35 TM45 NR86
SD27 SU66 SD41 SU31 SJ24 TG32 NR39 SZ49 TL29 NH62 SU11 SU67 SE74 TMI11 NH85 TR35 TM34 TF63 TR16 NC86
NM45 SH28 TQ86 TM22 NDO06 SN69 TQ49 SU30 SU94 TF92 NU22 SU97 TQ91 NX66 SU36 SK46 NN8O SU77 NT86 SH48
SD48 Nz71 TL48 SK47 SE30 TL88 NZ52 SU76 TQO06 NC82 NR98 SU60 SK32 SY68 NN79 SD72 SD83 TR36 SD18 NH95
TF55 TQ40 NH79 TL31 NH91 NX67 NS28 NC76 NR97 NR83 SU01 NG77 SU84 TM57 NR73 SD57 NH52 SD17 NS83 TQ87
SK29 SU32 NNB81 NO59 NR89 S7Z29 TF61 NR84 SJ58 SD26 SK20 NC14 SP29 SU75 TM23 NS37 NO04 TMO1 NDO5 SH38
SD75 SK12 NS03 SJ61 SO9% NR88 NM48 SK28 TM28 SP92 TL57 SK27 TLO8 NH63 TM35 SK22 TQ98 SZ59 TQ55 SY67
TF71 TMS9 NH33 TF70 TL21 ND34 TMO02 NB43 SJ68 TL56 NR25 NN17 NT68 TQ76 TF10 SN20 SK67 TL30 NT84 NG25
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TQ92
NJO1

NY55
SuU88
NS94
NL94
SH63
TQ64
NX40
TF80

NC85
NF72
NN53
SU09
NOO06
NO14
NOO03
SU91
SK68
NZ29

TFOO
NYO00
NM55
SH87
NH77
NY95
NH90
SE24
SK60
TA16
SD38
SuU82
SJ37
NC64
SH39
NDO3
SK69
SD09
SX64
TQ79

NS07
SE20
SD62
NT42
TAO4
SJ92
ND16
TM13
SR99
NM71
NMG66
NH64
TL28
NH32
NC9I1
NOO1
NG88
NN55
TLO2
NT92

NY36
SE82
SU46
NX46
TQ59
NKO05
SP89
SuU83
NN85
NS65
SU26
SU58
SD29
S015
SJo8
SH44
SN77
SE63
NC25
NS93

SKO07
NJO5
NM54
NKO02
NO10
NH53
NR96
SJ75
NZ35
TF64
TM24
SH71
NO40
TF30
TM39
SE91
NC21
SuU72
NS41
NS40

NO42
TG41
TQO0
HY?20
SP91
NH55
NX96
SH97
SO60
NN72
SU33
NG74
S061
SJ50
SJ95
TL20
NM81
SU55
NH87
NY30

NM94
ST55
TAl4
NM86
NC36
NG99
NR77
NN96
Su44
NR95
NX85
NR46
NH65
TRO4
NO53
SC39
SJ72
ND26
NZz42
TQ68

TL99
SU73
SD55
NY15
NM83
TLO9
TQ19
SO39
SE26
NH20
NH42
SK90
SY99
SU57
SD64
TL26
NZ10
NX91
SD86
NT47

NZ04
ND37
SD65
TLO3
SP77
NR36
SK21
SY89
SU85
TR25
SJ73
SH47
NG32
NR63
NY54
SD56
NYO03
NX89
NX45
SU53

SE36

SJ69

NR99
SH46
NYO01
NR72
NH59
HY44
TQO8
NH78
NT58
NT24
SS42

SD74
SK26
NN18
TQ63
NS29
NC71
SD61
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SO78
TL39
SP93
SC27
NT35
TL11
NX68
NS27
SN42
NR85
NT19
NO25
SD28
SJ51
HY?22
SuU87
NC60
SD67
SK02
HY45

NS57
TL37
SJ96
NX76
TM58
NT77
SJ74
NZ43
SD96
SY58
TQ67
NYO02
SU93
SD95
SH76
SD32
NX16
SJ63
HYS50
SY78
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NH45
SK51
NTO6
TRO1
TL10

TROS
NS77
SK53
TQO09
TQO1
S0O12
NX37
NR79
TF52

Su4l
NS68
SH36
NYO08
SE29

Nz27

TL92
TQ16
SU96
NJO6
NY86
NOG66
NN51
SH61
SuU62
NGO08
NM44
NY51
NF75
SJ17
SE09
NN95
SE05
SKO00
SU22
NN84

SX97
SuU42
NH70
SE64
NJ26
SN52
SC49
NC02
NR75
NT27
SD39
SN79
SJ30
TQ33
NC80
ND23
SNG63
NTO7
NM15
HY32

SE40
NS35
SJo4
SZ38
NO65
ST44
SZ07
Sv8l
NO36
TL98
NR34
SK36
SZ08
NM73
SK87
NR65
ND49
SU00
NT15
NH67

NC13
SD59
NY25
TL81
SuU80
SZ68
NC46
TQ78
TF81
NDO1
NC53
TM49
SD31
SD82
TL22
NN69
SU43
NC56
NR35
TF94

SJo7
SU20
Suz21
TL14
SO70
S030
SN96
TQ57
SJ80
Su47
NS89
NT17
NJO4
NU20
SJ31
SE35
NM93
NR15
NX25
SE73

NX74
NH54
NY60
SJ18
NM82
NS38
ND25
TLO4
NX15
SK78
SE92
SN62
SC28
NO16
SO57
NOO0O0
NM49
NN75
NZ00
NJ41

SJ85
NX06
TQO7
SJ81
NR57
TF11
NC26
NM42
SK11
SD85
NH43
NH30
TQ66
SU34
SU12
NH69
SN40
TG14
NT83
TQ73



HY42
NJ46
NM76
NG92
T™M14
SY08
SuU6l
ST56
SE10
NM52
TL59
NC35
TQ27
NY63
TQ89
SH53
NG42
TL84
SJ02
NCO01

SN14
SK18
SU18
NO49
NX56
SJ60
NT43
NMO04
SX87
NY87
NT82
NX78
SO77
NT73
SN74
SU13
TL96
ND29
SU59
NS67

NS75
NH94
SK09
TF82

NF76
HY51
NK14
NY75
ST84

NC66
NG30
SS43

NX27
SO11
NX95
TF60

NG33
SJ20

NH72
TQO5

SE19

NR87
NT31
NZ37
NB24
TQ72
NCO3
NX57
TQ93
NH82
$S59

5382

SE83

NG09
TQ44
SJg4

NG9L
SX84
ND15
NS32

SH56
NH22
SE80

NY35
SH12
TA27
NR47
NTOO
SJ62

NC31
NB13
NY41
NC90
TLAL
NG36
NH19
NG41
SKO08
NT33
TQ45

NS58
SH75
SH43
NN34
SE34
NT26
NH51
TMO3
NY65
NT65
SuU03
SK91
NG20
SP45
NX64
TM44
TL60
S0O83
SuU17
SN78

SE50
NS98
SJ41
NY37
NY94
SY98
NJ24
SD73
SO31
TL13
NS19
NM34
TQ70
SN84
SZ48
SP37
NY97
HY74
NY92
NOS50

NJ13

ST59

TL86
NH46
NZ16
TF44

NN86
SO51
SP44

HU35
SJ66

NH66
NN28
SO47
S002
ST90

SK94
NN65
NR61
NY42

TA17
SJ43
SE17
NR45
NM70
HY43
NS05
SJ46
NR71
NT56
NNO6
NBO3
NH56
NN59
HY53
NR70
TR15
TG21
NY16
NM53

NM62
NH26
NH12
SD54
SJ57
NR44
NTOS
TLOS
NN82
NX69
NZ03
SJ45
NO02
HY31
NC44
ST60
TV59
TL12
NX77
NT45
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SN30
NR74
SJ71

NX44
TQ65
SD46
SJ53

SJ14

TQ46
NU21
SU65
SP58

NT13
NT44
NR27
NG89
TQ56
NY76
SJ94

SN51

SX98
SJ87

SK57
SD58
SJ40

NF74
S0O28
NS18
HY21
NR68
NT95
SD91
NZ61
NH76
TR34
NS55
NH41
ST49

NX43
SPS0
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NY12
SP97
SD69
HY62
SK66
NS09
SJ22
NM67
SP86
NC75
TQ13
SK86
NY13
SP46
HY64
NO21
SP48
NJ15
NO13
NC74

SD60
TQ39
SU37
NT74
NH68
SH95
NM56
SE18
S084
SN41
NZ15
SH52
TG22
NH81
HY33
SJ78
SH50
NZ02
NY70
TQ17

HY75
HU31
NJ14
TG10
NM64
NX35
NZ05
SU98
SN95
TQ53
TQ75
SN67
SE87
TQ29
SK19
NO45
NX18
NO30
NB54
SD97

NC45
NS49
NZ36
SK39
NX98
NH10
NN71
NH75
NY52
NT37
SP28
TF16
NH49
SH72
TL71
SE25
NNOO
ST24
NM97
NDA48

NH93
SZ09
SO79
NF99
NYO06
TGO1
NO41
NS61
SH27
SD78
TF72
SH70
NT66
NM35
NN74
NN45
NR94
NY91
SE98
NS02

NH89
SK4s8
SN31
NDO4
SH77
NS36
TL70
TQ23
SD90
su27
TQO4
TM12
SN54
S067
NC30
SE01
TQ54
NT14
NS76
NH96

SK79
NN48
TLS58
NC65
NN83
SE88
NR62
ND13
NJO3
NN30
NS46
NO37
NN91
TQ25
NX34
NF87
NTO4
SN50
SH74
SJ93

S0O38
NY45
TLA44
HY30
SJo1
NJO2
SK43
TL69
SK13
TF93
NF73
TQ43
NW96
NS86
NS08
SK54
SU52
HY40
NT18
NG83



NG73
SP25
NF96
SK56
SM93
ST57
SN68
TL46
NTO2
TL76
SK24
NN24
SN99
NS72
SE43
SE15
NZz41
SP13
NT32
SJ32

NC11
TQL4
NH98
SJ70
SX99
SE90
S062
NN19
SU45
TL24
Su15
SU90
TG23
TF09
TQ15
NS17
NM80
SX73
SH81
SY59

SH73
NZ01
SJ33
SP95
SY97
SK75
NO64
NS84
NZ21
ST61
SD93
SD76
S005
S004
TL68
TM15
S068
NM39
SN86
NG96

NT29
TL52
NC37
NH73
NR92
SO71
NO31
NT12
SK37
NC83
NM43
TQ42
TLOO
SD79
NN63
SPO1
SN94
SuU71
NC40
NS73

NN94
TQ41
SE16
NS63
SK55
SH33
SD66
NH15
NO76
5093
NM75
SP94
SP75
NY56
TQ97
NJ83
SE60
NF97
TF73
SH58

NJ36
TAO02
NN92
NT64
SK15
NT75
SH60
SJ99
SuU81
TL79
TFO1
NM63
SS53
NH18
NY62
NS96
SK44
NB53
TG11
NU02

NC84
ST87

TF21

SU99
SK50
SC16

NT30
NH92
NS04
SD89
NC63
NG94
SH85
NR56
HU69
ST04

SD50
NT54
NO12
NT62

NT90
S0O37
TF22
ST36
S048
HUS58
SuU23
NN31
NTO3
NDO2
NS85
SD37
NM32
SK65
SK59
SH64
TL82
NR60
SK61
SE00

NN93
SuU51
S027
SuU14
SN57
NJ25

SN35
HY63
HP61
SN92
TA22
NJ31

NZ28
SH94
SH96
NJ40

TQ74
NY90
TQ62
NG53

NY11
SP55
TM29
S098
SE?21
NS45
SJ52
TF02
SD81
SE61
SO59
SE42
SD87
NG44
NS91
SN89
NN89
TQA48
SD30
SJ90

Appendices

TF14
NH48
S139

SH49
SK63
NNZ0
TQ84
NG85
NR49
SN82
sc4s
ST51

TF26

sJo1

SP19

SK64
NS64
SK49
ST46

021

NJ50
NM46
SD88
NJ33
NN70
S088
S09%4
NY50
HP50
NN90
NM96
NZ13
NY88
ST23
NH23
NT22
SK33
S020
TR13
TF83
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SJ83
SY09
NG61
NC70
TQ26
NS66
HU44
SP40
SuU74
SE14
TF25
NG72
SuU28
NR58
SK96
NT53
TF33
SS78
SJ55
NT52

SO69
NS15
SJ23

TQ35
HU32
SK71
SD49
SH68
SK35
ST66

NF98
NC10
TL18
S0O40
SJ86

ST69

NS56
NN50
SS22

TQ71

SO50
ST93

TRO3
SP74

NZ51
NT71
NX29
SO49
NX55
SU54
SE28

SP90

NR69
T™M21
TQ85
TM38
NH31
NT55
NH44
TRO9

SM70
NHO06
NN76
SZ79
NJ35
NS39
SZ58
ST47
NJ66
ST39
NM69
SO73
SP35
NT60
SH84
SE86
NNO7
SP99
NH74
SK06

NY40
NC51
SU6G3
SEO07
TLO6
TL16
SNG66
NzO07
NG52
SP85
SO09
NC54
NG35
TL32
SuU08
TL72
TL94
HT93
TG33
NX99

NR37
NC24
NC23
SO58
NM74
NJ32
SE37
SJ06
SK58
NX87
NU04
S095
NH25
TQ32
TG02
TLS0
TM33
ND14
SJ42
SS88

NO55
NX47
SJ76
NO24
ST50
SC26
SP34
SN58
SS21
TR37
SO87
NG87
NZ06
NDO7
SS44
NNG68
SZ69
TLS53
TFO06
NS95

NT34
S034
SD45
TAO05
NN38
SJ97

NC50
SNG65
NT28
SP10

SN61
SP76

SX88
NT23
NT57
SK41
SX05
SX17
SU19
NY14



S092
ST32
SE72
NS92
TLO1
TM25
NX79
NJ91
TA26
SP32
NX97
ST98
SP30
SP80
NB45
TGO03
SY88
SNO3
HU45
SP15

SS54
SE31
NM84
SC38
NTO8
NY48
NN46
SJ67
SEO06
SH55
S024
NZzZ31
ST45
SE75
NU13
SN83
SN64
SD98
SS94
NS79

SK45
SP65

NN33
SH67
S041
NG81
SE65

NY47
SD99
NJ65

SK83
s072
TQ99
ST11

NO47
STO8

ST54

NY81
NB91
TQ36

SE95
NB56
TF49
NZ24
SP54
NS97
SE44
s075
5043
NM65
ST96
NN20
NO15
ND24
SP88
NO69
TQ94
SX59
5029
TA08

ST95
SD19
NF71
SXT77
TA15
S082
SU35
NT70
SN72
NM85
SD77
TAll
NCO00
HU15
NT20
NY31
SK84
SE57
NR82
SE79

NS99
NC95
SC37
SP05
NY23
SD68
HU43
ST13
NG70
SH62
SE97
SP42
NO46
ST76
SO53
NS69
HU36
S044
SP70
ST80

SK38
NY38
NN41
SN81
SES5

S$S49

TQ61
SK25
S035
NH39
svo1
NF77
S090
NY85
NJ92

NY93
NO99
NY43
TQ10
TQ12

NS71
SK34
ST35
NY57
NY24
ND12
SP06
SJ59
SD42
NH40
SS84
ST74
SE58
SE51
ST03
NO27
NG78
SU78
S042
TL36

NY99
SH65
NX65
NO20
NX75
SuU07
SK04
SU9%
NM26
NH34
SK05
TM48
S063
NG97
TF50
NR24
SY79
TL25
NN43
NG60

NH35
sJ11
NZ08
TQO2
S013
NO54
NNO4
SE71
SP53
ST58
NHO05
SE08
TL75
SU24
HU46
TQ34
SM83
NG26
sD71
NB35
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NN29
SS79
NC22
TQ47
SP12
SJ79
HUG8
SKO03
SW87
SO08
SE62
HU34
SO26
NJ81
TL65
SS48
SJ05
NS82
NX30
SK85

NX38
NR38
5086
S036
TQ38
NN54
su02
TQ22
NH84
S065
SP51
SP47
TL23
SE89
SE02
5097
TL93
NM98
SH90
SN87
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TQ50
TL74
NU23
T™MO07
SN76
TG13
TF20
SJ49
ST94
NUO03
TF15
ST48
SN12
TA21
NB32
SN98
TA13
NT85
NY82
SD51

SH92
NS06
NT36
TQ11
ND39
NO68
SH93
NY32
SS64
SP68
NH09
NS81
SK74
NO19
SJ28
TL45
NKO3
TA30
NX05
HU54

SN73
NT63
ST20
TQO3
NC81
SH22
TF91
NO26
SD92
SD34
NX58
NZ25
SP22
NM25
NUO01
SE53
NG24
ST28
TR24
HU27

NF86
NY33
SO14
SP64

TL83

NR93
SO46
NX04
SN75
SP36

NX86
HU49
NZ40
NY21
NZ23
ST14

TG00
SP84

SN25
SN43

SU92
TL80
ST38
TL27
SE33
SE46
S089
SE69
S001
HP51
HY52
TL67
HY41
NZ19
TL9O
TF39
HU25
NNO1
NM77
SJ21

SP09
SE49

NT61
SH83
TQ24
NY53
NZ09
NN40
$789

NY80
SE54

NS90
NX59
SN53
NS62
5019
ST79

HU42
SU16
SN85

NOO05
NY17
NY34
ST29
TMO04
NT39
NX92
NG62
NX84
SK88
SE47
NY?26
SO55
SE45
SP17
NY66
SS80
S052
SD63
SE55

SU79

TMO05
SK14

NR76
NG93
NY96
S091

NT94
NT10
NT76
NN64
NS33
SO74
TL66

NZ20
NNO9
SE39

SU29
TL34

NS59



S022
HU24
SN34
NF66
SK30
NX13
SU89
SJ15

S023
SK42
SE81

NF82
TAO06
NU10
SU06
NY78
SX86
SK97
NX48
NO88

SP83
SP52
SP18
NJ16
TM26
NJ34
SP69
SVv8o
NS74
SK70
HU28
NH58
NT21
SK81
TFO4
NC94
SS09
TL33
TF51
NN16

NT46
SH86
HUS59
SK40
SJ27
S003
TA20
SK98
TLS55
NM22
SH66
HP60
SD44
NG76
HT94
SX74
SH34
SE48
SO06
NY64

SN33
S018
SJ65
NM72
NF70
TR14
SS74
TF47
SE67
NHE88
TQ52
NMG60
NY67
ND38
SO64
NW95
TF36
HUS3
SE70
NS26

SD70
TLAT

NY98
NO11
SKO01
ND36
SX69
SX35
NO23
TA18
SpP87

SE66

NZ30
SY39
SS93

NJ12

TFO05

SK89
SO85
HU47

SS19
NG45
SP56
HU56
HU37
NY89
TMOO0
NG71
NJ27
SX46
TL40
NN23
NM89
TL35
TLS51
NL58
SE96
SN97
ST18
NOG60

S045
SK17
SP81
NC27
SW53
TQ83
HU39
NU11
SX56
NM95
NN66
ST70
SM82
ST99
NS14
NG19
NB00
NHO04
TM37
ST09

HU33
NF67
SJ54
NT51
S033
SK82
NC20
TMO09
ST77
NY71
NN52
TQ30
TLA49
SN91
TQ28
NY44
SuU04
NN22
SS92
NJ30

TQ82
NF84
SuU64
ST81
NM91
SHI1
NT41
SN55
SP96
SE78
SS97
SW86
SNO4
NC92
NU12
NN49
SJ48
TF57
ST85
SR89

NG50
NXO07
SS73
SY69
NB44
NOO08
S032
SE11
SN32
SD94
NF95
SJ13
NNG67
NM68
SuU49
SO56
ST75
HY60
NNO02
NOG63
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NS51
SN45
SN46
NC73
SuU48
NJ22
TA31
SP11
SE99
TRO2
NN57
SX83
NG14
NC42
SP82
NM88
NY18
ND28
NY49
NN44

TLA2
NC12
NG55
SD08
TF41
NM90
SW72
SX96
SP73
NL69
SZ57
ST16
TF27
NN62
NJ23
NB23
NO39
NS80
NA92
NG43
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SJO3
SWa32
SJ98
NM79
NHO08
SP43
NO57
TQ95
NM31
SN44
SM80
NO67
SN21
NZ17
S081
SC47
SK16
NM40
NB12
NO17

TF34
NZ11
NC52
NX36
SEO03
SP26
SE93
NY61
ST83
S010
SN56
TQ51
SJ77
SP49
TMO8
TL95
SK73
SX15
ST34
NC15

NY59
TL61
NS30
SP38

SM72
SU38
NJ70

NO75
NB46
NT80
SU39
TAO00
HU38
NJ86

SX89
NY84
NN35
SP24

NUO05
SE23

ST92
NB55
NT93
SPO7
NX88
NY10
TG12
NH86
NN56
TM36
ST78
SP16
SJ34
SP57
SJ12
NG95
ST00
SE56
NG98
NHO1

NO34
TQ60
S099
NM78
HZz27
NG51
TM18
NZ22
T™M17
SE32
SS69
NB21
SH80
TF43
TG51
SX68
SP98
ST71
NB22
SJ36

SO76
SW62
SU05
ST43
NN11
NT72
SJ64
SN93
NH83
TF48
NO33
NH47
SN24
SEO04
HU48
SW83
NN15
NN73
SD20
NO29

SY49
ST33
NY74
SH45
SP04
SN71
NY73
HY55
ST89
NJ45
NH21
STO6
HU41
HU16
SP02
NT87
SH23
ND17
S
NO44

NS78
NX26
TLO7
NC34
SY19
SK23
NJ56
NO51
SX78
TF17
NJ90
ST65
NN87
SJ56
ST91
SS91
SU69
ST97
SW73
SP61



HY61
TF42
SE77
NS52
SY29
NY39
SO66
NY77
NF81
ST88
HY10
TL64
SZ47
SS50
NJ44
NZ70
NY68
ST64
NZ90
ST31

NS24
SJ26
SS90
SJ25
NG15
SN90
NO56
SX18
NH27
ST12
SE76
NL93
ST10
NY58
ST37
TQ18
SE94
TL38
NM61
NZ32

NX08
HP40
NKO06
NN58
SWag4
NS60
SS82

NT50
NH29
NH36
NN47
NC41
NH28
NX39
NJOO

NY28
NH71
SS52

SS14

NA10

NJ11
TA10
SE38
TAO7
SE59
SP23
TL62
NH17
NN21
NS42
HU26
NG75
TAO1
NO89
TF18
NO48
NJ93
NM57
NG90
SX57

SP00
NG34
ND47
NZ62
SX37
ST68
SP66
SS70
SS61
TF28
SJ38
SW42
SNO1
SX66
ST63
NHO02
NJ43
SW95
NF19
NH24

SN60
SP39
SX85
SJ8s8
SP67
NX90
SO16
S0O25
TL17
NN37
NJ10
NJ95
NF88
SP03
SY66
NH11
NJ75
NJ17
NJ84
TM19

NX19
NN77
ST30
SK52
SJ0o
NS70
ST22
NH57
SJ16
SS81
NJ80
SN88
NJ51
SH98
ST73
SX55
NN97
NM41
NS44
NB33

SE68
SS71
NN27
SW75
NB41
SW43
T™M27
SJ35
SN15
SS83
SP79
TF56
SH32
SHE88
NS87
NL57
NM99
NN42
NX49
NC33

NTO1
ND19
HY54
sp21
SH82
SJ44
SP33
NB90
ST42
NA91
NZ26
NS53
NC16
NN61
NZ14
sc17
Swe1
ST27
NO52
NG56

NO87
SS41
NX17
SW93
TA23
NT11
NG46
ST82
NW97
SS32
SX44
NR67
SK31
TR23
ST25
NC93
NO28
NB10
SM92
SX58
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SO54
NS31
SS87

NB34
NO22
SD53
TF35

NJ96

SX67
NN39
NA74
ST67

NX14
NY04
SX25
SD80
SP59

SNOO
NJ71

SH29

SX54
NM24
SK77
NOO7
TMO06
HUS57
TL54
NT91
NF60
SD52
SX47
SD43
TF40
NN60
NKO04
SD16
SE52
SS62
ND59
NJ73
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TQ31
TQ37
SD33
SN80
SW64
SS40

SX63
SX27
SO00
NYO09
SP60

NZ34
TF38

NS25
SP41

NJ55

NNO8
ST40

NG79
NY29

NJ61
SK93
SH13
SP71
NTO9
NG54
NB31
NG47
NY20
NJ20
NO18
STO07
NB42
SO07
TL85
SN11
NO61
TA32
SW74
NZ81

NZ80
NF85
TG20
NG80
SE84

SX95
SU25
SX08
SP27

HU14
SS96

SK99

TL63

TQ88
SP31

NS16
SX28
NB30
SY77
NT69

TF19
NY69
NJ42
SP63
SS72
TQ69
NT81
TL43
NB14
NY83
NZ50
NM87
SE13
NF83
NAOO
SU68
SX19
NO43
NR50
NX03

STO01
SM81
SP72
SS98
SE12
NO32
TAO03
TF45
SK10
SX79
NZ33
SH54
SS58
SJ47
TA12
NS20
NN13
NHO00
NH37
TF29

TF90
NBO1
TQ21
SN22
NX33
NN12
SX04
TF12
NZ45
ST86
SK76
SX16
NF09
SX76
ST21
SW71
SD40
NO38
NG40
NX28

SX06
SK72
NN32
SX65
SS51

NS54
SX36
NS34
TF37

SP08

NX09
SX48
NT40
SS60

NG23
TF32

NBO02
NO79
NNO3
SK92

TFO7
SP62
NC61
TQ20
SP78
SS31
NY72
S080
NG84
SX45
NN36
ST19
SK62
NY46
ST72
NY19
SX39
NZ18
NC43
NM92



TF24
SJ89
HU40
NG38
NS88
NH14
NM33
NM21
SNO02
ST26
NM19
NZ39

NM47
NJ60
TRO7
SN70
NG29
NG64
SW76
SS68
NG18
NG39
NZ91
NL79

NYO7
SS30
NJ72
NH16
TF46
NC72
NH38
SW94
NJ63
NF89
SM62
NMO05

SN59
SS20

SN13
NA93
TF13

NG31
TF23

SK95
TV49
NS01
NN25
HY35

SW85
NZ53
NZ44
HUS55
SD21
NK13
NN14
NZ72
NNOS
HP62
TR12
NF61

TG24
NO78
NZ60
NB20
HW83
NX54
ND33
NX93
NA90
SE22
HX51
NA81

ST41
Sy87
SY18
ST53
SP14
NJ94
NJ53
SM50
NG63
NF80
SV90
SY38

NC32
HU67
SX49
SX75
SW97
TFO8
SM84
NHO03
HW63
SX94
SX09
SS11

TL73

SN36
NC62
NR51
HUG6
TF31

SX26

NH61
NS10
NZ12
HY?23
SW65

NJ54
SY48
NH60
NG49
NJ74
SW96
SS75
NN88
SS99
HU77
SW82
TR46
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TM16
NOO09
SS63
SM91
SY28
NJ21
SH24
NO86
TV69
NM59
SM73

NN78
NR59
HU30
SN23
TFO3
HX62
NJ52
NJ85
NX23
NL68
NM16
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TA40
TA24
SO17
NJ62

SWa33
NF56

HZ26
NF68

TA33
NH97
NZ38

HZ17
SW98
SW63
NHO7
SN10
ST62
NN98
NG66
TR33
NGO7
SD36

SH78
NY79
NY27
SXo7
TA09
NH50
NB52
SJ29
SS38
NM23
SW44

SZ99
NH13
ST02
SH51
TA41
NG86
NS21
NU14
NAG4
SZ28
SM71

NG65
ST52

NN26
NR16
NG37
NO58
SX29

NS50

NM29
NM51
NB40

SP20
NZ46
SW54
HY73
NK15
ST17
NO74
HZ16
NO77
NM37
SS39

NJ76
TF58
NJ64
NB11
SC36
TQ80
SW52
SE41
SY07
NM38
NT49

SM94
NS43
SJ10

NN99
SX38
SM90
NX24
NJ82

HY34
NG13
SS10



A.2 Nestedness order of species in Britain

* Codes are listed in nested order, from the most abundant species to the rarest. Read by row, left to right.

Appendices

* For reference of Latin and common names to the two-letter code, see http://www.bto.org/about-birds/birdfacts/british-list

WR
CK
cC
BZ
LO

DN
PU
AF
CL
BR
SJ

TK
VS

RB
LR
WO
CA
SE
WA
™
RI
HZ
BA
Gz
BU

PW
JD
TC

MT
GP
HY
PM
KT
TN
BL
DR

DT

SF
MG

KF
HC
TY
HB
WM
Cl
AK
RX
UG
EM

GR
LT
Co
RL

GJ
HF
CF
ND
MU
LM
AN
HN

SG
LI
BC
P
WT
sU

WN
GN
PT
sz
BG
AA
KE

sL
CcT
MH
MS
CG
RC
EA
BV
FF
oL
NK
LN

FW

ST
GC
GL
LB
PE

Kl
RY
BX
TL
MW
WY
TF
FV

CH

TO
DI
GB
PF
HH
NJ
SB
WS
RU
LU
LV
ET

WW

GS
SM
GH
GG
AE
Gl
FC
WE
PG
PS
Bl
AS

MA

Cu
CS
SK
LS

AC
MX
DW
ED
RF
MY

0oQ

MP
PH
SD
wcC
SC
RW
BK
GA
MR
XB
SP
SS
KN
SY
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HS
Sl
BH
NH
LG
™
RH
GX
CP
GF
AV
NG
PD
WJ

WP

GW
TS
YW
SA
GU
NX
Cw
BY
NS
GV
HD

GO
SW
RN
BO
ML
RA
TE
CYy
RS
VI
WX
WG

BT
WH

TU
RG
GD
PO
MN
EG
BW
HP
BJ
NB

CD

LW
WK
CN
LE
CE
GY
DC
oD
SR
ub

GT
BF
ocC
RK
CB
RM
LP
DO
WL
MO

RQ

LX

FP
SN
cM
TD
RZ
GK
oP
CX
KR
SQ
GE
RV

HM
SH
HG
RT
RP
CR
SV
RE
TT
BN
SO
JS
EO


http://www.bto.org/about-birds/birdfacts/british-list

A.3 Nestedness order of 10 km sub-squares in Taiwan

Appendices

* Codes are listed in nested order, from the species-richest site to the depauperate. Read by row, left to right.

* For complete site reference and map, see https://sites.google.com/a/birds-tesri.twbbs.org/bbs-taiwan/method-1/yang-qu-de-tu

A03-01
A27-04
C16-01
C30-02
A21-01
C28-01
A19-03
B10-14
A39-01
A09-46
A33-02
A04-50
A34-48

A18-02
B30-04
A27-28
B29-02
B37-01
B30-02
AQ07-02
A34-23
Al18-01
A40-02
A37-11
AQ09-15
A37-10

B16-01
B21-01
B10-02
B14-03
AQ09-31
A32-02
A35-03
A20-03
A34-49
B28-04
B10-13
Al12-01
AQ09-25

B30-01
B11-01
A18-03
A33-26
A40-11
A33-04
C37-03
A35-05
Al7-02
A09-24
Al19-01
A04-02
A04-28

B32-11
B13-01
B32-04
C30-04
A28-06
B38-03
A35-04
B30-03
A24-02
A36-15
A41-02
A29-04
A34-21

B13-02
A27-19
A32-04
A35-06
A17-04
A26-02
A40-03
A34-06
B28-06
A22-01
A40-14
A05-01
A10-01

C37-04
B37-02
C37-02
A16-04
A19-04
A09-04
B06-01
A09-13
A04-31
A41-01
A17-01
A09-56
A04-44

A19-05
A19-06
A16-05
A27-20
B10-03
Al18-04
A27-40
A34-08
A01-07
B06-06
A27-02
A36-02
A27-07
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B16-02
C30-03
A33-14
C14-02
A01-12
B38-07
A29-01
A20-05
A37-05
A37-01
A04-45
A40-01
A32-07

B32-01
B14-01
B14-02
A33-15
A34-24
Al12-02
A40-16
A04-48
A34-38
A26-01
A05-02
A27-41
AQ09-52

A09-33
C37-05
A34-07
A20-01
A40-12
A29-06
B22-01
A26-03
A09-50
A33-08
A35-15
A09-20
A36-03

B14-04
C14-01
A09-08
C14-03
A29-03
B30-07
B32-02
A36-01
A33-07
A37-02
AQ09-57
A27-15
A39-08

B13-03
C37-01
B38-04
B28-01
A09-29
B35-01
A34-03
A40-15
B38-01
A29-16
A03-20
A28-01
A33-11

C14-04
A19-02
B32-03
C30-01
A28-05
A28-08
A39-02
A32-06
A33-16
Al7-10
B13-04
A33-01
A36-14

B32-10
B10-01
B06-07
A04-16
A36-05
A34-02
A34-05
A33-09
A20-02
A20-04
A28-02
A21-02
A29-02



A02-01
A09-01
A10-03
A32-08
A09-45
A35-08
A40-10
A27-05
A04-27
A03-03
A25-01
A27-21
A05-06
A34-31
A33-19

A27-03
A35-02
A04-34
A04-06
A04-11
A35-01
A27-17
A19-13
A34-40
B14-09
A34-44
A09-39
A27-38
A35-17
A12-10

A29-12
A35-19
A27-31
A10-02
A09-03
A29-08
A04-01
Al7-20
A04-23
AQ09-51
A34-42
A09-58
A33-12
A36-10
A34-33

A24-01
Al6-01
A36-16
A02-03
A33-22
A33-03
A05-04
A37-08
A27-06
Al12-06
A04-19
A37-07
A34-22
A09-43
A33-29

A28-15
A16-03
A33-13
Al17-09
A28-16
B32-05
A34-14
A27-10
AQ09-17
A04-51
AQ09-22
A35-07
AQ09-32
A28-14
A34-34

B38-02
B33-01
A35-16
B39-01
A34-35
A01-05
A02-05
A34-20
A03-18
A04-09
A05-05
A34-26
A04-46
A28-13

A29-05
A27-27
A04-33
B33-02
A33-18
A27-22
AQ09-26
A09-06
A04-32
A34-39
A04-24
A35-18
A09-53
A04-21
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A29-20
A33-27
A09-14
A09-19
A27-29
Al10-10
A35-13
A01-01
A29-23
A27-43
A22-02
A04-35
A04-25
A09-16
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A27-12
A04-26
A05-17
A09-55
A27-33
A27-01
A09-40
A40-09
A04-18
A09-27
A04-04
A09-41
A04-22
A28-12

A37-03
Al16-02
A27-32
A37-09
A04-41
A04-03
A04-12
A04-43
A33-21
A09-54
A34-18
A34-47
A34-27
A04-17

A32-03
A38-01
A34-04
A34-32
A34-43
A28-09
A34-45
A27-30
A29-07
A09-18
A35-22
A01-08
A05-14
AQ07-01

A37-04
A04-30
A36-04
A34-01
A33-28
Al7-03
Al7-11
A09-02
A28-07
A26-04
A10-07
A04-10
A04-36
A27-18

A05-15
A28-10
A29-17
A28-04
A04-49
A28-03
A27-39
A03-07
A35-12
A27-24
A29-19
A04-05
A01-03
A35-10

A09-05
A33-10
A09-30
A01-02
A02-02
A29-18
A33-05
A03-19
A40-04
A04-20
A09-35
A34-41
AQ09-37
A09-44

A33-06
A32-01
A27-25
A03-16
AQ09-36
A09-48
A39-03
A34-17
A35-09
A10-09
A09-38
A39-07
A29-21
A09-49
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A.4  Nestedness order of species in Taiwan

* Codes are listed in nested order, from the most abundant species to the rarest. Read by row, left to right.
* For reference of Latin and common names to the code, see

https://docs.google.com/viewer?a=v&pid=sites&srcid=YmlyZHMtdGVzcmkudHdiYnMub3JnfGJicyl0YWI3YW5873g6 NWQyYyZDAXN2M2Njg1NTcONA

C406 C468 C372 C408 C331 Cc2r7 C621 C4r71 C366 C361 C470 C045 C387 C276 C388
C474 C460 C097 C549 C472 C459 C473 C355 C100 C625 C333 C119 C358 C319 C274
C571 C551 C364  C371 C390 C271 C344 C570 C404 C505 Cl154  C104 C107 C320 C624
HODI  C293 C541 C299 C476 C128 Cl46 C283 C456 C373 MOTS C280 C481 C379 C415
C044 C428 C360 C464 Ci31 C542 C384 C173 C509 C385 C178 C356 C094 C457 C466
C430 C521 C093 C526 C342 C405 C524 C602 C091 C548 C458 C482 C053 C496 C418
C508 C397 C187 C225 C491 C561 C552 C562 C175 C048 C400 C490 C626 C479 C089
DOAN C394 C226 C022 C183 C535 C318 C314  C272 C116 C369 C392 C398 C480 C149
C414 C359 Cs577 C306 C134 C170 C419 Cle6l C499 C401 C115 C179 C109 C288 C165
C547 Ce07 C455 C555 C046 C556 C448 C413 C395 C103 C478 C483 C489 DOCA (C487
C124 DOAP C101 C512 Cl14 C335 C347 C334 Cell Cl142 C402 C608 C623 C412 C463
C475 C087 C302 HYBU C573 C507 C486 C301 C579 Cs11 C217 C098 C374 C544 C518
C620 C028 C403 C4r7 C180 B004 C340 C336 C258 C622 C297 C465 C383 C082 C139
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ACGA (C550 Cl121 C130 C208 C613 C434 C132 C129 C219 C565 C263 C581 C096 C416
C186 C595 C294 DOCY (C349 C539 C284 B013 C558 C427 C367 C386 C308 C606 C312
C291 C162 C329 C200 B008 DOGO BO11 C569 Cir1 BYBU (C598 C143 C560 C155 BO12
C120 STNI C594  C204 C409 C423 C510 HYGA CO019 C316 C203 C266 B009 C519 C578
C176 B020 C617 C133 C024 C322 C262 C168 C016 C591 C559 C047 ZODA C615 C188
C250 BO18 C527 C092 C202 C034 C193 C026 C177 C113 C246 C025 C206

*HYGA: Garrulax canorus X Garrulax taewanus; ZODA: Zoothera dauma dauma; STNI: Strix nivicola; DOGO: Anser domestica; ACGA: Acridotheres grandis; DOCA: Cairina moschata
(domestic); HODI: Horornis diphone/canturians; DOAP: Anas platyrhynchos var. domestica; MOTS: Motacilla tschutschensis; DOCY: Cygnus atratus (Domestic); DOAN: Anas

platyrhynchos (Domestic); BYBU: Bycanistes bucinator; HYBU: Pycnonotus sinensis X Pycnonotus taivanus.
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Appendix B

B.1 Minimum set for estimating species number by assemblage structure

To identify how many sub-squares were required to predict 90% and 100% of the total number of species
in Britain; species accumulation was calculated with increasing number of sub-squares, using two orderliness:
random and nested order.

B.1.1 Randomly-select method

From each 100 km square in Britain, we randomly selected one of 10 km sub-square and recorded the
number of species in it. Continued to randomly select the second sub-square other than the previous one and
added number of new species to form a new species subset. This process was repeated until all species were
included. Lastly, repeated the whole procedure (i.e. species accumulate from 1 sub-square to maximum
number of sub-squares in the 100 km square) 1000 times and calculated the average number of minimum
sub-squares needed to include 90% or 100% species. The minimum number for including 90% or 100%
species was calculated in all fifty-five 100 km square.

An example using only 10 sub-squares was demonstrated in Table A- 1. Each time we randomly selected
one of the 10 sub-squares and their species composition recorded. The minimum number of sub-squares
required to include the whole community (species Ato G) can then be calculated. For the real data set, similar

process was implemented except that all sub-squares in a 100 km square were included.
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Table A- 1 Example of randomly-select method. (a) A 10-cell square containing species A to G; (b) the randomly selected sub-
squares are combined to create a new species subset. This process is repeated until the whole community (species A to G) has

been recorded. In this sample, four sub-squares are the minimum required for recording all seven species in this square.

(a)

Sub-square | Il 1l \% \Y VI VII VIII IX X
Species ABCD ABCF
ABD BDF ABC AB BEF CEFG ACF BCDEFG
composition E G

Total species

3 3 3 2 5 3 4 3 5 6
number
(b)
Round of select 1 2 3 4 5 6 7 8 9 10
New sub-square VI VIl IX \Y Vi X | ] \% 1]
selected
New subset of BEF BEFA BEFA BEFA BEFA BEFA BEFA BEFA BEFA BEFA
species C CG CGD CGD CGD CGD CGD CGD CGD
Total species
3 5 6 7 7 7 7 7 7 7
number
B.1.2 Nestedness-select method

For this method, we selected sub-square based on the nested structure of the 100 km square, which was
rearranged by local unexpectedness in descending order according to its nestedness. The procedure was similar
to the randomly-select method except that the sub-squares were chosen according to the nested order, starting

from the most species-rich site until at least 90% or 100% species were included.
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B.2 Minimum sub-squares required for estimating species richness: result

A mean of 29.2+5.7% (xSD) of 10 km sub-squares was required for the random-selection method to
include 90% of all species within the 100 km square (ranging from 16.3+3.3% to 40.2+7.6% for each square).
Including all species requires 74.3£7.9 to 93.7£6.0% of sub-squares (with a mean of 86.2+6.9%).
Comparatively, only 4.0%-28.8% (with mean = 14.8+7.1%) of all sub-squares were required to incorporate
90% of species using nestedness-selection method, but including all species needs much more sub-squares
(41.6%-100.0%, with a mean of 76.9£15.7%). The nestedness-selection method required fewer sub-squares
to estimate 90% of species than random method, but had larger variation in minimum number for these sub-

squares.
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Appendix C

C.1 Determing the number of clusterings in indicator species value analysis

Dufréne and Legendre (1997) is followed for the determination of the optimal number of clusterings for
the indicator species value analysis. This method firstly calculates the indicator value (IndVal) of each avian
species for each clustering level (e.g. IndVal for species 1 to species 273 at clustering level 2, 3, 4 etc.). The
difference in IndVal between consecutive cluster levels for each species is then calculated (e.g. the difference
in IndVal between cluster 2 and cluster 3 for species a) and plotted. Because larger IndVal represents a better
predictor, the optimal clustering level is when the difference in IndVal (cluster n+1 minus cluster n) is the
largest and is most positive. In this case (Figure A-1), because the value (difference in IndVal, y axis) is the
highest between cluster 2 and cluster 3, and is of similar high value between cluster 4 and cluster 5 (both also
have smaller negative value unlike between cluster 7 and cluster 8), it is most optimal to divide the avian
assembly into three or five clusters. However, either three or five clusters has lower predictability than the
method based on network modularity, as demonstrated briefly in Figure A-2 (below, for three clusters) and

comprehensively in Chapter 3 (for five clusters).
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Sum of speices IndVal value differences

-2
|

2 3 4 5 6 [ 8 9

Clustering levels

Figure A- 1 Sum of species indicator value (IndVal) differences consecutive cluster levels for each species

in the BTO dataset.
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Figure A- 2 The predictive ability of the site group to the unsampled sites when predicted
based on 40% sampling and under each of three sampling clustering indicator species
group. The title (a-c) indicates each of the three assigned population clustering and the x-
axis is the likelihood of assigning an unsampled site to the target site group, comparing
with the original site memberships (i.e. the site group assigned by the population

clustering). For example, figure (a) is the indicators derived from the red group and figure
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(a.1) is the likelihood to assign an unsampled site, which is originally assigned to the red group in population clustering, to the red site group by the

red indicators.
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Appendix D

D.1 Sensitivity analysis for sampling size of site group detecting

A preliminary test has done for deciding the sampling size to effectively represent popular modularity,
before the site group detecting process. 10%, 20%, and 40% random samplings from the whole BTO dataset
were partitioned based on network modularity randomtrap method. The three sampling modularity (10%, 20%,
and 40%) was compared with the corresponding sampling sites in population modularity using the Fowlkes-

Mallows index (FM index) (Fowlkes and Mallows 1983).

D.2 Sensitivity analyses for sampling size of site group detecting: result

The result of sensitivity analysis showed the 10% and 20% sampling both had four modules whereas the
40% sampling had five. The green module that represents a small coastal site group was hardly detected in the
10% and 20% sampling for its sparse and scatter distribution. Table A- 2 showed the FM index of 10% and
20% sampling were both lower than 40% sampling. The module distribution was illustrated in Figure A- 1.

There was no green module in either 10% or 20% sampling modularity result.

Table A- 2 The Fowlkes-Mallows index of 10%, 20%, and 40% sampling modularity when comparing the
similarity to population modularity. FM= the Fowlkes-Mallows index; E= expected value of the Fowlkes-

Mallows index; V= the variance under the assumption of no relation between the sampling and population

modularity.
Sampling size FM E \
10% 0.71 0.43 <0.01
20% 0.73 0.33 <0.01
40% 0.83 0.34 <0.01
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Figure A- 3 Assigned module of sites based on 10%, 20%, and 40% (left to right) sampling (colour asterisk)

and whole sampling (background colour) of BTO dataset with randomtrap algorithm. Different colours

represented different modules. Each square is a 10 km sub-square.

153



Appendices

Appendix E

E.1 Species composition in determined network modules and k-means clusters in Britain.

Table A- 3 Species list for the four indicator groups selected by modularity method (left) and k-means clusters (right).

*Species names represented by two-letter code (see http://www.bto.org/about-birds/birdfacts/british-list)

** Module and cluster colours are assigned arbitrary.

Modules

Species

Clusters

Species

Red

AA AC AE AFB.BCBHBVBWBZC.CACBCDCECFCHCKCLCMCNCRCSCU
CXD.DIDNDOE.EAF.FP GB GJ GK GL GP GU GX H. HB HC HG HH HM HS JD K. KI
L. LB LG LI LR LW MA MH ML MP MS MX ND NK NX OC OD PE PH PM PU PW Q. R.
RA RB RC RERG RHRKRM RN RO RP RSRZS. SA SB SC SD SE SF SG SI SL SN SO SQ
STSUSVSWT.TETLTMTT TUTW TY W. WC WE WH WM WN WP WR WS WW Y.

Red

AE AF AK AN AS AV B. BA BC BF BG BH BI BJBK BL BN BO BR BT BU BW BX BY
BZC.CACBCCCDCECFCGCHCICKCLCMCNCOCPCRCSCTCUCWCXCY
D.DCDIDNDRDTDWE.EDEGEMETF. FC FFFP FV FW G. GA GB GC GD GE GF
GG GH GI GJ GL GN GO GP GR GS GT GU GV GW GX GY H. HB HC HD HF HG HH
HMHPHSHYHZJ.JDK. KFKIKNKRL LBLELGLILMLNLOLPLRLSLTLU
LW LX M. MA MG MH ML MN MO MP MR MS MT MU MW MY N. NB NG NH NJ NS
OC OL OP OQ P. PE PF PG PH PO PT PU PW Q. R. RARB RC RE RG RIRKRL RM RN
RO RP RQ RSRT RURV RW RXRY RZ S. SA SC SD SE SF SG SH SI SJ SK SL SM SN
SPSSSTSUSVSWSZT.TCTDTETNTO TP TSTT TU TW TY UD UG VI VS W. WA
WC WG WH WK WL WN WO WP WR WS WT WW XB Y. YW
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Blue

Green

Purple

AC AE AF AKB.BABCBFBGBHBJBKBLBOBTBVBWBYBZC.CACBCCCDCE
CFCGCHCICKCMCNCOCPCRCSCTCUCXCYD.DIDNDODRE.EAEDEOET
F. FF FP G. GA GB GC GD GF GG GH GI GJ GK GL GN GO GP GR GS GT GU GV GW GX
GY GZH. HBHC HD HFHGHHHMHSICIG INJ. JD JS K. KF KI KT L. LB LELG LI LN
LRLT LW M. MA MG MH ML MN MP MR MS MX ND NJ NK NX OC OD OL OP P. PE PF
PH PM PO PS PT PU PW Q. R. RARB RC RE RF RG RH RK RL RM RN RO RP RS RT RU
RZ S. SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SS ST SU SV SWSY SZ T.
TCTDTETKTLTMTOTP TS TT TU TW TY W. WA WC WE WH WJ WK WM WN WO
WP WR WS WT WW Y. YW

F.GB GU GXKIPURARCRHSATY

AE AF AKAN AS AV B. BABC BF BGBH BI BJBK BLBN BOBR BT BUBW BXBY BZ
C.CACBCCCDCECFCGCHCKCLCMCNCOCPCRCSCTCUCWCXCYD.DCDI
DN DO DRDTDWE. EDEGEMETF. FC FF FP FV FW G. GA GB GC GD GE GF GG GH
Gl GJ GL GN GO GP GR GS GT GU GV GW GX GY H. HB HC HD HF HG HH HM HN HP
HSHY HZJ. JDJSK. KFKIKNKRKT L. LBLELGLILMLOLPLRLSLTLULVLW
LX M. MA MG MH ML MN MO MP MR MS MT MU MW MY N. NB NG NH NJ NS OC OL
OP OQ P. PE PF PG PH PO PT PW Q. R. RB RC RE RG RIRKRL RM RN RO RP RQ RS RT
RU RV RW RXRY RZ S. SA SC SD SE SF SG SH S1 SJ SK SL SM SN SR SS ST SU SV SW
T.TCTDTETNTOTPTSTT TU TWUD UG VI VS W. WAWC WG WH WK WL WN WO
WP WR WS WT WW WXY. YW

Blue

Green

Purple

AA AC AE AF AKB.BABCBFBGBHBKBLBOBTBVYBWBYBZC.CACBCCCD
CECFCGCHCICKCLCMCNCOCPCRCSCTCUCXCYD.DIDNDODRE. EA
ED F. FF FP GA GB GC GD GG GH Gl GJ GK GL GN GO GP GR GS GT GU GV GW GX
GYH. HBHCHGHHHMHSICIGJ.IDK. KIL.LBLELGLILNLRLTLWM. MA
MG MH ML MP MR MS MX ND NK NX OC OD OL OP P. PE PF PH PM PO PS PT PU
PW Q. R. RARB RC RE RF RG RH RKRLRM RN RO RP RS RT RURW RZ S. SA SB
SC SD SE SF SG SH SI SJ SK SL SM SN SO SPSQ SSSTSUSVSWSZT.TCTD TETL
TMTOTPTSTTTUTWTY W. WA WC WE WH WK WM WN WO WP WR WS WW Y.

AF AK AN B. BC BF BH BK BLBN BOBR BT BWBXBY BZC. CACB CC CD CECF
CGCHCKCLCMCNCOCRCSCTCUCWCXD.DCDIDNDODRDWE.EDEGF.
FC FF FP G. GA GB GC GD GE GF GG GH GI GJ GL GN GO GP GR GS GT GU GW GX
GY H. HB HC HF HG HH HM HN HP HS HY HZ J. JD JS K. KF KIKR KT L. LB LE LG
LILMLOLPLRLSLTLVLWM. MAMG MH ML MN MO MP MR MS MT MU MW
MX N. NG NH NJ NS OC OL OP P. PE PF PG PH PO PT PU PW Q. R. RARB RC RERG
RIRK RLRM RN RO RP RT RWRY RZS. SA SC SD SE SF SG SH SI SK SL SM SN SR
STSUSVSWT.TCTDTNTOTPTSTT TU TWTY W. WA WC WH WK WL WN WO
WP WR WT WW WXY. YW

AC AE AF AK B. BC BF BHBJBKBL BN BO BT BV BWBXBY BZC. CACB CCCD
CECFCGCHCICKCMCNCOCPCRCSCTCUCXCYD.DIDNDOE.EAEDEG
EOETF. FC FF FP G. GA GB GC GD GF GG GH GI GJ GK GL GN GO GP GR GS GT GU
GW GX GY GZ H. HB HC HD HF HG HH HM HP HS HY HZ IN J. JD JS K. KF KI KR KT
L.LBLELGLILNLOLPLRLSLTLULWM. MAMG MHML MN MP MR MS MT
MX ND NG NH NJ NK NX OC OD OL OP P. PD PE PF PG PH PM PO PS PT PU PW Q. R.
RARB RC RE RG RHRIRKRL RM RN RORP RS RT RURWRXRY RZS. SASB SC
SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR ST SU SV SWSY SZT. TC TD TE TK
TMTOTPTSTTTUTW TY W. WA WC WE WG WH WJ WK WL WM WN WO WP WR
WS WT WW WY XB Y. YW
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Orange

AC AE AF AK AV B. BA BC BF BG BH BK BL BN BO BR BT BV BW BX BY BZ C. CA
CBCCCDCECFCGCHCICKCLCMCNCOCPCRCSCTCUCWCXCY D.DIDNDO
DR DWE. EAED EGF. FC FF FP G. GA GB GC GD GF GG GH GI GJ GK GL GN GO GP
GR GS GT GU GV GW GX GY GZ H. HB HC HD HF HG HH HM HP HS HY HZ IN J. JD K.
KEKFKIKNKRKTL. LBLELGLILMLNLOLPLRLSLTLULWLXM. MAMG MH
ML MN MO MP MR MS MT MU MW MX N. NB ND NG NH NJ NS OC OD OL OP P. PD
PE PF PG PH PM PO PS PT PU PW Q. R. RA RB RC RE RG RH RI RK RL RM RN RO RP
RS RT RURW RX RY RZ S. SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR
SSSTSUSVSWSZT.TCTDTETFTKTLTMTO TP TS TT TU TW TY UD VI VS W.
WA WC WE WG WH WK WL WM WN WO WP WR WS WT WW WY XB Y. YW

Orange

AC AE AF AK AV B. BABC BF BGBHBKBLBN BOBRBTBWBXBY BZC.CACB
CCCDCECFCGCHCICKCLCMCNCOCPCRCSCTCUCWCXCY D.DIDNDO
DRDWE.EAEDEGF. FC FF FP G. GA GB GC GD GF GG GH GI GJ GL GN GO GP GR
GS GT GU GV GW GX GY GZ H. HB HC HF HG HH HM HP HS HY IN J. JD K. KE KF
KIKNKRKTL. LBLELGLILNLOLPLRLSLTLULWLXM. MAMGMHML MN
MO MP MR MS MT MU MX N. NB ND NH NJ NS NX OC OP P. PE PF PG PH PO PT PU
PW Q. R. RARB RC RE RG RH RIRK RLRM RN RO RP RQ RS RT RURW RY RZS.
SA SC SD SE SF SG SH SISK SLSM SN SPSQSSSTSUSVSWT.TCTD TETFTLTM
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Appendix F

F.1 Species composition in determined network modules and k-means

clusters i

n Taiwan.

Table A- 4 Species list for the four indicator groups selected by modularity method in

Taiwan

Site group

Species

Purple

Red

Dendrocopos leucotos, Brachypteryx montana, Regulus goodfellowi,
Cuculus  optatus, Carpodacus  formosanus,  Trochalopteron
morrisonianum, Locustella alishanensis, Corvus macrorhynchos,
Heterophasia auricularis, Cinclidium leucurum, Tarsiger indicus,
Pyrrhula erythaca, Prunella collaris, Delichon dasypus, Parus
monticolus, Yuhina brunneiceps, Nucifraga caryocatactes, Muscicapa
ferruginea, Tarsiger johnstoniae, Actinodura morrisoniana, Sitta
europaea, Horornis acanthizoides, Suthora verreauxi, Phylloscopus
inornatus, Liocichla steerii, Periparus ater, Fulvetta formosana,

Troglodytes troglodytes

Apus pacificus, Dendrocopos leucotos, Dicrurus macrocercus, Spilornis
cheela, Megapomatorhinus erythrocnemis, Cuculus poliocephalus,
Dicrurus aeneus, Zoothera dauma dauma, Apus nipalensis, Enicurus
scouleri, Dendrocopos canicapillus, Brachypteryx montana, Horornis
fortipes, Pomatorhinus musicus, Cyanoderma ruficeps, Megalaima
nuchalis, Accipiter gularis, Regulus goodfellowi, Cuculus optatus,
Arborophila  crudigularis, lanthocincla ruficeps, Carpodacus
formosanus, Myophonus insularis, Trochalopteron morrisonianum,
Locustella alishanensis, Pnoepyga formosana, Corvus macrorhynchos,

Heterophasia auricularis, Cinclidium leucurum, Tarsiger indicus,

157



Blue

Turdus pallidus, Turdus poliocephalus, Motacilla alba, Columba
pulchricollis, Pericrocotus solaris, Pyrrhula erythaca, Bambusicola
thoracicus, Poecile varius, Turdus chrysolaus, Delichon dasypus,
Accipiter virgatus, Garrulus glandarius, Ictinaetus malayensis, Cinclus
pallasii, Fringilla montifringilla, Zoothera dauma, Streptopelia
orientalis, Parus monticolus, Yuhina brunneiceps, Nucifraga
caryocatactes, Muscicapa ferruginea, Dicaeum ignipectus, Ficedula
parva, Hypsipetes leucocephalus, Aegithalos concinnus, Tarsiger
johnstoniae, Streptopelia chinensis, Actinodura morrisoniana, Sitta
europaea, Horornis acanthizoides, Abroscopus albogularis,
lanthocincla poecilorhyncha, Horornis diphone/canturians, Parus
holsti, Suthora verreauxi, Ficedula hyperythra, Liocichla steerii, Spinus
spinus, Niltava vivida, Otus spilocephalus, Hypothymis azurea,
Syrmaticus mikado, Emberiza spodocephala, Periparus ater, Falco
peregrinus, Phoenicurus fuliginosus, Picus canus, Erpornis zantholeuca,
Treron sieboldii, Zosterops japonicus, Otus lettia, Accipiter trivirgatus,
Fulvetta formosana, Prinia inornata, Pyrrhula nipalensis, Dendrocitta
formosae, Schoeniparus brunneus, Glaucidium brodiei, Alcippe
morrisonia, Lophura swinhoii, Troglodytes troglodytes, Hierococcyx

sparverioides

Pitta nympha, Acridotheres cristatellus, Apus pacificus, Ardea alba,
Dendrocopos leucotos, Dicrurus macrocercus, Spilornis cheela,
Megapomatorhinus erythrocnemis, Egretta garzetta, Dicrurus aeneus,
Zoothera dauma dauma, Apus nipalensis, Eophona migratoria, Enicurus
scouleri, Dendrocopos canicapillus, Charadrius dubius, Brachypteryx
montana, Emberiza pusilla, Horornis fortipes, Pomatorhinus musicus,
Tachybaptus ruficollis, Cyanoderma ruficeps, Passer rutilans,
Megalaima nuchalis, Regulus goodfellowi, Cuculus optatus,
Arborophila crudigularis, lanthocincla ruficeps, Caprimulgus affinis,
Garrulax  taewanus, = Myophonus insularis,  Trochalopteron

morrisonianum, Locustella alishanensis, Urocissa caerulea, Pnoepyga
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formosana, Corvus macrorhynchos, Heterophasia auricularis,
Acridotheres javanicus, Cinclidium leucurum, Lonchura striata, Tringa
ochropus, Copsychus malabaricus, Amaurornis phoenicurus, Turdus
pallidus, Pycnonotus sinensis, Turdus poliocephalus, Spizixos
semitorques, Motacilla alba, Oriolus traillii, Pericrocotus divaricatus,
Riparia riparia, Strix nivicola, Columba pulchricollis, Butastur indicus,
Pericrocotus solaris, Hirundapus cochinchinensis, Rallina eurizonoides,
Prinia flaviventris, Motacilla cinerea, Pyrrhula erythaca, Bambusicola
thoracicus, Cecropis striolata, Poecile varius, Turdus chrysolaus,
Accipiter soloensis, Nycticorax nycticorax, Delichon dasypus, Pernis
ptilorhynchus, Accipiter virgatus, Garrulus glandarius, Acridotheres
fuscus, Ictinaetus malayensis, Cinclus pallasii, Coracina macei,
Fringilla montifringilla, Zoothera dauma, Streptopelia orientalis, Parus
monticolus, Phylloscopus coronatus, Yuhina brunneiceps, Nucifraga
caryocatactes, Hirundo tahitica, Lanius cristatus, Muscicapa ferruginea,
Dicaeum ignipectus, Streptopelia tranquebarica, Hypsipetes
leucocephalus, Urocissa erythrorhyncha, Aegithalos concinnus,
Acridotheres tristis, Hirundo rustica, Ixobrychus cinnamomeus,
Pycnonotus taivanus, Streptopelia chinensis, Sinosuthora webbiana,
Actinodura morrisoniana, Sitta europaea, Horornis acanthizoides,
Calliope calliope, Columba livia, Pandion haliaetus, Passer montanus,
Pica pica, Lonchura punctulata, Prinia crinigera, Riparia chinensis,
Lanius schach, Abroscopus albogularis, Cisticola juncidis, lanthocincla
poecilorhyncha, Centropus bengalensis, Urosphena squameiceps,
Horornis diphone/canturians, Terpsiphone atrocaudata, Parus holsti,
Phoenicurus auroreus, Phylloscopus inornatus, Ficedula hyperythra,
Liocichla steerii, Phylloscopus proregulus, Niltava vivida, Anthus
rubescens, Otus spilocephalus, Cisticola exilis, Bubulcus ibis, Motacilla
tschutschensis, Hypothymis azurea, Gorsachius melanolophus,
lanthocincla chinensis, Milvus migrans, Emberiza spodocephala,
Phylloscopus borealis, Periparus ater, Cacatua galerita, Phoenicurus
fuliginosus, Nisaetus nipalensis, Picus canus, Dicaeum minullum,

Erpornis zantholeuca, Treron sieboldii, Butorides striata, Anas
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Green

platyrhynchos (Domestic), Zosterops japonicus, Alcedo atthis,
Chalcophaps indica, Accipiter gentilis, Ardea cinerea, Otus lettia,
Accipiter trivirgatus, Muscicapa latirostris, Strix leptogrammica, Prinia
inornata, Pyrrhula nipalensis, Dendrocitta formosae, Anthus hodgsoni,
Glareola maldivarum, Schoeniparus brunneus, Aix galericulata,
Phasianus colchicus, Actitis hypoleucos, Glaucidium brodiei, Alcippe
morrisonia, Lophura swinhoii, Monticola solitarius, Pycnonotus sinensis
X Pycnonotus taivanus, Buteo buteo, Copsychus saularis, Hierococcyx

sparverioides

Gracula religiosa, Pitta nympha, Acridotheres cristatellus, Apus
pacificus, Ardea alba, Dicrurus macrocercus, Anthus richardi, Spilornis
cheela, Garrulax canorus, Garrulax canorus X Garrulax taewanus,
Megapomatorhinus erythrocnemis, Anas crecca, Egretta garzetta,
Cuculus poliocephalus, Dicrurus aeneus, Apus nipalensis, Tringa
stagnatilis, Enicurus scouleri, Dendrocopos canicapillus, Alauda
gulgula, Larus fuscus, Sternula albifrons, Charadrius dubius, Horornis
fortipes, Pomatorhinus musicus, Tachybaptus ruficollis, Cyanoderma
ruficeps, Passer rutilans, Mesophoyx intermedia, Gallinago megala,
Calidris temminckii, Megalaima nuchalis, Recurvirostra avosetta, Xenus
cinereus, Pluvialis fulva, Accipiter gularis, Horornis diphone,
Hydrophasianus chirurgus, Lonchura oryzivora, Cuculus optatus,
Accipiter nisus, Arborophila crudigularis, Caprimulgus affinis,
Garrulax  taewanus, = Myophonus insularis,  Trochalopteron
morrisonianum, Urocissa caerulea, Cuculus micropterus, Corvus
macrorhynchos, Emberiza rustica, Gallinago gallinago, Heterophasia
auricularis, Acridotheres javanicus, Cinclidium leucurum, Fulica atra,
Anas querquedula, Emberiza tristrami, Anthus gustavi, Chlidonias
leucopterus, Euodice malabarica, Lonchura striata, Tringa ochropus,
Copsychus malabaricus, Amaurornis phoenicurus, Turdus pallidus,
Pycnonotus sinensis, Turdus poliocephalus, lanthocincla sannio,

Spizixos semitorques, Motacilla alba, Anas acuta, Calidris acuminata,
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Oriolus traillii, Ardeola bacchus, Pericrocotus divaricatus, Riparia
riparia, Columba pulchricollis, Sturnia sinensis, Butastur indicus,
Gallirallus striatus, Pericrocotus solaris, Muscicapa griseisticta,
Sturnus cineraceus, Rallina eurizonoides, Sturnia malabarica, Prinia
flaviventris, Motacilla cinerea, Bambusicola thoracicus, Eurystomus
orientalis, Tringa totanus, Anthus cervinus, Cecropis striolata, Turdus
chrysolaus, Accipiter soloensis, Halcyon coromanda, Anas penelope,
Nycticorax nycticorax, Egretta sacra, Acrocephalus orientalis, Delichon
dasypus, Pernis ptilorhynchus, Charadrius alexandrinus, Accipiter
virgatus, Acridotheres fuscus, Anas zonorhyncha, Zoothera dauma,
Streptopelia orientalis, Chloris sinica, Calidris subminuta, Tringa
nebularia, Yuhina brunneiceps, Hirundo tahitica, Lanius cristatus,
Gallinula chloropus, Dicaeum ignipectus, Calidris ruficollis, Falco
tinnunculus, Streptopelia tranquebarica, Psittacula krameri, Hypsipetes
leucocephalus, Treron formosae, Egretta eulophotes, Threskiornis
aethiopicus, Acridotheres tristis, Hirundo rustica, Anser domestica,
Ixobrychus cinnamomeus, Acridotheres grandis, Pycnonotus taivanus,
Streptopelia chinensis, Sinosuthora webbiana, Himantopus himantopus,
Rostratula benghalensis, Calliope calliope, Columba livia, Pandion
haliaetus, Passer montanus, Pica pica, Lonchura punctulata, Prinia
crinigera, Turdus eunomus, Turnix suscitator, Hypsipetes amaurotis,
Riparia chinensis, Lanius schach, Abroscopus albogularis, Cisticola
juncidis, Anas clypeata, Cairina moschata (domestic), Centropus
bengalensis, Urosphena squameiceps, Horornis diphone/canturians,
Terpsiphone atrocaudata, Ardea purpurea, Sturnus sericeus, Anas
platyrhynchos var. domestica, Ixobrychus sinensis, Phoenicurus
auroreus, Tringa brevipes, Phylloscopus inornatus, Phylloscopus
proregulus, Cisticola exilis, Motacilla citreola, Bubulcus ibis, Motacilla
tschutschensis, Oriolus chinensis, Cygnus atratus (Domestic), Larus
crassirostris, Limosa limosa, Hypothymis azurea, Gorsachius
melanolophus, Platalea minor, Elanus caeruleus, Saxicola maurus,
Chlidonias hybrida, Calidris alpina, Gracupica nigricollis, Milvus

migrans, Lonchura atricapilla, Emberiza spodocephala, Phylloscopus
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borealis, Acridotheres burmannicus, Cacatua galerita, Falco
peregrinus, Phoenicurus fuliginosus, Dicaeum minullum, Erpornis
zantholeuca, Treron sieboldii, Butorides striata, Anas platyrhynchos
(Domestic), Zosterops japonicus, Porzana fusca, Alcedo atthis,
Chalcophaps indica, Charadrius mongolus, Ardea cinerea, Otus lettia,
Accipiter trivirgatus, Aythya fuligula, Muscicapa latirostris, Alauda
arvensis, Sturnus vulgaris, Phylloscopus fuscatus, Prinia inornata,
Ninox japonica, Aplonis panayensis, Emberiza rutila, Bycanistes
bucinator, Eudynamys scolopaceus, Dendrocitta formosae, Anthus
hodgsoni, Estrilda melpoda, Estrilda astrild, Glareola maldivarum,
Sterna hirundo, Schoeniparus brunneus, Phasianus colchicus,
Charadrius hiaticula, Actitis hypoleucos, Glaucidium brodiei, Alcippe
morrisonia, Tarsiger cyanurus, Monticola solitarius, Pycnonotus
sinensis X Pycnonotus taivanus, Copsychus saularis, Calidris
ferruginea, Troglodytes troglodytes, Tringa glareola, Phalacrocorax
carbo

Table A- 5 Species list for the four indicator groups selected by clustering method in

Taiwan
Site group Species
Purple Apus pacificus, Dendrocopos leucotos, Dicrurus macrocercus, Spilornis

cheela, Megapomatorhinus erythrocnemis, Egretta garzetta, Cuculus
poliocephalus, Dicrurus aeneus, Zoothera dauma dauma, Apus
nipalensis, Enicurus scouleri, Dendrocopos canicapillus, Brachypteryx
montana, Horornis fortipes, Pomatorhinus musicus, Cyanoderma
ruficeps, Passer rutilans, Megalaima nuchalis, Accipiter gularis,
Regulus goodfellowi, Cuculus optatus, Arborophila crudigularis,

lanthocincla ruficeps, Carpodacus formosanus, Myophonus insularis,
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Red

Trochalopteron morrisonianum, Locustella alishanensis, Urocissa
caerulea, Pnoepyga formosana, Corvus macrorhynchos, Heterophasia
auricularis, Cinclidium leucurum, Tarsiger indicus, Turdus pallidus,
Pycnonotus sinensis, Turdus poliocephalus, Spizixos semitorques,
Motacilla alba, Columba pulchricollis, Pericrocotus solaris,
Hirundapus cochinchinensis, Prinia flaviventris, Motacilla cinerea,
Pyrrhula erythaca, Bambusicola thoracicus, Cecropis striolata, Poecile
varius, Turdus chrysolaus, Prunella collaris, Delichon dasypus,
Accipiter virgatus, Garrulus glandarius, Ictinaetus malayensis, Cinclus
pallasii, Fringilla montifringilla, Zoothera dauma, Streptopelia
orientalis, Parus monticolus, Phylloscopus coronatus, Yuhina
brunneiceps, Nucifraga caryocatactes, Hirundo tahitica, Muscicapa
ferruginea, Dicaeum ignipectus, Ficedula parva, Hypsipetes
leucocephalus, Urocissa erythrorhyncha, Aegithalos concinnus,
Tarsiger johnstoniae, Streptopelia chinensis, Sinosuthora webbiana,
Actinodura morrisoniana, Sitta europaea, Horornis acanthizoides,
Calliope calliope, Passer montanus, Prinia crinigera, Abroscopus
albogularis, lanthocincla poecilorhyncha, Horornis diphone/canturians,
Parus holsti, Suthora verreauxi, Phoenicurus auroreus, Phylloscopus
inornatus, Ficedula hyperythra, Liocichla steerii, Spinus spinus, Niltava
vivida, Otus spilocephalus, Hypothymis azurea, Syrmaticus mikado,
Gorsachius melanolophus, Emberiza spodocephala, Phylloscopus
borealis, Periparus ater, Falco peregrinus, Phoenicurus fuliginosus,
Picus canus, Erpornis zantholeuca, Treron sieboldii, Zosterops
japonicus, Chalcophaps indica, Otus lettia, Accipiter trivirgatus,
Fulvetta formosana, Prinia inornata, Pyrrhula nipalensis, Dendrocitta
formosae, Schoeniparus brunneus, Aix galericulata, Glaucidium brodiei,
Alcippe morrisonia, Lophura swinhoii, Troglodytes troglodytes,

Hierococcyx sparverioides

Pitta nympha, Acridotheres cristatellus, Apus pacificus, Ardea alba,

Dicrurus  macrocercus, Spilornis cheela, Megapomatorhinus
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erythrocnemis, Egretta garzetta, Dicrurus aeneus, Apus nipalensis,
Enicurus scouleri, Dendrocopos canicapillus, Alauda gulgula,
Charadrius dubius, Brachypteryx montana, Emberiza pusilla, Horornis
fortipes, Pomatorhinus musicus, Tachybaptus ruficollis, Cyanoderma
ruficeps, Passer rutilans, Mesophoyx intermedia, Megalaima nuchalis,
Accipiter gularis, Cuculus optatus, Accipiter nisus, Arborophila
crudigularis, lanthocincla ruficeps, Caprimulgus affinis, Garrulax
taewanus, Myophonus insularis, Trochalopteron morrisonianum,
Locustella alishanensis, Urocissa caerulea, Corvus macrorhynchos,
Emberiza rustica, Heterophasia auricularis, Acridotheres javanicus,
Cinclidium leucurum, Lonchura striata, Copsychus malabaricus,
Amaurornis phoenicurus, Turdus pallidus, Pycnonotus sinensis, Spizixos
semitorques, Motacilla alba, Oriolus traillii, Pericrocotus divaricatus,
Riparia riparia, Strix nivicola, Columba pulchricollis, Butastur indicus,
Pericrocotus solaris, Hirundapus cochinchinensis, Muscicapa
griseisticta, Rallina eurizonoides, Prinia flaviventris, Motacilla cinerea,
Bambusicola thoracicus, Cecropis striolata, Poecile varius, Turdus
chrysolaus, Accipiter soloensis, Nycticorax nycticorax, Egretta sacra,
Delichon dasypus, Pernis ptilorhynchus, Accipiter virgatus, Garrulus
glandarius, Acridotheres fuscus, Ictinaetus malayensis, Cinclus pallasii,
Coracina macei, Fringilla montifringilla, Anas zonorhyncha, Zoothera
dauma, Streptopelia orientalis, Parus monticolus, Phylloscopus
coronatus, Yuhina brunneiceps, Hirundo tahitica, Lanius cristatus,
Muscicapa ferruginea, Gallinula chloropus, Dicaeum ignipectus,
Streptopelia tranquebarica, Hypsipetes leucocephalus, Aegithalos
concinnus, Acridotheres tristis, Hirundo rustica, Pycnonotus taivanus,
Streptopelia  chinensis,  Sinosuthora  webbiana,  Actinodura
morrisoniana, Horornis acanthizoides, Calliope calliope, Columba livia,
Pandion haliaetus, Passer montanus, Pica pica, Lonchura punctulata,
Prinia crinigera, Riparia chinensis, Lanius schach, Abroscopus
albogularis, Cisticola juncidis, lanthocincla poecilorhyncha, Centropus
bengalensis, Urosphena squameiceps, Horornis diphone/canturians,

Terpsiphone atrocaudata, Parus holsti, Phoenicurus auroreus,
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Blue

Phylloscopus inornatus, Ficedula hyperythra, Liocichla steerii,
Phylloscopus proregulus, Niltava vivida, Anthus rubescens, Otus
spilocephalus, Bubulcus ibis, Motacilla tschutschensis, Oriolus
chinensis, Hypothymis azurea, Gorsachius melanolophus, lanthocincla
chinensis, Milvus migrans, Emberiza spodocephala, Phylloscopus
borealis, Cacatua galerita, Phoenicurus fuliginosus, Nisaetus nipalensis,
Picus canus, Dicaeum minullum, Erpornis zantholeuca, Treron sieboldii,
Butorides striata, Anas platyrhynchos (Domestic), Zosterops japonicus,
Porzana fusca, Alcedo atthis, Chalcophaps indica, Ardea cinerea, Otus
lettia, Accipiter trivirgatus, Muscicapa latirostris, Strix leptogrammica,
Prinia inornata, Pyrrhula nipalensis, Eudynamys scolopaceus,
Dendrocitta formosae, Anthus hodgsoni, Schoeniparus brunneus,
Phasianus colchicus, Actitis hypoleucos, Glaucidium brodiei, Alcippe
morrisonia, Lophura swinhoii, Monticola solitarius, Pycnonotus sinensis
X Pycnonotus taivanus, Buteo buteo, Copsychus saularis, Hierococcyx

sparverioides

Pitta nympha, Acridotheres cristatellus, Apus pacificus, Ardea alba,
Dicrurus macrocercus, Anthus richardi, Spilornis cheela, Garrulax
canorus, Megapomatorhinus erythrocnemis, Anas crecca, Egretta
garzetta, Cuculus poliocephalus, Dicrurus aeneus, Apus nipalensis,
Tringa stagnatilis, Eophona migratoria, Dendrocopos canicapillus,
Alauda gulgula, Sternula albifrons, Charadrius dubius, Horornis
fortipes, Pomatorhinus musicus, Tachybaptus ruficollis, Cyanoderma
ruficeps, Mesophoyx intermedia, Calidris temminckii, Megalaima
nuchalis, Xenus cinereus, Pluvialis fulva, Horornis diphone, Cuculus
optatus, Arborophila crudigularis, Caprimulgus affinis, Garrulax
taewanus, Myophonus insularis, Urocissa caerulea, Cuculus
micropterus,  Corvus  macrorhynchos, Gallinago gallinago,
Heterophasia auricularis, Acridotheres javanicus, Cinclidium leucurum,
Fulica atra, Anas querquedula, Emberiza tristrami, Euodice malabarica,

Lonchura striata, Tringa ochropus, Copsychus malabaricus,
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Amaurornis phoenicurus, Turdus pallidus, Pycnonotus sinensis, Turdus
poliocephalus, lanthocincla sannio, Spizixos semitorques, Motacilla
alba, Anas acuta, Calidris acuminata, Oriolus traillii, Ardeola bacchus,
Pericrocotus divaricatus, Riparia riparia, Columba pulchricollis,
Sturnia sinensis, Butastur indicus, Gallirallus striatus, Pericrocotus
solaris, Muscicapa griseisticta, Rallina eurizonoides, Sturnia
malabarica, Prinia flaviventris, Motacilla cinerea, Bambusicola
thoracicus, Eurystomus orientalis, Tringa totanus, Anthus cervinus,
Cecropis striolata, Turdus chrysolaus, Accipiter soloensis, Halcyon
coromanda, Anas penelope, Nycticorax nycticorax, Acrocephalus
orientalis, Delichon dasypus, Pernis ptilorhynchus, Charadrius
alexandrinus, Accipiter virgatus, Ictinaetus malayensis, Anas
zonorhyncha, Zoothera dauma, Streptopelia orientalis, Calidris
subminuta, Tringa nebularia, Parus monticolus, Yuhina brunneiceps,
Hirundo tahitica, Lanius cristatus, Gallinula chloropus, Dicaeum
ignipectus, Calidris ruficollis, Falco tinnunculus, Streptopelia
tranquebarica, Psittacula krameri, Hypsipetes leucocephalus,
Aegithalos concinnus, Treron formosae, Acridotheres tristis, Hirundo
rustica, Ixobrychus cinnamomeus, Pycnonotus taivanus, Streptopelia
chinensis, Sinosuthora webbiana, Himantopus himantopus, Rostratula
benghalensis, Calliope calliope, Columba livia, Pandion haliaetus,
Passer montanus, Pica pica, Lonchura punctulata, Prinia crinigera,
Turdus eunomus, Turnix suscitator, Hypsipetes amaurotis, Riparia
chinensis, Lanius schach, Abroscopus albogularis, Cisticola juncidis,
Anas clypeata, Cairina moschata (domestic), Centropus bengalensis,
Urosphena squameiceps, Horornis diphone/canturians, Terpsiphone
atrocaudata, Ardea purpurea, Sturnus sericeus, Ixobrychus sinensis,
Phoenicurus auroreus, Tringa brevipes, Phylloscopus inornatus,
Liocichla steerii, Phylloscopus proregulus, Niltava vivida, Cisticola
exilis, Bubulcus ibis, Motacilla tschutschensis, Oriolus chinensis, Larus
crassirostris, Limosa limosa, Hypothymis azurea, Gorsachius
melanolophus, Platalea minor, Elanus caeruleus, Chlidonias hybrida,

Gracupica nigricollis, Milvus migrans, Lonchura atricapilla, Emberiza
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Green

spodocephala, Phylloscopus borealis, Acridotheres burmannicus, Falco
peregrinus, Phoenicurus fuliginosus, Picus canus, Erpornis zantholeuca,
Treron sieboldii, Butorides striata, Anas platyrhynchos (Domestic),
Zosterops japonicus, Porzana fusca, Alcedo atthis, Chalcophaps indica,
Charadrius mongolus, Accipiter gentilis, Ardea cinerea, Otus lettia,
Accipiter trivirgatus, Aythya fuligula, Muscicapa latirostris,
Phylloscopus fuscatus, Prinia inornata, Ninox japonica, Aplonis
panayensis, Emberiza rutila, Bycanistes bucinator, Dendrocitta
formosae, Anthus hodgsoni, Estrilda melpoda, Glareola maldivarum,
Schoeniparus brunneus, Phasianus colchicus, Actitis hypoleucos,
Glaucidium brodiei, Alcippe morrisonia, Monticola solitarius,
Pycnonotus sinensis X Pycnonotus taivanus, Calidris ferruginea, Tringa

glareola, Phalacrocorax carbo

Gracula religiosa, Acridotheres cristatellus, Ardea alba, Dicrurus
macrocercus, Anthus richardi, Spilornis cheela, Garrulax canorus,
Garrulax canorus X Garrulax taewanus, Megapomatorhinus
erythrocnemis, Anas crecca, Egretta garzetta, Dicrurus aeneus, Apus
nipalensis, Tringa stagnatilis, Enicurus scouleri, Dendrocopos
canicapillus, Alauda gulgula, Larus fuscus, Sternula albifrons,
Charadrius dubius, Pomatorhinus musicus, Tachybaptus ruficollis,
Cyanoderma ruficeps, Mesophoyx intermedia, Gallinago megala,
Megalaima nuchalis, Recurvirostra avosetta, Pluvialis fulva,
Hydrophasianus chirurgus, Lonchura oryzivora, Cuculus optatus,
Caprimulgus affinis, Garrulax taewanus, Myophonus insularis,
Trochalopteron  morrisonianum,  Urocissa  caerulea, Corvus
macrorhynchos, Gallinago gallinago, Acridotheres javanicus, Fulica
atra, Anthus gustavi, Chlidonias leucopterus, Euodice malabarica,
Lonchura striata, Tringa ochropus, Copsychus malabaricus,
Amaurornis phoenicurus, Turdus pallidus, Pycnonotus sinensis, Spizixos
semitorques, Motacilla alba, Calidris acuminata, Ardeola bacchus,

Sturnia sinensis, Butastur indicus, Gallirallus striatus, Pericrocotus
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solaris, Muscicapa griseisticta, Sturnus cineraceus, Sturnia malabarica,
Prinia flaviventris, Motacilla cinerea, Bambusicola thoracicus, Tringa
totanus, Anthus cervinus, Cecropis striolata, Turdus chrysolaus, Anas
penelope, Nycticorax nycticorax, Egretta sacra, Acrocephalus orientalis,
Delichon dasypus, Charadrius alexandrinus, Accipiter virgatus,
Acridotheres fuscus, Anas zonorhyncha, Streptopelia orientalis, Chloris
sinica, Calidris subminuta, Tringa nebularia, Yuhina brunneiceps,
Hirundo tahitica, Lanius cristatus, Gallinula chloropus, Falco
tinnunculus, Streptopelia tranquebarica, Hypsipetes leucocephalus,
Egretta eulophotes, Threskiornis aethiopicus, Acridotheres tristis,
Hirundo rustica, Anser domestica, Ixobrychus cinnamomeus,
Acridotheres grandis, Pycnonotus taivanus, Streptopelia chinensis,
Sinosuthora  webbiana, Himantopus himantopus, Rostratula
benghalensis, Calliope calliope, Columba livia, Pandion haliaetus,
Passer montanus, Pica pica, Lonchura punctulata, Prinia crinigera,
Turdus eunomus, Turnix suscitator, Riparia chinensis, Lanius schach,
Abroscopus albogularis, Cisticola juncidis, Anas clypeata, Cairina
moschata (domestic), Centropus bengalensis, Horornis
diphone/canturians, Sturnus sericeus, Anas platyrhynchos var.
domestica, Ixobrychus sinensis, Phoenicurus auroreus, Tringa brevipes,
Phylloscopus inornatus, Cisticola exilis, Motacilla citreola, Bubulcus
ibis, Motacilla tschutschensis, Cygnus atratus (Domestic), Hypothymis
azurea, Gorsachius melanolophus, Elanus caeruleus, Saxicola maurus,
Chlidonias hybrida, Calidris alpina, Gracupica nigricollis, Milvus
migrans, Lonchura atricapilla, Emberiza spodocephala, Phylloscopus
borealis, Acridotheres burmannicus, Cacatua galerita, Falco
peregrinus, Phoenicurus fuliginosus, Treron sieboldii, Butorides striata,
Anas platyrhynchos (Domestic), Zosterops japonicus, Porzana fusca,
Alcedo atthis, Charadrius mongolus, Ardea cinerea, Otus lettia,
Accipiter trivirgatus, Muscicapa latirostris, Alauda arvensis, Sturnus
vulgaris, Prinia inornata, Aplonis panayensis, Eudynamys scolopaceus,
Dendrocitta formosae, Estrilda melpoda, Estrilda astrild, Glareola

maldivarum, Sterna hirundo, Phasianus colchicus, Charadrius hiaticula,
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Actitis hypoleucos, Alcippe morrisonia, Tarsiger cyanurus, Monticola

solitarius, Copsychus saularis, Troglodytes troglodytes, Tringa glareola
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Glossary

Glossary of Terms

Affiliation network are two mode networks that describe not only the direct linkage between
members but also the events these members attend to (biologically, the habitat that species

occupy) and the relationship among events.

Asymptote (of species accumulation curve) represents the saturation point in species richness,
it can help determine the least sampling effort for estimating total richness in ecologically

similar regions.

Clench function is derived from the Michaelis-Menten kinetics which is an enzymatic
reaction rate curve based on the concentration of a substrate. Biologically, this means that
the probability of adding new species increases (up to an asymptote) as more time is spent
in the field.

Edge (in a network) represents the connection by a relationship between a pair of node (the
basic unit of network).

Fowlkes-Mallows index is an index compares two clusters and evaluates the extent of

similarity or dissimilarity between the clusters.

Indicator species define characteristics of habitat and can be applied to predict the habitat type

of unknown or unsampled sites.

Michaelis-Menten Kinetics is an equation in biochemistry describing the rate of enzymatic
reactions by relating reaction rate to the concentration of a substrate. The reaction plot is a

saturate curve with asymptote representing maximum reaction rate achieved by the system.

Modularity defines subgroups (termed modules) in a network. The connections between nodes
(the basic unit of network) are measured and nodes possess a higher degree of connections
are assigned in the same module, with lower degree of connections to nodes in other

modules.
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Glossary

Mode (in a network) means the type of nodes (e.g. two-mode network), or the type of network

(e.g. default mode network).

Modules (in a network) are subgroups within a network. Nodes in one module have stronger

or more frequent connections among them comparing to nodes outside this module.

Module hub is the node with the highest degree in a module and represents the most dominant
member (i.e. the member that links to most other members). This type of node can efficiently

indicate the presence of other members in this module.

Network (ecological) representing biological interactions in an ecological communities. In this
type of network nodes usually are species and the edges stands for interactions between
species. The property of ecological networks can be used to illustrate the stability or fragility

of ecological communities.

Nestedness is a measure of structure in an ecological system. In a species-sites system, species
richness in each site are arranged from speciose site to depauperate site and the species in
depauperate site are a subset of those in speciose ones. Nestness is measured by ‘temperature’
which indicates the system entropy. Therefore low nestedness reflects high turnover of

species in space or time wheareas high nestedness means ordered accumulation or loss.
Node (in a network) is the basic element for constructing a network.

Rarefaction curve is a technique to assess species richness from a given number of individual
samples, based on rarefaction which reduce the curve length for comparing species richness
data among sets with different sample sizes. This curve is a plot of the number of species as

a function of the number of samples by multiple random re-sampling process.

Species accumulation curve is a plot descries the relationship between species richness and
sampling effort or area. Species number accumulates along with the increase of sampling

size or sampling area.

Species distribution model applies environmental variables to modelling species spatial

distribution based on species’ environment requirements (realized ecological niche).
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TWINSPAN is a short form of Two Way Indicator Species Analysis which is a numerical

method on habitat association of species assemblage.
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