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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES 

Centre for Biological Sciences 

Thesis for the degree of Doctor of Philosophy 

Prediction of Avian Species Composition from Assemblage Structure 

Jing-Lun Huang 

This research focuses on how capitalising on community pattern, a character of ecological 

communities, could improve the predictability of community models, thus facilitating research 

in conservation. Patterns of communities not only depict phenomena but are also useful for 

predicting potential changes in species composition when patterns are governed by specific 

mechanisms. Most conventional prediction models do not take community pattern into 

consideration, despite the fact that incorporating community patterns into conventional models 

for predicting species richness and composition may enhance predictability. In this thesis, I 

assessed if incorporating two community patterns, nestedness and species co-occurrence, into 

conventional prediction models could improve the model predictability. Nestedness is a non-

random species distribution pattern in which species in depauperate sites are contained in 

species-rich sites. Co-occurrence networks categorise species assemblages that reflect 

differential habitat requirements. I demonstrate that capitalising on nestedness provides a novel 

approach for improving the predictive power of species accumulation curves for species 

richness in unsampled areas. Specifically, while species richness is usually overestimated when 



 

 

the data are inputted in random order (the conventional approach), species richness is 

underestimated when the data are inputted in nested order. Taking an average of projected 

species richness of these two inputting orders dramatically lowers the prediction error rate, 

indicating that using nestedness in addition to random orders can greatly improve the predictive 

power of species distribution curves. I also show that network analysis can improve the ability 

to correctly classify site groups, which is the basis for calculating the indicator species value, 

by accurately reflecting similar ecological requirements of co-occurred species. Indicator 

species identified by network modularity, comparing to conventionally based on the k-means 

clustering method, can more successfully assign unsampled sites to the correct species groups 

and recognise representative species for the groups. These methods were tested using both 

British and Taiwanese bird assemblages. Both case studies supported the above conclusions, 

suggesting that the methods developed in this thesis have real promise for conservation 

applications. However, further work is required to assess whether these two novel pattern-

based approaches are similarly applicable in other geographic regions or taxas.    
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Chapter 1  General Introduction 

1 

Chapter 1: General Introduction -- Ecological 

communities, community pattern and the theories 

derived from these patterns 

 

1.1 Ecological communities and community patterns   

Community ecology is one of the major disciplines in ecology, focusing primarily on how 

and why specific species occur in one area and the interactions among species. Communities 

support the biodiversity that underpins ecosystem function, which regulates the ecosystem 

services on which human wellbeing depends (Cardinale et al. 2012, Balvanera et al. 2014, 

Allan et al. 2015). Changes to community structure therefore have repercussions on the survival 

and welfare of wildlife on earth including human beings. Therefore research on community 

pattern, which is one way to detect environmental change, matters. A community can be 

characterised by some attributes, including diversity, species richness, species-abundance 

relationships, and species composition (Morin 1999). The former three depict the numerical 

relations among species and provide the basis for comparison among communities. For 

example, alpha-diversity measures species richness and abundance in one site while beta-

diversity is defined as species turnover among communities (Morin 1999, Socolar et al. 2016) . 

Community composition, on the other hand, is the collection of species that occur in each 

community.  

Community composition is typically determined by abiotic factors and biotic interactions 

among species (Watt 1947). For example, species composition of a grassland community can 

be affected by soil properties (abiotic factor) and competition among grass species for similar 
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resources (biotic factor). Patterns of community composition will vary with the processes 

involved in the formation of a community. Some well-known patterns of community include, 

for instance, the distribution-abundance relationship which describes how broadly distributed 

species are also more locally abundant (Holt et al. 2002); island biogeography theory which 

postulates that species number is determined by habitat size and remoteness (MacArthur 1967); 

and the species rank-abundance distribution which illustrates different descending distribution 

slopes (e.g. broken stick distribution, geometric series, and lognormal distribution) for species 

abundance in a community (Whittaker 1975). In general, the main goal of community ecology 

is not only to identify patterns of community, but also to elucidate the underlying mechanisms 

of these patterns.  

1.2 Predictive models simulated at the community level 

Patterns of communities not only depict phenomena but are also useful for predicting 

potential changes in species composition. This is particularly true when patterns are governed 

by specific mechanisms. If there are changes in the background mechanism, changes in the 

patterns can be predicted (D’Amen et al. 2017). For example, understanding how food 

resources are allocated would allow the prediction of the distribution of an animal which relies 

on particular food resources. There are various approaches for constructing species distribution 

models based on community patterns or the processes leading to them. Conventional methods 

rely on environmental attributes for the prediction of species distributions and are currently the 

most prevalent method for constructing species distribution models (Sinclair et al. 2010, 

Zimmermann et al. 2010, Ruhí et al. 2014). However, it has been argued that ecological 

processes, such as inter-specific interactions, are also crucial for building predictive models 

(Austin 2002, Godsoe and Harmon 2012) and that the determinants of species distributions 

may change over time (Skelly et al. 1999, Ackerly 2003). Different approaches have been 
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utilised for building species distribution models but there are strengths and weaknesses inherent 

in each method, which I review here.  

1.3 Predictive models based on environmental constraints 

The last few decades have seen much interest in the development of species distribution 

models (SDMs) (Guisan and Thuiller 2005, Elith and Leathwick 2009, Calabrese et al. 2014, 

Guillera-Arroita et al. 2015) and their application in the prediction of potential change in 

distribution following environment variations such as climate or land-use changes (Dirnböck 

2003). Typically, SDMs associate environmental variables to distribution of individual species 

to help reveal how environmental factors may govern distribution of wildlife (Guisan and 

Zimmermann 2000). SDMs have proven effective in associating and predicting species’ 

distributions (Zimmermann et al. 2010) and have been widely applied to ecological and 

environmental studies, such as the validation of biogeographical (Romdal et al. 2005, Randin 

et al. 2006, McInerny and Purves 2011) and ecological (Mouton et al. 2010, Meier et al. 2010, 

Godsoe and Harmon 2012) hypotheses, prediction of range expansion of invasive species 

(Ward 2006, Ficetola et al. 2007, Václavík et al. 2012), and provision of predictions and 

solutions for conservation related issues, such as potential shifts in species distributions 

following land use or global climate change (Pearson and Dawson 2003, Thuiller et al. 2004, 

Watt et al. 2011). SDMs could also be very useful for ecological surveys and for establishing 

conservation strategies. For example, the efficiency of detecting rare species (LeLay et al. 2010) 

can be improved by modelling potentially suitable habitat. SDMs also help predict how species 

distribution may shift with climate change, such as projection of amphibian and reptile 

distributions under global warming (Araújo et al. 2006). 

SDMs are also known as environmental niche models or ecological niche models (Elith and 

Leathwick 2009). The environmental attributes that constrain the distribution of a species 
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reflect the preference and the realistic niche of a species (Austin 2007). The commonly used 

algorithms for SDMs are generalised linear models (GLM) (Thuiller 2003, Segurado and 

Araújo 2004, Pearson et al. 2006, Guisan et al. 2007, Oppel et al. 2012, García-Callejas and 

Araújo 2016), generalised additive models (GAM) (Lehmann et al. 2002, Thuiller 2003, 

Segurado and Araújo 2004, Pearson et al. 2006, Guisan et al. 2007, Oppel et al. 2012, García-

Callejas and Araújo 2016), maximum entropy (Maxent) (Phillips et al. 2006, Guisan et al. 2007, 

Oppel et al. 2012, Merow et al. 2013, García-Callejas and Araújo 2016), artificial neural 

networks (ANN) (Thuiller 2003, Araújo et al. 2006, Olden et al. 2008, Larsen et al. 2012), 

classification and regression trees (CART) (Thuiller 2003, Olden et al. 2008), and boosted 

regression trees (BRT) (Oppel et al. 2012, García-Callejas and Araújo 2016). Developing these 

models is challenging and each has its own statistical background and limitation. Some models 

(especially mechanistic models that synthesise individual responses into demographic models) 

require further field experiments or observations to estimate key parameters (Johnson and 

Omland 2004, Guisan and Thuiller 2005, Holt 2009).  

The SDM approach has two major limitations in terms of predictions. One is that these 

distribution models focus almost exclusively on separate species instead of considering all 

species as a whole. Detailed information on abundance and distribution of the majority of 

species is thus a prerequisite for a satisfactory performance of SDM, which may not be 

available for less common species or places with less extensive survey (Ferrier and Guisan 

2006). Moreover, SDMs typically consider only abiotic factors and treat the study as a closed 

and isolated system while neglecting the importance of biotic interactions, such as competition, 

predation, or mutualism, in shaping species distribution and the reality is that ecological 

systems are more or less interconnected (Cassini 2011, Gavish et al. 2017). This is similar to 

the contrast between the Grinnellian niche and the Eltonian niche, with the former considering 

environmental variables only (e.g. temperature, precipitation, solar radiation, etc.) but 
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neglecting biotic interactions (e.g. competition, predation and parasitism) as emphasised in the 

Eltonian niche (Soberón 2007). SDMs only reflect the Grinnelian but not the Eltonian niche, 

thus missing important components of the full niche (Hutchinsonian n-dimensional 

hyperspace). 

Modelling at the community level investigates environmental correlations of biodiversity 

from a different perspective than single-species modelling. While species-level modelling 

could be useful for predicting occurrence of single species, taxonomic groups are typically 

considered for real world conservation issues. For example, when investigating the impact of 

climate change on a community containing numerous plant and animal species, the response 

of each individual species may vary, and the overall effect is not simply the sum of separate 

species but also includes the interactions among them. Species-level modelling may thus 

become inappropriate under such circumstance (Mokany and Ferrier 2011). 

Species-level data can still assist community-level models because: (a) species-level data 

can serve as groundwork, providing individual distribution maps to be assembled and analysed; 

(b) predictors for each individual distribution can be established first, then with the species-

level base maps assembled; or (c) species-level data can be applied to disparate statistical 

models in order to detect the predictor variables and ensemble at the same time (Ferrier and 

Guisan 2006). However, none of these methods could accurately predict community 

composition (Baselga and Araújo 2010). Moreover, these three predicting methods rely largely 

on environmental factors, which will lead to low predictability when environments cannot 

reliably reflect species distribution. Furthermore, exclusion of biotic factors may further reduce 

predictability of these models. 
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1.4 Community-level modelling based on interspecific interaction 

Biotic interactions are usually neglected in classical SDMs (Elith and Leathwick 2009, 

Kissling et al. 2012, De Araújo et al. 2014). Predictive models with limited incorporation of 

biotic interactions might fail to predict the consequences of global change for species and 

ecosystems (Guisan and Thuiller 2005, Gilman et al. 2010, Kissling et al. 2012, Clark et al. 

2014). Different from species distribution modelling based on environmental factors, some 

ecologists attempt to predict distribution of species by focusing on interspecific interactions. A 

classic example of how community composition can be affected by interspecific interaction is 

Robert Paine’s observations from the tidal pools of the Pacific rocky shore that presence of top 

predators could lead to the coexistence of its prey (Paine 1966). Starfish (Pisaster ochraceus) 

is a generalist predator preying on most mollusc species in the tidal pool. With intermediate 

predation intensity the biodiversity is the highest since no species can dominate the resources, 

thus leading to coexistence of several species. However, species richness is greatly reduced 

after manual removal of starfish (Paine 1974). This example, termed keystone predation 

(Gilman et al. 2010, Rudolf and Rasmussen 2013), demonstrates how biotic factors such as 

predation could shape community composition. 

Besides predation, competition has also been included in the modelling of species 

distributions. Diamond (1975) stresses the importance of competition for species assemblage, 

which leads to much debate on the generality of this theme (Gotelli and McCabe 2002, 

Yackulic et al. 2014, Rollinson et al. 2016). According to Diamond, related species would be 

less likely to coexist due to competition, thus fewer species are likely to occur at a given site 

than by chance. Leathwick and Austin (2001) evaluated the importance of competition for the 

distribution of New Zealand tree species and found that including competition leads to higher 

predictability in species distribution model than relying simply on environmental factors. The 
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model with inclusion of competition also helps explain disjunct species distributions in the 

middle of the temperature gradient. 

Examples of including biotic factors in SDMs, such as applying Lotka–Volterra models 

(Solé and Bascompte 2006, Holt and Barfield 2009), population dynamic models (Mutshinda 

et al. 2009, 2011), epidemiological models (Keeling 2001, Estrada-peña and Fuente 2016), 

multivariate regression models (Banerjee et al. 2008, Latimer et al. 2009, Ovaskainen et al. 

2010, Ovaskainen and Soininen 2011), trophic interaction distribution model (Trainor et al. 

2014) and dynamic vegetation models (Lischke et al. 2006, Prentice et al. 2007) can be found 

in the literature (Kissling et al. 2012).  

A contrasting approach is neutral theory (Hubbell 2001), which posits that the role of 

trophically similar species in the assembly of ecological community is neutral (equal). The 

distributions of species are determined by chance and are unrelated to their niche. It is a null 

simplification of competitive interactions that works well for tropical forests in particular – 

random processes are more important than deterministic differentiation. (Hubbell 2001, 2005, 

2006). Neutral theory has been repeatedly investigated, but is not validated in many empirical 

studies (McGill and Collins 2003, Chave 2004). However, neutral theory provides a valuable 

baseline for a comparison with empirical data or other models. If a set of data is not consistent 

with prediction from a neutral model, some biological factors might be needed to be considered 

(Rosindell et al. 2011). 

Despite recent advances, translating species’ niches into geographic distributions remains a 

complex and difficult task (Holt 2009), and the modelling of spatio-temporal dynamics in 

multispecies communities remains a significant challenge in ecology (Solé and Bascompte 

2006). Modelling large spatial and temporal datasets with multiple interacting species, coupled 

with spatially (and maybe temporally) varying parameter estimation and non-stationary 
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covariance structures clearly pose considerable challenges for statistical modelling. Indeed, the 

complexity of multispecies models renders estimating all parameters at the same time 

impractical (Kissling et al. 2012). The key is therefore to reduce the complexity and there are 

established methods to achieve this goal.  

1.5 Community-level modelling community structure based on 

quantitative analysis 

Quantitative characterisation of community structure involves interpretation of biological 

survey data from a community perspective. Recognising and analysing community structure 

can help unravel mechanisms (such as environmental gradients) underpinning community 

composition and allows the prediction of how composition will change (Wiegand et al. 2003, 

Schröder and Seppelt 2006, Grimm and Railsback 2012). Many indices have been developed 

(Stone and Roberts 1990, Atmar and Patterson 1993, Koleff et al. 2003, Podani and Schmera 

2011), including nestedness and beta-diversity, which are commonly applied to depict 

community structure. Nestedness illustrates an ordered decrease in species richness among 

sites caused by some non-random factors (species loss), while beta-diversity stresses how 

species are replaced among different sites (species turnover). These two characteristics, species 

loss and species turnover, are essential for depicting community structure. Therefore, it is often 

sufficient to use only these two indices to distinguish two communities with distinct structures 

(Baselga 2010). 

1.5.1 Nestedness 

The concept of nestedness was firstly proposed by Patterson and Atmar (1986) to explain 

the peculiar insular fauna structure: island species abundances decrease with distance from the 

continent; moreover, species on distant islands are a subset of species on proximate ones. A 
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perfect nested matrix indicates that a community is arranged in an absolute mathematical order, 

in which species within a depauperate site also occur in a species-rich site and thus constitute 

a sequentially shorter ladder. Therefore in a strongly nested community, species composition 

is predictable from knowledge of the rare species, since any samples from the community taken 

at different points in space or time tend to share all of the more common species (Doncaster et 

al. 2016). This nestedness index took the idea of matrix system disorder or entropy. The 

relationship between entropy and heat led the nestedness index to quantify matrix randomness 

in terms of temperature (Norton et al. 2004), which ranges from 0-100°, with T= 0º representing 

a perfect-nested matrix (minimum entropy) and T= 100º absolute randomness (maximum 

entropy) (Rodríguez-Gironés and Santamaría 2006). This relationship is like the three phases 

of water, the liquid phase scaling between phases of maximal structure as ice and maximal 

disorder as vapour, and low nestedness reflects high turnover of species in space or time 

whereas high nestedness means ordered accumulation or loss (Doncaster et al. 2016). The 

concept of nestedness has been widely applied to terrestrial communities (Atmar and Patterson 

1993), including small mammals (Cutler 1991), birds (Mac Nally et al. 2002), reptiles (Fischer 

and Lindenmayer 2005), and invertebrates (Fleishman and Mac Nally 2002). Various 

hypotheses have been proposed to explain the proximate cause of nestedness, including passive 

sampling (Fischer and Lindenmayer 2002, Higgins et al. 2006), neutrality (Ulrich and Zalewski 

2007), colonization (Patterson 1990, Cook and Quinn 1995, McAbendroth et al. 2005), 

extinction (Patterson and Atmar 1986, Wright and Reeves 1992, Bruun and Moen 2003, 

Wethered and Lawes 2005), nested habitat (Brualdi and Sanderson 1999, Fleishman and Mac 

Nally 2002), and habitat hospitability (Bloch et al. 2007). Among these, the extinction 

hypothesis, which states that differential local extinction rate among species is the main driving 

force for nested structure, attracts the most attention (Fleishman and Murphy 1999). Although 

the mechanisms underlying nestedness patterns are not well elucidated, pattern of nestedness 
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are frequently investigated in studies of species conservation. For example, with a further 

decrease in habitat size or with a further deterioration in habitat quality, the remnant species 

are often a non-random subset of the total pool species, and are generally dominated by 

generalist species that can tolerate more degrees of environmental variance (Cutler 1991, 

Fleishman and MacNally 2002, Fleishman et al. 2002, Baber et al. 2004, Hylander et al. 2005, 

Schouten et al. 2007, Hill et al. 2011). 

1.6 Applying community orderliness to species richness prediction 

Rather than focusing on environmental or intraspecific factors, an alternative approach to 

predicting community composition is based on intrinsic community pattern. This approach has 

the advantage that it avoids involving specific processes that may not yet be known. For 

example, the relationship between species range size and species diversity helps reveal non-

random pattern in community structure (Arita et al. 2008). A negative relationship occurs 

between species diversity and species distribution range of small mammals in North America 

based on species presence-absence matrix. Species with restricted distribution (rare species) 

tend to occur in sites with higher species diversity. In other words, “hotspots” that contain more 

species are mostly the result of presence of more rare species. Another example is that structure 

indices such as community alpha- (species richness in sites at a local scale) and beta-diversity 

(species turnover between regional or local species diversity) might potentially be used to 

predict community composition derived from limited ground survey data (Mokany et al. 2011, 

Prober et al. 2015, Socolar et al. 2016, Gavish et al. 2017).  

From a different perspective, some analyses utilise the property of community structure such 

as alpha diversity or beta diversity, to predict the pattern underlying the structure. For instance, 

species accumulation curves use the rate of species accumulation (species number per sampling 

area, performance of beta-diversity) to predict the overall species richness (the point value of 
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a species pool, one common index of alpha-diversity) based on extrapolation of accumulation 

curve to an asymptote. Species richness is the basic outline of a community, providing 

fundamental measurement of community and regional diversity. It is the foundation of many 

ecological models and conservation strategies. In spite of its importance, ecologists have not 

always appreciated the influence of abundance and sampling effort on estimated species 

richness (Gotelli and Colwell 2001). Information on species richness relies mainly on field 

surveys and requires significant sampling effort. Implementation limitations, such as the 

difficulty in accessing remote areas and the high costs in surveying a large region, has rendered 

the determination of the most efficient and reliable sampling scenario a priority in community 

ecology research. Indeed, several methods have been designed to achieve this goal (Bunge and 

Fitzpatrick 1993, Colwell andCoddington 1994, Chao and Shen 2004, Gotelli et al. 2009, Chao 

and Jost 2015a). In recent decades, there have been many attempts to estimate species richness 

based on species accumulation curves, where species richness is projected based on its 

relationship with sampling effort or area. With an increase in sampling effort, the number of 

species initially increases, but typically reaches an asymptote (Soberón and Llorente 1993, 

Ugland et al. 2003). The steepness of the curve specifies species dissimilarity among sampled 

areas, which is also useful in estimating species abundance in unsampled areas. In addition, a 

slight raise in extended tail that typically occurs in species accumulation curves suggests the 

existence of undetected rare species. An asymptote in the curve indicates that the increase in 

the species richness of an area is not unlimited, thus making extrapolating total richness from 

species accumulation curve possible (Morin 1999). Finally, as the asymptote represents the 

saturation point in species richness, it can help determine the least sampling effort for 

estimating total richness without all areas being sampled.  

One area that has received little attention to date is to investigate how well general insights 

into community structure can be used to predict species richness, based on the species presence-
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absence orderliness. For example, nestedness describes community structure by sorting species 

richness non-randomly from species-rich to species-poor area (Smith and van Belle 1984, 

Patterson and Atmar 1986, Gotelli 2000, Podani and Schmera 2011, Ricotta and Pavoine 2015). 

Nestedness might be helpful for improving the predictive power of the species accumulation 

curve because a nested-order curve includes proportionally more uncommon species in the 

initial samplings, followed by a decelerating rate of increase in species richness due to fewer 

uncommon species remaining undetected. Therefore the curve is a constantly upward convex 

shape with a flattened tail. The first data chapter of my PhD (Chapter 2) focuses on how 

nestedness structure in a community can improve the predictability of species richness from 

species accumulation curves. 

1.7 The importance of species identity in community composition 

prediction 

Mapping community nested structure gives the ‘big picture’ of how community patterns 

vary spatially. Although nested structure improves predictability of species richness in an area 

(see Chapter 2), the species composition in specific sites within the area remains unknown. 

Information on the consistency in species composition, particularly the repeated co-occurrence 

of certain species group, is helpful for the prediction of unknown species because the 

observation of one or more common species can predict the occurrence of other species within 

each group.  

Braun-Blanquet's work (1932) on plant sociology was one of the first attempts to classify 

communities efficiently (Poore 1955). Fidelity, how frequently a species occurs in a specific 

community, is critical for assigning species into distinct communities (Braun-Blanquet 1932). 

A species with higher fidelity means it occurs more frequently in one community and is less 

likely to be found in the other community. This method sorts the community member based on 
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abundance/dominant scoring (AD score) and the community is represented by a combination 

of species with the highest score. Subjectivity and arbitrariness in the Braun-Blanquet’s scoring 

system can lead to biased results (Podani 2006). Nevertheless, the idea of species occurrence 

probability proposed by Braun-Blanquet is still a useful concept for predicting community 

composition, and lends itself to more quantitative analysis via network analysis. 

Network analysis is ideal for analysing complicated relationship among members within 

communities. Nodes and edges in a network represent members in the community and their 

interrelations, respectively. Network analysis is based on mathematical algorithms of graph 

theory and can disentangle complicated relationships even with large amount of data and 

interactions, so is widely adopted in various academic disciplines such as sociology, 

information science and biology (Newman 2010). For example, network analysis is adopted in 

protein research for identifying amino acids co-expressing in the same metabolism pathways 

(Jeong et al. 2001) and in neural sciences for classifying brain cells and ganglia according to 

probabilities of participating in the same brain function (Voytek and Voytek 2012). In 

ecological research, network analysis helps clarify relationship among predators and prey in 

the food web (Dunne et al. 2002, Krause et al. 2003, Navia et al. 2010, Kéfi et al. 2015) or 

plant and animal interactions in pollination networks (Olesen et al. 2007, Devoto et al. 2012, 

Olito andFox 2015, Biella et al. 2017). These studies all involve numerous members (nodes) 

and complex relationships (edges).  

Based on Braun-Blanquet, a community can be defined by simultaneous attendance of the 

same event (co-occurrence of species in the same location) (Braun-Blanquet 1932, Podani 

2006). That is, species with more frequent co-existence should belong to the same community. 

One type of network analysis termed an affiliation network is capable of sorting large amounts 

of species data according to this rule. An affiliation network is one kind of two-mode networks 
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which contain two sorts of nodes. Therefore this type of network describes not only the direct 

linkage between members but also the events these members “attend” (biologically, events 

attended correspond to the habitat that species occupy) and the relationship among events. 

Once this member-event relationship is projected into a one-node network that contains only 

member relationships, the co-membership through attending to the same event will be revealed. 

When applied to ecological research, such projections can help categorise communities based 

on species co-occurrence.   

1.7.1 Network and network modularity 

The first step to define a community network structure is to identify subgroups in a network 

and there are numerous ways to do this, based on different concepts and algorithms (Guimerà 

and Amaral 2005, Fortunato 2010) derived from graph theory (Wilson 1996, White and Harary 

2001). Nodes with more frequent links indicate cohesion of these nodes. Nodes that link to 

each other with at least one path are defined as a component, which is the most essential part 

of a subgroup (White and Harary 2001, Moody and White 2003). In a graph component, all 

nodes are linked to each other in this component by at least one path. A path is the complete 

linkage route between two nodes. If the path length is larger than one, it means linkages 

between two nodes are going through other nodes. For example, there are two components in 

Figure 1, comprising nodes {1, 2 and 3} and {4, 5, 6 and 7} respectively. Component {1, 2 and 

3} is termed a strong component because members all directly link to each other. However 

component {4, 5, 6 and 7} is a weak component because it contains linkages with a path length 

greater than one. The edge between node 3 and 7 is the only route connecting these two 

components and is regarded as a bridge. Calculating relationships among all nodes and edges 

allows sub-groups to be identified.  
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Figure 1. 1 A sample network graph composing two components, {1, 2 and 3} and {4, 5, 6 

and 7} 

 

One approach for identifying subgroups is to calculate the network modularity (Newman 

2004). This concept has been adopted in ecological research to reveal intricate interactions and 

to detect heterogeneous structure within ecological communities or ecosystems (Olesen et al. 

2007, Genini et al. 2012). Modularity not only measures linkages within a module but also 

considers linkages among modules. A module is a group of nodes, and within-module nodes 

possess a higher “degree” (the sum of edges link to the node) than other members in the same 

module but a lower degree to members belonging to other modules (Blondel et al. 2008, 

Newman 2010). In each module, the node with the highest degree represents the most dominant 

member (i.e. the member that links to most other members). This node is called a module hub 

and can efficiently indicate the presence of other members in this module (Guimerà and Amaral 

2005, Olesen et al. 2007). 
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1.8 Applying community identification to community composition 

prediction 

Compared to niche modelling that requires environmental attributes, using species 

information solely to predict species composition is based on the assumption that when a group 

of species is closely associated with specific ecological requirements, this group of species can 

be taken as “indicator species” to predict characteristics of unsampled sites (Harms et al. 2001, 

DeCáceres and Legendre 2009). A method developed by Dufrêne and Legendre (1997), called 

“indicator species value”, stresses species-habitat associations. Dufrêne and Legendre’s 

indicator species are selected based on two characteristics: 1) the degree to which the species 

is associated with specific habitat. The ideal situation is that a species only occurs in one 

specific habitat, thus reflecting its ecological preference or requirement; 2) the abundance of 

the species; that it is abundant enough to be effective as an indicator. Although a rare species 

can fit the first requirement, it would be hard to observe and therefore not a useful indicator.  

Identifying indicator species requires classifying sites (or samplings) into different habitat 

types that each contains unique species composition. Each species is then assigned an indicator 

value for each habitat type. For instance, if three habitat types are classified, each species will 

have three indicator values corresponding to each of the three habitats. Indicator species for 

each habitat are defined as the species with the highest indicator value. However, the site 

groups are typically classified based on a clustering method especially non-hierarchical method 

such as k-means clustering which is a descriptive method whose robustness is hard to validate. 

It is also an indirect method, relying on distance (difference) between species rather than 

directly measuring co-occurrence patterns (Milligan 1980, Legendre and Legendre 2012). 

Clustering is also sensitive to the double-zero issue, which is very common in ecological 

datasets and may cause group misclassification (Dufrêne and Legendre 1997, Legendre and 
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Legendre 2012). The double-zero issue happens when comparing two site with the presence or 

absence of specific species. Presence in both sites of species indicates resemblance of sites, but 

absence in both sites does not necessarily represent resemblance because the absence of species 

in two sites may be due to different reasons. Distance metrics calculated in conventional 

clustering methods cannot reflect this fact. In comparison, a direct measure of species co-

occurrence could improve the efficiency of the indicator species method. To improve efficiency 

of site group classification, site groups based on a modularity algorithm would be a substitute 

for the clustering groups in the indicator species analysis, with the merit of directly measuring 

species co-occurrence. Although species co-occurrence has been investigated before, this is the 

first study to quantify species co-occurrence with network analysis and to apply network-based 

co-occurrence groups for indicator species analysis. Hence for the second data chapter of my 

Ph.D (Chapter 3), I apply network analysis and modularity detection techniques for identifying 

indicator species. 

1.9 Utilising orderliness of structure to predict species richness and 

composition 

Knowledge on species richness and species composition is essential for the study of 

community ecology and is also critical for conservation biology and in conservation policy-

making. Community pattern is a defining character of ecological communities and is also 

useful for predicting potential changes in species composition. Incorporating information on 

community pattern could improve the effectiveness of predictive community models, thus 

facilitating research in conservation. My PhD research focuses on how community structure 

with specific pattern (e.g. the non-random order of nestedness and the structure identified by 

network analysis) can be applied to improve predictability of conventional mathematic models 

that focus on community structure, such as species accumulation curve (beta-diversity) and 
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indicator species index (alpha- and beta- diversity). The species accumulation curve is applied 

to predict overall species richness. In my PhD I show that because nestedness represents 

orderliness in a community, it is feasible to utilise nestedness analysis to improve the 

predictability of species richness in unsampled areas (Chapter 2). I show that nested structure 

in a community could improve predictability of community richness and composition based on 

a non-random mathematical relationship. In the second part of my thesis, I focus on prediction 

of species composition. The commonly applied indicator species value requires classification 

of habitat types that reflect ecological requirements of individual species. I show that network 

analysis can help produce a better classification of species (Chapter 3). British bird data are 

utilised to develop the methodologies in chapters 2 and 3 due to the quality of the data available. 

The last part of my PhD dissertation (Chapter 4) evaluates these methodologies in another 

island – Taiwan – as a test of the extent to which my findings in Britain can be applicable in a 

tropical setting. Overall, the methodologies I develop for my PhD study have the potential to 

increase predictability of the two components (species richness and species composition) that 

are essential for defining a community and has important applications for conservation research. 

The two datasets applied in the thesis, British bird data and Taiwanese bird data, include only 

a single taxon (i.e. birds). Under such a circumstance, using the term ‘assemblage’ is more 

appropriate than community. For the following chapters, assemblage is therefore used in lieu 

of community.  
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Chapter 2: The utility of nestedness structure for 

predicting species richness 

2.1 Abstract 

A species accumulation curve is frequently applied to predict the overall species richness 

of a given area when resources for surveying the whole region are unavailable. It typically 

involves plotting a species accumulation against sampling effort, choosing a mathematical 

function to fit the curve, and extrapolating final species richness based on the function. Both 

the order of inputting in sampling data and the selected function affect the shape of the curve 

and the predicted species richness. Conventionally a randomisation process is used to minimise 

the prediction error caused by the order of data input. However, this randomisation process 

means that useful additional information on community structure is lost that may increase the 

predictive power of species accumulation curves. In this study, the degree to which 

incorporating nested structure (that is, inputting data from the most species rich to species poor 

sites, rather than randomly) improves the predictive power of species accumulation functions 

was assessed, with British avian data as an example. Two methods of ordering input data 

(randomly and based on nested structure) each for three levels of sampling efforts (10%, 20%, 

40%) were fitted to three species accumulation curves functions (negative exponential, 

logarithmic, and Clench) under two spatial scales (the whole British island and 100 km square). 

While inputting data based on nested order had similar performance as random order under 

British island scale, inputs based on nestedness order detectably increase the predictability of 

total species richness at the 100 km square scale, especially coupled with the logarithmic 

function. This is probably because there is only one possible curve when ranking sites by nested 

order (starting with the most species-rich sites) whereas there are many possible curves when 
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ranking sites based on random order. This study demonstrated that sampling according to 

nested order is generally more favourable than when based on random order. More studies 

considering different species and study site characteristics are needed to test for the general 

applicability of using nested order in species accumulation curves. 
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2.2 Introduction 

2.2.1 Estimating species richness and species accumulation curves 

Species richness provides a basic outline of a community and is an essential piece of 

information for species conservation. Information on species richness relies mainly on field 

surveys and requires significant sampling effort. Implementation limitations, such as the 

difficulty in accessing remote areas and the high costs of surveying a large region, have 

rendered the determination of the most efficient and reliable sampling scenario a priority in 

community ecology research. Indeed, several methods have been developed to estimate species 

richness based on individual abundance (individual based) or presence-absence data (sample-

based) (Bunge and Fitzpatrick 1993, Colwell and Coddington 1994, Gotelli and Colwell 2001). 

These have mainly included species accumulation curve-fitting (Soberón and Llorente 1993, 

Díaz-Francés and Soberón 2005), parametric model fitting (Hortal et al. 2004, Connolly et al. 

2009, Engen et al. 2011), nonparametric extrapolation from species accumulation curves 

(Colwell et al. 2012, Chao et al. 2014), or asymptotic estimators (Colwell and Coddington 1994, 

Chao and Shen 2004, Cardoso et al. 2014). Among these four methods, when only presence-

absence data are available, the accumulation curve-fitting method is the most commonly 

applied approach.  

There have been many attempts to estimate species richness based on species accumulation 

curves. Species accumulation curves take advantage of the relationship between species 

richness and sampling effort or area. As sampling effort is increased, the number of species 

initially increase, but typically reaches an asymptote (Soberón and Llorente 1993, Ugland et al. 

2003). The steepness of the curve can be used to quantify how rapidly species dissimilarity 

changes between sampled areas, as well as to estimate species richness in non-sampled areas. 
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In addition, a slight raise in extended tail that typically occurs in species accumulation curves 

suggests the existence of undetected rare species. As the species richness of an area will not 

increase infinitely with increasing sampling effort, the species accumulation curve eventually 

reaches an asymptote and once this is reached, the total species richness of the area can be 

predicted (Morin 1999). Finally, as the asymptote represents the saturation point in species 

richness, it can help determine the least sampling effort for estimating total richness in other, 

ecologically similar regions. 

A species accumulation curve can be constructed based on one-time sampling data or mean 

value of multiple samplings; the latter is called a rarefaction curve (Gotelli and Colwell 2001). 

The one-time accumulation curve uses original values collected randomly from a series of 

samples or along a gradient. However, the shape of the curve is largely determined by the order 

of adding additional samples (Ugland et al. 2003, Gray et al. 2004). For example, samples 

entered in the order of ascending richness leads to a smoothly growing curve while samples 

entered in the order of descending richness results in a steeply upward curve. Therefore, 

repeatedly randomly selecting the order in which samples are added, and building a curve based 

on the mean value of these randomly ordered sampling curves (that is, rarefaction) is necessary 

to eliminate the arbitrariness of one-time sampling (Colwell and Coddington 1994).  

Species accumulation (or rarefaction) curves allow for the prediction of undetected species 

through the generation of a prediction function based on curve fitting and extrapolation. Again, 

the shape of the extrapolated species accumulation curve affects final predicted results and 

relies on choosing the appropriate equation for extrapolation. Soberón and Llorente (1993) 

proposed three prediction functions - exponential, logarithmic and Clench functions. The 

exponential (specifically negative exponential) (Miller and Wiegert 1989) and logarithmic 

(Gleason 1922) functions have long been adopted for fitting species accumulation curves 
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(Tjørve 2003, Dengler 2009). The Clench function originates from the Michaelis-Menten 

kinetics function in biochemistry, and was later applied to species accumulation curves by 

Clench (1979). The shape of the species accumulation curve determines which prediction 

function is most appropriate. The logarithmic curve is a continuously growing, concave 

downward curve without an upper asymptote while the negative exponential and Clench curves 

are saturation curves that decrease at an increasing rate until finally reaching an asymptote. The 

latter two curves vary in their rate of decrease and thus different turning angles, which is where 

the tangent slope along the curve has the greatest shift. 

It is critical but difficult to select an appropriate fitting function for extrapolation because 

there is no universal recipe for deciding on which function to use (Soberón and Llorente 1993). 

A thorough understanding of the biological process governing a specific community is helpful 

for choosing the most appropriate function (Tjørve 2003). For instance, Thompson et al. (2003) 

suggested that a species accumulation curve was influenced by the proportion of common to 

rare species in a community. A community with more common species increases more rapidly 

in the early sampling stage, leading to an initially steep accumulation curve and then saturates 

(Thompson and Withers 2003). In contrast, a community with more rare species results in an 

accumulation curve with flatter slope and prolonged period of slow increase until reaching an 

asymptote. Therefore, studying community structure can potentially improve the predictive 

power of species accumulation functions as it provides additional information on orderliness 

and dynamics of communities that simple species accumulation curves fail to capture.  

2.2.2 Community structure and nestedness subset 

Quantifying community structure can be defined as considering biological survey data 

from a community perspective. For example, indices such as beta-diversity and nestedness are 

commonly adopted to describe the dissimilarity along sites. Recognising and analysing 
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community structure can help reveal mechanisms (such as environmental gradients) 

underpinning community composition and allow the prediction of how species composition 

will vary based on these mechanisms. Many indices for quantifying community structure have 

been developed (Stone and Roberts 1990, Atmar and Patterson 1993, Koleff et al. 2003, Podani 

and Schmera 2011), including nestedness. The concept of nestedness was first proposed by 

Patterson and Atmar (1986) to explain a common phenomenon in the structure of insular fauna: 

species richness on islands decreases with distance from the continent; moreover, species on 

distant islands are a subset of those on proximate ones. Nestedness takes account of both 

species richness and species occurrence and is calculated through arranging community data 

into a matrix of study sites and species presence-absence data for each site. By arranging 

species and sites in a matrix, species composition can be compared among sites or the 

frequency of occurrence can be compared among species (Ulrich et al. 2009). A perfect nested 

matrix indicates that a community is arranged in an absolute mathematical order, in which 

species within a depauperate site also occur in a species rich site and thus constitute a 

sequentially shorter ladder (Figure 2. 1). Owing to such a unique order, a nestedness index can 

potentially improve predictability of species accumulation curves, because no other indices (ex. 

beta-diversity) provide similar information, but such a novel idea has never been applied for 

enhancing species richness predictability. Also by using this index, it should be possible to 

stabilise the shape of accumulation curves in a way other than using the conventional 

randomisation method, which can possibly lose biological information inherent in community 

structure. Because the uncertainty in predicting species number based on species accumulation 

curve largely comes from the randomisation processes (Gray et al. 2004) and the initial stage 

of curve shaping (Bebber et al. 2007), incorporating nested structure should decrease the 

uncertainty of species accumulation curve and increase the accuracy of predictive results.  
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Community nestedness can be represented with several indices but all involve counting 

the ‘surprises’ in the study matrix against a perfectly-nested matrix (Ulrich et al. 2009). Here 

the ‘surprise’ represents ‘unexpected absence’ and ‘unexpected presence’ - species that would 

be present/absent from the site in a perfectly nested assemblage. For example, the index 

“nestedness temperature” is calculated by identifying unexpected absences in species-rich site 

or unexpected presences in a species-poor site. By summing these ‘surprises’ in each 

community sub-unit, the extent to which the community is perfectly nested can be determined 

so that a higher temperature represents more ‘surprises’ and less orderliness in a community. 

In other words, a higher temperature indicates lower nestedness.  

 

Figure 2. 1 A sample matrix representing a theoretical community of species A to Z in sites 1 
to 26. Grey cells indicate which species are contained in each site. This virtual community 
provides an example of a perfectly nested community. For example, species U occurs only in 
the 6 species richest sites (sites 1-6).  
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2.2.3 Utilising nestedness to predict species richness 

 As mentioned earlier, the idea presented here is that the predictive power of species 

accumulation curve can be enhanced by a better understanding of the community structure. As 

a measure of community structure (orderliness of the community), nestedness could be helpful 

for improving the predictive power of the species accumulation curve when there is a moderate 

degree of nestedness in the community. This is because in a perfectly nested community, the 

site with the greatest species richness includes all species and each of the other sites is a non-

random subset of the most speciose site (Wright 1998). Figure 2.1 gives a theoretical example. 

The species accumulation curve of a perfectly nested assemblage is very steep, but then level 

off very quickly because no more new species can be added after the first site, as the first site 

contains all species in the community. Such a species-rich to species-poor order will 

consistently result in an asymptotic curve with little variation. In other words, incorporating 

nested orderliness results in a more consistent species accumulation curve than the other 

commonly used rarefaction curve, which is derived from randomised multi-sampling data 

(Soberón and Llorente 1993, Scheiner 2003). For example, when based on nestedness order, 

sampling the example matrix (Figure 2. 1) only by sites of even numbers produces a curve 

similar to when sampling all sites. If species accumulation curves based on nested order do 

indeed give a more consistent curve shape than rarefaction curves, this could mean that such 

nestedness-based species accumulation curves also have higher predictive accuracy than the 

standard rarefaction curve approach.  

2.2.4 Aim of this study 

This study aims to evaluate whether building species accumulation curves based on 

ordering samples by their nestedness structure improves their utility for predicting species 

richness. British avian assemblage data (Gibbons et al. 1993) were examined because it 
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contains a complete avian species list for Britain which provide a solid base for model 

validation (Ugland et al. 2003). In this study, differences in the predictive accuracy of three 

species accumulation curve functions (exponential, logarithmic, and Clench functions; 

Soberón & Llorente 1993) based on random vs. nested order in the addition of the sampling 

sites were compared. Three levels of sampling efforts (10%, 20%, or 40% of all sampling sites) 

were selected as the cut-off points for a comparison of accuracy in predicting species richness. 

All analyses were run at two spatial scales (whole of the British mainland vs. 100 km squares, 

see Methods) to evaluate whether predictive power is scale-dependent.  
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2.3 Methods 

2.3.1 Avian data 

The British Trust for Ornithology (BTO) 1988-1991 survey data (Gibbons et al. 1993) 

cover Britain and Ireland. In this study, only the British data were used, which were divided 

into 55 squares (Figure 2. 2) and each 100 km square was further divided into at most one 

hundred sub-squares (10 km x10 km). The entire BTO dataset contains 273 avian species in 

2830 sub-squares. Presence-absence data for every species are available at the sub-square level 

and were inputted in a species-site matrix. The sub-square is the basic unit for the analyses of 

community structure of the British avian assemblage.  

  

Figure 2. 2 Arrangement of British 100 km squares (http://www.bto.org/volunteer-

surveys/birdatlas/taking-part/correct-grid-references/know-your-place) 

http://www.bto.org/volunteer-surveys/birdatlas/taking-part/correct-grid-references/know-your-place
http://www.bto.org/volunteer-surveys/birdatlas/taking-part/correct-grid-references/know-your-place
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2.3.2 Calculating nestedness  

Nestedness temperature, a measure of community nestedness, takes unexpected presences 

and unexpected absences into account (Ulrich and Gotelli 2007, Ulrich et al. 2009). It is 

represented by a normalised sum of squared relative distance of absences above and presences 

below a hypothetical isocline that separates occupied from unoccupied areas in a perfect nested 

matrix (Atmar and Patterson 1993). According to Atmar and Patterson (1993), the calculation 

of nestedness is based on the unexpectedness, which is measured by the distance an unexpected 

presence or absence of a species lies in the matrix as compared to the perfectly nested matrix. 

Unexpectedness runs diagonally along a line running parallel to the skew diagonal. For a matrix 

with n species and m sites, the local unexpectedness (uij) is calculated as: 

𝑢𝑢𝑖𝑖𝑖𝑖 = �
𝑑𝑑𝑖𝑖𝑖𝑖
𝐷𝐷𝑖𝑖𝑖𝑖

�
2

 

Dij is the length of the full line running through the jth species on the ith site and dij is 

the specific length along that line. The total unexpectedness (U) is then represented by: 

 𝑈𝑈 = 1
𝑚𝑚𝑚𝑚∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖

 

 

A perfectly ordered matrix should have no unexpectedness, thus U=0, and a matrix with 

maximum unexpectedness always has 𝑈𝑈𝑚𝑚𝑚𝑚𝑥𝑥 ≈ 0.04145. The nestedness temperature T is then 

defined as: 

𝑇𝑇 = 𝑘𝑘𝑘𝑘 
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𝑘𝑘 =
100
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

 

 

T ranges from 0-100°, with T=0º representing a perfect-nested matrix and T= 100º absolute 

randomness. 

Ordering a presence-absence matrix in nested order therefore means re-arranging it into a 

new matrix where sites are organized from the most species-rich to the most species-poor. The 

nestedness of the avian assemblage of all of Britain and of each of the fifty-five 100 km squares 

was calculated as a first step in understanding whether using nested order can help improve the 

predictions of species accumulation curves.  

 

2.3.3 Species accumulation curve and extrapolation 

2.3.3.1 Orders of sampling sub-squares for species accumulation curves 

British avian assemblage data were arranged in three different types of order in terms of 

adding in sampling sub-squares: 1) random order with the mean of 100 permutations 

(rarefaction curves; sensu Gotelli & Colwell 2001); 2) nested structure – that is, ordering 

sampling sub-squares from the most species-rich to the most species poor. 3) reverse nested 

structure – that is, ordering sampling sub-squares from the most species-poor to the most 

species-rich.   

2.3.3.2 Functions for fitting species accumulation curve 

Three functions for fitting species accumulation curves were compared for all three types 

of orders of sample sub-squares (random, nested, reversed nested) to evaluate their accuracy 
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in terms of predicting overall species richness of Britain and of each 100 km square. These 

three functions are based on Soberón & Llorente (1993): 

Negative exponential function: 𝐲𝐲 = 𝐚𝐚 × �𝟏𝟏 − 𝒆𝒆−
𝒙𝒙
𝒃𝒃�                      (Equation 1) 

Logarithmic function: 𝐲𝐲 = 𝐚𝐚 + 𝐛𝐛 × 𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)                               (Equation 2) 

Clench function: 𝐲𝐲 = 𝒂𝒂𝒂𝒂
𝟏𝟏+𝒃𝒃𝒃𝒃

                                              (Equation 3) 

In which y is the species number and x the number of sub-squares.  

2.3.3.3 Calculating the predictive power of species accumulation curve 

The three functions mentioned above were used for extrapolating species richness in non-

sampled areas. The ability of the three species accumulation functions to predict total species 

richness across Britain and within each 100 km square was compared based on three levels of 

sampling effort: 10%, 20%, and 40% of sub-squares from each 100 km square (termed 10%, 

20% and 40% sampling data henceforth). For example, for the 20% sampling effort, 20% of 

sub-squares in each 100 km square were randomly selected to form 20% sampling data. This 

selected sampling data was randomly shuffled 100 times to calculate a mean value (random 

order) or rearranged according to a nestedness order (nestedness order). This procedure was 

conducted in two spatial scales to see whether predictability is scale dependent: the whole 

British mainland and within each of the fifty-five 100 km squares in Britain. At the scale of 

Britain as a whole, randomly selected data from each of the fifty-five 100 km squares were 

pooled together. For example, for 20% sampling data, 20% sub-squares from each 100 km 

square were selected and combined to form the total 20% sampling data of Britain. For the 100 

km square scale, 20% of each sub-square were selected and predictability then assessed 

separately for each of the fifty-five 100 km squares. The three percentages were chosen based 

on the minimum sub-squares needed for estimating 90% and 100% of all species 
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(approximately 20% for 90% of species and 80% for 100% of species, detail see Appendix B). 

However as 80% sampling is unrealistic in most instances, comparisons were conducted 

starting at 10% sampling effort (half of 20%). 

To summarise, each of the datasets (two orders of sampling each for three levels of 

sampling efforts) was fitted to three curve functions (i.e. negative exponential, logarithmic and 

Clench) under two spatial scales (whole British mainland and 100 km square). The procedure 

of randomly selecting samples or re-arranging according to nestedness order and then 

extrapolation from fitting curves was repeated 50 times (therefore 50 random samples) and 

each combination of two orderliness and three levels of sampling efforts for three functions, in 

two different geographic scales), to access a mean predicting value for species richness. The 

inaccuracy in the prediction of total species richness, that is, error rate, is defined as: 

1-(predicted species richness/observed species richness) 

A positive value indicates an underestimation while a negative value indicates an 

overestimation of results. The error rate was correlated with nestedness temperature (at 100 km 

square scale) using Spearman’s correlation test to assess any association between nestedness 

temperature and error rate. Error rates (absolute value) with nestedness versus random order 

data were compared using t-tests (compare 50 repeats in whole British mainland) and paired t-

test (compare mean results in each 100 km square). The calculation and statistical procedures 

are conducted in R (R Development Core Team 2013). 
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2.4 Results 

2.4.1 Nestedness of British avian assemblage 

The nestedness temperature of Britain as a whole for avifauna is 21.24° while the 

temperature for each of the 55 squares (100 km x 100 km) ranges from 1.58º to 26.95º, with >40% 

squares with a temperature in the range of 20º-25º (Figure 2. 3). These indicate a moderate 

level of nestedness (against the 0º to 100º scale) for Britain and most of the 100 km squares 

(Wright 1998). Figure 2. 4 illustrates an overview of the presence-absence matrix for the entire 

British avian assemblage (Appendix A provides detailed axes information for the presence-

absence matrix and gives the site and species lists respectively in nested order) and one 100 

km square from southern England with a typical nestedness temperature (23.85º). Species 

generally cluster in the upper-left corner but are more scattered in the lower-right side, 

indicating a trend of nestedness, with species in more species rich sub-squares (on the top) 

encompassing those in depauperate sub-squares (on the bottom). The isocline delineates the 

hypothetically perfect nested structure (Figure 2. 4). The white cells above the isocline are the 

“unexpected absences”, while the red cells below the isocline are the “unexpected presences”; 

both reduce the nested structure and increase the nestedness temperature. 

The 10 most species rich sub-squares are: ND27, TL87, TF74, TF84, TF62, TQ77, TM47, 

SZ19, TR06, and SU70, with each sub-square containing >120 avian species. Except for ND27 

located in north-eastern Scotland, and SZ19 and SU70 located in southern England, all other 

sites are in south-eastern England, which is close to the European Continent. In contrast, the 

10 most species depauperate sub-squares are: NZ39, NL79, NF61, NA81, NM05, HY35, SY38, 

SW65, SS11, and TR46. Roughly half of these sites are located at in the far north and the other 

half in south-western England except for TR46 (Figure 2. 5).  
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The 10 most commonly occuring avian species among the 2830 sub-squares are: wren 

(Troglodytes troglodytes), skylark (Alauda arvensis), pied/white wagtail (Motacilla alba), 

blackbird (Turdus merula), robin (Erithacus rubecula), starling (Sturnus vulgaris), swallow 

(Hirundo rustica), song thrush (Turdus philomelos), chaffinch (Fringilla coelebs), and willow 

warbler (Phylloscopus trochilus). The 10 most limited occurrence species are: emperor goose 

(Chen canagica), swan goose (Anser cygnoides), king eider (Somateria spectabilis), helmeted 

guineafowl (Numida meleagris), red-footed falcon (Falco vespertinus), little egret (Egretta 

garzetta), black swan (Cygnus atratus), northern bobwhite (Colinus virginianus), white-

winged black tern (Chlidonias leucopterus), and smew (Mergellus albellus). 

 

 

Figure 2. 3 Frequency distribution of nestedness temperature for the fifty five 100 km square 

of Britain. 
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Figure 2. 4 Presence-absence matrix of British avian assemblage. The x-axis represent sites 

(sub-squares) and the y-axis represent species. No site or species names are shown 

here as there are not legible in this figure; Appendix A provides full site and species 

lists in nested oreder for this presence-absence matrix. Red cells indicate species 

occurrence and white ones, species absence. The black concave diagonal curve 

represents the isocline that delineates the hypothetically perfect nested matrix. The 

white cells locating at the left hand side of the diagonal curve represent the 

unexpected absence and the red ones at the right hand side, unexpected presence. 
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Figure 2. 5 Species richness at 10 km scale. Darker area is with higher species richness. 

 

2.5 Species accumulation curve and data orderliness 

The avian assemblage of entire British sub-squares were arranged according to three orders: 

nested structure, mean of random order after 100 permutations, and reverse nested structure. 

Species accumulation curve varied with orders of adding in sub-squares (Figure 2. 6). Curves 

based on nested structure quickly saturated while curves based on reverse nested structure 

increased slowly and barely saturated. Random sampling curve was situated between the 

curves based on nested and reversed nested structure which represented the upper and lower 

limit, respectively (Figure 2. 6).  
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Figure 2. 6 Species accumulation curves based on three orders of data arrangement. Black dots 

(): data arranged by nested order, species richness from high to low; dark grey 

dots (): mean of 100 randomly arranged data; light grey dots (): data arranged 

by reverse nested order, species richness from low to high. The red dash line 

indicates the real total number of species (273 species). 

 

2.6 Species richness extrapolation for Britain 

Because predictability based on reverse nestedness for all three species accumulation curve 

functions was 20-30% less efficient than random and nestedness orders, only results for random 

and nestedness orders are presented in the following section. Total species richness for Britain 

was predicted based on three species accumulation curve functions (exponential, logarithmic, 

and Clench) with three level of sampling efforts (10%, 20%, and 40% of total sites) under two 

data arrangement orders (random and nestedness) each with 50 replicates. Figure 2. 7 depicts 



Chapter 2   Results 

38 

species accumulation curves and Figure 2. 8 summarises the predicted total species richness. 

For all three levels of sampling effort, projections based on the logarithmic function was more 

accurate than those based on exponential and Clench functions irrespective of data arrangement 

orders. However, predictions with random data order tended to overestimate total species 

richness whereas those with nested order were more likely to underestimate total species 

richness when based on the logarithmic function (Figure 2. 7 and 2. 8). There was significant 

difference in error rate (absolute value, p< 0.05) between random and nestedness orders for 

exponential or Clench prediction function but not for logarithmic function (p>0.05). Overall, 

the method based on nestedness order had lower or equal error rate in the prediction of species 

richness than that based on random order.  

Error rate decreased with sampling effort for both nestedness and random order (Figure 2. 

8). Among the three functions, accuracy based on logarithmic curves increased the least when 

sampling efforts doubled from 10% to 20% or from 20% to 40%, with < 2% of decrease in 

error rates for both random and nestedness order. This was mostly due to the already high 

accuracy under the 10% sampling efforts (3.5% error rate, absolute values) and the 20% 

sampling efforts (<2.7% error rate, absolute values). In comparison, although doubling 

sampling efforts comparatively improved predictability of exponential and Clench functions, 

error rates were higher than 7% even under the 40% sampling effort.  
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(a.1) (b.1) (c.1) 

  

 

(a.2) (b.2) (c.2) 
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(a.3) (b.3) (c.3) 

 

  

Figure 2. 7 Prediction of whole British avian species based on three species accumulation curve functions (a: exponential; b: logarithmic: c: 

Clench) with three levels of sampling effort (1:10%; 2: 20%; 3: 40%, of total sites) under two data arrangement orders (blue: 

random; red: nested). Each prediction was repeated 50 times. The grey herizontal line indicates the real total number of species (273 

species). The vertical dash line indicates the number of sampling sites.  

Number of sub-squares Number of sub-squares Number of sub-squares 
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Figure 2. 8 Predicted total species richness (±sd) for a combination of two dataset orders (solid circle: random order; open circle: nested order), 

three prediction functions (Exp. = negative exponential function; Log = logarithmic function; and Clh. = Clench function), and three sampling 
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efforts (10%, 20%, and 40%). The percentage above the bars represented the mean error rate. Red dash line represented the observed species 

richness (273 species). 
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2.7 Species richness extrapolation for 100 km squares 

The total species richness of each of the fifty-five 100 km squares was also predicted based 

on three species accumulation curve functions with three level of sampling efforts under two 

data arrangement orders each with 50 replicates.  

Under nestedness order, logarithmic function had lower error rates (4.6±5.3%, 3.4±3.5%, 

1.4±2.7% for 10%, 20%, 40% sampling efforts, respectively) than exponential (20.9±2.9%, 

13.7±11.7%, 9.6±2.2%) and Clench functions (19.0±2.3%, 14.8±3.1%, 9.0±1.9%) for all three 

levels of sampling efforts. Error rates did not differ with geography (e.g. northern vs. southern, 

coast vs. inland), but squares containing full sub-squares (100 sub-squares) tended to be more 

accurate than squares in the periphery of Britain that encompassed < 100 sub-squares (Figures 

2. 9, 2.10, 2. 11). There was no correlation (Spearman’s correlation coefficient r= -0.69 to 0.04, 

p>0.05) between nestedness temperature and error rates among the 55 squares; however, the 

error rate increased with lower nestedness when it approaches random order. 

Similarly, under random order, logarithmic function had lower error rates (-12.0±6.8%, -

7.0±5.3%, 3.9±3.2%) than exponential (20.5±2.2%, 9.1±30.8%, 10.4±1.8%) and Clench 

functions (14.9±2.5%, 12.5±4.8%, 9.6±2.3%) when the comparisons were based on absolute 

values. There was no correlation (r= -0.66 to 0.38, p>0.05) between nestedness temperature 

and error rates among the 55 squares; however, the error rate increased with lower nestedness 

when it approaches random order.  

Error rates varied considerably among different combinations of arrangement orders, curve 

functions and sampling efforts (Table 2.1). However, error rates were generally lower when 

based on nestedness order than when based on random order (p<0.05), especially under 
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logarithmic function that had much lower error rates than exponential and Clench functions 

(Table 2. 1).  

Table 2. 1 Comparison of error rate between nestedness order (N) v.s random order (R) under 

three functions (Exp. = negative exponential function; Log = logarithmic function; 

and Clh. = Clench function) and three levels of sampling efforts (10%, 20%, and 

40%) at 100km x 100km scale. Bold type indicates significant differences at p=0.05 

level (with absolute value).  

*positive value indicates an underestimation while negative an overestimation of species richness 

**positive indicates higher error rate for nested order and vice versa (comparison based on absolute 

value) 

 

 

Functions Sampling effort 
Error rate* 

N         R 

 

t** df p-value 

Exp. 

10% 20.9±2.9% 20.5±2.2% 1.05 28 0.30 

20% 13.7±11.7% 9.1±30.8% -1.29 41 0.20 

40% 9.6±2.2% 10.4±1.8% -2.45 42 0.02 

       

Log 

10% 4.6±5.3% -12.0±6.8% -4.53 35 <0.01 

20% 3.4±3.5% -7.0±5.3% -3.85 39 <0.01 

40% 1.4±2.7% 3.9±3.2% -4.05 42 <0.01 

              

Clh. 

10% 19.0±2.3% 14.9±2.5% 7.52 28 <0.01 

20% 14.8±3.1% 12.5±4.8% 3.84 35 <0.01 

40% 9.0±1.9% 9.6±2.3% -3.43 42 <0.01 
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Random Nested 
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Figure 2. 9 Error rate (mean of 50 repeats) based on exponential accumulation curve function 

for fifty five 100 km squares with three level of sampling efforts (1st row: 10%; 2nd: 20%; 3rd: 

40% of total sites). The left column shows results by random order and right column, 

nestedness order. Blue areas indicate underestimation and grey areas overestimation of 

prediction results. Darker colours represent better predictive results (lower error rates). Beige 

areas indicate sub-squares without enough data for extrapolation. 
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Random Nested 
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Figure 2. 10 Error rate (mean of 50 repeats) based on logarithmic accumulation curve 

function for fifty five 100 km squares with three level of sampling efforts 

(row 1st: 10%; 2nd: 20%; 3rd: 40% of total sites). Left column showed 

results by random order and right column, nestedness order. Blue areas 

indicate underestimation and grey areas overestimation of prediction results. 

Darker colours represent better predictive results (lower error rates).  Beige 

areas indicate sub-squares without enough data for extrapolation.  
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Random Nested 
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Figure 2. 11 Error rate (mean of 50 repeats) based on Clench accumulation curve 

function for fifty five 100 km squares with three level of sampling efforts 

(row 1st: 10%; 2nd: 20%; 3rd: 40% of total sites). Left column showed 

results by random order and right column, nestedness order. Blue areas 

indicate underestimation and grey areas overestimation of prediction results. 

Darker colours represent better predictive results (lower error rates). Beige 

areas indicate sub-squares without enough data for extrapolation. 
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2.8 Discussion 

In the current study of the British avian assemblage, it was found that accuracy in 

the projections of species richness increased with sampling effort, and error rates were 

much lower when fitted with logarithmic function than with exponential or Clench 

function for both British and 100 km square spatial scales (Figure 2.8, Table 2.1). 

More importantly, when fitted with the best performing logarithmic function, 

prediction was at least as good or better when data were arranged based on nestedness 

order than based on random order (Figure 2.8, Table 2.1).  

2.8.1 Species accumulation curve with nestedness structure 

Extrapolation from species accumulation curves is a commonly adopted and 

relatively simple solution to estimate species richness with limited information. 

Approaches based on asymptotic estimators (Walther and Moore 2005, Magnussen 

2014, Béguinot 2015, Chao and Jost 2015, Gwinn et al. 2015) or nonparametric 

extrapolation from species accumulation curves (Colwell et al. 2012, Chao et al. 2014) 

require further information on species abundance (instead of presence-absence data 

only) and are considered to be more accurate in estimating species richness (Brose et 

al. 2003, Cayuela et al. 2015) than curve fitting method that could be estimated based 

solely on presence-absence data. The biggest challenge in curve fitting method comes 

from selecting the optimal extrapolation function (Soberón and Llorente 1993, Dengler 

2009b) or randomisation process (Ugland et al. 2003, Gray et al. 2004), which might 

be improved after the incorporation of information on community structure. In this 

study, we have demonstrated that ordering data based on nestedness could potentially 

improve predictability. Most recent research on nestedness has focused on describing 
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community structure (Picazo et al. 2012, Herczeg and Horvath 2015, Chaves and Ariez 

2016) or how to improve the algorithms of calculating nestedness indexes (Almeida-

Neto et al. 2008, Podani et al. 2014). This study is a new attempt to incorporate 

nestedness index to improve the predictive power of the species accumulation curve 

fitting method. Compared with random order, inputs based on nestedness order would 

enhance the ability of species accumulation curves to predict avian species richness in 

Britain at the 100 km square scale, especially coupled with logarithmic function. 

Accuracy in the prediction of total species richness for both the entire British island and 

100 km squares could be >95% for 10% sampling effort when logarithmic species 

accumulation curve function are fitted with data based on nestedness order. In 

comparison, the accuracy was less than 90% when data were arranged randomly for 10% 

sampling effort under logarithmic function at spatial scale of 100 km square.  

2.8.2 Nestedness application in sampling design 

Owing to the limited resources available for field surveys, it is worthwhile to 

improve the efficiency of sampling efforts (Ashcroft et al. 2010). Both mathematical 

pattern and biological mechanism can potentially improve the efficacy of sampling 

effort. For example, Pearman and Weber (2007) found that including widely distributed 

species can better predict overall richness than when species of limited distribution 

were contained. The nestedness-order dataset applied in this study can similarly lead to 

a better prediction when combined with the best fit extrapolation functions. For instance, 

error rate was <5% based on nestedness order compared with 12% based on random 

method when logarithmic functions were applied for the estimation of British avian 

species richness in 100 km squares with 10% sampling effort.  
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Conventionally, intensive randomisation procedures are needed for the species 

accumulation curve to achieve higher predictive power (Ugland et al. 2003; Chao & 

Shen 2004; Gray et al. 2004). The randomisation procedure reduces the probability of 

including extreme values and attempts to simulate real conditions by considering a large 

number of replications. Alternatively, sampling based on nestedness order is a novel 

attempt for capitalising on community structure for the prediction of total species 

richness. Results of this study have demonstrated that overall, sampling according to 

nested order is more favourable than based on random order. Melo et al. (2003) 

compared predicted species richness from species accumulation curve in different taxa 

and indicated at least 40% of sampling effort is needed to acquire above 90% accuracy. 

The nestedness method applied in this study captured information about assemblage 

composition and used it to achieve better accuracy with lower sampling effort. Thus 

taking advantage of the nested structure can potentially help predict assemblage 

composition by focusing on information in the most species-rich sub-squares. However, 

these findings may be related to the fact that the British avian assemblage demonstrates 

a moderate level of nestedness at two spatial scales: the entire British island and 100 

km squares. More studies considering different species and study site characteristics, 

as well as different levels of nestedness, are needed to test for the general applicability 

of nested order. 

2.8.3 Species accumulation curve functions for British avian species 

Selecting appropriate species accumulation curve function to predict species 

richness is difficult, as there is no universal principle for the selection of the optimal 

function. Ugland et al. (2003) suggested that the exponential model is suitable for small 

scale data, while Díaz-Francés and Soberón (2005) proposed that the power model and 
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logistic model are ideal for median and larger scale data or when information on taxa 

is scarce. This study indicates that predictability does vary remarkably with functions 

and selecting the optimal function would greatly improve the predictability. Soberón 

and Llorente (1993) compared predictability of negative exponential, logarithmic, and 

Clench functions (but not incorporating information on nestedness) and also concluded 

that functions vary in their performance. For instance, negative exponential function 

tends to approach asymptote too soon and typically underestimates overall species 

richness; however, the same function would also avoid species overestimation under 

homogenous environment. Indeed, negative exponential function fitted Mexican 

butterfly data better than logarithmic and Clench functions and this was likely due to 

the relatively homogenous environment in the Mexican study (Díaz-Francés and 

Soberón 2005).  

The fact that negative exponential function, along with Clench function, usually 

perform better under homogenous environment is due to both functions belonging to 

the saturation model (Dengler 2009). That is, there is an upper asymptote and the 

accumulation curve eventually approaches a saturation point. Compared with negative 

exponential function, Clench function fits better when homogenous area contains more 

rare species (Soberón and Llorente 1993, Moreno and Halffter 2000) although both 

functions tend to underestimate overall species richness (Soberón and Llorente 1993, 

Cardoso et al. 2008). In comparison, logarithmic function creates a unbounded curve 

without mathematical asymptote and is more suitable for heterogeneous environment 

despite this function tending to overestimate species number due to an infinite increase 

(Tjørve 2003, Dengler 2009).  
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In this study, logarithmic function performed the best for both the whole British 

island and 100 km square spatial scales. This agrees with the findings of Lennon et al. 

(2001) in which they assessed the British avian assemblage and found that the 

logarithmic function, on average, predicted total species richness better than the power 

function for 10 km to 90 km spatial scales. Because the whole British island and most 

of the 100 km squares also cover coastal areas (Figure 2.2) that contain water birds, 

both spatial scales are relatively heterogeneous in the species composition (i.e. they 

contain both water and land birds), hence the better predictability of logarithmic 

function than negative exponential or Clench function. In this study, the basic unit of 

assemblage is the grid square, which is an artificial unit, but the constant size of each 

grid square avoids the confounding effects of area on species richness and allows a 

comparison of input order in the species accumulation curve. Besides, if nestedness 

order can enhance predictability in artificial square data (which may contain more than 

two real communities), it might perform even better in real communities. In other words, 

the advantage of nestedness order might be underestimated when based on the artificial 

square grid data here.  

Logarithmic function tends to overestimate species richness (Tjørve 2003, Dengler 

2009). Species overestimation does occur in the current study when the prediction is 

based on logarithmic function with conventionally applied random order. However, 

replacing random order with nested order instead underestimates total species richness. 

This is probably because when compared with random order, data input based on nested 

order include proportionally more uncommon species in the initial samples (Figure 2.1), 

followed by a decelerating rate of increase in species richness (Figure 2.6, 2.7) because 

fewer uncommon species remain undetected. Such deceleration might lead to an 

underestimation of total species richness. On the contrary, fewer species are included 
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in the initial samples when based on random order (Figure 2.6, 2.7). This is later 

compensated by an accelerating rate of increase, causing an overshoot in the prediction 

of total species richness. Owing to similar but opposite levels of error rates with random 

versus nestedness order for logarithmic function under British scale (Figure 2.8), it is 

interesting to test whether combining results from both random and nested order leads 

to better predictions. Indeed, a test showed that predicted species richness can be as low 

as 0.07% using logarithmic function in 40% sampling at British scale due to the error 

rates cancelling each other out when using the mean of both estimates. Further studies 

should test whether incorporating both random and nestedness orders further increases 

success in the prediction of species richness. 

Relative to random order, data input based on nestedness order have better 

predictive power at small spatial scale (100 km square) when both are fitted with 

logarithmic function (the most accurate function). Such superiority in prediction does 

not occur under large spatial scale (e.g. British island), where both ordering approaches 

lead to similar predictability. Comparatively, new species are more likely to be 

encountered in larger areas (Ney-Nifle and Mangel 1999, Tjørve 2003, Ulrich and 

Buszko 2007), thus increasing the uncertainty of including new species and decreasing 

the prediction accuracy. Under such circumstance, input based on nestedness order 

might not be more favourable than when based on random order. In comparison, the 

chance of including new species is lower in smaller areas, especially when the species-

rich sites are included in the first samples (i.e. nestedness order), thus the higher 

prediction accuracy of nestedness ordered data input. However, whether the superiority 

of nested order is scale–dependent deserves further investigation.
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Chapter 3: Incorporating network analysis in the 

identification of indicator species of the British 

avian assemblage 

 

3.1 Abstract 

Predicting species identity instead of species richness alone is of significant value 

particularly with species of conservation concerns. The indicator species approach is 

commonly applied to predict species composition in unsampled sites, but the conventional 

clustering method can often lead to inconsistent and misleading results due to that this method 

measuring the relative dissimilarities among species. In this study, we applied network analysis 

that directly measures co-occurrence among species to improve the predictive power of 

indicator species, with British birds as an example. Five indicator species groups identified 

among British avian species across all sites differed between two approaches of site group 

detection, clustering method and network analysis, with the latter showing clear geographical 

demarcation. Selected indicator species based on 40% study sites also differed between 

clustering method and network analysis; however, species in unsampled sites were better 

predicted by network analysis than by clustering method. Our study demonstrates that 

incorporating network analysis can improve predictability of indicator species and this novel 

method can be of broad applicability to other study systems. 
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3.2 Introduction 

Results from the previous chapter showed that incorporating information on assembly 

structure, such as nestedness, can improve predictability of species richness in comparison with 

capitalising simply on mathematical equations that lack any biological underpinning. Based on 

the aforementioned approach, only species richness but not species composition can be 

predicted; nevertheless, information on species identity is frequently more important than 

species richness, particularly with species of conservation concerns (Webb 1989, Cousins 

1991). For example, two sites with similar species richness merit different management plans 

when one harbours species that are endangered or have a limited distribution while the other is 

composed primarily of exotic species. Furthermore, conservation strategy focusing solely on 

areas with the highest species richness (i.e. hotspots) sometimes neglects the requirement of 

rare species that happen not to occur in the hotspot; for example, rare liverworts and aquatic 

plants have environmental requirements distinctive from other terrestrial flora (Prendergast et 

al. 1993). Evidently, information merely on species number might be misleading, particularly 

when concerning conservation or policy legislation (Prendergast et al. 1993, Prendergast 1997, 

Grundel et al. 2014). 

In this chapter, I take a step further and focus on species identity and composition instead 

of species richness only. Community structure, including species co-existence information, is 

analysed to see if simply having limited information on species identity but no environmental 

attributes can predict overall species composition. Compared to niche modelling that requires 

environmental attributes, using species information solely to predict species composition is 

based on the assumption that when a group of species is closely associated with specific 

ecological requirements, this group of species can be taken as “indicator species” to predict 
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characteristics of unsampled sites (Harms et al. 2001, DeCáceres and Legendre 2009). This 

method is called “indicator species value” and was developed by Dufrêne and Legendre (1997). 

An interest in associations between habitat and species assemblage can be traced back to 

Two Way Indicator Species Analysis (TWINSPAN) (Hill 1979), which is the earliest 

numerical method on habitat association of species assemblage (Dufrêne and Legendre 1997). 

However, TWINSPAN has two main weaknesses. Firstly, it is based on correspondence 

analysis (CA) or detrended correspondence analysis (DCA) that projects sampled species onto 

an assumed linear-gradient axis, which might not in fact be linear. Furthermore, this analysis 

retrieves information only from the first axis of CA or DCA and neglects the second axis which 

might also affect the ordination result. Secondly, TWINSPAN is a top-down division process, 

clustering and arbitrarily dividing the first axis of CA (or DCA) into two even groups. This 

process might misclassify species near the centre of the axis. Moreover, the two-group method 

may not always be suitable for classification, for example in categorizing a xeric to hydric 

gradient into either group because in-between there exists mesophytic plants. Therefore, 

classification by TWINSPAN may be inappropriate and lead to low predictability when 

associations between species and habitats are weak. To solve these problems, a method termed 

“indicator species value” (Dufrêne and Legendre 1997) was devised to provide a more efficient 

way for identifying indicator species. 

The indicator species concept has roots in the idea of representative diversity (Webb 1989, 

Cousins 1991), which argues that species assemblages are associated with specific habitat types. 

Such species assemblages help characterise habitats based on Species–Environment 

Relationships (SER) analysis, which categorizes species assemblage according to spatial and 

environmental factors (Borcard 1992). The SER analysis also involves measuring 

environmental attributes and relies on multivariate methods for modelling species distribution. 
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Instead, the indicator species value method stresses measuring association between species and 

habitats, using hierarchical or nonhierarchical classification method (e.g. clustering) (Dufrêne 

and Legendre 1997). In contrast to TWINSPAN, indicator species are not classified along a 

gradient but are selected based on two characteristics: 1) the degree to which the species is 

associated with specific habitat. The ideal situation is that a species only occurs in one specific 

habitat, thus reflecting its ecological preference or requirement. This character is usually 

designated as A in indicator species value calculation; 2) the abundance of the species; that is, 

is it abundant enough to be effective as an indicator. Although a rare species can fit the first 

requirement, its lower numbers mean a lower detection rate. This is usually designated as B in 

the calculation. These two indices can be applied and interpreted individually or jointly. 

According to Dufrêne and Legendre (1997), the indicator value is the product of A and B and 

a higher value suggests more feasibility as an indicator species. In contrast to species 

distribution modelling that relies on environmental variables to model species richness or 

composition, the indicator species method depends solely on information inherent in species 

groups (DeCáceres and Legendre 2009). For example, research on carabid spatial distribution 

shows that this taxon has strong habitat preference and clear distributional boundaries. Based 

on the indicator species value, a new habitat type was identified and indicator species were 

found to possess species indicator values (Magura 2002).  

Identifying indicator species requires classifying sites (or samples) into different habitat 

types that each contains unique species composition. Each species will then be assigned an 

indicator value for each habitat type. For instance, if three habitat types are classified, each 

species has three indicator values corresponding to each of the three habitats. The indicator 

species for each habitat are defined as the species with the highest indicator value. However, 

the habitats are typically classified based on clustering methods (especially non-hierarchical 
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methods such as k-means clustering), which is a descriptive method with its robustness hard to 

validate and it is also an indirect method, relying on distance (difference) between species 

rather than directly measuring co-occurrence patterns (Milligan 1980, Legendre and Legendre 

2012). It is also sensitive to the double-zero issue, which is very common in ecological datasets 

and may cause group misclassification (Dufrêne and Legendre 1997, Legendre and Legendre 

2012). A double-zero issue happens when comparing two sites with the presence or absence of 

specific species. Presence in both sites of species indicates resemblance of sites, but absence 

in both sites does not necessarily represent resemblance, for the absence of species in two sites 

may due to different reasons. However the distance calculations in conventional clustering 

methods cannot reflect this fact. In comparison, a direct measure of species co-occurrence 

could improve the efficiency of indicator species method.  

Numerous field observations have revealed that species co-occurrence is not a random 

process but instead one species tends to occur more frequently with certain species (Waddle et 

al. 2010). Such co-occurrence may reflect similar environmental requirements such as food 

and habitats, thus forming functional groups (Woodcock et al. 2010, Ehouman et al. 2012). It 

is also likely to be due to cooperation or mutualism such as the formation of feeding flocks 

(Farine et al. 2012). If such a relationship is stable through space and time, whole groups of 

co-occurring species could potentially be predicted when one of the members is observed. Until 

now, most studies have focused on measuring negative species co-occurrence, such as the 

checkerboard score (Gotelli 2000). The checkerboard scores emphasise how two species do 

not co-occur due to competition although predictability of species is likely to be enhanced when 

instead based on how and how often species co-occur (Gotelli 2000, Gotelli and McCabe 2002). 

Under such circumstance, network analysis may serve as a valuable tool, because of its 
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efficiency in disentangling complex relationships among members in an assemblage or 

community.  

Network analysis has now been widely used in social, biological, and many other fields to 

help illustrate and disentangle complicated interactions and relationships among members 

(Whitehead 1995, Lusseau 2003, Newman and Girvan 2004). It is particularly useful for 

managing large amounts of data (Blondel et al. 2008) and can usually be visualised to help 

reveal entangled relationships (Moody et al. 2005). A network contains two essential elements: 

nodes and edges. Each node is an individual member in a network, and the edge represents 

relation among them. For example, food webs are one kind of network that is composed of 

plants and animals (nodes) with each interaction representing an edge. Such complicated 

interactions, common in ecological studies, are usually difficult to analyse by conventional 

methods. Network analysis, instead, can tackle the problems even with a community 

comprising thousands of interactions (Montoya andSol 2002, Estrada 2007, Gilbert 2009). 

When information on sites is incorporated into analyses of interactions among species, a 

specific network type called multi-mode network should be used (here, a two-mode network 

containing species and sites). Multi-mode networks encompass more than one type of node 

(Newman 2010). For example, a two-mode network can represent the relationship among 

species and their resident sites, and there are two types of nodes representing species and sites 

harbouring the species respectively. The community data can then be arranged into an 

“incidence matrix” to reveal whether some groups of species coexist more frequently on 

particular sites than others. Such network analysis reveals relationships among species that co-

occur in various sites. When the analysis focuses on only one aspect of a relationship (e.g. 

relationship among species in the same sites or sites containing similar species group), a two-

mode network can be projected into a one-mode network to facilitate analysis (Prell 2011). For 
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example, when the network is projected along the site axis, it emphasises how sites containing 

similar species can aggregate to form site groups (i.e. subgroup in network analysis) that reflect 

similar ecological requirements. For instance, sites containing puffins and petrel species form 

a subgroup that represents rocky-coastal habitat. If the associations between site groups and 

species are robust and repeatable, the habitat type or species composition of an unsampled site 

can potentially be predicted based on observed species or habitat. This is in accordance with 

the concept of indicator species value (Dufrêne and Legendre 1997). Furthermore, network 

analysis has the potential to improve the predictability of the latter method by its superior 

analytical capability in (site) group detection. 

Based on different concepts and algorithms (Guimerà and Amaral 2005, Fortunato 2010) 

derived from graph theory (Wilson 1996, White and Harary 2001), there are various ways to 

identify subgroups in a network. One approach is to calculate the network modularity (Newman 

2004). This concept has been adopted in ecological research to reveal complicated interactions 

and to detect heterogeneous structure within ecological communities or ecosystems (Olesen et 

al. 2007, Genini et al. 2012). For example, network analysis has been used to analyse the 

European fauna structure (Araújo et al. 2011) and successfully reveal the robustness of each 

fauna group by geographical distribution and resistance to climate change. Modularity 

measures not only linkages within a module but also the linkages among modules. Nodes 

possess a higher “degree” (the sum of edges link to the node) than other members in the same 

module, but a lower degree with members in other modules (Blondel et al. 2008, Newman 

2010).  

The aim of this chapter is to investigate the possibility of substituting clustering methods 

with network modularity in indicator species analysis, in the hope of improving predictability 

of species composition or habitat type in unsampled sites. In this research, the sites were sorted 
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into groups according to their linkage levels (i.e. the number of sharing species). Site groups 

based on the modularity algorithm would be a substitute for the clustering groups in the 

indicator species analysis. This new method was compared with conventional clustering-based 

indicator species to investigate its merits in directly measuring species co-occurrence. 
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3.3 Methods 

3.3.1 Species data 

The species dataset is the same as Chapter 2, which is termed the BTO dataset hereafter. 

In this study, the analytic unit is the 10 km square (a site), with species represented by presence 

(designated as 1) or absence (designated as 0). No species abundance data were used in the 

current study. 

3.3.2 Network analysis data organisation 

The incidence matrix was arranged by site vs. species, with marginal sums as the total 

number of species in a site and species prevalence as occurrence of specific species across all 

sites. Based on the matrix, a two-mode network (two types of nodes, with each representing 

site and species), describing which species resided in what site (linkage), was then plotted. To 

better understand how sites clustered according to similarity in species composition, the 

network was projected into a one-mode network containing only nodes that represented sites. 

Three possibilities of linkages can occur in a pair of sites: no linkage meaning no shared species, 

one linkage meaning only one species in common, and multi-linkages meaning sharing more 

than one species. A weighted network illustrating relationship among sites and based on the 

extent of species in common can then be constructed (Newman 2010).  

3.3.3 Site group detection with network modularity 

The modularity detection method termed randomtrap (Pons and Latapy 2005) is based on 

random walk via the closest distance among neighbouring nodes (Fortunato 2010). In network 

analysis, the closest neighbour node is the node with only one-step linkage to the target node. 
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The nodes are then organized into linked subgroup (that is, a module) that contain closer 

neighbours. The modularity detected by the randomtrap method may be visualized as a person 

walking randomly among nodes along the shortest distance; with limited steps, the walker 

would readily be trapped in a closely linked subgroup (module). When this process is repeated, 

the nodes are gradually assigned into different modules and this can be recorded by plotting a 

dendrogram of random walks. This random-walk method aggregate nodes in an agglomerative 

direction and measures the similarity between nodes to detect modules. It is an efficient and 

timesaving method, ideal for analysing large and complicated networks (Pons and Latapy 2005, 

Fortunato 2010).  

3.3.4 Site group detection with k-means clustering versus network modularity 

The efficiency of network modularity versus clustering in site group detection was 

compared within the same avian assemblage dataset. Dufrêne and Legendre's (1997) method 

was followed for determination of the optimal number of clusters for the indicator species value 

analysis. This method firstly calculates the indicator value (IndVal) of each avian species for 

each clustering level (e.g. IndVal for species 1 to species 273 at clustering level 2, 3, 4 etc.). 

The difference in IndVal between consecutive cluster levels for each species is then calculated 

(e.g. the difference in IndVal between cluster 2 and cluster 3 for species a) and plotted. Because 

larger IndVal represents a better predictor, the optimal clustering level is when the difference 

in IndVal (cluster n+1 minus cluster n) is the largest and is most positive (Appendix C). For 

comparison purposes, the k value (the number of groups to be split) was set to equal to the 

number of modules in modularity detection. In this case (Appendix C, Figure A-1), because 

the value (difference in IndVal, y axis) is the highest between cluster 2 and cluster 3, and is of 

similar high value between cluster 4 and cluster 5 (both also have smaller negative value unlike 
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between cluster 7 and cluster 8), it is most optimal to divide the avian assembly into three or 

five clusters. However, either three or five clusters has lower predictability than the method 

based on network modularity, as demonstrated briefly in Figure A-2 (below, for three clusters) 

and comprehensively in Chapter 3 (for five clusters). 

In this stage, the site map partitioned by network modularity and k-means clustering 

method was compared, and was termed population modularity and population clustering, 

respectively. The resulting site groups (based on the whole dataset) were compared with site 

groups determined by partial sampling of whole dataset (see the following paragraph) to 

investigate the reliability of these two partitioning methods.  

3.3.5 Sampling site and sampling site groups 

For deciding the sampling size used in this analysis, a preliminary sensitivity analysis was 

done to estimate the sampling size for effectively representing population modularity. The 

analysis showed when using 10% and 20% sampling, the sub-squares belong to a small coastal 

site group would usually be missed and not be included in the modularity result, but in 40% 

sampling these sub-squares would be selected more often and had more representativeness of 

the population modularity (for details see Appendix D). Also, in the previous chapter, a 40% 

sampling effort can accurately predict species richness, therefore the 40% sampling effort was 

applied here. To assess the predictability of indicator species, 40% random samples from the 

whole BTO dataset were partitioned based on network modularity and k-means clustering and 

were called sampling modularity and sampling clustering, respectively. Assigned modularity 

based on 40% sampling was compared with assigned modularity based on the whole population 

using the Fowlkes-Mallows index (FM index) (Fowlkes and Mallows 1983) to see whether the 

sampling sites were classified in the same module as when the assignment was based on the 
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whole population. The same process was applied to compare sampling clustering and 

population clustering. The FM index compares two clusters and evaluates the extent of 

similarity or dissimilarity between the clusters. Assuming that two clusters X1 and X2 both with 

n objects and k clusters. X1 (k=1…i) and X2 (k=1…j) are compared and a matching matrix (mij) 

can be created as (when k=2): 

                      mij=  

 X2 

1 2 

 

X1 

1 m11 m1j 

2 mi1 mij 

 

The FM index is defined as: 

FM_Index = �
𝑇𝑇𝑘𝑘

𝑃𝑃𝑘𝑘 ∙ 𝑄𝑄𝑘𝑘
 

Where 𝑇𝑇𝑘𝑘 = ∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
2 − 𝑛𝑛𝑘𝑘

𝑗𝑗=1
𝑘𝑘
𝑖𝑖=1 , 𝑃𝑃𝑘𝑘 = ∑ 𝑚𝑚𝑖𝑖∙

2 − 𝑛𝑛𝑘𝑘
𝑖𝑖=1 , 𝑄𝑄𝑘𝑘 = ∑ 𝑚𝑚∙𝑗𝑗

2 − 𝑛𝑛𝑘𝑘
𝑗𝑗=1 . The FM index 

ranges from zero to one, with higher value indicating more similarity between two clusters. 

Significance of the FM Index is evaluated against E(𝐹𝐹𝐹𝐹) ± 2�𝑣𝑣𝑣𝑣𝑣𝑣(𝐹𝐹𝐹𝐹)�
1
2� , where E(FM) is 

the mean and var(FM) is the variance under the assumption of no relation between X1 and X2. 

3.3.6 Selecting the indicator species 

Based on 40% sampling effort, the indicator species value for each species in each site 

(termed IndVal hereafter) is determined by two indices, A and B, which represent specificity 

(the positive predictive value) and frequency (the sensitivity) of species to the site, respectively 
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(sensu Dufrêne and Legendre 1997; De Cáceres et al. 2012). Aij is the proportion of species i 

present in specific site group j (Npresenceij) relative to presence of species i in all site groups 

(Npresencei), and the higher Aij, the more species i is specific to site group j. Similarly, Bij is 

the frequency of sites in site group j where species i is present (Nsitesij) among all sites in site 

group j (Nsitesj).  

𝐴𝐴𝑖𝑖𝑖𝑖 =  Npresence𝑖𝑖𝑖𝑖 /Npresence𝑖𝑖 

𝐵𝐵𝑖𝑖𝑖𝑖 =  Nsites𝑖𝑖𝑖𝑖 /Nsites𝑗𝑗 

IndVal𝑖𝑖𝑖𝑖  =  𝐴𝐴𝑖𝑖𝑖𝑖 × 𝐵𝐵𝑖𝑖𝑖𝑖 × 100 

IndVal𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�IndVal𝑖𝑖𝑖𝑖� 

Significance of IndVali was evaluated by bootstrapping: 1000 randomly resampled 

observed sites were used to generate an approximate distribution for the observed data and 

confidence interval for A, B and IndVal. 

For selecting the indicator species, the square root of indicator value (sqrtIVg) was used to 

measure the association between species and sites (sensu De Cáceres and Legendre 2009). The 

g denotes group equalisation, to correct for differences in group size among indicator species 

when summing Aij values in J areas.  

 

𝐴𝐴𝑝𝑝𝑝𝑝
𝑔𝑔 =

Npresence𝑖𝑖𝑖𝑖 /Npresence𝑖𝑖
∑ Npresence𝑖𝑖𝑖𝑖 /Npresence𝑖𝑖
𝐽𝐽
𝑗𝑗=1

 

 

A threshold of A=0.6 (the positive predictive value) and B=0.2 (the sensitivity) was set to 

select effective indicators (DeCáceres et al. 2012). Because in comparison with single species, 

a combination of species could be more efficient in being indicator species (DeCáceres et al. 

2012), a combination of four-species was selected as candidate species. It is necessary to set a 

limit for the number of indicator species, otherwise sensitivity of indicator will decrease and 
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uncertainty of positive predictive value will increase with too many indicator species. Indicator 

species based on two grouping methods, network modularity and k-means clustering, were then 

used to predict unsampled sites. The A value of indicators also represented the likelihood of an 

unsampled site to be predicted as a site group including the selected indicators. For example, 

if an unsampled site contained indicator species i indicating site group I with an A value of 0.7, 

then this unsampled site had 0.7 likelihood of belonging to site group I by the presence of 

species i. The aim is to search for the maximum value that indicates the most likely species-

site association. Significance of the species-site association can be tested by the percentile 

bootstrap method, which resampled the observed data to generate an approximate distribution 

of the indicator values (DeCáceres and Legendre 2009, DeCáceres et al. 2012).  

All analyses were conducted in the R environment (R Development Core Team 2013) 

using the R packages “igraph” (Csardi and Nepusz 2006) (for the network analysis), 

“indicspecies” (DeCáceres and Legendre 2009) (for the indicator values), and “dendextend” 

(Fowlkes and Mallows 1983) (for the Fowlkes-Mallows index).  
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3.4 Results 

The network of the BTO dataset contained 273 bird species in 2830 nodes (sites). The 

population network included 3,957,073 edges, with each edge representing a linkage among 

sites with the same species.  

3.4.1 Subgroups detected by population modularity and k-means clustering 

3.4.1.1 Modularity 

The Randomtrap method identified five modules in the BTO dataset (population 

modularity) (Figure 3. 1 left panel), with each module containing 133, 475, 11, 1345 and 866 

sites, respectively. Sites in the same module had similar species composition (species list in 

Table 3. 1 left). There was a clear latitudinal segregation among these five modules (Figure 3. 

1 left). One small module was located mainly at the northern coast and a few islets (red module 

in Figure 3. 1 left). Three modules (blue, orange, and purple modules in Figure 3. 1 left) were 

distributed primarily in highland Scotland, middle to west coast area, and south-eastern area, 

respectively. There was also a small module (with 11 sites) that was scattered at some coastal 

areas (green module). The avian species contained in each module are listed in Appendix E, 

left. 

3.4.1.2 Clustering 

Because the difference in IndVal is the highest between cluster 2 and cluster 3, and is of 

similar high value between cluster 4 and cluster 5 (both also have smaller negative value unlike 

between cluster 7 and cluster 8, Figure A-1 in Appendix C), it is optimal to divide the avian 

assembly into three or five clusters. However, since the network modularity identified five 
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modules, for comparison purposes, the number of groups to be split was set to five (results for 

three clusters are briefly demonstrated in Figure A-2 of Appendix C, and also had lower 

predictability than the method based on network modularity). 

The five clusters determined by k-means clustering method each contained 513, 436, 775, 

748 and 358 sites (Figure 3. 1 right). Likewise, sites in the same cluster had species with shorter 

distance (less dissimilar) among themselves than with those outside the cluster. The five 

clusters were also located approximately from north to south, but the geographic demarcation 

was less clear-cut than those modules determined by randomtrap method. The northern coast 

and islands were assigned to the same cluster (blue cluster in Figure 3. 1 right), but the Highland 

area was partitioned into two clusters (green and orange clusters). The green cluster represented 

most coastal areas except the northern coast, however the range was larger than the green 

coastal module in the modularity result. The southern urban area was also divided into two 

clusters (purple and red clusters) but cannot be easily segregated. Avian species contained in 

each cluster are listed in Appendix E, right. 
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Figure 3. 1 Results of modularity detection (left) and k-means clustering (right) from the entire 

BTO dataset. Different colours represented different modules or clusters. Colours 

and order of module (or cluster) are arbitrary. Each square is a 10 km sub-square.  

 



Chapter 3  Results 

74 

 

 

Figure 3. 2 Assigned module of sites based on 40% sampling (colour asterisk) and whole 

sampling (background colour) of BTO dataset with randomtrap modularity 

algorithm. Different colours represented different modules. Each square is a 10 km 

sub-square. 

 

3.4.2 Subgroups detected by sampling modularity and k-means clustering 

The Randomtrap method also identified five modules in random sampling of 40% BTO 

dataset (Figure 3. 2). Sampled sites were largely assigned to the same modules (based on 40% 

sampling) as those based on the whole dataset (i.e. 100% sampling) (Figure 3. 2), with a FM 

index of 0.83 and an expected value of 0.34 and variance less than 0.01. In comparison, there 
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was less overlap in the assigned clusters between those sites based on 40% vs. 100% sampling 

using k-means clustering method (Figure 3. 3), with a lower FM index of 0.62 and an expected 

value of 0.28 and variance less than 0.01.  

 

 

Figure 3. 3 Assigned cluster of sites based on 40% sampling (colour asterisk) and whole 

sampling (background colour) of BTO dataset with k-means clustering method. 

Different colours represented different modules. Each square is a 10 km sub-square. 
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3.4.3 Indicator species selected by sampling modularity and k-means clustering 

Each of the five sampling modules and sampling clusters contained groups of indicator 

species (up to four avian species in each species group, Table 3. 1) that all had significant 

indicator values (p <0.05, except the green group), but modularity and clustering gave different 

indicator species combinations (Table 3. 1). For instance, the blue module and the blue cluster 

were located in approximately the same area but have different indicator species groups with 

different positive predictive values (Table 3. 1). When all indicator species of a specific site 

group are observed in an unsampled site, the chance that this site belongs to the site group is 

higher. For example, in the red sampling modularity, the indicator group comprising fulmar 

(Fulmarus glacialis), meadow pipit (Anthus pratensis), shag (Phalacrocorax aristotelis) and 

black guillemot (Cepphus grille) has the highest positive predictive value of 0.69. This is 

followed by fulmar, great black-backed gull (Larus marinus), meadow pipit and black 

Guillemot with a positive predictive value of 0.68, and herring gull (Larus argentatus), fulmar, 

meadow pipit, and shag with a value of 0.64. When an unsampled site contains one of the three 

indicator groups, the site probably belongs to the northern coast area or coastal islands and 

based on the indicator values, one can evaluate how confident the classification is. Nonetheless, 

a very small module (green) does not meet the threshold of selecting valid indicator group. The 

fulmar is the most suitable indicator species when no threshold is set, with a positive predictive 

value of 0.51 (Table 3. 1 left).  

The positive predictive values (A values) of sampling modularity range from 0.64 to 0.88 

(except for the green group which is without an indicator group) and the sensitivity values (B 

values) range from 0.70 to 0.86 (Table 3. 1 left). Aside from the green group, the rest of 

indicator groups have high sqrtIVg values (>0.7) so that site types can be confidently identified. 

In comparison, the positive predictive values (A values) of sampling clustering range from 0.66 
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to 0.87, with the mean higher than those of sampling modularity, but the sensitivity (B values) 

varies significantly (from 0.31 to 0.87) (Table 3. 1 right). The value sqrtIVg also varied 

remarkably (from 0.47 to 0.87) (Table 3. 1 right).  

3.4.4 Using indicator species to predict site groups in unsampled sites 

3.4.4.1 Modularity 

Indicator species determined by 40% sampling were used to predict assigned modules in 

unsampled sites and predictability was evaluated by comparing with the assigned module based 

on population modularity (that is, the whole dataset).  

Figure 3. 4 shows how well prediction based on 40% sampling matched those assigned 

with population modularity. Except for the green and, to a lesser extent, red modules that both 

contain fewer sites than the other three modules, prediction based on 40% sampling generally 

matches assigned population modularity. For example, when predicted sites are known to 

belong to the blue population modularity (Figure 3. 4b), the likelihood of unsampled sites also 

to be assigned blue modularity is 0.8 (Figure 3. 4 b2), while the likelihood of unsampled sites 

being assigned to the other four modules is 0 (Figure 3. 4 b1, 3, 4, 5). In terms of the red 

population modularity (Figure 3. 4 a), the red group indicators successfully predicted the red 

group to be red (Figure 3. 4 a1) but falsely predicted the blue group to be red (Figure 3. 4 a2). 

For the small green population modularity, the predictability was low (Figure 3. 4 d) because 

of no suitable indicator species (Table 3. 2 left).  

3.4.4.2 Clustering 

Similarly, Figure 3. 5 illustrates frequency of occurrence of different clusters when 

predicted based on 40% sampling under each of the five population clustering. However, 
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prediction based on 40% sampling generally did not match assigned population clustering 

except for the blue and green groups with mixed successes. While some predicted sites were 

assigned the same clustering as the population clustering, there were also a large number of 

sites that should be assigned blue or green clustering but failed to do so (Figure 3.5 b2, c3). 

Also, the orange indicator group could predict unsampled sites correctly with lower levels of 

false negatives (Figure 3. 5 e5), but still with chances of assigning unsampled sites to the wrong 

colour groups. 

Although the sampling clustering indicator group had almost the same level of square root 

value (indicator species value) as the modularity approach, the power to predict unsampled 

sites by sampling clustering indicator groups was weaker compared to the sampling modularity 

indicator groups. Only the orange group was able to successfully predict the site groups without 

confusion with other groups (Figure 3. 5e). This may due to the inconsistency of partitioning 

results between the population clustering and sampling clustering (Figure 3. 3) and low level 

of dissimilarity between species combination in clusters of sampling clustering result (Table 3. 

1). 
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Table 3. 1 The indicator groups selected by sampling modularity (left) and sampling clustering (right) of British Trust of Ornithology (BTO) dataset. SP= 

species name codes; A = positive predictive value to a site group of each indicator group; B = sensitivity of each species group to a site group; 

sqrtIVg = grouped equalised square root value of A X B.                         

*: The indicator values of the green module do not reach the threshold of A=0.6 and B=0.2. Under the circumstances no indicator species can be selected. The 

result here is the result of when no threshold sets. 

Modules Indicator species group  Clusters Indicator species group 

 SP A B sqrtIVg   SP A B sqrtIVg 

Red 

Fulmarus glacialis 
Anthus pratensis 
Phalacrocorax aristotelis 
Cepphus grylle 

0.69 0.82 0.75 

 

Red 

Fringilla coelebs 
Actitis hypoleucos 
Corvus cornix 
Erithacus rubecula 

  

0.77 0.76 0.77 

Fulmarus glacialis 
Larus marinus 
Anthus pratensis 
Cepphus grylle 

0.68 0.82 0.75 

Fringilla coelebs 
Aquila chrysaetos 
Oenanthe oenanthe 
Phylloscopus trochilus 

0.84 0.69 0.77 

Larus argentatus 
Anthus pratensis 
Phalacrocorax aristotelis 
Cepphus grille 

0.64 0.86 0.74 

Fringilla coelebs 
Aquila chrysaetos 
Anthus pratensis 
Phylloscopus trochilus 

0.83 0.70 0.76 

Blue 
Corvus cornix 
Motacilla alba 
Oenanthe oenanthe 
Phylloscopus trochilus 

0.84 0.73  0.78 

 

Blue 
Fulmarus glacialis 
Larus marinus 
Phalacrocorax aristotelis 

0.61 0.68 0.64 
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Actitis hypoleucos 
Corvus cornix 
Oenanthe oenanthe 
Phylloscopus trochilus 

0.88 0.70 0.78 Fulmarus glacialis 
Cepphus grylle 

0.67 0.61 0.64 

Corvus cornix 
Anthus pratensis 
Motacilla alba 
Phylloscopus trochilus 

0.83 0.74 0.78 

Fulmarus glacialis 
Larus marinus 
Larus argentatus 
Phalacrocorax aristotelis 

0.60 0.67 0.64 

Green* 

Fulmarus glacialis 0.34 0.79 0.51 

 

Green 

Corvus corone 
Fulmarus glacialis 
Carduelis carduelis 
Passer domesticus 

0.67  0.37 0.48 

Phalacrocorax aristotelis 0.26 0.57 0.39 

Corvus corone 
Fulmarus glacialis 
Carduelis carduelis 
Erithacus rubecula 

0.67 0.37 0.48 

Fulmarus glacialis 
Larus marinus 
Phalacrocorax aristotelis 

0.27 0.50 0.37 

Corvus corone 
Fulmarus glacialis 
Carduelis chloris 
Pica pica 

0.73 0.31 0.48 

Purple 

Garrulus glandarius Sylvia 
curruca 
Gallinula chloropus 
Phasianus colchicus 

0.85 0.84  0.8 

 

Purple 

Corvus corone 
Phylloscopus collybita 
Fulica atra 
Streptopelia turtur 

0.95 0.85 0.90 

Turdus merula 
Garrulus glandarius 
Sylvia curruca 
Gallinula chloropus 

0.84 0.85 0.84 

Phylloscopus collybita 
Fulica atra 
Carduelis carduelis 
Streptopelia turtur 

0.95 0.85 0.90 

Sylvia atricapilla 
Garrulus glandarius 
Sylvia curruca 
Gallinula chloropus 

0.84 0.85 0.84 

Corvus corone 
Fulica atra 
Corvus monedula 
Streptopelia turtur 

0.95 0.84 0.90 
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Orange 

Corvus corone 
Numenius arquata 
Apus apus 
Oenanthe oenanthe 

0.74 0.70 0.72 

 

Orange 

Actitis hypoleucos 
Cinclus cinclus 
Carduelis carduelis 
Carduelis cannabina 

0.78 0.83 0.80 

Numenius arquata 
Corvus monedula 
Apus apus 
Oenanthe oenanthe 

0.73 0.70 0.71 

Actitis hypoleucos 
Cinclus cinclus 
Carduelis carduelis 
Muscicapa striata 

0.75 0.86 0.80 

Corvus monedula 
Alauda arvensis 
Apus apus 
Oenanthe oenanthe 

0.69 0.74 0.72 
Actitis hypoleucos 
Cinclus cinclus 
Corvus monedula 
Carduelis cannabina 

0.77 0.83 0.80 
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Figure 3. 4 The predictive ability of the site group to the unsampled sites when predicted based on 40% sampling and under each of the five sampling modularity 

indicator species group. The title (a-e) indicates each of the five assigned population modularity and the x-axis is the likelihood of assigning an 

unsampled site to the target site group, comparing with the original site memberships (i.e. the site group assigned by the population modularity). For 

example, figure (a) is the indicators derived from the red group and figure (a.1) is the likelihood to assign an unsampled site, which is originally 

assigned to the red group in population modularity, to the red site group by the red indicators. 

 

 

e. Orange 
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  Figure 3. 5 The predictive ability of the site group to the unsampled sites when predicted based on 40% sampling and under each of five sampling clustering 

indicator species group. The title (a-e) indicates each of the five assigned population clustering and the x-axis is the likelihood of assigning an 

unsampled site to the target site group, comparing with the original site memberships (i.e. the site group assigned by the population clustering). For 

example, figure (a) is the indicators derived from the red group and figure (a.1) is the likelihood to assign an unsampled site, which is originally 

assigned to the red group in population clustering, to the red site group by the red indicators. 

e. Orange 
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3.5 Discussion 

3.5.1 Consistency in site-species association in the indicator species analysis 

Compared with the k-means clustering method, indicator species identified by network 

modularity detection can more successfully assign unsampled sites to correct species groups. 

Indicator species analysis is an efficient tool for recognising representative species and has 

been applied on various research topics such as plant species composition (Flinn et al. 2008, 

Willerslev et al. 2014), vector ecology (Obsomer et al. 2013), mycological community (Taylor 

et al. 2014, Varela-Cervero et al. 2015) and intestinal microflora ecology (Seedorf et al. 2014, 

Planer et al. 2016). The accuracy of prediction of site types relies on robust classification of 

sampled species and sites (Dufrêne and Legendre 1997). The results of clustering, however, 

can be easily influenced by several factors. Firstly, because cluster analysis is based on 

dissimilarity distance among members, the clustering result depends on which sites are sampled. 

Different sampled sites lead to different clustering outcomes, turning into inconsistent species-

site associations. The second concern is that subgroups partitioned by clustering methods are 

arbitrarily delineated by user-defined cut off thresholds and may create artefact groups 

(Legendre and Legendre 2012). Although k-means clustering is recommended to be utilised in 

indicator species analysis (Dufrêne and Legendre 1997), this method can be easily affected by 

to which group the original node is assigned (Celebi et al. 2013). Even though Dufrêne and 

Legendre (1997) suggest repeating the partitioning process until the indicator values of all 

species are decreasing to find the appropriate number of clusters, there is still no reliable 

criterion to decide the number of clusters.  

In comparison, network analysis measures species co-occurrence directly and partitions 

the subgroups more objectively and is therefore an efficient substitute for group partitioning in 
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the indicator species analysis. Moreover, a notable difference between network analysis and 

clustering is that network analysis measures network distance while clustering measures 

Euclidean distance. Network distance is the number of direct paths between two nodes (the 

distance from one node to its nearest neighbour is one path away and nodes without direct 

connection will have more than one path). The Euclidean distance is not identical to the 

network distance and might not be suitable for measuring the relationship in a network 

containing geographical information (which is a spatial network) (Yiu and Mamoulis 2004) 

given that it neglects the relationships among nodes but focuses only on how different these 

nodes are. It is thus unsurprising that clustering and network analysis lead to different 

partitioning results and compared with clustering, network analysis is more consistent in 

assigning species groups.  

3.5.2 Geographical distribution of site groups  

The spatial network has been frequently applied in fields such as transportation and 

mobility networks, internet, mobile phone networks, power grids, social and contact networks 

(Barthélemy 2011). For example, a spatial network of chain restaurants and their proximities 

to the nearest road systems can help identify areas that are suitable to start a new branch (Yiu 

and Mamoulis 2004). In social science, user distribution based on users’ social connection such 

as check-in locations (Joseph et al. 2012) or online photo tag co-occurrence (Zhang et al. 2012) 

can be revealed with geo-social networks. Similarly, network analyses have been adopted by 

biologists and many biological studies have applied spatial networks to analyse co-occurrence 

pattern of microbes in human bodies (Levy and Borenstein 2013). In ecological research, 

incorporating ecological processes such as dispersal, competition, or food webs into network 

analysis to uncover geographic pattern remains challenging (e.g. Cumming et al. 2010) and 
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most of the research focuses on single species or individual (e.g. Saura and Rubio 2010, Pereira 

et al. 2011).  

The current study shows that network analysis can efficiently classify subgroups of co-

occurring avian species in Britain according to species co-occurrence. For example, the 

complete bird assemblage is sorted into subgroups according to occurrence in coastal or inland 

areas, along a north-south gradient. The sites are divided into several groups and sites within a 

module are usually geographically connected compared to the geographical mosaic pattern of 

clustering results. This suggests the ability to combine species (co-occurrence) and spatial 

information by network analysis. In the indicator species analysis, it also provides more 

ecological meaning and consistency to species-site associations. However, this ability has not 

attracted enough attention and more research is required. Newly developed methods such as 

constrained clustering (Yuan et al. 2015, Cheruvelil et al. 2017) have attempted to balance 

spatial continuity with landscape homogeneity. In this method, it is not only similarities in 

characteristics among sites that are considered; adjacency of sites is also stressed, which helps 

delineate site groups. Incorporating this network modularity algorithm into geographical site 

arrangement might be a novel direction for analysing geographical networks.     

3.5.3 Indicator species value as surrogate in plant and animal research  

This research tests a simple idea - utilising assemblage structure to predict species 

composition. In most studies, predictions of species richness or community structure usually 

involve environment attributes. However, environment attributes could be affected by so many 

parameters that identifying the most important and disentangling their relative influence could 

become difficult (Sutherland 2006, Arita et al. 2008). Capitalising simply on assemblage 

structure has the advantage of avoiding confounding effects arising from various environment 
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factors by focusing solely on the relationships among species. For indicator species analysis, 

where only species information is considered, the question is how these indicator species can 

be effective surrogate for whole flora or fauna. The indicator species value concept originates 

from research on plant ecology (Dufrêne and Legendre 1997), and is extensively adopted to 

characterise plant communities (Ricotta et al. 2015), but indicator species value is not limited 

to studies on plant communities (Tichý and Chytrý 2006). However, whether a similar concept 

can be applied to mobile animals remains little studied. Sattler et al. (2014) applied indicator 

species analysis (with traditional clustering methods) to six taxa, including plants, insects, and 

birds and compared the suitability for reflecting biodiversity measures (such as biodiversity 

index, species richness, etc.). Overall, indicator suitability of plants was better than for birds. 

Our study demonstrates that when incorporating network analysis, the indicator species value 

concept can also be applied to mobile organisms.  

The indicator species value aims to construct site typology by comparing species 

difference instead of predicting existence of specific species. Research that commonly applies 

this value, such as vegetation classification, thus stresses more the dominant plant composition 

and community type (Chytrý et al. 2002, Tichý and Chytrý 2006). However, it will be 

challenging to extend this method to predict the appearance of undetected species in an 

unsampled site, for this value still lacks information on associations among detected species 

and undetected species. More information, such as environmental attributes or non-random 

numerical relationship like nestedness, is required to achieve the goal of predicting individual 

species.  
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3.5.4 Identifying indicator species and umbrella species 

In this research, network analysis was applied to identify “key-members” among large 

amounts of data and uncover complicated relationships. Conceptually, this is related to other 

studies that have attempted to identify umbrella or focal species objectively. For example, 

Fleishman et al. (2001) used percentage of co-occurrence as an umbrella species index. The 

number of species co-occurring with the umbrella species was treated as the dependent variable 

to investigate the efficiency of an umbrella species index. Umbrella species identified by this 

index, however, did not cover more species than when umbrella species were randomly 

selected. Simply using species richness reveals very limited information on species 

composition which is essential for identifying umbrella species. Randomly selected species 

may include more species but fail to identify whether they are common species with little 

conservation value. In the present study, the concept was advanced with network analysis by 

not only estimating the number of species each member is linked to but also the identity of the 

linked species.  

 

 

 



   

91 

 

Chapter 4: Prediction of Taiwan avian assemblage with 

nestedness and network analyses 

4.1 Abstract 

Results of the previous studies on British avian species illustrate that incorporating 

assemblage structure (nestedness) in species accumulation curve and network analysis of 

indicator species value can improve predictability of avian species richness and species groups, 

respectively. However, the general applicability of these methodologies remains unexplored. 

Here, I apply the same methods developed for Britain to the birds of Taiwan based on the 

Taiwanese Breeding Bird Survey. Taiwan is a small island (ca. 36,000 km2) but with elevation 

ranging from sea level to nearly 4,000 meters. Moreover, past studies in Taiwan have focused 

on environmental associates of avian species richness without considering species status (e.g. 

common, exotic, or rare species), meaning that the environmental determinants of the 

Taiwanese avian assemblage are not well understood. For the species accumulation curve result, 

the Arrhenius power function was found to perform better than negative exponential, 

logarithmic, or Clench function in the prediction of Taiwan avian species richness. This result 

is different from the British avian assemblage in which the logarithmic function provides the 

best prediction for species richness. In addition, a very high prediction rate (error rate = 1.55%) 

was achieved when species richness estimation based on two curves, random and nestedness 

ordered, was averaged; this was when only about 1% area of Taiwan has been surveyed (410 

1x1 km plots out of Taiwan’s 36,000 km2 area). For the indicator species analysis, selecting 

indicator species by network modularity had better performance than by conventional k-means 

clustering method. The resultant species groups can be best differentiated by elevation and 
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Normalised Difference Vegetation Index. This study demonstrates that capitalising on 

nestedness structure and network analysis can enhance predictability in Taiwan avian 

assemblage. Moreover, in contrast to the conventional usage of species richness as a dependent 

variable, associating environmental attributes with network-based indicator species groups is 

informative in the recognition of factors critical for delineating community assemblage and is 

valuable in the preservation of intact community structure and function.  

 

4.2 Introduction 

In previous chapters, I have discussed how species accumulation curves and indicator 

species analysis can improve predictability of species richness and species composition, 

respectively, by incorporating information on assemblage structure. Species accumulation 

curves are commonly applied to predict species richness in unsampled areas, but conventional 

species accumulation curves usually overestimate species richness, especially when the 

sampling area is unknown or when the sample size is very small (Soberón and Llorente 1993, 

Ugland et al. 2003). My previous analysis of British Trust for Ornithology (BTO) 1988-1991 

survey data demonstrated that species accumulation curves that incorporate nestedness 

structure can predict species richness more precisely than conventional curves and without 

overestimation. However, it remains unclear how well the nested species accumulation curve 

performs in areas with different environmental characteristics from Britain. In this chapter, I 

investigate the performance of nested species accumulation curves in a very different setting - 

Taiwan. 



Chapter 4  Introduction 

93 

 

Predicted species richness will depend on the extrapolation models, so choosing a suitable 

formula is important for a precise prediction (Soberón and Llorente 1993). The suitability of 

specific extrapolation models depends on the characteristics of the sampled area. For example, 

the exponential function which approaches an asymptote more swiftly might be more suitable 

for small or homogeneous areas or when there are few rare species (Soberón and Llorente 1993, 

Tjørve 2003, Díaz-Francés and Soberón 2005). By contrast, Clench or logarithmic models, 

which grow more rapidly, are better for sampling areas with many unknown taxa or large, 

heterogeneous areas with many rare species. The logarithmic model is also suitable for areas 

comprising fauna or fauna that experience severe annual fluctuations (e.g. many tropical 

butterfly species) (Soberón and Llorente 1993). Lastly, the commonly used power model 

usually overestimates species richness (Thompson et al. 2003a) and is best suited to 

intermediate to large sampling areas or islands (Preston 1962a, 1962b, He and Legendre 1996, 

He et al. 1996, Rosenzweig and Ziv 1999, Tjørve 2003, Scheiner 2003). In previous studies 

(Lennon et al., 2001 and my previous chapter), the logarithmic model was found to be best in 

predicting British avian assemblage richness. However, the logarithmic model might not be 

appropriate where environmental characteristics or coverage of the sampling area is different 

from Britain.  

On the other hand, some extrapolation models, such as the logarithmic or power model, 

lack an asymptote, so their application is confined to medium-sized areas and is unsuitable for 

very small or very large areas (Tjørve 2003). Applying functions without an asymptote to 

predict species richness is risky (Ugland et al. 2003), as estimating species richness depends 

on an user-defined boundary. Based on my previous BTO 1988-1991 survey study (Chapter 2), 

when data are input based on nested order, proportionally more uncommon species accumulate 
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in the initial stage of sampling, as the most species rich site has the most uncommon species, 

followed by a decelerating rate of increase. Thus accumulation leads to a curve slowly 

approaching an asymptote, making it possible to estimate the complete species pool from a 

sample of the population. Comparatively fewer uncommon species are included in the initial 

samples when data are input based on a random order. Compensation by an accelerating rate 

of increase in the later stage of accumulation can cause an overshoot in the predicted species 

richness. However, it remains unclear whether incorporating nested order can help stabilise 

species accumulation curves and improve predictability in regions other than Britain.  

Determining key parameters for modelling is typically the most important but difficult 

issue in species distribution modelling (Johnson and Omland 2004, Guisan and Thuiller 2005) 

and each model selection method has its own requirement and limitation (see reviews in Guisan 

and Zimmermann 2000, Guisan and Thuiller 2005, Elith and Leathwick 2009). Indicator 

species analysis can help identify groups of species that implicitly have similar ecological 

requirement or have similar response to change in the environment (Dufrêne and Legendre 

1997, McGeoch 1998, De Cáceres and Legendre 2009, De Cáceres et al. 2010). These species 

groups can then be associated with environmental attributes. This is in contrast to the 

conventional method where researchers select specific environmental characteristics (e.g. 

primary forests) first, followed by listing species commonly observed in selected habitats, 

which is usually a subjective process. However, the classification of site group, which is the 

basis for selecting indicator species, has to be coherent and robust. My previous study on the 

BTO dataset (Chapter 3) has demonstrated that incorporating the concept of ecological 

networks can improve the performance of conventional indicator species analysis. However, 

the applicability of this approach to regions apart from Britain needs to be validated. 
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Taiwan is an island with different environmental characteristics from Britain. It is located 

along the south-eastern coast of mainland Asia and was connected with the main continent 

several times through land bridges during the glacial periods (Voris 2000). Fauna and flora in 

Taiwan is therefore partially inherited from the mainland Asia (Lee et al. 2004). On the other 

hand, the oceanic environment near the coast allows waders and seabirds to thrive. This is 

similar to the avian assemblage source and composition of Britain (Taiwan has 64 of the 76 

families in Britain, with 208 species in common). However, in contrast to Britain, Taiwan is a 

subtropical island (latitude: 22 – 25 degree north) with an altitudinal range of nearly four 

thousand meters in a small area of 36,000 km2 (Ding et al. 2005). In this research, the 

robustness of nested species accumulation curves and network based indicator species analysis 

was evaluated with the Breeding Bird Survey (BBS) data from Taiwan. Moreover, I looked at 

environmental determinants of species composition in Taiwan, as previous studies on the 

Taiwanese avian assemblage have focused on uncovering the environmental determinants of 

species richness (Lee et al. 2004, Ding et al. 2005, Koh et al. 2006) instead of species 

composition. Among the environmental attributes considered, including mean annual 

temperature, elevation, primary productivity (using a Normalised Difference Vegetation Index 

(NDVI) proxy) and urbanization, avian species richness was found to be associated with 

primary productivity in southern (Ding et al. 2005) and northern Taiwan (Koh et al. 2006) but 

elevation and urbanization played a more important role in explaining variation in avian species 

richness in the whole island of Taiwan (Lee et al. 2004). However, sites with similar species 

richness might have different species composition. Furthermore, sites with the highest species 

richness might contain only common species (e.g. in human disturbed areas) instead of any 

rare or threatened species. Therefore, focusing solely on species number ignores important 

information on species composition, with the latter usually more critical for conservation. 
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Neglecting information on species composition also confounds association of species richness 

with environmental attributes. For example, assume that there are two sites of the same avian 

species richness with distinct environmental characteristics, such as one under intensive 

anthropogenic disturbance while the other is pristine. Applying species richness to these two 

sites will rate them as equal and could lead to the conclusion that human disturbance is 

unimportant. By contrast, incorporating information on species composition is very likely to 

uncover the significance of human disturbance to the avian assemblage since composition 

usually varies with levels of human disturbance. Because the indicator species can identify 

groups of species that have similar environmental requirements, the other goal of the study was 

to investigate environmental associates of avian species groups in Taiwan after they were 

identified with network analysis. 
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4.3 Methods 

4.3.1 Study site 

Taiwan is a moderately sized island (35,873 km2) located in Southeast Asia. Elevation 

ranges from 0 to 3952 metres (a.s.l.) with the central mountain dividing Taiwan into eastern 

and western parts. Eastern Taiwan is dominated by mountains while western Taiwan is 

characterised by flat plains and intensive human disturbance. The Tropic of Cancer runs 

through southern Taiwan and the island is covered with tropical and subtropical vegetation. 

Small associated islands (Kin-men, Ma-tou, Pescadores, Little Liuchiu, Green and Orchid 

islands) were not included in this study, as I only consider mainland Britain in my other 

chapters.    

 

4.3.2 Research data 

The Taiwan BBS is a volunteer-based bird survey across the main island of Taiwan that 

started in 2009. Surveys are conducted in a 1x1 km grid-square system, using the point count 

method. Up to 2016, a total of 410 sites (ca. 1.1% of total area of Taiwan main island) have 

been surveyed and 283 species of breeding birds recorded, however there is a total of 626 

species in Taiwan according to the most recent checklist (Ding et al. 2014). These species count 

data were transformed into an incidence matrix that contains 410 rows (sites) x 283 columns 

(species). The Taiwan island is divided into four regions: north, west, east and mid-high 

elevation (areas above 1,000 meters) for their distinct climate and geographic characteristics 

(Ko et al. 2013). In this study, all 410 squares served as the training data to predict avian species 
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richness in main island of Taiwan by using species accumulation models. The basic 

geographical unit used in this analysis is the 1 x 1 km square. 

 

4.3.3 Calculating assemblage nestedness structure and network analysis 

The methods (from calculating nestedness to selecting the indicator species) in this 

chapter are identical to the corresponded processes in Chapter 2 and 3. The section 

environmental associates of site groups is only implemented in this chapter.  

4.3.4 Calculating nestedness  

Nestedness temperature, a measure of community nestedness, takes unexpected presences 

and unexpected absences into account (Ulrich and Gotelli 2007, Ulrich et al. 2009). It is 

represented by a normalised sum of squared relative distance of absences above and presences 

below a hypothetical isocline that separates occupied from unoccupied areas in a perfect nested 

matrix (Atmar and Patterson 1993). According to Atmar and Patterson (1993), the calculation 

of nestedness is based on the unexpectedness, which is measured by the distance an unexpected 

presence or absence of a species lies in the matrix as compared to the perfectly nested matrix. 

Unexpectedness runs diagonally along a line running parallel to the skew diagonal. For a matrix 

with n species and m sites, the local unexpectedness (uij) is calculated as: 

𝑢𝑢𝑖𝑖𝑖𝑖 = �
𝑑𝑑𝑖𝑖𝑖𝑖
𝐷𝐷𝑖𝑖𝑖𝑖

�
2

 

Dij is the length of the full line running through the jth species on the ith site and dij is 

the specific length along that line. The total unexpectedness (U) is then represented by: 
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 𝑈𝑈 = 1
𝑚𝑚𝑚𝑚∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖

 

 

A perfectly ordered matrix should have no unexpectedness, thus U=0, and one with 

maximum unexpectedness always has 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 0.04145. The nestedness temperature T is then 

defined as: 

𝑇𝑇 = 𝑘𝑘𝑘𝑘 

𝑘𝑘 =
100
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

 

 

T ranges from 0-100°, with T=0º representing a perfect-nested matrix and T= 100º absolute 

randomness. 

Ordering a presence-absence matrix in nested order therefore means re-arranging it into a 

new matrix where sites are organised from the most species-rich to the most species-poor. 

Nestedness of the Taiwan avian assemblage was estimated as a first step toward understanding 

whether using nested order can help improve the predictability of species accumulation curves.  

 

4.3.5 Species accumulation curve and extrapolation 

4.3.5.1 Ordering of sampled sub-squares for species accumulation curves 

Taiwan avian assemblage data were arranged in two different orders in terms of adding in 

sampling sub-squares: 1) random order with the mean of 100 permutations (rarefaction curves; 
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sensu Gotelli & Colwell 2001); and 2) nested structure, that is, ordering sampling sub-squares 

from the most species-rich to the most species poor.  

4.3.5.2 Functions for fitting species accumulation curve 

Four functions for fitting species accumulation curves were compared for two kinds of 

sampling orders (random and nested) to evaluate their accuracy in terms of predicting overall 

species richness of Taiwan. Three of the four functions are based on Soberón & Llorente 

(1993) and the other from Ugland et al. (2003); one function, the power function (Equation 

4), has been applied by Lennon et al. (2001) to describe the pattern of the British avifauna: 

Negative exponential function: 𝐲𝐲 = 𝐚𝐚 × �𝟏𝟏 − 𝒆𝒆−
𝒙𝒙
𝒃𝒃�                      (Equation 4) 

Logarithmic function: 𝐲𝐲 = 𝐚𝐚 + 𝐛𝐛 × 𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)                               (Equation 5) 

Clench function: 𝐲𝐲 = 𝒂𝒂𝒂𝒂
𝟏𝟏+𝒃𝒃𝒃𝒃

                                              (Equation 6) 

Arrhenius function: y = a × 𝑥𝑥𝑧𝑧                                (Equation 4) 

in which y is the species number and x the number of squares.  

4.3.5.3 Calculating the predictive power of species accumulation curves 

The four functions mentioned above were used for extrapolating and were compared for 

their ability to predict overall avian species richness across Taiwan. The datasets were fitted to 

four curve functions (i.e. negative exponential, logarithmic, Clench, and Arrhenius). The 

inaccuracy in the prediction of total species richness, that is, error rate, is defined as: 

1-(predicted species richness/recorded species richness) 
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There are 626 avian species in Taiwan according to the most recent checklist of birds of Taiwan 

(Ding et al. 2014), so the recorded species richness in the calculation of error rate is set as 626. 

A positive error rate indicates an underestimation while negative value an overestimation. The 

calculation and statistical procedures were conducted in R (R Development Core Team 2013). 

4.3.6 Network analysis data organisation 

The incidence matrix was arranged by site vs. species, with marginal sums as the total 

number of species in a site and species prevalence as occurrence of specific species across all 

sites. Based on the matrix, a two-mode network (two types of nodes, with each representing 

site and species), describing which species resided in what site (linkage), was then plotted. To 

understand how sites clustered according to similarity in species composition, the network was 

projected into a one-mode network containing only nodes that represented sites. Three 

possibilities of linkages can occur in a pair of sites: no linkage, meaning no shared species; one 

linkage, meaning only one species in common; and multi-linkages, meaning more than one 

species is shared. A weighted network illustrating relationships among sites and based on the 

extent of species in common was constructed (Newman 2010).  

4.3.7 Site group detection with network modularity 

The modularity detection method termed randomtrap (Pons and Latapy 2005) is based on 

a random walk via the closest distance among neighbouring nodes (Fortunato 2010). In 

network analysis, the closest neighbour node is the node with only one-step linkage to the target 

node. The nodes then are organised into linked subgroup (that is, a module) that contain close 

neighbours. The modularity detected by the randomtrap method is similar to a person that 

randomly walks among nodes along the shortest distance; with limited steps, the walker would 
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be readily trapped in a closely linked subgroup (module). When this process is repeated, the 

module position can be recorded by plotting the dendrogram of random walks, which is an 

efficient and timesaving method for identifying groupings and is ideal for analysing large and 

complicated networks (Pons and Latapy 2005, Fortunato 2010).  

4.3.8 Site group detection with k-means clustering versus network modularity 

The efficiency of network modularity versus clustering in site group detection was 

compared using the same avian assemblage dataset. The non-hierarchical clustering k-means 

method is commonly applied in indicator species analysis (Dufrêne and Legendre 1997). For 

comparison purposes, the k value (the number of groups to be split) was set to be equal to the 

number of modules in modularity detection. 

In this stage, the site map partitioned by network modularity and k-means clustering 

method was compared, and was termed population modularity and population clustering, 

respectively. The resulting site groups (based on whole dataset) were compared with site 

groups determined by partial sampling of the whole dataset (see the following paragraph) to 

investigate the reliability of these two partitioning methods. 

4.3.9 Selecting the indicator species 

The indicator species value for each species in each site (termed IndVal hereafter) was 

determined by two indices, A and B, which represents specificity (the positive predictive value) 

and frequency (the sensitivity) of species to the site, respectively (sensu Dufrêne and Legendre 

1997; De Cáceres et al. 2012). Aij is the proportion of species i present in specific site group j 

(Npresenceij) relative to presence of species i in all site groups (Npresencei), and the higher 
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Aij, the more species i is specific to site group j. Similarly, Bij is the frequency of sites in site 

group j where species i is present (Nsitesij) among all sites in site group j (Nsitesj).  

𝐴𝐴𝑖𝑖𝑖𝑖 =  Npresence𝑖𝑖𝑖𝑖 /Npresence𝑖𝑖 

𝐵𝐵𝑖𝑖𝑖𝑖 =  Nsites𝑖𝑖𝑖𝑖 /Nsites𝑗𝑗 

IndVal𝑖𝑖𝑖𝑖  =  𝐴𝐴𝑖𝑖𝑖𝑖 × 𝐵𝐵𝑖𝑖𝑖𝑖 × 100 

IndVal𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�IndVal𝑖𝑖𝑖𝑖� 

Significance of IndVali was evaluated by permutation tests that randomly reallocated sites 

among site groups and was calculated by the difference between the observed value and the 

mean results of permutations, weighted by standard deviation of the values obtained by 

permutations. Each IndVal value was run for 999 times, which is more than recommended 

(>200 times; Dufrêne and Legendre 1997).  

For selecting the indicator species, the square root of indicator value (sqrtIVg) was used to 

measure the association between species and sites (sensu De Cáceres and Legendre 2009). The 

g denotes group equalisation, to correct for differences in group size among indicator species 

when summing Aij values in J areas.  

 

𝐴𝐴𝑝𝑝𝑝𝑝
𝑔𝑔 =

Npresence𝑖𝑖𝑖𝑖 /Npresence𝑖𝑖
∑ Npresence𝑖𝑖𝑖𝑖 /Npresence𝑖𝑖
𝐽𝐽
𝑗𝑗=1

 

 

An effective indicator is defined as A≥0.6 (the positive predictive value) and B≥0.2 (the 

sensitivity) (DeCáceres et al. 2012). Since in comparison with a single species, a group of 

species could better serve as indicator species (DeCáceres et al. 2012), up to a four-species 

combination was selected as candidate species. It is necessary to set a limit for the number of 

indicator species, otherwise sensitivity decreases and uncertainty of positive predictive value 

increases. The A value of indicators also represents the likelihood of an unsampled site to be 
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predicted as a site group when it contains a specific indicator. For example, if an unsampled 

site contains indicator species i that can indicate presence of site group I and is with an A value 

of 0.7, this unsampled site has 70% likelihood of belonging to site group I, with the presence 

of species i. The aim is to search for the maximum value that indicates the most likely species-

site association. Significance of the species-site association was tested by a percentile bootstrap 

method that resampled the observed data to generate an approximate distribution of the 

indicator values (DeCáceres and Legendre 2009, DeCáceres et al. 2012). 

4.3.10 Environmental associates of site groups 

Redundancy analysis (RDA) was applied to identify visually key environmental attributes 

that can discern site groups categorised by network modularity. The RDA method is mainly 

used for linear responses (comparing to canonical correspondence analysis: CCA, for unimodal 

ones). Because the chi-square distance used in CCA is calculated by Euclidean distance that 

considers relative abundances and is weighted by inverse of the species sums; that is, a common 

species contributes less to the calculated distance than a rare species, rare species may have a 

disproportionately large influence on the analysis result (Legendre and Gallagher 2001, 

Legendre and Legendre 2012). Legendre and Gallagher (2001) have demonstrated that the 

problems CCA commonly raises can be prevented by applying a transformation that allows 

data having non-linear response to be analysed by RDA. In this study, the dependent variable 

was the site x species matrix for Taiwanese BBS data, after Hellinger transformation (square 

root of relative species abundance) to prevent uneven contribution of common versus rare 

species and double-zero bias (Legendre and Gallagher 2001). The environmental attributes in 

this research included 13 variables: mean annual temperature (°C, as the mean of 12 monthly 

mean temperatures), range of monthly temperature (°C, as the difference between maximum 
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and minimum monthly mean temperatures within an year), mean annual precipitation (mm, as 

the average of 12 monthly total precipitation), range between maximum and minimum annual 

precipitation (mm, as the difference between maximum and minimum monthly total 

precipitation within an year), NDVI (as the monthly average of every 8 days’ maximum value 

at a resolution of 250 meter), range of elevation (m), mean elevation (m), maximum elevation 

(m), minimum elevation (m), number of landcover types (number of different landcover types), 

population per county (persons/county), population density (person/km2), and nearest distance 

to road (m, the nearest distance to a national or provincial road). Climatic data were extracted 

from Taiwan Central Weather Bureau (http://www.cwb.gov.tw), NDVI based on MODIS images 

(Moderate Resolution Image Spectroradiometer, NASA), and elevation derived from a 40-m 

digital elevation model from Aerial Survey Office (Taiwan Forestry Bureau). Landcover types 

were based on those defined by National Land Surveying and Mapping Center (Ministry of the 

Interior, Taiwan), population data derived from Ministry of the Interior, Taiwan, and distance 

to road was retrieved from Directorate General of Highways (Ministry of Transportation and 

Communications, Taiwan). These variables were generated at a spatial resolution of 1 km. 

Temperature, precipitation and NDVI were calculated over the period of 2009 to 2016 while 

population calculated over the 2009-2010 period. Multinomial logistic regression (MLR), with 

response variable a categorical variable (Kempen et al. 2009), was applied to identify 

environmental attributes important for categorisation of avian indicator species groups. MLR 

is an extension of logistic regression, which analyses binomial categorical dependents. When 

the dependent variables have more than two levels and they are not ranked data then the MLR 

should be more appropriate than the ordinal logistic regression model (Agresti and Kateri 2011). 

Firstly, among highly correlated variables (Spearman’s rank correlation > 0.7, the same criteria 

to avoid multicollinearity, Dormann et al. 2013), only the variable with the lowest Akaike 

http://www.cwb.gov.tw/
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information criterion (AIC) value in MLR (with only the selected independent variable in the 

model) was retained for further analysis. Variables not highly associated with other variables 

were also included in the final MLR analyses. AIC was then used to identify the combination 

of environmental variables that can best discern species groups. 

All analyses were conducted in the R environment (R Development Core Team 2013) 

using the R packages “vegan” (Oksanen et al. 2013) “igraph” (Csardi and Nepusz 2006), 

“indicspecies” (DeCáceres and Legendre 2009), “nnet” (Venables and Ripley 2002), and 

“dendextend” (Fowlkes and Mallows 1983). 

 

4.4 Results 

4.4.1 Nestedness of Taiwan Breeding Bird Survey data 

The nestedness temperature for birds in Taiwan was 10.92° (Figure 4. 1). 

 

4.4.2 Nestedness and species accumulation curve 

Among the four extrapolation functions, the Arrhenius model had the lowest error rates, 

with 507.8 species (18.88% error rate) and 763.6 species (-21.98% error rate, overestimated) 

predicted based on nestedness order and random order, respectively. The average of these two 

data inputting orders is 635.7 species (-1.55% error rate). In comparison, the other three 

extrapolation functions underestimated overall species richness when based on either 

nestedness or random order: logarithmic model, 427.3 (31.74% error rate, nestedness order) 
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and 480.3 species (23.27% error rate, random order); negative exponential model, 282.1 

(54.94%) and 278.4 (55.53%); Clench model, 285.0 (54.47%) and 285.7 (54.36%). 

 

  

Figure 4. 1 The nestedness matrix of Taiwan Breeding Bird Survey data. The x-axis represent 

sites (sub-squares) and the y-axis represent species. No site or species names are 

shown here as there are not legible in this figure; Appendix A provides full site and 

species lists in nested oreder for this presence-absence matrix. Red cells indicate 

species occurrence and white ones, species absence. The black concave diagonal 

curve represents the isocline that delineates the hypothetically perfect nested matrix. 

The white cells locating at the left hand side of the diagonal curve represent the 

unexpected absence and the red ones at the right hand side, unexpected presence. 
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Figure 4. 2 Prediction of Taiwan avian species based on four species accumulation curve 

functions (a: exponential; b: logarithmic; c: Clench; d: Arrhenius) with 410 

sampling sites under two data arrangement orders (blue: random; red: nested). The 
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grey horizontal line indicates the total number of species (626 species). The vertical 

dash line indicates the number of sampling sites. 

 

4.4.3 Subgroups detected by modularity versus clustering algorithms  

The network of Taiwan BBS data contained 283 avian species residing in 410 nodes (sites), 

with 5658 edges representing linkages among sites that harboured the same species. Four 

network modules were identified, each containing 6, 35, 131, or 238 sites (represented by the 

purple, red, blue and green group respectively in Figure 4. 3 left). In comparison, the four 

clusters classified with the k-means clustering method contained 53, 141, 92, 124 sites 

(represented by the purple, red, blue and green group respectively in Figure 4. 3 right) (For 

species lists of each site group, see Appendix F).  
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Figure 4. 3 Results of modularity detection (left) and k-means clustering (right) from the 

Taiwan BBS dataset. Different colours represented different modules or clusters. 

Colours and order of module (or cluster) are arbitrary. Each square is 1x1 km. 

 

The indicator species selected by modularity and clustering methods are listed in Table 4. 

1. These four network modules include: (1) the high elevation zone (purple) with indicator 

species Tarsiger indicus, Pyrrhula erythaca, Troglodytes troglodytes, Regulus goodfellowi, 

Carpodacus formosanus, and Trochalopteron morrisonianum. These six species form three 

combinations of four-species indicator groups (see Table 4. 1, left column of purple group), 
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with the first three species always included; (2) the mid to high elevation zone (red), 

represented by indicators Yuhina brunneiceps, Aegithalos concinnus and Liocichla steerii, 

which are similar to indicators species identified based on clustering method (purple in Fig. 

4.3b); (3) the low elevation zone (blue) with indicator species of Psilopogon nuchalis, 

Hypsipetes leucocephalus, Alcippe morrisonia and Schoeniparus brunneus; and (4) the plain 

and urban area (green) with indicator species of Streptopelia tranquebarica, Passer domesticus, 

Streptopelia chinensis and Dicrurus macrocercus. Different indicator species were identified 

when based on clustering algorithm (Table 4. 1, right column): (1) high elevation zone (purple 

in Fig. 4.3b): indicators species were the same as those in mid to high elevation zone (red in 

Fig. 4.3a) for network modularity; (2) mid to high elevation zone (red) included six species, 

with three species also included in low elevation zone for network modularity (blue); (3) low 

elevation zone (blue) included five species, with only one species (H. leucocephalus) the same 

as low elevation zone (blue) for network modularity; two of the species (H. leucocephalus and 

Pomatorhinus musicus) are also the indicator species for mid to high elevation zone in 

clustering method; (4) the plain and urban area (green) included four indicator species, with 

one species (P. domesticus) shared with the network modularity in urban area.  

Higher A and sqrtIVg values indicate higher success in predicting site group of unknown 

sites, and higher B value represents a higher detection rate, thus more efficient indicators. All 

sqrtIVg are significant with p < 0.01, but A, B, and sqrtIVg values were generally higher in 

network modularity than in clustering method (Table 4. 1).  
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Table 4. 1 The indicator groups selected by modularity (left) and clustering (right) methods of Taiwan Breeding Birds Survey (BBS) data. SP= 

species name codes; A = positive predictive value to a site group of each indicator group; B = sensitivity of each species group to a site 

group; sqrtIVg = grouped equalised square root value of A X B. 

Modules Indicator species group  Clusters Indicator species group 

 SP A B sqrtIVg   SP A B sqrtIVg 

Purple 

Regulus goodfellowi 
Tarsiger indicus  
Pyrrhula erythaca  
Troglodytes troglodytes 

0.90 1 0.95 

 

Purple 

Yuhina brunneiceps 
Aegithalos concinnus 
Liocichla steerii 

0.97 0.81 0.86 

Carpodacus formosanus 
Tarsiger indicus 
Pyrrhula erythaca 
Troglodytes troglodytes 

0.90 1 0.95 
Aegithalos concinnus 
Liocichla steerii 0.97 0.81 0.86 

Trochalopteron morrisonianum 
Tarsiger indicus  
Pyrrhula erythaca 
Troglodytes troglodytes 

0.90 1 0.95 
Yuhina brunneiceps 
Aegithalos concinnus 0.94 0.83 0.88 

Red 
Yuhina brunneiceps 
Aegithalos concinnus 0.86 0.91 0.89 

 
Red 

Megapomatorhinus erythrocnemis 
Psilopogon nuchalis 
Alcippe morrisonia 

0.60 0.77 0.68 
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Aegithalos concinnus 0.86 0.91 0.89 

Megapomatorhinus erythrocnemis 
Hypsipetes leucocephalus 
Dendrocitta formosae 
Alcippe morrisonia 

0.62 0.72 0.67 

Yuhina brunneiceps 
Aegithalos concinnus  
Liocichla steerii 

0.88 0.86 0.88 

Megapomatorhinus erythrocnemis 
Pomatorhinus musicus 
Dendrocitta formosae 
Alcippe morrisonia 

0.61 0.73 0.67 

Blue 

Psilopogon nuchalis  
Hypsipetes leucocephalus  
Alcippe morrisonia 

0.77 0.93 0.85 

 

Blue 

Dicrurus macrocercus 
Pomatorhinus musicus 
Lonchura punctulata 
Hypothymis azurea 

0.87 0.86 0.87 

Psilopogon nuchalis  
Hypsipetes leucocephalus 
Schoeniparus brunneus  
Alcippe morrisonia 

0.84 0.85 0.84 

Dicrurus macrocercus 
Pomatorhinus musicus 
Hypsipetes leucocephalus 
Lonchura punctulata 
 

0.88 0.85 0.86 

Psilopogon nuchalis  
Hypsipetes leucocephalus 
Schoeniparus brunneus 

0.82 0.87 0.84 
Dicrurus macrocercus 
Pomatorhinus musicus 
Lonchura punctulata 

0.86 0.86 0.86 

Green 

Streptopelia tranquebarica 
Passer domesticus 

0.91 0.86 0.88 
 

Green 

Pycnonotus sinensis 
Acridotheres tristis 
Hirundo rustica 

0.83 0.66 0.74 

treptopelia chinensis 
Passer domesticus 0.84 0.89 0.87 

Pycnonotus sinensis 
Acridotheres tristis 
Hirundo rustica 
Passer domesticus 

0.86 0.65 0.73 
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Dicrurus macrocercus 
Passer domesticus 0.87 0.86 0.87 

Pycnonotus sinensis 
Acridotheres tristis 
Passer domesticus 

0.81 0.67 0.74 
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4.4.4 Environmental associates of site groups 

The result of RDA for Taiwan BBS (site groups categorised based on network modularity) 

is illustrated in Figure 4. 4. There are 13 environmental variables, which means that we get 12 

constrained ordination axes (one as dummy variable). 30.37% of total variance is explained by 

environmental factors (constrained axes) (Table 4. 2), with r2 = 0.31 for the global model and 

the adjusted r2 = 0.29. Along the RDA1, the plain and urban area (green group) was separated 

from the other three groups, with temperature, elevation, and NDVI as the most influential 

attribute (Figure 4.4). For the RDA2, the three site groups (purple, red, and blue) were separated 

mainly along the gradients in elevation, number of land cover types, and NDVI (Figure 4.4).  

 

Table 4. 2 Redundancy analysis f Taiwan Breeding Birds Survey (BBS) data.  

 Inertia Proportion Rank         

Total 0.6237 1          

Constrained 0.1920 0.3079 12         

Unconstrained 0.4317 0.6921 265         

Inertia is variance          

 

Eigenvalues for constrained axes: 

RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 RDA7 RDA8 RDA9 RDA10 RDA11 RDA12 

0.10399 0.05217 0.01553 0.00439 0.00409 0.00314 0.00228 0.00200 0.00156 0.00120 0.00091 0.00077 
 

Eigenvalues for unconstrained axes: 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8     

0.03163 0.01924 0.01827 0.01365 0.01118 0.00945 0.00900 0.00883     

(Showed only 8 of all 266 unconstrained eigenvalues)     



Chapter 4                              Results 

116 

 

 

Figure 4. 4 Plot of redundancy analysis (RDA) for environmental associates with site groups 

of Taiwan BBS data. Points represent sites and different colours represented 

different modules by the modularity-based indicator species analysis (colours 

correspond to those in Figure 4.3 left). Environmental attributes included: mean 

annual temperature (M_annTemp) ( ° C), range of monthly temperature 

(R_mthTemp) (°C), mean annual precipitation (M_annPre) (mm), range between 

maximum and minimum annual precipitation (R_Pre) (mm), Normalised 

Difference Vegetation Index (NDVI), range of elevation (Ele_Range) (m), mean 

elevation (Ele_Mean) (m), maximum elevation (Ele_Max) (m), minimum 

elevation (Ele_Min) (m), number of landcover types (N_LCtypes), population per 

county (Pop_County) (persons/county), population density (Pop_Density) 

(person/km2), nearest distance to road (NearestRoad) (m) for each 1x1 km square. 
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Five of the 13 environmental variables were removed from further MLR analyses due to 

high collinearity with retained variables that had lower AIC values (Table 4. 3). Among the 

eight variables that were analysed in the MLR, the model including maximum elevation height 

and NDVI had the lowest AIC value (Table 4. 4). The second best model contained maximum 

elevation height, NDVI, and population density, but the difference in AIC with the best model 

was > 2 (Table 4. 4). 

Table 4. 3 Akaike information criterion (AIC) value for the multinomial logistic regression, 

with site groups as dependent variable and each single environmental variable as 

independent variable. 

Environmental attributes AIC 

Maximum elevation (m) 305.27 

Mean elevation (m) * 337.49 

Minimum elevation (m) * 388.23 

Range of elevation (m) * 428.75 

Mean annual temperature (°C) * 464.72 

Normalised Difference Vegetation Index (NDVI) 518.37 

population density (person/km2) 642.89 

population per county (persons/county) * 713.50 

Nearest distance to road (m) 734.84 

Mean annual precipitation (mm) 737.64 

Number of landcover types 741.01 

Range of monthly temperature (°C) 768.50 

Range between maximum and minimum annual precipitation (mm) 785.08 

* dropped in further analyses due to correlation (rs >0.7) with other variable of lower AIC value 
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Table 4. 4 The model selection table for Taiwan Breeding Birds Survey (BBS) data. Only the 

top ten models with low AIC values are shown. The environmental attributes 

applied in the model selection were: mean annual temperature (M_annTemp) (°

C), range of monthly temperature (R_mthTemp) (°C), mean annual precipitation 

(M_annPre) (mm), range between maximum and minimum annual precipitation 

(R_Pre) (mm), Normalised Difference Vegetation Index (NDVI), range of 

elevation (Ele_Range) (m), mean elevation (Ele_Mean) (m), number of landcover 

types (N_LCtypes), population per county (Pop_County) (persons/county), 

population density (Pop_Density) (person/km2), nearest distance to road 

(NearestRoad) (m) for each 1x1 km square. 

M
odel no. 

(Int) 

Ele_M
ax 

M
_annPre 

N
_LC

types 

N
D

V
I 

N
earestR

oa
d Pop_D

ensit
y R

_m
thTem

p 

R
_Pre 

df 

logLik 

A
IC

c 

delta 

w
eight 

10 + +   +     9 -124.983 268.4 0 0.352 

42 + +   +  +   12 -123.021 270.8 2.41 0.105 

138 + +   +    + 12 -123.172 271.1 2.71 0.09 

14 + +  + +     12 -123.199 271.2 2.77 0.088 

26 + +   + +    12 -123.517 271.8 3.41 0.064 

74 + +   +   +  12 -124.084 273 4.54 0.036 

46 + +  + +  +   15 -121.05 273.3 4.9 0.03 

140 + + +  +    + 15 -121.055 273.3 4.91 0.03 

12 + + +  +     12 -124.48 273.7 5.33 0.024 

58 + +   + + +   15 -121.545 274.3 5.89 0.018 
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4.5 Discussion 

In this study, it was found that the Arrhenius power function had lower error rates than the 

other three extrapolation functions in the prediction of Taiwan avian species richness. 

Moreover, while overestimation of species richness occurred when the data were inputted in 

random order as was conventionally practiced, species richness was underestimated when the 

data were inputted in nested order; low error rate (-1.55% error rate) was achieved when 

estimation of these two inputting orders was averaged (see chapter 2 and 4). Comparing with 

traditional clustering methods, network modularity had higher success in predicting species 

groups for unknown sites, and the four avian species groups were associated with variation in 

elevation and NDVI. 

The power function (Arrhenius 1921, Preston 1962a, 1962b) and logarithmic function 

(often erroneously termed the exponential function; Gleason 1922) are commonly applied in 

the extrapolation of species accumulation curve (Dengler 2009). Selection of an appropriate 

extrapolation function is critical for satisfactory prediction of species richness. When species 

are not randomly distributed or when an area is characterised with high environmental 

heterogeneities, species number increases swiftly with an increase in sampled area (Williams 

1943, He and Legendre 1996, Scheiner 2003). In the present study, the Arrhenius power 

function was better at predicting avian species richness in Taiwan; in comparison, the 

logarithmic function was the most suitable model for predicting avian species richness in 

Britain (Chapter 2). This difference is in agreement with previous studies that show the power 

model is the most appropriate extrapolation function when sampling effort is low and species 

richness is still far from saturated (Soberón and Llorente 1993, Tjørve 2003). In Taiwan, when 
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many avian species are still not detected in Taiwan BBS, the fast-growing curve of the power 

function should be more appropriate than log or other functions. 

Both the power and the logarithmic functions lead to a convex upward species 

accumulation curve that lacks upper asymptotes (Dengler and Boch 2008, Dengler 2009), thus  

risking an overestimation of species richness (Ugland et al. 2003). The sequence of adding in 

new species affects the curve shape and leads to different predictive results (Ugland et al. 2003). 

As expected, when data are inputted in random order as conventionally applied, the power 

function overestimates species richness (Figure 4.2d). However, data input based on nestedness 

orders provides a novel way in constraining potential overshooting of power functions and 

helps set a lower bound to the extrapolation curve (Figure 4.2d). A similar moderating effect 

was observed in the British study (Chapter 2) when the logarithmic function was applied. 

Interestingly, when species richness predicted based on nestedness order and random order is 

averaged, the mean is 635.7 species, which is very close to the documented avian species (626 

species) in Taiwan, considering that only 410 1x1 km plots out of Taiwan’s 36,000 km2 area 

(about 1%) are sampled. This accurate estimate of species richness is due to the 

underestimation and overestimation when data are inputted in nestedness and random orders 

respectively, so combining them will errors out. The same cancelling-out effect was also 

observed in the BTO study (Chapter 2); as such, combining nestedness and random orders has 

potential to become a novel and important approach for predicting species richness, but 

requires further validation.   

The k-means clustering method is descriptive in nature, its robustness is hard to validate 

and is also an indirect method, relying on distance (difference) between species rather than 

directly measuring co-occurrence patterns (Milligan 1980, Clarke 1993, Legendre and 
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Legendre 2012). It is also sensitive to double-zero issue, which is very common in ecological 

datasets and may cause group misclassification (Dufrêne and Legendre 1997, Legendre and 

Legendre 2012). The double-zero effect might be particularly severe in a heterogeneous 

environment (e.g. tropical areas) because the fact that a species is absent in two sites does not 

indicate that these two sites have similar environments. In this study, indicator species groups 

in Taiwan had clearer group boundaries when selected by network modularity than by the 

clustering method. Species composition is different when the site groups are determined based 

on network module vs. clustering: species overlap is less in module-based than clustering-based 

site groups (that is, most species occurred in >1 clusters if the site groups are classified based 

on the cluster algorithm, see species list in Appendix F). My previous study (Chapter 2) also 

demonstrated the superiority of network modularity over the clustering method, indicating the 

higher utility of network analysis. Compared with clustering, the British modularity groups 

also had clearer geographical boundaries, less overlap in species compositions, and higher 

predictability in unsampled sites. 

Taiwan BBS data have been divided into four groups (north, west, east and mid-high 

elevation ) based on geography and altitudes (Ko et al. 2013). By contrast, group classification 

by indicator value derived from similarity in species composition among sites (De Cáceres and 

Legendre 2009) can result in a more objective group categorisation. Indeed, the four groups 

identified by the indicator species algorithms are different to the four groups determined by 

geography and altitudes (Ko et al. 2013). A similar difference was also found in coral-fungi 

symbiosis study (Amend et al. 2012), in which indicator species analysis revealed a different 

classification from the conventional classification methods (e.g. coral phylogeny, 

environmental attributes such as water temperatures…etc.). Composition of fungal species was 
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highly variable in colonies of a single coral species and capitalising on subjectively selected 

classification might not reveal factors that determine fungal species composition. Instead, 

indicator species analysis indicated that several fungal species were only statistically associated 

with specific corals which thrive in warm water (Amend et al. 2012). Therefore, indicator 

species analysis is valuable in categorising meaningful species groups, which in turn helps 

reveal the environmental determinants that define and differentiate communities.  

Indicator species in the four sites groups were generally very different between the 

modularity and clustering method. The exception is the modularity mid to high elevation zone 

contained the same indicator species as clustering high elevation zone (Table 4.1). These 

indicator species include Y. brunneiceps, A. concinnus and L. steerii that are commonly 

observed in mid to high elevations in Taiwan. These three common species are included in the 

zones of the highest elevation by the clustering method, but are included in the second highest 

elevation group by the modularity method. An extra site group (high elevation zone) that is 

attitudinally higher than mid to high elevation zone (Figure 4.4) is identified when based on 

the network modularity. The six species included in the modularity high elevation zone are 

generally distributed at higher altitudes but are more spatially limited than Y. brunneiceps, A. 

concinnus and L. steerii. The two methods might classify indicator species in different ways: 

the modularity method highlights species of more limited distribution whereas the clustering 

method favours common species. Therefore, the modularity method may also be valuable in 

identifying species of conservation concern.  

Previous studies on environmental determinants of Taiwan’s birds have focused on avian 

species richness (Lee et al. 2004, Ding et al. 2005, Koh et al. 2006), leaving unexplored how 

avian species assemblages are environmentally differentiated. While species richness can be 



Chapter 4  Discussion 

123 

 

easily documented, objective classification of species assemblages is challenging. Capitalising 

on network analysis, for the first time, Taiwan’s avian species assemblage is differentiated, and 

it is further demonstrated that such differentiation is based primarily on elevation and NDVI. 

Primary productivity (with NDVI as a surrogate), elevation, and urbanization are also found to 

be associated with avian species richness in Taiwan (Lee et al. 2004, Ding et al. 2005, Koh et 

al. 2006), indicating that birds in Taiwan are largely characterised by elevation and NDVI. 

Similarly, during several glacial periods, high mountain areas in Taiwan were the refugia of 

Palearctic and Himalayan species which migrated from the continent via landbridges (Tsukada 

1966, 1967, Lee et al. 2004). Mountains in Taiwan might thus shelter species that are different 

from those in the plain areas, leading to a differentiation in bird assemblage with elevation. The 

difference in NDVI might reflect a difference in primary productivity or human disturbance, 

which can both affect avian species richness in Taiwan (Lee et al. 2004, Ding et al. 2005, Koh 

et al. 2006). Places with lower NDVI are typically where a higher degree of human disturbance 

is experienced, which commonly harbour different species. In Taiwan it is often hard to 

disentangle the effect of elevation, NDVI, level of urbanization, and temperature, because an 

increase in elevation is typically accompanied with an increase in NDVI and a decrease in 

urbanization and temperature. However, altitude should not be taken as a direct driver for 

biodiversity, because its relationship with biodiversity is not causal. The underlying 

environmental factors of interest (NDVI, temperature and urbanization here) are the ones to 

focus on (Hawkins and Felizola Diniz-Filho 2004, Kluge et al. 2006, Field et al. 2009, Fattorini 

and Ulrich 2012).  
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Chapter 5: General discussion 

 

A change in community structure reflects underlying environmental variation, and can 

potentially advance our understanding of biotic communities. In this study, I focused on two 

community properties: nestedness and co-occurrence. Nestedness is a non-random species 

distribution pattern in which species in depauperate sites are contained in species-rich sites. On 

the other hand, co-occurrence networks categorise species assemblages as different units that 

reflect differential habitat requirements. Capitalising on these community structures can 

improve conventionally utilised predictive models such as species accumulation curves and 

indicator value analysis. 

Predicted species richness based on species accumulation curves varies markedly with the 

functions applied. For example, Soberón and Llorente (1993) compared negative exponential, 

logarithmic, and Clench functions and concluded that functions vary in their performance. 

Selection of the appropriate extrapolation function is thus critical for satisfactory prediction of 

species richness, but there is no universal principle for the selection of the optimum function. 

In general, negative exponential and Clench functions perform better in homogenous 

environments due to that both functions belong to saturation model; that is, there is an upper 

asymptote and the accumulation curve eventually approaches a saturation point (Dengler 2009). 

In comparison, the power function (Arrhenius 1921, Preston 1962a, 1962b) and logarithmic 

function will create unbounded curves without mathematical asymptotes, and are more suitable 

for heterogeneous environments where new species continue to be found for longer, despite 

the fact that this function tends to overestimate species number due to an infinite increase 
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(Tjørve, 2003; Dengler, 2009). Furthermore, although both logarithmic and power functions 

are unsaturated curves without asymptotes, the power function outgrows other curves because 

it follows the power trend, i.e. a variable base is raised to a fixed exponent. In this dissertation, 

I have shown that accuracy in the prediction of British avian species richness increased with 

sampling effort and error rates were much lower when fitted with logarithmic function than 

with exponential or Clench function under both British and 100 km squares spatial scales 

(Chapter 2). In comparison, the Arrhenius power function had lower error rate than the other 

three extrapolation functions in the prediction of Taiwan’s avian species richness (Chapter 4). 

Such difference is in agreement with previous studies that the power model is the most 

appropriate extrapolation function when sampling effort is low and species richness is still far 

from saturated (Soberón and Llorente 1993, Tjørve 2003). In Taiwan, when many avian species 

have still not been detected in Taiwan BBS, the fast-growing curve of power function should 

be more appropriate than logarithmic or other functions. A method to estimate completeness 

of sample (i.e. the proportion of species observed) derived from Alan Turing’s frequency 

formula has recently been developed (Chao et al. 2013, Chao and Jost 2015). Completeness 

can be accurately estimated based on the proportion of ‘singletons’ (species with only one 

individual in the sample), with more singletons representing low levels of completeness. Such 

estimation of sampling completeness might help inform how far species richness is away from 

saturation and is thus helpful in the selection of optimal extrapolation function. Further studies 

including information of sampling completeness might help to determine the criteria for 

function selection. 

I also demonstrated that ordering data based on nestedness could improve predictability 

of species richness. Most recent research on nestedness has focused on a depiction of 
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community structure (Picazo et al. 2012, Herczeg and Horvath 2015, Chaves and Ariez 2016) 

or on an improvement of the algorithms for calculating the nestedness index (Almeida-Neto et 

al. 2008, Podani et al. 2014). The current study, by capitalising on nestedness, provides a novel 

approach for improving the predictive power of species accumulation curves. Specifically, 

while species richness is usually overestimated when the data are inputted in random order as 

is conventionally practiced, species richness is underestimated when the data are inputted in 

nested order. An average of projected species richness of these two inputting orders remarkably 

lowers prediction error rate in Britain and Taiwan even though the two countries have 

distinctive topographic characteristics, suggesting a general applicability of this novel method 

and is thus worthy of further validation in other study sites and other taxonomic groupings. 

The nestedness-ordered dataset applied in this study can similarly lead to a better 

prediction when combined with the best fit extrapolation functions (e.g. the logarithmic 

function for British birds and the power function for Taiwanese birds). For instance, the error 

rate was <5% based on nestedness order compared with 12% based on random method when 

logarithmic functions were applied for the estimation of British avian species richness in 100 

km squares with 10% sampling effort. This suggests that incorporating data structure (e.g. 

nestedness) into the analysis could help improve the efficiency of sampling effort, particularly 

useful in area with limited resource available for field survey (Pearman and Weber 2007, 

Ashcroft et al. 2010). In the findings for the Taiwan avian data were similar: using 

approximately 1% sampling data, with the power function, could predict overall species 

richness with less than 20% error rate. Moreover, conventionally intensive randomisation 

procedures are needed for the species accumulation curve to achieve higher predictive power 

(Ugland et al. 2003; Chao & Shen 2004; Gray et al. 2004) by reducing the probability of 
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including extreme values with a large number of replications. I show here that sampling based 

on nestedness order is a novel way for capitalising on community structure for the prediction 

of total species richness. Results of this study have demonstrated that, overall, sampling 

according to nested order is more favourable than based on random order. The nestedness 

method applied in this study captures information about community composition and can 

accumulate as many species with lower sampling effort/areas. Thus taking advantage of the 

nested structure has the potential to predict community composition by focusing on the most 

species-rich sub-squares. However, because both British and Taiwan avian assemblages 

demonstrate a similar level of nestedness, it is not possible here to assess the relationship 

between the level of nestedness and the predictability of species accumulation curve. More 

studies that consider different levels of nestedness (e.g. including simulated datasets) are 

needed to test for the general applicability of nested order. 

Relative to spatial nestedness, examination of nestedness over time is less studied, 

although it can provide additional information on temporal species coexistence (Elmendorf and 

Harrison 2009, Heino et al. 2009). When studying Britain’s avian species nestnedness, species 

with more limited occurrence include vagrants which occur less frequently in time rather than 

in space. In other taxonomic groups, such species may have interannual effects on co-existence 

(e.g. early-geminating and fast-growing exotic plants outcompete the slow-growing local 

species). Application of nestedness species accumulation curves could potentially be extended 

temporally for predicting interannual variation and could have important implications for long-

term conservation or monitoring. 

Compared with k-means clustering, indicator species identified by network modularity 

can more successfully assign unsampled sites to the correct species groups. Indicator species 
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analysis is useful for recognising representative species and has been applied to various 

research topics, such as plant species composition (Flinn et al. 2008, Willerslev et al. 2014), 

vector ecology (Obsomer et al. 2013), mycological community (Taylor et al. 2014, Varela-

Cervero et al. 2015) and intestinal microflora ecology (Seedorf et al. 2014, Planer et al. 2016). 

The accuracy of site type prediction relies on robust classification of sampled species and sites 

(Dufrêne and Legendre 1997). The results of clustering, however, can be easily influenced by 

other factors. Firstly, because cluster analysis is based on dissimilarity among members, the 

clustering outcome depends on which sites are sampled. Different sampled sites lead to 

different clustering outcomes, resulting in inconsistent species-site associations. In comparison, 

network analysis measures species co-occurrence directly and partitions the subgroup 

objectively and is therefore an efficient substitute for group partitioning in the indicator species 

analysis. The second concern is that subgroups partitioned by clustering methods are arbitrarily 

defined by user-defining cut off thresholds and may create artefact groups (Legendre and 

Legendre 2012). Although k-means clustering is recommended to be utilised in indicator 

species analysis (Dufrêne and Legendre 1997), this method can be easily affected by the 

identity of the group to which the original node is assigned (Celebi et al. 2013). Even though 

Dufrêne and Legendre (1997) suggested repeating the partitioning process until the indicator 

values of all species are decreasing to find the appropriate number of clusters, there is still no 

reliable criterion to decide the cluster numbers, and the number of indicator species groups 

classified by the k-mean clustering needs to be subjectively decided. As such, indicator value 

does not take into account species absences (DeCáceres et al. 2010); different numbers of site 

group are repeatedly attempted until the optimal number for acquiring the most confident 

indicator species value is found (Dufrêne and Legendre 1997, DeCáceres and Legendre 2009). 

In comparison, the number of site groups is objectively determined by network modularity.  
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Network analysis with spatial modelling (i.e. the spatial network analysis) has been 

frequently applied in many fields (Barthélemy 2011), however in ecological research, 

incorporating ecological processes such as dispersal, competition, or food web into network 

analysis to uncover geographic pattern remains challenging (e.g. Cumming et al. 2010) and 

most of the research focus on single species or individual (e.g. Saura and Rubio 2010, Pereira 

et al. 2011). This study illustrates that network analysis could efficiently classify subgroups of 

co-occurring avian species in Britain according to both species co-occurrence and the 

geographical distribution. The complete bird assemblage is sorted into subgroups according to 

occurrence in coastal or inland area, along the north-south gradient. The sites are divided into 

several groups, and sites within a module are usually geographically connected compared to 

the geographical mosaic pattern of clustering results. Also, the Taiwan BBS data have been 

divided into four groups (plain-urban areas, low elevation zones, mid-high elevations, and high 

elevations) based on geography and altitudes. This suggests the ability to combine species (co-

occurrence) and spatial information by network analysis. This technique has also been used for 

analysing the large-scale European fauna structure (Araújo et al. 2011) and successfully 

revealed the robustness of each faunal group by the geographical distribution and the resistance 

to climate change. Regarding indicator species analysis, it delivers more consist result in 

defining species-site associations therefore better basis for the predictability. However, such 

capability has not attracted enough attention and more future research is required.  

Scale also affects the predictability of community composition. For example, it has been 

shown that the most species-rich areas shift northward when the research spatial scale enlarged 

although the mechanism underlying the shift remains elusive (Lennon et al. 2001, Willis 2002) 

and biological similarity typically decreases with geographical distance (Soininen et al. 2007). 
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In the British avian study, the finest spatial scale used for indicator species was 10 km. However, 

for a mobile taxon such as birds, when data of finer resolution are available, more relations 

among modules may be uncovered. This increases the robustness of the site group classification 

and may improve predictability of species composition. How to decide the most appropriate 

spatial scale requires further research. 

In this study, I have demonstrated that it is feasible to utilise orderliness in an assemblage 

to improve predictability of species richness in unsampled areas. Also I have shown that 

network analysis can help classify indicator species group. An investigation of both British and 

Taiwanese bird data supported these conclusions. An assessment of other areas or countries 

could validate the generality of these pattern-based algorithms. Future research should also 

explore topics regarding nestedness along the temporal dimension and the significance of scale 

in predicting species richness and composition.
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Appendix A  

 

A.1 Nestedness order of 10 km sub-squares in Britain 

* Codes are listed in nested order, from the species-richest site to the depauperate. Read by row, left to right. 

* For complete grid reference and map, see http://www.bto.org/volunteer-surveys/birdatlas/methods/correct-grid-references/know-your-place 

 
ND27 TL87 TF74 TF84 TF62 TQ77 TM47 SZ19 TR06 SU70 TM46 SK80 TG50 SU56 NG82 TG04 TL91 SD47 SZ39 NR26 

SU86 SH37 TG40 NC96 NT48 TL77 NH80 NR64 TL78 TQ81 SU40 SE27 TL89 NT96 TG30 NS48 TQ58 NC55 SU10 TQ96 

NT67 TL19 ND35 NT16 TG31 SD84 SU50 SH57 NY22 TL15 TG42 TL97 TR26 NR78 NT25 NU00 NS47 NO35 TM45 NR86 

SD27 SU66 SD41 SU31 SJ24 TG32 NR39 SZ49 TL29 NH62 SU11 SU67 SE74 TM11 NH85 TR35 TM34 TF63 TR16 NC86 

NM45 SH28 TQ86 TM22 ND06 SN69 TQ49 SU30 SU94 TF92 NU22 SU97 TQ91 NX66 SU36 SK46 NN80 SU77 NT86 SH48 

SD48 NZ71 TL48 SK47 SE30 TL88 NZ52 SU76 TQ06 NC82 NR98 SU60 SK32 SY68 NN79 SD72 SD83 TR36 SD18 NH95 

TF55 TQ40 NH79 TL31 NH91 NX67 NS28 NC76 NR97 NR83 SU01 NG77 SU84 TM57 NR73 SD57 NH52 SD17 NS83 TQ87 

SK29 SU32 NN81 NO59 NR89 SZ29 TF61 NR84 SJ58 SD26 SK20 NC14 SP29 SU75 TM23 NS37 NO04 TM01 ND05 SH38 

SD75 SK12 NS03 SJ61 SO96 NR88 NM48 SK28 TM28 SP92 TL57 SK27 TL08 NH63 TM35 SK22 TQ98 SZ59 TQ55 SY67 

TF71 TM59 NH33 TF70 TL21 ND34 TM02 NB43 SJ68 TL56 NR25 NN17 NT68 TQ76 TF10 SN20 SK67 TL30 NT84 NG25 

http://www.bto.org/volunteer-surveys/birdatlas/methods/correct-grid-references/know-your-place
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TQ92 TF00 NS07 NY36 SK07 NO42 NM94 TL99 NZ04 SE36 SO78 NS57 NH45 TL92 SX97 SE40 NC13 SJ07 NX74 SJ85 

NJ01 NY00 SE20 SE82 NJ05 TG41 ST55 SU73 ND37 SJ69 TL39 TL37 SK51 TQ16 SU42 NS35 SD59 SU20 NH54 NX06 

NY55 NM55 SD62 SU46 NM54 TQ00 TA14 SD55 SD65 NR99 SP93 SJ96 NT06 SU96 NH70 SJ04 NY25 SU21 NY60 TQ07 

SU88 SH87 NT42 NX46 NK02 HY20 NM86 NY15 TL03 SH46 SC27 NX76 TR01 NJ06 SE64 SZ38 TL81 TL14 SJ18 SJ81 

NS94 NH77 TA04 TQ59 NO10 SP91 NC36 NM83 SP77 NY01 NT35 TM58 TL10 NY86 NJ26 NO65 SU80 SO70 NM82 NR57 

NL94 NY95 SJ92 NK05 NH53 NH55 NG99 TL09 NR36 NR72 TL11 NT77 TR05 NO66 SN52 ST44 SZ68 SO30 NS38 TF11 

SH63 NH90 ND16 SP89 NR96 NX96 NR77 TQ19 SK21 NH59 NX68 SJ74 NS77 NN51 SC49 SZ07 NC46 SN96 ND25 NC26 

TQ64 SE24 TM13 SU83 SJ75 SH97 NN96 SO39 SY89 HY44 NS27 NZ43 SK53 SH61 NC02 SV81 TQ78 TQ57 TL04 NM42 

NX40 SK60 SR99 NN85 NZ35 SO60 SU44 SE26 SU85 TQ08 SN42 SD96 TQ09 SU62 NR75 NO36 TF81 SJ80 NX15 SK11 

TF80 TA16 NM71 NS65 TF64 NN72 NR95 NH20 TR25 NH78 NR85 SY58 TQ01 NG08 NT27 TL98 ND01 SU47 SK78 SD85 

NC85 SD38 NM66 SU26 TM24 SU33 NX85 NH42 SJ73 NT58 NT19 TQ67 SO12 NM44 SD39 NR34 NC53 NS89 SE92 NH43 

NF72 SU82 NH64 SU58 SH71 NG74 NR46 SK90 SH47 NT24 NO25 NY02 NX37 NY51 SN79 SK36 TM49 NT17 SN62 NH30 

NN53 SJ37 TL28 SD29 NO40 SO61 NH65 SY99 NG32 SS42 SD28 SU93 NR79 NF75 SJ30 SZ08 SD31 NJ04 SC28 TQ66 

SU09 NC64 NH32 SO15 TF30 SJ50 TR04 SU57 NR63 SD74 SJ51 SD95 TF52 SJ17 TQ33 NM73 SD82 NU20 NO16 SU34 

NO06 SH39 NC91 SJ08 TM39 SJ95 NO53 SD64 NY54 SK26 HY22 SH76 SU41 SE09 NC80 SK87 TL22 SJ31 SO57 SU12 

NO14 ND03 NO01 SH44 SE91 TL20 SC39 TL26 SD56 NN18 SU87 SD32 NS68 NN95 ND23 NR65 NN69 SE35 NO00 NH69 

NO03 SK69 NG88 SN77 NC21 NM81 SJ72 NZ10 NY03 TQ63 NC60 NX16 SH36 SE05 SN63 ND49 SU43 NM93 NM49 SN40 

SU91 SD09 NN55 SE63 SU72 SU55 ND26 NX91 NX89 NS29 SD67 SJ63 NY08 SK00 NT07 SU00 NC56 NR15 NN75 TG14 

SK68 SX64 TL02 NC25 NS41 NH87 NZ42 SD86 NX45 NC71 SK02 HY50 SE29 SU22 NM15 NT15 NR35 NX25 NZ00 NT83 

NZ29 TQ79 NT92 NS93 NS40 NY30 TQ68 NT47 SU53 SD61 HY45 SY78 NZ27 NN84 HY32 NH67 TF94 SE73 NJ41 TQ73 
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HY42 SN14 NS75 SE19 SH56 NS58 SE50 NJ13 TA17 NM62 SN30 SX98 NY12 SD60 HY75 NC45 NH93 NH89 SK79 SO38 

NJ46 SK18 NH94 NR87 NH22 SH75 NS98 ST59 SJ43 NH26 NR74 SJ87 SP97 TQ39 HU31 NS49 SZ09 SK48 NN48 NY45 

NM76 SU18 SK09 NT31 SE80 SH43 SJ41 TL86 SE17 NH12 SJ71 SK57 SD69 SU37 NJ14 NZ36 SO79 SN31 TL58 TL44 

NG92 NO49 TF82 NZ37 NY35 NN34 NY37 NH46 NR45 SD54 NX44 SD58 HY62 NT74 TG10 SK39 NF99 ND04 NC65 HY30 

TM14 NX56 NF76 NB24 SH12 SE34 NY94 NZ16 NM70 SJ57 TQ65 SJ40 SK66 NH68 NM64 NX98 NY06 SH77 NN83 SJ91 

SY08 SJ60 HY51 TQ72 TA27 NT26 SY98 TF44 HY43 NR44 SD46 NF74 NS09 SH95 NX35 NH10 TG01 NS36 SE88 NJ02 

SU61 NT43 NK14 NC03 NR47 NH51 NJ24 NN86 NS05 NT05 SJ53 SO28 SJ22 NM56 NZ05 NN71 NO41 TL70 NR62 SK43 

ST56 NM04 NY75 NX57 NT00 TM03 SD73 SO51 SJ46 TL05 SJ14 NS18 NM67 SE18 SU98 NH75 NS61 TQ23 ND13 TL69 

SE10 SX87 ST84 TQ93 SJ62 NY65 SO31 SP44 NR71 NN82 TQ46 HY21 SP86 SO84 SN95 NY52 SH27 SD90 NJ03 SK13 

NM52 NY87 NC66 NH82 NC31 NT65 TL13 HU35 NT56 NX69 NU21 NR68 NC75 SN41 TQ53 NT37 SD78 SU27 NN30 TF93 

TL59 NT82 NG30 SS59 NB13 SU03 NS19 SJ66 NN06 NZ03 SU65 NT95 TQ13 NZ15 TQ75 SP28 TF72 TQ04 NS46 NF73 

NC35 NX78 SS43 SJ82 NY41 SK91 NM34 NH66 NB03 SJ45 SP58 SD91 SK86 SH52 SN67 TF16 SH70 TM12 NO37 TQ43 

TQ27 SO77 NX27 SE83 NC90 NG20 TQ70 NN28 NH56 NO02 NT13 NZ61 NY13 TG22 SE87 NH49 NT66 SN54 NN91 NW96 

NY63 NT73 SO11 NG09 TL41 SP45 SN84 SO47 NN59 HY31 NT44 NH76 SP46 NH81 TQ29 SH72 NM35 SO67 TQ25 NS86 

TQ89 SN74 NX95 TQ44 NG36 NX64 SZ48 SO02 HY53 NC44 NR27 TR34 HY64 HY33 SK19 TL71 NN74 NC30 NX34 NS08 

SH53 SU13 TF60 SJ84 NH19 TM44 SP37 ST90 NR70 ST60 NG89 NS55 NO21 SJ78 NO45 SE25 NN45 SE01 NF87 SK54 

NG42 TL96 NG33 NG91 NG41 TL60 NY97 SK94 TR15 TV59 TQ56 NH41 SP48 SH50 NX18 NN00 NR94 TQ54 NT04 SU52 

TL84 ND29 SJ20 SX84 SK08 SO83 HY74 NN65 TG21 TL12 NY76 ST49 NJ15 NZ02 NO30 ST24 NY91 NT14 SN50 HY40 

SJ02 SU59 NH72 ND15 NT33 SU17 NY92 NR61 NY16 NX77 SJ94 NX43 NO13 NY70 NB54 NM97 SE98 NS76 SH74 NT18 

NC01 NS67 TQ05 NS32 TQ45 SN78 NO50 NY42 NM53 NT45 SN51 SP50 NC74 TQ17 SD97 ND48 NS02 NH96 SJ93 NG83 
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NG73 NC11 SH73 NT29 NN94 NJ36 NC84 NT90 NN93 NY11 TF14 NJ50 SJ83 SO69 SO50 SM70 NY40 NR37 NO55 NT34 

SP25 TQ14 NZ01 TL52 TQ41 TA02 ST87 SO37 SU51 SP55 NH48 NM46 SY09 NS15 ST93 NH06 NC51 NC24 NX47 SO34 

NF96 NH98 SJ33 NC37 SE16 NN92 TF21 TF22 SO27 TM29 SJ39 SD88 NG61 SJ23 TR03 NN76 SU63 NC23 SJ76 SD45 

SK56 SJ70 SP95 NH73 NS63 NT64 SU99 ST36 SU14 SO98 SH49 NJ33 NC70 TQ35 SP74 SZ79 SE07 SO58 NO24 TA05 

SM93 SX99 SY97 NR92 SK55 SK15 SK50 SO48 SN57 SE21 SK63 NN70 TQ26 HU32 NZ51 NJ35 TL06 NM74 ST50 NN38 

ST57 SE90 SK75 SO71 SH33 NT75 SC16 HU58 NJ25 NS45 NN10 SO88 NS66 SK71 NT71 NS39 TL16 NJ32 SC26 SJ97 

SN68 SO62 NO64 NO31 SD66 SH60 NT30 SU23 SN35 SJ52 TQ84 SO94 HU44 SD49 NX29 SZ58 SN66 SE37 SP34 NC50 

TL46 NN19 NS84 NT12 NH15 SJ99 NH92 NN31 HY63 TF02 NG85 NY50 SP40 SH68 SO49 ST47 NZ07 SJ06 SN58 SN65 

NT02 SU45 NZ21 SK37 NO76 SU81 NS04 NT03 HP61 SD81 NR49 HP50 SU74 SK35 NX55 NJ66 NG52 SK58 SS21 NT28 

TL76 TL24 ST61 NC83 SO93 TL79 SD89 ND02 SN92 SE61 SN82 NN90 SE14 ST66 SU54 ST39 SP85 NX87 TR37 SP10 

SK24 SU15 SD93 NM43 NM75 TF01 NC63 NS85 TA22 SO59 SC48 NM96 TF25 NF98 SE28 NM69 SO09 NU04 SO87 SN61 

NN24 SU90 SD76 TQ42 SP94 NM63 NG94 SD37 NJ31 SE42 ST51 NZ13 NG72 NC10 SP90 SO73 NC54 SO95 NG87 SP76 

SN99 TG23 SO05 TL00 SP75 SS53 SH85 NM32 NZ28 SD87 TF26 NY88 SU28 TL18 NR69 SP35 NG35 NH25 NZ06 SX88 

NS72 TF09 SO04 SD79 NY56 NH18 NR56 SK65 SH94 NG44 SJ01 ST23 NR58 SO40 TM21 NT60 TL32 TQ32 ND07 NT23 

SE43 TQ15 TL68 NN63 TQ97 NY62 HU69 SK59 SH96 NS91 SP19 NH23 SK96 SJ86 TQ85 SH84 SU08 TG02 SS44 NT57 

SE15 NS17 TM15 SP01 NJ83 NS96 ST04 SH64 NJ40 SN89 SK64 NT22 NT53 ST69 TM38 SE86 TL72 TL50 NN68 SK41 

NZ41 NM80 SO68 SN94 SE60 SK44 SD50 TL82 TQ74 NN89 NS64 SK33 TF33 NS56 NH31 NN07 TL94 TM33 SZ69 SX05 

SP13 SX73 NM39 SU71 NF97 NB53 NT54 NR60 NY90 TQ48 SK49 SO20 SS78 NN50 NT55 SP99 HT93 ND14 TL53 SX17 

NT32 SH81 SN86 NC40 TF73 TG11 NO12 SK61 TQ62 SD30 ST46 TR13 SJ55 SS22 NH44 NH74 TG33 SJ42 TF06 SU19 

SJ32 SY59 NG96 NS73 SH58 NU02 NT62 SE00 NG53 SJ90 SO21 TF83 NT52 TQ71 TR09 SK06 NX99 SS88 NS95 NY14 
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SO92 SS54 SK45 SE95 ST95 NS99 SK38 NS71 NY99 NH35 NN29 NX38 TQ50 SH92 SN73 NF86 SU92 SP09 NO05 SU79 

ST32 SE31 SP65 NB56 SD19 NC95 NY38 SK34 SH65 SJ11 SS79 NR38 TL74 NS06 NT63 NY33 TL80 SE49 NY17 TM05 

SE72 NM84 NN33 TF49 NF71 SC37 NN41 ST35 NX65 NZ08 NC22 SO86 NU23 NT36 ST20 SO14 ST38 NT61 NY34 SK14 

NS92 SC38 SH67 NZ24 SX77 SP05 SN81 NY57 NO20 TQ02 TQ47 SO36 TM07 TQ11 TQ03 SP64 TL27 SH83 ST29 NR76 

TL01 NT08 SO41 SP54 TA15 NY23 SE85 NY24 NX75 SO13 SP12 TQ38 SN76 ND39 NC81 TL83 SE33 TQ24 TM04 NG93 

TM25 NY48 NG81 NS97 SO82 SD68 SS49 ND12 SU07 NO54 SJ79 NN54 TG13 NO68 SH22 NR93 SE46 NY53 NT39 NY96 

NX79 NN46 SE65 SE44 SU35 HU43 TQ61 SP06 SK04 NN04 HU68 SU02 TF20 SH93 TF91 SO46 SO89 NZ09 NX92 SO91 

NJ91 SJ67 NY47 SO75 NT70 ST13 SK25 SJ59 SU95 SE71 SK03 TQ22 SJ49 NY32 NO26 NX04 SE69 NN40 NG62 NT94 

TA26 SE06 SD99 SO43 SN72 NG70 SO35 SD42 NM26 SP53 SW87 NH84 ST94 SS64 SD92 SN75 SO01 SZ89 NX84 NT10 

SP32 SH55 NJ65 NM65 NM85 SH62 NH39 NH40 NH34 ST58 SO08 SO65 NU03 SP68 SD34 SP36 HP51 NY80 SK88 NT76 

NX97 SO24 SK83 ST96 SD77 SE97 SV91 SS84 SK05 NH05 SE62 SP51 TF15 NH09 NX58 NX86 HY52 SE54 SE47 NN64 

ST98 NZ31 SO72 NN20 TA11 SP42 NF77 ST74 TM48 SE08 HU34 SP47 ST48 NS81 NZ25 HU49 TL67 NS90 NY26 NS33 

SP30 ST45 TQ99 NO15 NC00 NO46 SO90 SE58 SO63 TL75 SO26 TL23 SN12 SK74 SP22 NZ40 HY41 NX59 SO55 SO74 

SP80 SE75 ST11 ND24 HU15 ST76 NY85 SE51 NG97 SU24 NJ81 SE89 TA21 NO19 NM25 NY21 NZ19 SN53 SE45 TL66 

NB45 NU13 NO47 SP88 NT20 SO53 NJ92 ST03 TF50 HU46 TL65 SE02 NB32 SJ28 NU01 NZ23 TL90 NS62 SP17 NZ20 

TG03 SN83 ST08 NO69 NY31 NS69 NY93 NO27 NR24 TQ34 SS48 SO97 SN98 TL45 SE53 ST14 TF39 SO19 NY66 NN09 

SY88 SN64 ST54 TQ94 SK84 HU36 NO99 NG78 SY79 SM83 SJ05 TL93 TA13 NK03 NG24 TG00 HU25 ST79 SS80 SE39 

SN03 SD98 NY81 SX59 SE57 SO44 NY43 SU78 TL25 NG26 NS82 NM98 NT85 TA30 ST28 SP84 NN01 HU42 SO52 SU29 

HU45 SS94 NB91 SO29 NR82 SP70 TQ10 SO42 NN43 SD71 NX30 SH90 NY82 NX05 TR24 SN25 NM77 SU16 SD63 TL34 

SP15 NS79 TQ36 TA08 SE79 ST80 TQ12 TL36 NG60 NB35 SK85 SN87 SD51 HU54 HU27 SN43 SJ21 SN85 SE55 NS59 
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SO22 SP83 NT46 SN33 SD70 SS19 SO45 HU33 TQ82 NG50 NS51 TL42 SJ03 TF34 NY59 ST92 NO34 SO76 SY49 NS78 

HU24 SP52 SH86 SO18 TL47 NG45 SK17 NF67 NF84 NX07 SN45 NC12 SW32 NZ11 TL61 NB55 TQ60 SW62 ST33 NX26 

SN34 SP18 HU59 SJ65 NY98 SP56 SP81 SJ54 SU64 SS73 SN46 NG55 SJ98 NC52 NS30 NT93 SO99 SU05 NY74 TL07 

NF66 NJ16 SK40 NM72 NO11 HU56 NC27 NT51 ST81 SY69 NC73 SD08 NM79 NX36 SP38 SP07 NM78 ST43 SH45 NC34 

SK30 TM26 SJ27 NF70 SK01 HU37 SW53 SO33 NM91 NB44 SU48 TF41 NH08 SE03 SM72 NX88 HZ27 NN11 SP04 SY19 

NX13 NJ34 SO03 TR14 ND36 NY89 TQ83 SK82 SH91 NO08 NJ22 NM90 SP43 SP26 SU38 NY10 NG51 NT72 SN71 SK23 

SU89 SP69 TA20 SS74 SX69 TM00 HU39 NC20 NT41 SO32 TA31 SW72 NO57 SE93 NJ70 TG12 TM18 SJ64 NY73 NJ56 

SJ15 SV80 SK98 TF47 SX35 NG71 NU11 TM09 SN55 SE11 SP11 SX96 TQ95 NY61 NO75 NH86 NZ22 SN93 HY55 NO51 

SO23 NS74 TL55 SE67 NO23 NJ27 SX56 ST77 SP96 SN32 SE99 SP73 NM31 ST83 NB46 NN56 TM17 NH83 ST89 SX78 

SK42 SK70 NM22 NH88 TA18 SX46 NM95 NY71 SE78 SD94 TR02 NL69 SN44 SO10 NT80 TM36 SE32 TF48 NJ45 TF17 

SE81 HU28 SH66 TQ52 SP87 TL40 NN66 NN52 SS97 NF95 NN57 SZ57 SM80 SN56 SU39 ST78 SS69 NO33 NH21 NJ90 

NF82 NH58 HP60 NM60 SE66 NN23 ST70 TQ30 SW86 SJ13 SX83 ST16 NO67 TQ51 TA00 SP16 NB21 NH47 ST06 ST65 

TA06 NT21 SD44 NY67 NZ30 NM89 SM82 TL49 SN04 NN67 NG14 TF27 SN21 SJ77 HU38 SJ34 SH80 SN24 HU41 NN87 

NU10 SK81 NG76 ND38 SY39 TL35 ST99 SN91 NC92 NM68 NC42 NN62 NZ17 SP49 NJ86 SP57 TF43 SE04 HU16 SJ56 

SU06 TF04 HT94 SO64 SS93 TL51 NS14 TQ28 NU12 SU49 SP82 NJ23 SO81 TM08 SX89 SJ12 TG51 HU48 SP02 ST91 

NY78 NC94 SX74 NW95 NJ12 NL58 NG19 NY44 NN49 SO56 NM88 NB23 SC47 TL95 NY84 NG95 SX68 SW83 NT87 SS91 

SX86 SS09 SH34 TF36 TF05 SE96 NB00 SU04 SJ48 ST75 NY18 NO39 SK16 SK73 NN35 ST00 SP98 NN15 SH23 SU69 

SK97 TL33 SE48 HU53 SK89 SN97 NH04 NN22 TF57 HY60 ND28 NS80 NM40 SX15 SP24 SE56 ST71 NN73 ND17 ST97 

NX48 TF51 SO06 SE70 SO85 ST18 TM37 SS92 ST85 NN02 NY49 NA92 NB12 ST34 NU05 NG98 NB22 SD20 SS89 SW73 

NO88 NN16 NY64 NS26 HU47 NO60 ST09 NJ30 SR89 NO63 NN44 NG43 NO17 NC15 SE23 NH01 SJ36 NO29 NO44 SP61 
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HY61 NS24 NX08 NJ11 SP00 SN60 NX19 SE68 NT01 NO87 SO54 SX54 TQ31 NJ61 NZ80 TF19 ST01 TF90 SX06 TF07 

TF42 SJ26 HP40 TA10 NG34 SP39 NN77 SS71 ND19 SS41 NS31 NM24 TQ37 SK93 NF85 NY69 SM81 NB01 SK72 SP62 

SE77 SS90 NK06 SE38 ND47 SX85 ST30 NN27 HY54 NX17 SS87 SK77 SD33 SH13 TG20 NJ42 SP72 TQ21 NN32 NC61 

NS52 SJ25 NN58 TA07 NZ62 SJ88 SK52 SW75 SP21 SW93 NB34 NO07 SN80 SP71 NG80 SP63 SS98 SN22 SX65 TQ20 

SY29 NG15 SW84 SE59 SX37 SP67 SJ00 NB41 SH82 TA23 NO22 TM06 SW64 NT09 SE84 SS72 SE12 NX33 SS51 SP78 

NY39 SN90 NS60 SP23 ST68 NX90 NS70 SW43 SJ44 NT11 SD53 HU57 SS40 NG54 SX95 TQ69 NO32 NN12 NS54 SS31 

SO66 NO56 SS82 TL62 SP66 SO16 ST22 TM27 SP33 NG46 TF35 TL54 SX63 NB31 SU25 NT81 TA03 SX04 SX36 NY72 

NY77 SX18 NT50 NH17 SS70 SO25 NH57 SJ35 NB90 ST82 NJ96 NT91 SX27 NG47 SX08 TL43 TF45 TF12 NS34 SO80 

NF81 NH27 NH29 NN21 SS61 TL17 SJ16 SN15 ST42 NW97 SX67 NF60 SO00 NY20 SP27 NB14 SK10 NZ45 TF37 NG84 

ST88 ST12 NH36 NS42 TF28 NN37 SS81 SS83 NA91 SS32 NN39 SD52 NY09 NJ20 HU14 NY83 SX79 ST86 SP08 SX45 

HY10 SE76 NN47 HU26 SJ38 NJ10 NJ80 SP79 NZ26 SX44 NA74 SX47 SP60 NO18 SS96 NZ50 NZ33 SK76 NX09 NN36 

TL64 NL93 NC41 NG75 SW42 NJ95 SN88 TF56 NS53 NR67 ST67 SD43 NZ34 ST07 SK99 NM87 SH54 SX16 SX48 ST19 

SZ47 ST10 NH28 TA01 SN01 NF88 NJ51 SH32 NC16 SK31 NX14 TF40 TF38 NB42 TL63 SE13 SS58 NF09 NT40 SK62 

SS50 NY58 NX39 NO89 SX66 SP03 SH98 SH88 NN61 TR23 NY04 NN60 NS25 SO07 TQ88 NF83 SJ47 SX76 SS60 NY46 

NJ44 ST37 NJ00 TF18 ST63 SY66 ST73 NS87 NZ14 ST25 SX25 NK04 SP41 TL85 SP31 NA00 TA12 ST21 NG23 ST72 

NZ70 TQ18 NY28 NO48 NH02 NH11 SX55 NL57 SC17 NC93 SD80 SD16 NJ55 SN11 NS16 SU68 NS20 SW71 TF32 NY19 

NY68 SE94 NH71 NJ93 NJ43 NJ75 NN97 NM99 SW61 NO28 SP59 SE52 NN08 NO61 SX28 SX19 NN13 SD40 NB02 SX39 

ST64 TL38 SS52 NM57 SW95 NJ17 NM41 NN42 ST27 NB10 SN00 SS62 ST40 TA32 NB30 NO43 NH00 NO38 NO79 NZ18 

NZ90 NM61 SS14 NG90 NF19 NJ84 NS44 NX49 NO52 SM92 NJ71 ND59 NG79 SW74 SY77 NR50 NH37 NG40 NN03 NC43 

ST31 NZ32 NA10 SX57 NH24 TM19 NB33 NC33 NG56 SX58 SH29 NJ73 NY29 NZ81 NT69 NX03 TF29 NX28 SK92 NM92 
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TF24 NM47 NY07 SN59 SW85 TG24 ST41 NC32 TL73 NJ54 TM16 NN78 TA40 HZ17 SH78 SZ99 NG65 SP20 NJ76 SM94 

SJ89 NJ60 SS30 SS20 NZ53 NO78 SY87 HU67 SN36 SY48 NO09 NR59 TA24 SW98 NY79 NH13 ST52 NZ46 TF58 NS43 

HU40 TR07 NJ72 SN13 NZ44 NZ60 SY18 SX49 NC62 NH60 SS63 HU30 SO17 SW63 NY27 ST02 NN26 SW54 NJ64 SJ10 

NG38 SN70 NH16 NA93 HU55 NB20 ST53 SX75 NR51 NG49 SM91 SN23 NJ62 NH07 SX07 SH51 NR16 HY73 NB11 NN99 

NS88 NG29 TF46 TF13 SD21 HW83 SP14 SW97 HU66 NJ74 SY28 TF03 SW33 SN10 TA09 TA41 NG37 NK15 SC36 SX38 

NH14 NG64 NC72 NG31 NK13 NX54 NJ94 TF08 TF31 SW96 NJ21 HX62 NF56 ST62 NH50 NG86 NO58 ST17 TQ80 SM90 

NM33 SW76 NH38 TF23 NN14 ND33 NJ53 SM84 SX26 SS75 SH24 NJ52 HZ26 NN98 NB52 NS21 SX29 NO74 SW52 NX24 

NM21 SS68 SW94 SK95 NZ72 NX93 SM50 NH03 NH61 NN88 NO86 NJ85 NF68 NG66 SJ29 NU14 NS50 HZ16 SE41 NJ82 

SN02 NG18 NJ63 TV49 NN05 NA90 NG63 HW63 NS10 SS99 TV69 NX23 TA33 TR33 SS38 NA64 NM29 NO77 SY07 HY34 

ST26 NG39 NF89 NS01 HP62 SE22 NF80 SX94 NZ12 HU77 NM59 NL68 NH97 NG07 NM23 SZ28 NM51 NM37 NM38 NG13 

NM19 NZ91 SM62 NN25 TR12 HX51 SV90 SX09 HY23 SW82 SM73 NM16 NZ38 SD36 SW44 SM71 NB40 SS39 NT49 SS10 

NZ39 NL79 NM05 HY35 NF61 NA81 SY38 SS11 SW65 TR46           
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A.2 Nestedness order of species in Britain 

* Codes are listed in nested order, from the most abundant species to the rarest. Read by row, left to right. 

* For reference of Latin and common names to the two-letter code, see http://www.bto.org/about-birds/birdfacts/british-list 

 

WR S. PW B. R. SG SL ST CH WW MA MP HS WP D. BT K. GT C. HM 

CK M. JD SF GR LI CT GC L. H. RO PH SI Y. GO WH CD BF FP SH 

CC RB TC MG LT BC MH GL TO GS CU SD BH GW SW W. J. OC SN HG 

BZ LR P. G. CO TP MS LB DI SM CS WC NH TS RN TU LW RK CM RT 

LO WO MT KF RL WT CG PE GB GH SK SC LG YW BO RG WK CB TD RP 

T. CA GP HC F. SU RC Q. PF GG LS RW TW SA ML GD CN RM RZ CR 

DN SE HY TY GJ E. EA KI HH AE N. BK RH GU RA PO LE LP GK SV 

PU WA PM HB HF WN BV RY NJ GI AC GA GX NX TE MN CE DO OP RE 

AF TM KT WM CF GN FF BX SB FC MX MR CP CW CY EG GY WL CX TT 

CL RI TN CI ND PT OL TL WS WE DW XB GF BY RS BW DC MO KR BN 

BR HZ BL AK MU SZ NK MW RU PG ED SP AV NS VI HP OD RQ SQ SO 

SJ BA DR RX LM BG LN WY LU PS RF SS NG GV WX BJ SR IG GE JS 

TK GZ IC UG AN AA IN TF LV BI MY KN PD HD WG NB UD LX RV EO 

VS BU DT EM HN KE FW FV ET AS OQ SY WJ        

http://www.bto.org/about-birds/birdfacts/british-list
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A.3 Nestedness order of 10 km sub-squares in Taiwan 

* Codes are listed in nested order, from the species-richest site to the depauperate. Read by row, left to right. 

* For complete site reference and map, see https://sites.google.com/a/birds-tesri.twbbs.org/bbs-taiwan/method-1/yang-qu-de-tu 

A03-01 A18-02 B16-01 B30-01 B32-11 B13-02 C37-04 A19-05 B16-02 B32-01 A09-33 B14-04 B13-03 C14-04 B32-10 

A27-04 B30-04 B21-01 B11-01 B13-01 A27-19 B37-02 A19-06 C30-03 B14-01 C37-05 C14-01 C37-01 A19-02 B10-01 

C16-01 A27-28 B10-02 A18-03 B32-04 A32-04 C37-02 A16-05 A33-14 B14-02 A34-07 A09-08 B38-04 B32-03 B06-07 

C30-02 B29-02 B14-03 A33-26 C30-04 A35-06 A16-04 A27-20 C14-02 A33-15 A20-01 C14-03 B28-01 C30-01 A04-16 

A21-01 B37-01 A09-31 A40-11 A28-06 A17-04 A19-04 B10-03 A01-12 A34-24 A40-12 A29-03 A09-29 A28-05 A36-05 

C28-01 B30-02 A32-02 A33-04 B38-03 A26-02 A09-04 A18-04 B38-07 A12-02 A29-06 B30-07 B35-01 A28-08 A34-02 

A19-03 A07-02 A35-03 C37-03 A35-04 A40-03 B06-01 A27-40 A29-01 A40-16 B22-01 B32-02 A34-03 A39-02 A34-05 

B10-14 A34-23 A20-03 A35-05 B30-03 A34-06 A09-13 A34-08 A20-05 A04-48 A26-03 A36-01 A40-15 A32-06 A33-09 

A39-01 A18-01 A34-49 A17-02 A24-02 B28-06 A04-31 A01-07 A37-05 A34-38 A09-50 A33-07 B38-01 A33-16 A20-02 

A09-46 A40-02 B28-04 A09-24 A36-15 A22-01 A41-01 B06-06 A37-01 A26-01 A33-08 A37-02 A29-16 A17-10 A20-04 

A33-02 A37-11 B10-13 A19-01 A41-02 A40-14 A17-01 A27-02 A04-45 A05-02 A35-15 A09-57 A03-20 B13-04 A28-02 

A04-50 A09-15 A12-01 A04-02 A29-04 A05-01 A09-56 A36-02 A40-01 A27-41 A09-20 A27-15 A28-01 A33-01 A21-02 

A34-48 A37-10 A09-25 A04-28 A34-21 A10-01 A04-44 A27-07 A32-07 A09-52 A36-03 A39-08 A33-11 A36-14 A29-02 
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A02-01 A27-03 A29-12 A24-01 A28-15 B38-02 A29-05 A29-20 A27-12 A37-03 A32-03 A37-04 A05-15 A09-05 A33-06 

A09-01 A35-02 A35-19 A16-01 A16-03 B33-01 A27-27 A33-27 A04-26 A16-02 A38-01 A04-30 A28-10 A33-10 A32-01 

A10-03 A04-34 A27-31 A36-16 A33-13 A35-16 A04-33 A09-14 A05-17 A27-32 A34-04 A36-04 A29-17 A09-30 A27-25 

A32-08 A04-06 A10-02 A02-03 A17-09 B39-01 B33-02 A09-19 A09-55 A37-09 A34-32 A34-01 A28-04 A01-02 A03-16 

A09-45 A04-11 A09-03 A33-22 A28-16 A34-35 A33-18 A27-29 A27-33 A04-41 A34-43 A33-28 A04-49 A02-02 A09-36 

A35-08 A35-01 A29-08 A33-03 B32-05 A01-05 A27-22 A10-10 A27-01 A04-03 A28-09 A17-03 A28-03 A29-18 A09-48 

A40-10 A27-17 A04-01 A05-04 A34-14 A02-05 A09-26 A35-13 A09-40 A04-12 A34-45 A17-11 A27-39 A33-05 A39-03 

A27-05 A19-13 A17-20 A37-08 A27-10 A34-20 A09-06 A01-01 A40-09 A04-43 A27-30 A09-02 A03-07 A03-19 A34-17 

A04-27 A34-40 A04-23 A27-06 A09-17 A03-18 A04-32 A29-23 A04-18 A33-21 A29-07 A28-07 A35-12 A40-04 A35-09 

A03-03 B14-09 A09-51 A12-06 A04-51 A04-09 A34-39 A27-43 A09-27 A09-54 A09-18 A26-04 A27-24 A04-20 A10-09 

A25-01 A34-44 A34-42 A04-19 A09-22 A05-05 A04-24 A22-02 A04-04 A34-18 A35-22 A10-07 A29-19 A09-35 A09-38 

A27-21 A09-39 A09-58 A37-07 A35-07 A34-26 A35-18 A04-35 A09-41 A34-47 A01-08 A04-10 A04-05 A34-41 A39-07 

A05-06 A27-38 A33-12 A34-22 A09-32 A04-46 A09-53 A04-25 A04-22 A34-27 A05-14 A04-36 A01-03 A09-37 A29-21 

A34-31 A35-17 A36-10 A09-43 A28-14 A28-13 A04-21 A09-16 A28-12 A04-17 A07-01 A27-18 A35-10 A09-44 A09-49 

A33-19 A12-10 A34-33 A33-29 A34-34           
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A.4 Nestedness order of species in Taiwan 

* Codes are listed in nested order, from the most abundant species to the rarest. Read by row, left to right. 

* For reference of Latin and common names to the code, see 

https://docs.google.com/viewer?a=v&pid=sites&srcid=YmlyZHMtdGVzcmkudHdiYnMub3JnfGJicy10YWl3YW58Z3g6NWQyZDAxN2M2Njg1NTc0NA 

 

C406 C468 C372 C408 C331 C277 C621 C471 C366 C361 C470 C045 C387 C276 C388 

C474 C460 C097 C549 C472 C459 C473 C355 C100 C625 C333 C119 C358 C319 C274 

C571 C551 C364 C371 C390 C271 C344 C570 C404 C505 C154 C104 C107 C320 C624 

HODI C293 C541 C299 C476 C128 C146 C283 C456 C373 MOTS C280 C481 C379 C415 

C044 C428 C360 C464 C131 C542 C384 C173 C509 C385 C178 C356 C094 C457 C466 

C430 C521 C093 C526 C342 C405 C524 C602 C091 C548 C458 C482 C053 C496 C418 

C508 C397 C187 C225 C491 C561 C552 C562 C175 C048 C400 C490 C626 C479 C089 

DOAN C394 C226 C022 C183 C535 C318 C314 C272 C116 C369 C392 C398 C480 C149 

C414 C359 C577 C306 C134 C170 C419 C161 C499 C401 C115 C179 C109 C288 C165 

C547 C607 C455 C555 C046 C556 C448 C413 C395 C103 C478 C483 C489 DOCA C487 

C124 DOAP C101 C512 C114 C335 C347 C334 C611 C142 C402 C608 C623 C412 C463 

C475 C087 C302 HYBU C573 C507 C486 C301 C579 C511 C217 C098 C374 C544 C518 

C620 C028 C403 C477 C180 B004 C340 C336 C258 C622 C297 C465 C383 C082 C139 
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ACGA C550 C121 C130 C208 C613 C434 C132 C129 C219 C565 C263 C581 C096 C416 

C186 C595 C294 DOCY C349 C539 C284 B013 C558 C427 C367 C386 C308 C606 C312 

C291 C162 C329 C200 B008 DOGO B011 C569 C171 BYBU C598 C143 C560 C155 B012 

C120 STNI C594 C204 C409 C423 C510 HYGA C019 C316 C203 C266 B009 C519 C578 

C176 B020 C617 C133 C024 C322 C262 C168 C016 C591 C559 C047 ZODA C615 C188 

C250 B018 C527 C092 C202 C034 C193 C026 C177 C113 C246 C025 C206   

 

*HYGA: Garrulax canorus X Garrulax taewanus; ZODA: Zoothera dauma dauma; STNI: Strix nivicola; DOGO: Anser domestica; ACGA: Acridotheres grandis; DOCA: Cairina moschata 

(domestic); HODI: Horornis diphone/canturians; DOAP: Anas platyrhynchos var. domestica; MOTS: Motacilla tschutschensis; DOCY: Cygnus atratus (Domestic); DOAN: Anas 

platyrhynchos (Domestic); BYBU: Bycanistes bucinator; HYBU: Pycnonotus sinensis X Pycnonotus taivanus.  
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Appendix B  

B.1 Minimum set for estimating species number by assemblage structure  

To identify how many sub-squares were required to predict 90% and 100% of the total number of species 

in Britain; species accumulation was calculated with increasing number of sub-squares, using two orderliness: 

random and nested order. 

B.1.1 Randomly-select method 

From each 100 km square in Britain, we randomly selected one of 10 km sub-square and recorded the 

number of species in it. Continued to randomly select the second sub-square other than the previous one and 

added number of new species to form a new species subset. This process was repeated until all species were 

included. Lastly, repeated the whole procedure (i.e. species accumulate from 1 sub-square to maximum 

number of sub-squares in the 100 km square) 1000 times and calculated the average number of minimum 

sub-squares needed to include 90% or 100% species. The minimum number for including 90% or 100% 

species was calculated in all fifty-five 100 km square.  

An example using only 10 sub-squares was demonstrated in Table A- 1. Each time we randomly selected 

one of the 10 sub-squares and their species composition recorded. The minimum number of sub-squares 

required to include the whole community (species A to G) can then be calculated. For the real data set, similar 

process was implemented except that all sub-squares in a 100 km square were included.  
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Table A- 1 Example of randomly-select method. (a) A 10-cell square containing species A to G; (b) the randomly selected sub-

squares are combined to create a new species subset. This process is repeated until the whole community (species A to G) has 

been recorded. In this sample, four sub-squares are the minimum required for recording all seven species in this square.  

(a)           

Sub-square I II III IV V VI VII VIII IX X 

Species 

composition 
ABD BDF ABC AB 

ABCD

E 
BEF CEFG ACF 

ABCF

G 
BCDEFG 

Total species 

number 
3 3 3 2 5 3 4 3 5 6 

(b)           

Round of select 1 2 3 4 5 6 7 8 9 10 

New sub-square 

selected 

VI VIII IX V VII X I III IV II 

New subset of 

species 

BEF BEFA

C 

BEFA

CG 

BEFA

CGD 

BEFA

CGD 

BEFA

CGD 

BEFA

CGD 

BEFA

CGD 

BEFA

CGD 

BEFA

CGD 

Total species 

number 
3 5 6 7 7 7 7 7 7 7 

 

 

B.1.2 Nestedness-select method 

For this method, we selected sub-square based on the nested structure of the 100 km square, which was 

rearranged by local unexpectedness in descending order according to its nestedness. The procedure was similar 

to the randomly-select method except that the sub-squares were chosen according to the nested order, starting 

from the most species-rich site until at least 90% or 100% species were included. 
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B.2 Minimum sub-squares required for estimating species richness: result 

A mean of 29.2±5.7% (±SD) of 10 km sub-squares was required for the random-selection method to 

include 90% of all species within the 100 km square (ranging from 16.3±3.3% to 40.2±7.6% for each square). 

Including all species requires 74.3±7.9 to 93.7±6.0% of sub-squares (with a mean of 86.2±6.9%). 

Comparatively, only 4.0%-28.8% (with mean = 14.8±7.1%) of all sub-squares were required to incorporate 

90% of species using nestedness-selection method, but including all species needs much more sub-squares 

(41.6%-100.0%, with a mean of 76.9±15.7%). The nestedness-selection method required fewer sub-squares 

to estimate 90% of species than random method, but had larger variation in minimum number for these sub-

squares. 
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Appendix C  

C.1 Determing the number of clusterings in indicator species value analysis  

Dufrêne and Legendre (1997) is followed for the determination of the optimal number of clusterings for 

the indicator species value analysis. This method firstly calculates the indicator value (IndVal) of each avian 

species for each clustering level (e.g. IndVal for species 1 to species 273 at clustering level 2, 3, 4 etc.). The 

difference in IndVal between consecutive cluster levels for each species is then calculated (e.g. the difference 

in IndVal between cluster 2 and cluster 3 for species a) and plotted. Because larger IndVal represents a better 

predictor, the optimal clustering level is when the difference in IndVal (cluster n+1 minus cluster n) is the 

largest and is most positive. In this case (Figure A-1), because the value (difference in IndVal, y axis) is the 

highest between cluster 2 and cluster 3, and is of similar high value between cluster 4 and cluster 5 (both also 

have smaller negative value unlike between cluster 7 and cluster 8), it is most optimal to divide the avian 

assembly into three or five clusters. However, either three or five clusters has lower predictability than the 

method based on network modularity, as demonstrated briefly in Figure A-2 (below, for three clusters) and 

comprehensively in Chapter 3 (for five clusters).                
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Figure A- 1 Sum of species indicator value (IndVal) differences consecutive cluster levels for each species 

in the BTO dataset.
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Figure A- 2 The predictive ability of the site group to the unsampled sites when predicted 

based on 40% sampling and under each of three sampling clustering indicator species 

group. The title (a-c) indicates each of the three assigned population clustering and the x-

axis is the likelihood of assigning an unsampled site to the target site group, comparing 

with the original site memberships (i.e. the site group assigned by the population 

clustering). For example, figure (a) is the indicators derived from the red group and figure 

a. Red b. Blue 

c. Green 
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(a.1) is the likelihood to assign an unsampled site, which is originally assigned to the red group in population clustering, to the red site group by the 

red indicators.
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Appendix D  

D.1 Sensitivity analysis for sampling size of site group detecting  

A preliminary test has done for deciding the sampling size to effectively represent popular modularity, 

before the site group detecting process. 10%, 20%, and 40% random samplings from the whole BTO dataset 

were partitioned based on network modularity randomtrap method. The three sampling modularity (10%, 20%, 

and 40%) was compared with the corresponding sampling sites in population modularity using the Fowlkes-

Mallows index (FM index) (Fowlkes and Mallows 1983).  

 

D.2 Sensitivity analyses for sampling size of site group detecting: result 

The result of sensitivity analysis showed the 10% and 20% sampling both had four modules whereas the 

40% sampling had five. The green module that represents a small coastal site group was hardly detected in the 

10% and 20% sampling for its sparse and scatter distribution. Table A- 2 showed the FM index of 10% and 

20% sampling were both lower than 40% sampling. The module distribution was illustrated in Figure A- 1. 

There was no green module in either 10% or 20% sampling modularity result. 

 

Table A- 2 The Fowlkes-Mallows index of 10%, 20%, and 40% sampling modularity when comparing the 

similarity to population modularity. FM= the Fowlkes-Mallows index; E= expected value of the Fowlkes-

Mallows index; V= the variance under the assumption of no relation between the sampling and population 

modularity.  

Sampling size FM E V 

10% 0.71 0.43 <0.01 

20% 0.73 0.33 <0.01 

40% 0.83 0.34 <0.01 
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Figure A- 3 Assigned module of sites based on 10%, 20%, and 40% (left to right) sampling (colour asterisk) 

and whole sampling (background colour) of BTO dataset with randomtrap algorithm. Different colours 

represented different modules. Each square is a 10 km sub-square. 
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Appendix E  

E.1 Species composition in determined network modules and k-means clusters in Britain. 

Table A- 3 Species list for the four indicator groups selected by modularity method (left) and k-means clusters (right). 

*Species names represented by two-letter code (see http://www.bto.org/about-birds/birdfacts/british-list) 

** Module and cluster colours are assigned arbitrary. 

Modules Species  Clusters Species 

 

 

 

 

 

 

 

 

Red 

AA AC AE AF B. BC BH BV BW BZ C. CA CB CD CE CF CH CK CL CM CN CR CS CU 
CX D. DI DN DO E. EA F. FP GB GJ GK GL GP GU GX H. HB HC HG HH HM HS JD K. KI 
L. LB LG LI LR LW MA MH ML MP MS MX ND NK NX OC OD PE PH PM PU PW Q. R. 
RA RB RC RE RG RH RK RM RN RO RP RS RZ S. SA SB SC SD SE SF SG SI SL SN SO SQ 
ST SU SV SW T. TE TL TM TT TU TW TY W. WC WE WH WM WN WP WR WS WW Y. 

 

Red 

AE AF AK AN AS AV B. BA BC BF BG BH BI BJ BK BL BN BO BR BT BU BW BX BY 
BZ C. CA CB CC CD CE CF CG CH CI CK CL CM CN CO CP CR CS CT CU CW CX CY 
D. DC DI DN DR DT DW E. ED EG EM ET F. FC FF FP FV FW G. GA GB GC GD GE GF 
GG GH GI GJ GL GN GO GP GR GS GT GU GV GW GX GY H. HB HC HD HF HG HH 
HM HP HS HY HZ J. JD K. KF KI KN KR L. LB LE LG LI LM LN LO LP LR LS LT LU 
LW LX M. MA MG MH ML MN MO MP MR MS MT MU MW MY N. NB NG NH NJ NS 
OC OL OP OQ P. PE PF PG PH PO PT PU PW Q. R. RA RB RC RE RG RI RK RL RM RN 
RO RP RQ RS RT RU RV RW RX RY RZ S. SA SC SD SE SF SG SH SI SJ SK SL SM SN 
SP SS ST SU SV SW SZ T. TC TD TE TN TO TP TS TT TU TW TY UD UG VI VS W. WA 
WC WG WH WK WL WN WO WP WR WS WT WW XB Y. YW 

http://www.bto.org/about-birds/birdfacts/british-list
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Blue 

AC AE AF AK B. BA BC BF BG BH BJ BK BL BO BT BV BW BY BZ C. CA CB CC CD CE 
CF CG CH CI CK CM CN CO CP CR CS CT CU CX CY D. DI DN DO DR E. EA ED EO ET 
F. FF FP G. GA GB GC GD GF GG GH GI GJ GK GL GN GO GP GR GS GT GU GV GW GX 
GY GZ H. HB HC HD HF HG HH HM HS IC IG IN J. JD JS K. KF KI KT L. LB LE LG LI LN 
LR LT LW M. MA MG MH ML MN MP MR MS MX ND NJ NK NX OC OD OL OP P. PE PF 
PH PM PO PS PT PU PW Q. R. RA RB RC RE RF RG RH RK RL RM RN RO RP RS RT RU 
RZ S. SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SS ST SU SV SW SY SZ T. 
TC TD TE TK TL TM TO TP TS TT TU TW TY W. WA WC WE WH WJ WK WM WN WO 
WP WR WS WT WW Y. YW 

 

Blue 

AA AC AE AF AK B. BA BC BF BG BH BK BL BO BT BV BW BY BZ C. CA CB CC CD 
CE CF CG CH CI CK CL CM CN CO CP CR CS CT CU CX CY D. DI DN DO DR E. EA 
ED F. FF FP GA GB GC GD GG GH GI GJ GK GL GN GO GP GR GS GT GU GV GW GX 
GY H. HB HC HG HH HM HS IC IG J. JD K. KI L. LB LE LG LI LN LR LT LW M. MA 
MG MH ML MP MR MS MX ND NK NX OC OD OL OP P. PE PF PH PM PO PS PT PU 
PW Q. R. RA RB RC RE RF RG RH RK RL RM RN RO RP RS RT RU RW RZ S. SA SB 
SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SS ST SU SV SW SZ T. TC TD TE TL 
TM TO TP TS TT TU TW TY W. WA WC WE WH WK WM WN WO WP WR WS WW Y. 

Green 

F. GB GU GX KI PU RA RC RH SA TY  

Green 

AF AK AN B. BC BF BH BK BL BN BO BR BT BW BX BY BZ C. CA CB CC CD CE CF 
CG CH CK CL CM CN CO CR CS CT CU CW CX D. DC DI DN DO DR DW E. ED EG F. 
FC FF FP G. GA GB GC GD GE GF GG GH GI GJ GL GN GO GP GR GS GT GU GW GX 
GY H. HB HC HF HG HH HM HN HP HS HY HZ J. JD JS K. KF KI KR KT L. LB LE LG 
LI LM LO LP LR LS LT LV LW M. MA MG MH ML MN MO MP MR MS MT MU MW 
MX N. NG NH NJ NS OC OL OP P. PE PF PG PH PO PT PU PW Q. R. RA RB RC RE RG 
RI RK RL RM RN RO RP RT RW RY RZ S. SA SC SD SE SF SG SH SI SK SL SM SN SR 
ST SU SV SW T. TC TD TN TO TP TS TT TU TW TY W. WA WC WH WK WL WN WO 
WP WR WT WW WX Y. YW 

Purple 

AE AF AK AN AS AV B. BA BC BF BG BH BI BJ BK BL BN BO BR BT BU BW BX BY BZ 
C. CA CB CC CD CE CF CG CH CK CL CM CN CO CP CR CS CT CU CW CX CY D. DC DI 
DN DO DR DT DW E. ED EG EM ET F. FC FF FP FV FW G. GA GB GC GD GE GF GG GH 
GI GJ GL GN GO GP GR GS GT GU GV GW GX GY H. HB HC HD HF HG HH HM HN HP 
HS HY HZ J. JD JS K. KF KI KN KR KT L. LB LE LG LI LM LO LP LR LS LT LU LV LW 
LX M. MA MG MH ML MN MO MP MR MS MT MU MW MY N. NB NG NH NJ NS OC OL 
OP OQ P. PE PF PG PH PO PT PW Q. R. RB RC RE RG RI RK RL RM RN RO RP RQ RS RT 
RU RV RW RX RY RZ S. SA SC SD SE SF SG SH SI SJ SK SL SM SN SR SS ST SU SV SW 
T. TC TD TE TN TO TP TS TT TU TW UD UG VI VS W. WA WC WG WH WK WL WN WO 
WP WR WS WT WW WX Y. YW 

 

 

Purple 

AC AE AF AK B. BC BF BH BJ BK BL BN BO BT BV BW BX BY BZ C. CA CB CC CD 
CE CF CG CH CI CK CM CN CO CP CR CS CT CU CX CY D. DI DN DO E. EA ED EG 
EO ET F. FC FF FP G. GA GB GC GD GF GG GH GI GJ GK GL GN GO GP GR GS GT GU 
GW GX GY GZ H. HB HC HD HF HG HH HM HP HS HY HZ IN J. JD JS K. KF KI KR KT 
L. LB LE LG LI LN LO LP LR LS LT LU LW M. MA MG MH ML MN MP MR MS MT 
MX ND NG NH NJ NK NX OC OD OL OP P. PD PE PF PG PH PM PO PS PT PU PW Q. R. 
RA RB RC RE RG RH RI RK RL RM RN RO RP RS RT RU RW RX RY RZ S. SA SB SC 
SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR ST SU SV SW SY SZ T. TC TD TE TK 
TM TO TP TS TT TU TW TY W. WA WC WE WG WH WJ WK WL WM WN WO WP WR 
WS WT WW WY XB Y. YW 
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Orange 

AC AE AF AK AV B. BA BC BF BG BH BK BL BN BO BR BT BV BW BX BY BZ C. CA 
CB CC CD CE CF CG CH CI CK CL CM CN CO CP CR CS CT CU CW CX CY D. DI DN DO 
DR DW E. EA ED EG F. FC FF FP G. GA GB GC GD GF GG GH GI GJ GK GL GN GO GP 
GR GS GT GU GV GW GX GY GZ H. HB HC HD HF HG HH HM HP HS HY HZ IN J. JD K. 
KE KF KI KN KR KT L. LB LE LG LI LM LN LO LP LR LS LT LU LW LX M. MA MG MH 
ML MN MO MP MR MS MT MU MW MX N. NB ND NG NH NJ NS OC OD OL OP P. PD 
PE PF PG PH PM PO PS PT PU PW Q. R. RA RB RC RE RG RH RI RK RL RM RN RO RP 
RS RT RU RW RX RY RZ S. SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR 
SS ST SU SV SW SZ T. TC TD TE TF TK TL TM TO TP TS TT TU TW TY UD VI VS W. 
WA WC WE WG WH WK WL WM WN WO WP WR WS WT WW WY XB Y. YW 

 

 

Orange 

AC AE AF AK AV B. BA BC BF BG BH BK BL BN BO BR BT BW BX BY BZ C. CA CB 
CC CD CE CF CG CH CI CK CL CM CN CO CP CR CS CT CU CW CX CY D. DI DN DO 
DR DW E. EA ED EG F. FC FF FP G. GA GB GC GD GF GG GH GI GJ GL GN GO GP GR 
GS GT GU GV GW GX GY GZ H. HB HC HF HG HH HM HP HS HY IN J. JD K. KE KF 
KI KN KR KT L. LB LE LG LI LN LO LP LR LS LT LU LW LX M. MA MG MH ML MN 
MO MP MR MS MT MU MX N. NB ND NH NJ NS NX OC OP P. PE PF PG PH PO PT PU 
PW Q. R. RA RB RC RE RG RH RI RK RL RM RN RO RP RQ RS RT RU RW RY RZ S. 
SA SC SD SE SF SG SH SI SK SL SM SN SP SQ SS ST SU SV SW T. TC TD TE TF TL TM 
TO TP TS TT TU TW TY VI W. WA WC WH WK WN WO WP WR WS WT WW XB Y. 
YW 
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Appendix F  

F.1 Species composition in determined network modules and k-means 

clusters in Taiwan.  

Table A- 4 Species list for the four indicator groups selected by modularity method in 

Taiwan 

Site group Species 

  

Purple Dendrocopos leucotos, Brachypteryx montana, Regulus goodfellowi, 

Cuculus optatus, Carpodacus formosanus, Trochalopteron 

morrisonianum, Locustella alishanensis, Corvus macrorhynchos, 

Heterophasia auricularis, Cinclidium leucurum, Tarsiger indicus, 

Pyrrhula erythaca, Prunella collaris, Delichon dasypus, Parus 

monticolus, Yuhina brunneiceps, Nucifraga caryocatactes, Muscicapa 

ferruginea, Tarsiger johnstoniae, Actinodura morrisoniana, Sitta 

europaea, Horornis acanthizoides, Suthora verreauxi, Phylloscopus 

inornatus, Liocichla steerii, Periparus ater, Fulvetta formosana, 

Troglodytes troglodytes 

  

Red Apus pacificus, Dendrocopos leucotos, Dicrurus macrocercus, Spilornis 

cheela, Megapomatorhinus erythrocnemis, Cuculus poliocephalus, 

Dicrurus aeneus, Zoothera dauma dauma, Apus nipalensis, Enicurus 

scouleri, Dendrocopos canicapillus, Brachypteryx montana, Horornis 

fortipes, Pomatorhinus musicus, Cyanoderma ruficeps, Megalaima 

nuchalis, Accipiter gularis, Regulus goodfellowi, Cuculus optatus, 

Arborophila crudigularis, Ianthocincla ruficeps, Carpodacus 

formosanus, Myophonus insularis, Trochalopteron morrisonianum, 

Locustella alishanensis, Pnoepyga formosana, Corvus macrorhynchos, 

Heterophasia auricularis, Cinclidium leucurum, Tarsiger indicus, 
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Turdus pallidus, Turdus poliocephalus, Motacilla alba, Columba 

pulchricollis, Pericrocotus solaris, Pyrrhula erythaca, Bambusicola 

thoracicus, Poecile varius, Turdus chrysolaus, Delichon dasypus, 

Accipiter virgatus, Garrulus glandarius, Ictinaetus malayensis, Cinclus 

pallasii, Fringilla montifringilla, Zoothera dauma, Streptopelia 

orientalis, Parus monticolus, Yuhina brunneiceps, Nucifraga 

caryocatactes, Muscicapa ferruginea, Dicaeum ignipectus, Ficedula 

parva, Hypsipetes leucocephalus, Aegithalos concinnus, Tarsiger 

johnstoniae, Streptopelia chinensis, Actinodura morrisoniana, Sitta 

europaea, Horornis acanthizoides, Abroscopus albogularis, 

Ianthocincla poecilorhyncha, Horornis diphone/canturians, Parus 

holsti, Suthora verreauxi, Ficedula hyperythra, Liocichla steerii, Spinus 

spinus, Niltava vivida, Otus spilocephalus, Hypothymis azurea, 

Syrmaticus mikado, Emberiza spodocephala, Periparus ater, Falco 

peregrinus, Phoenicurus fuliginosus, Picus canus, Erpornis zantholeuca, 

Treron sieboldii, Zosterops japonicus, Otus lettia, Accipiter trivirgatus, 

Fulvetta formosana, Prinia inornata, Pyrrhula nipalensis, Dendrocitta 

formosae, Schoeniparus brunneus, Glaucidium brodiei, Alcippe 

morrisonia, Lophura swinhoii, Troglodytes troglodytes, Hierococcyx 

sparverioides 

  

Blue Pitta nympha, Acridotheres cristatellus, Apus pacificus, Ardea alba, 

Dendrocopos leucotos, Dicrurus macrocercus, Spilornis cheela, 

Megapomatorhinus erythrocnemis, Egretta garzetta, Dicrurus aeneus, 

Zoothera dauma dauma, Apus nipalensis, Eophona migratoria, Enicurus 

scouleri, Dendrocopos canicapillus, Charadrius dubius, Brachypteryx 

montana, Emberiza pusilla, Horornis fortipes, Pomatorhinus musicus, 

Tachybaptus ruficollis, Cyanoderma ruficeps, Passer rutilans, 

Megalaima nuchalis, Regulus goodfellowi, Cuculus optatus, 

Arborophila crudigularis, Ianthocincla ruficeps, Caprimulgus affinis, 

Garrulax taewanus, Myophonus insularis, Trochalopteron 

morrisonianum, Locustella alishanensis, Urocissa caerulea, Pnoepyga 
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formosana, Corvus macrorhynchos, Heterophasia auricularis, 

Acridotheres javanicus, Cinclidium leucurum, Lonchura striata, Tringa 

ochropus, Copsychus malabaricus, Amaurornis phoenicurus, Turdus 

pallidus, Pycnonotus sinensis, Turdus poliocephalus, Spizixos 

semitorques, Motacilla alba, Oriolus traillii, Pericrocotus divaricatus, 

Riparia riparia, Strix nivicola, Columba pulchricollis, Butastur indicus, 

Pericrocotus solaris, Hirundapus cochinchinensis, Rallina eurizonoides, 

Prinia flaviventris, Motacilla cinerea, Pyrrhula erythaca, Bambusicola 

thoracicus, Cecropis striolata, Poecile varius, Turdus chrysolaus, 

Accipiter soloensis, Nycticorax nycticorax, Delichon dasypus, Pernis 

ptilorhynchus, Accipiter virgatus, Garrulus glandarius, Acridotheres 

fuscus, Ictinaetus malayensis, Cinclus pallasii, Coracina macei, 

Fringilla montifringilla, Zoothera dauma, Streptopelia orientalis, Parus 

monticolus, Phylloscopus coronatus, Yuhina brunneiceps, Nucifraga 

caryocatactes, Hirundo tahitica, Lanius cristatus, Muscicapa ferruginea, 

Dicaeum ignipectus, Streptopelia tranquebarica, Hypsipetes 

leucocephalus, Urocissa erythrorhyncha, Aegithalos concinnus, 

Acridotheres tristis, Hirundo rustica, Ixobrychus cinnamomeus, 

Pycnonotus taivanus, Streptopelia chinensis, Sinosuthora webbiana, 

Actinodura morrisoniana, Sitta europaea, Horornis acanthizoides, 

Calliope calliope, Columba livia, Pandion haliaetus, Passer montanus, 

Pica pica, Lonchura punctulata, Prinia crinigera, Riparia chinensis, 

Lanius schach, Abroscopus albogularis, Cisticola juncidis, Ianthocincla 

poecilorhyncha, Centropus bengalensis, Urosphena squameiceps, 

Horornis diphone/canturians, Terpsiphone atrocaudata, Parus holsti, 

Phoenicurus auroreus, Phylloscopus inornatus, Ficedula hyperythra, 

Liocichla steerii, Phylloscopus proregulus, Niltava vivida, Anthus 

rubescens, Otus spilocephalus, Cisticola exilis, Bubulcus ibis, Motacilla 

tschutschensis, Hypothymis azurea, Gorsachius melanolophus, 

Ianthocincla chinensis, Milvus migrans, Emberiza spodocephala, 

Phylloscopus borealis, Periparus ater, Cacatua galerita, Phoenicurus 

fuliginosus, Nisaetus nipalensis, Picus canus, Dicaeum minullum, 

Erpornis zantholeuca, Treron sieboldii, Butorides striata, Anas 
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platyrhynchos (Domestic), Zosterops japonicus, Alcedo atthis, 

Chalcophaps indica, Accipiter gentilis, Ardea cinerea, Otus lettia, 

Accipiter trivirgatus, Muscicapa latirostris, Strix leptogrammica, Prinia 

inornata, Pyrrhula nipalensis, Dendrocitta formosae, Anthus hodgsoni, 

Glareola maldivarum, Schoeniparus brunneus, Aix galericulata, 

Phasianus colchicus, Actitis hypoleucos, Glaucidium brodiei, Alcippe 

morrisonia, Lophura swinhoii, Monticola solitarius, Pycnonotus sinensis 

X Pycnonotus taivanus, Buteo buteo, Copsychus saularis, Hierococcyx 

sparverioides 

  

Green Gracula religiosa, Pitta nympha, Acridotheres cristatellus, Apus 

pacificus, Ardea alba, Dicrurus macrocercus, Anthus richardi, Spilornis 

cheela, Garrulax canorus, Garrulax canorus X Garrulax taewanus, 

Megapomatorhinus erythrocnemis, Anas crecca, Egretta garzetta, 

Cuculus poliocephalus, Dicrurus aeneus, Apus nipalensis, Tringa 

stagnatilis, Enicurus scouleri, Dendrocopos canicapillus, Alauda 

gulgula, Larus fuscus, Sternula albifrons, Charadrius dubius, Horornis 

fortipes, Pomatorhinus musicus, Tachybaptus ruficollis, Cyanoderma 

ruficeps, Passer rutilans, Mesophoyx intermedia, Gallinago megala, 

Calidris temminckii, Megalaima nuchalis, Recurvirostra avosetta, Xenus 

cinereus, Pluvialis fulva, Accipiter gularis, Horornis diphone, 

Hydrophasianus chirurgus, Lonchura oryzivora, Cuculus optatus, 

Accipiter nisus, Arborophila crudigularis, Caprimulgus affinis, 

Garrulax taewanus, Myophonus insularis, Trochalopteron 

morrisonianum, Urocissa caerulea, Cuculus micropterus, Corvus 

macrorhynchos, Emberiza rustica, Gallinago gallinago, Heterophasia 

auricularis, Acridotheres javanicus, Cinclidium leucurum, Fulica atra, 

Anas querquedula, Emberiza tristrami, Anthus gustavi, Chlidonias 

leucopterus, Euodice malabarica, Lonchura striata, Tringa ochropus, 

Copsychus malabaricus, Amaurornis phoenicurus, Turdus pallidus, 

Pycnonotus sinensis, Turdus poliocephalus, Ianthocincla sannio, 

Spizixos semitorques, Motacilla alba, Anas acuta, Calidris acuminata, 
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Oriolus traillii, Ardeola bacchus, Pericrocotus divaricatus, Riparia 

riparia, Columba pulchricollis, Sturnia sinensis, Butastur indicus, 

Gallirallus striatus, Pericrocotus solaris, Muscicapa griseisticta, 

Sturnus cineraceus, Rallina eurizonoides, Sturnia malabarica, Prinia 

flaviventris, Motacilla cinerea, Bambusicola thoracicus, Eurystomus 

orientalis, Tringa totanus, Anthus cervinus, Cecropis striolata, Turdus 

chrysolaus, Accipiter soloensis, Halcyon coromanda, Anas penelope, 

Nycticorax nycticorax, Egretta sacra, Acrocephalus orientalis, Delichon 

dasypus, Pernis ptilorhynchus, Charadrius alexandrinus, Accipiter 

virgatus, Acridotheres fuscus, Anas zonorhyncha, Zoothera dauma, 

Streptopelia orientalis, Chloris sinica, Calidris subminuta, Tringa 

nebularia, Yuhina brunneiceps, Hirundo tahitica, Lanius cristatus, 

Gallinula chloropus, Dicaeum ignipectus, Calidris ruficollis, Falco 

tinnunculus, Streptopelia tranquebarica, Psittacula krameri, Hypsipetes 

leucocephalus, Treron formosae, Egretta eulophotes, Threskiornis 

aethiopicus, Acridotheres tristis, Hirundo rustica, Anser domestica, 

Ixobrychus cinnamomeus, Acridotheres grandis, Pycnonotus taivanus, 

Streptopelia chinensis, Sinosuthora webbiana, Himantopus himantopus, 

Rostratula benghalensis, Calliope calliope, Columba livia, Pandion 

haliaetus, Passer montanus, Pica pica, Lonchura punctulata, Prinia 

crinigera, Turdus eunomus, Turnix suscitator, Hypsipetes amaurotis, 

Riparia chinensis, Lanius schach, Abroscopus albogularis, Cisticola 

juncidis, Anas clypeata, Cairina moschata (domestic), Centropus 

bengalensis, Urosphena squameiceps, Horornis diphone/canturians, 

Terpsiphone atrocaudata, Ardea purpurea, Sturnus sericeus, Anas 

platyrhynchos var. domestica, Ixobrychus sinensis, Phoenicurus 

auroreus, Tringa brevipes, Phylloscopus inornatus, Phylloscopus 

proregulus, Cisticola exilis, Motacilla citreola, Bubulcus ibis, Motacilla 

tschutschensis, Oriolus chinensis, Cygnus atratus (Domestic), Larus 

crassirostris, Limosa limosa, Hypothymis azurea, Gorsachius 

melanolophus, Platalea minor, Elanus caeruleus, Saxicola maurus, 

Chlidonias hybrida, Calidris alpina, Gracupica nigricollis, Milvus 

migrans, Lonchura atricapilla, Emberiza spodocephala, Phylloscopus 
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borealis, Acridotheres burmannicus, Cacatua galerita, Falco 

peregrinus, Phoenicurus fuliginosus, Dicaeum minullum, Erpornis 

zantholeuca, Treron sieboldii, Butorides striata, Anas platyrhynchos 

(Domestic), Zosterops japonicus, Porzana fusca, Alcedo atthis, 

Chalcophaps indica, Charadrius mongolus, Ardea cinerea, Otus lettia, 

Accipiter trivirgatus, Aythya fuligula, Muscicapa latirostris, Alauda 

arvensis, Sturnus vulgaris, Phylloscopus fuscatus, Prinia inornata, 

Ninox japonica, Aplonis panayensis, Emberiza rutila, Bycanistes 

bucinator, Eudynamys scolopaceus, Dendrocitta formosae, Anthus 

hodgsoni, Estrilda melpoda, Estrilda astrild, Glareola maldivarum, 

Sterna hirundo, Schoeniparus brunneus, Phasianus colchicus, 

Charadrius hiaticula, Actitis hypoleucos, Glaucidium brodiei, Alcippe 

morrisonia, Tarsiger cyanurus, Monticola solitarius, Pycnonotus 

sinensis X Pycnonotus taivanus, Copsychus saularis, Calidris 

ferruginea, Troglodytes troglodytes, Tringa glareola, Phalacrocorax 

carbo 

 

 

Table A- 5 Species list for the four indicator groups selected by clustering method in 

Taiwan 

Site group Species 

  

Purple Apus pacificus, Dendrocopos leucotos, Dicrurus macrocercus, Spilornis 

cheela, Megapomatorhinus erythrocnemis, Egretta garzetta, Cuculus 

poliocephalus, Dicrurus aeneus, Zoothera dauma dauma, Apus 

nipalensis, Enicurus scouleri, Dendrocopos canicapillus, Brachypteryx 

montana, Horornis fortipes, Pomatorhinus musicus, Cyanoderma 

ruficeps, Passer rutilans, Megalaima nuchalis, Accipiter gularis, 

Regulus goodfellowi, Cuculus optatus, Arborophila crudigularis, 

Ianthocincla ruficeps, Carpodacus formosanus, Myophonus insularis, 
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Trochalopteron morrisonianum, Locustella alishanensis, Urocissa 

caerulea, Pnoepyga formosana, Corvus macrorhynchos, Heterophasia 

auricularis, Cinclidium leucurum, Tarsiger indicus, Turdus pallidus, 

Pycnonotus sinensis, Turdus poliocephalus, Spizixos semitorques, 

Motacilla alba, Columba pulchricollis, Pericrocotus solaris, 

Hirundapus cochinchinensis, Prinia flaviventris, Motacilla cinerea, 

Pyrrhula erythaca, Bambusicola thoracicus, Cecropis striolata, Poecile 

varius, Turdus chrysolaus, Prunella collaris, Delichon dasypus, 

Accipiter virgatus, Garrulus glandarius, Ictinaetus malayensis, Cinclus 

pallasii, Fringilla montifringilla, Zoothera dauma, Streptopelia 

orientalis, Parus monticolus, Phylloscopus coronatus, Yuhina 

brunneiceps, Nucifraga caryocatactes, Hirundo tahitica, Muscicapa 

ferruginea, Dicaeum ignipectus, Ficedula parva, Hypsipetes 

leucocephalus, Urocissa erythrorhyncha, Aegithalos concinnus, 

Tarsiger johnstoniae, Streptopelia chinensis, Sinosuthora webbiana, 

Actinodura morrisoniana, Sitta europaea, Horornis acanthizoides, 

Calliope calliope, Passer montanus, Prinia crinigera, Abroscopus 

albogularis, Ianthocincla poecilorhyncha, Horornis diphone/canturians, 

Parus holsti, Suthora verreauxi, Phoenicurus auroreus, Phylloscopus 

inornatus, Ficedula hyperythra, Liocichla steerii, Spinus spinus, Niltava 

vivida, Otus spilocephalus, Hypothymis azurea, Syrmaticus mikado, 

Gorsachius melanolophus, Emberiza spodocephala, Phylloscopus 

borealis, Periparus ater, Falco peregrinus, Phoenicurus fuliginosus, 

Picus canus, Erpornis zantholeuca, Treron sieboldii, Zosterops 

japonicus, Chalcophaps indica, Otus lettia, Accipiter trivirgatus, 

Fulvetta formosana, Prinia inornata, Pyrrhula nipalensis, Dendrocitta 

formosae, Schoeniparus brunneus, Aix galericulata, Glaucidium brodiei, 

Alcippe morrisonia, Lophura swinhoii, Troglodytes troglodytes, 

Hierococcyx sparverioides 

  

Red Pitta nympha, Acridotheres cristatellus, Apus pacificus, Ardea alba, 

Dicrurus macrocercus, Spilornis cheela, Megapomatorhinus 
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erythrocnemis, Egretta garzetta, Dicrurus aeneus, Apus nipalensis, 

Enicurus scouleri, Dendrocopos canicapillus, Alauda gulgula, 

Charadrius dubius, Brachypteryx montana, Emberiza pusilla, Horornis 

fortipes, Pomatorhinus musicus, Tachybaptus ruficollis, Cyanoderma 

ruficeps, Passer rutilans, Mesophoyx intermedia, Megalaima nuchalis, 

Accipiter gularis, Cuculus optatus, Accipiter nisus, Arborophila 

crudigularis, Ianthocincla ruficeps, Caprimulgus affinis, Garrulax 

taewanus, Myophonus insularis, Trochalopteron morrisonianum, 

Locustella alishanensis, Urocissa caerulea, Corvus macrorhynchos, 

Emberiza rustica, Heterophasia auricularis, Acridotheres javanicus, 

Cinclidium leucurum, Lonchura striata, Copsychus malabaricus, 

Amaurornis phoenicurus, Turdus pallidus, Pycnonotus sinensis, Spizixos 

semitorques, Motacilla alba, Oriolus traillii, Pericrocotus divaricatus, 

Riparia riparia, Strix nivicola, Columba pulchricollis, Butastur indicus, 

Pericrocotus solaris, Hirundapus cochinchinensis, Muscicapa 

griseisticta, Rallina eurizonoides, Prinia flaviventris, Motacilla cinerea, 

Bambusicola thoracicus, Cecropis striolata, Poecile varius, Turdus 

chrysolaus, Accipiter soloensis, Nycticorax nycticorax, Egretta sacra, 

Delichon dasypus, Pernis ptilorhynchus, Accipiter virgatus, Garrulus 

glandarius, Acridotheres fuscus, Ictinaetus malayensis, Cinclus pallasii, 

Coracina macei, Fringilla montifringilla, Anas zonorhyncha, Zoothera 

dauma, Streptopelia orientalis, Parus monticolus, Phylloscopus 

coronatus, Yuhina brunneiceps, Hirundo tahitica, Lanius cristatus, 

Muscicapa ferruginea, Gallinula chloropus, Dicaeum ignipectus, 

Streptopelia tranquebarica, Hypsipetes leucocephalus, Aegithalos 

concinnus, Acridotheres tristis, Hirundo rustica, Pycnonotus taivanus, 

Streptopelia chinensis, Sinosuthora webbiana, Actinodura 

morrisoniana, Horornis acanthizoides, Calliope calliope, Columba livia, 

Pandion haliaetus, Passer montanus, Pica pica, Lonchura punctulata, 

Prinia crinigera, Riparia chinensis, Lanius schach, Abroscopus 

albogularis, Cisticola juncidis, Ianthocincla poecilorhyncha, Centropus 

bengalensis, Urosphena squameiceps, Horornis diphone/canturians, 

Terpsiphone atrocaudata, Parus holsti, Phoenicurus auroreus, 
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Phylloscopus inornatus, Ficedula hyperythra, Liocichla steerii, 

Phylloscopus proregulus, Niltava vivida, Anthus rubescens, Otus 

spilocephalus, Bubulcus ibis, Motacilla tschutschensis, Oriolus 

chinensis, Hypothymis azurea, Gorsachius melanolophus, Ianthocincla 

chinensis, Milvus migrans, Emberiza spodocephala, Phylloscopus 

borealis, Cacatua galerita, Phoenicurus fuliginosus, Nisaetus nipalensis, 

Picus canus, Dicaeum minullum, Erpornis zantholeuca, Treron sieboldii, 

Butorides striata, Anas platyrhynchos (Domestic), Zosterops japonicus, 

Porzana fusca, Alcedo atthis, Chalcophaps indica, Ardea cinerea, Otus 

lettia, Accipiter trivirgatus, Muscicapa latirostris, Strix leptogrammica, 

Prinia inornata, Pyrrhula nipalensis, Eudynamys scolopaceus, 

Dendrocitta formosae, Anthus hodgsoni, Schoeniparus brunneus, 

Phasianus colchicus, Actitis hypoleucos, Glaucidium brodiei, Alcippe 

morrisonia, Lophura swinhoii, Monticola solitarius, Pycnonotus sinensis 

X Pycnonotus taivanus, Buteo buteo, Copsychus saularis, Hierococcyx 

sparverioides 

  

Blue Pitta nympha, Acridotheres cristatellus, Apus pacificus, Ardea alba, 

Dicrurus macrocercus, Anthus richardi, Spilornis cheela, Garrulax 

canorus, Megapomatorhinus erythrocnemis, Anas crecca, Egretta 

garzetta, Cuculus poliocephalus, Dicrurus aeneus, Apus nipalensis, 

Tringa stagnatilis, Eophona migratoria, Dendrocopos canicapillus, 

Alauda gulgula, Sternula albifrons, Charadrius dubius, Horornis 

fortipes, Pomatorhinus musicus, Tachybaptus ruficollis, Cyanoderma 

ruficeps, Mesophoyx intermedia, Calidris temminckii, Megalaima 

nuchalis, Xenus cinereus, Pluvialis fulva, Horornis diphone, Cuculus 

optatus, Arborophila crudigularis, Caprimulgus affinis, Garrulax 

taewanus, Myophonus insularis, Urocissa caerulea, Cuculus 

micropterus, Corvus macrorhynchos, Gallinago gallinago, 

Heterophasia auricularis, Acridotheres javanicus, Cinclidium leucurum, 

Fulica atra, Anas querquedula, Emberiza tristrami, Euodice malabarica, 

Lonchura striata, Tringa ochropus, Copsychus malabaricus, 
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Amaurornis phoenicurus, Turdus pallidus, Pycnonotus sinensis, Turdus 

poliocephalus, Ianthocincla sannio, Spizixos semitorques, Motacilla 

alba, Anas acuta, Calidris acuminata, Oriolus traillii, Ardeola bacchus, 

Pericrocotus divaricatus, Riparia riparia, Columba pulchricollis, 

Sturnia sinensis, Butastur indicus, Gallirallus striatus, Pericrocotus 

solaris, Muscicapa griseisticta, Rallina eurizonoides, Sturnia 

malabarica, Prinia flaviventris, Motacilla cinerea, Bambusicola 

thoracicus, Eurystomus orientalis, Tringa totanus, Anthus cervinus, 

Cecropis striolata, Turdus chrysolaus, Accipiter soloensis, Halcyon 

coromanda, Anas penelope, Nycticorax nycticorax, Acrocephalus 

orientalis, Delichon dasypus, Pernis ptilorhynchus, Charadrius 

alexandrinus, Accipiter virgatus, Ictinaetus malayensis, Anas 

zonorhyncha, Zoothera dauma, Streptopelia orientalis, Calidris 

subminuta, Tringa nebularia, Parus monticolus, Yuhina brunneiceps, 

Hirundo tahitica, Lanius cristatus, Gallinula chloropus, Dicaeum 

ignipectus, Calidris ruficollis, Falco tinnunculus, Streptopelia 

tranquebarica, Psittacula krameri, Hypsipetes leucocephalus, 

Aegithalos concinnus, Treron formosae, Acridotheres tristis, Hirundo 

rustica, Ixobrychus cinnamomeus, Pycnonotus taivanus, Streptopelia 

chinensis, Sinosuthora webbiana, Himantopus himantopus, Rostratula 

benghalensis, Calliope calliope, Columba livia, Pandion haliaetus, 

Passer montanus, Pica pica, Lonchura punctulata, Prinia crinigera, 

Turdus eunomus, Turnix suscitator, Hypsipetes amaurotis, Riparia 

chinensis, Lanius schach, Abroscopus albogularis, Cisticola juncidis, 

Anas clypeata, Cairina moschata (domestic), Centropus bengalensis, 

Urosphena squameiceps, Horornis diphone/canturians, Terpsiphone 

atrocaudata, Ardea purpurea, Sturnus sericeus, Ixobrychus sinensis, 

Phoenicurus auroreus, Tringa brevipes, Phylloscopus inornatus, 

Liocichla steerii, Phylloscopus proregulus, Niltava vivida, Cisticola 

exilis, Bubulcus ibis, Motacilla tschutschensis, Oriolus chinensis, Larus 

crassirostris, Limosa limosa, Hypothymis azurea, Gorsachius 

melanolophus, Platalea minor, Elanus caeruleus, Chlidonias hybrida, 

Gracupica nigricollis, Milvus migrans, Lonchura atricapilla, Emberiza 
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spodocephala, Phylloscopus borealis, Acridotheres burmannicus, Falco 

peregrinus, Phoenicurus fuliginosus, Picus canus, Erpornis zantholeuca, 

Treron sieboldii, Butorides striata, Anas platyrhynchos (Domestic), 

Zosterops japonicus, Porzana fusca, Alcedo atthis, Chalcophaps indica, 

Charadrius mongolus, Accipiter gentilis, Ardea cinerea, Otus lettia, 

Accipiter trivirgatus, Aythya fuligula, Muscicapa latirostris, 

Phylloscopus fuscatus, Prinia inornata, Ninox japonica, Aplonis 

panayensis, Emberiza rutila, Bycanistes bucinator, Dendrocitta 

formosae, Anthus hodgsoni, Estrilda melpoda, Glareola maldivarum, 

Schoeniparus brunneus, Phasianus colchicus, Actitis hypoleucos, 

Glaucidium brodiei, Alcippe morrisonia, Monticola solitarius, 

Pycnonotus sinensis X Pycnonotus taivanus, Calidris ferruginea, Tringa 

glareola, Phalacrocorax carbo 

  

Green Gracula religiosa, Acridotheres cristatellus, Ardea alba, Dicrurus 

macrocercus, Anthus richardi, Spilornis cheela, Garrulax canorus, 

Garrulax canorus X Garrulax taewanus, Megapomatorhinus 

erythrocnemis, Anas crecca, Egretta garzetta, Dicrurus aeneus, Apus 

nipalensis, Tringa stagnatilis, Enicurus scouleri, Dendrocopos 

canicapillus, Alauda gulgula, Larus fuscus, Sternula albifrons, 

Charadrius dubius, Pomatorhinus musicus, Tachybaptus ruficollis, 

Cyanoderma ruficeps, Mesophoyx intermedia, Gallinago megala, 

Megalaima nuchalis, Recurvirostra avosetta, Pluvialis fulva, 

Hydrophasianus chirurgus, Lonchura oryzivora, Cuculus optatus, 

Caprimulgus affinis, Garrulax taewanus, Myophonus insularis, 

Trochalopteron morrisonianum, Urocissa caerulea, Corvus 

macrorhynchos, Gallinago gallinago, Acridotheres javanicus, Fulica 

atra, Anthus gustavi, Chlidonias leucopterus, Euodice malabarica, 

Lonchura striata, Tringa ochropus, Copsychus malabaricus, 

Amaurornis phoenicurus, Turdus pallidus, Pycnonotus sinensis, Spizixos 

semitorques, Motacilla alba, Calidris acuminata, Ardeola bacchus, 

Sturnia sinensis, Butastur indicus, Gallirallus striatus, Pericrocotus 
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solaris, Muscicapa griseisticta, Sturnus cineraceus, Sturnia malabarica, 

Prinia flaviventris, Motacilla cinerea, Bambusicola thoracicus, Tringa 

totanus, Anthus cervinus, Cecropis striolata, Turdus chrysolaus, Anas 

penelope, Nycticorax nycticorax, Egretta sacra, Acrocephalus orientalis, 

Delichon dasypus, Charadrius alexandrinus, Accipiter virgatus, 

Acridotheres fuscus, Anas zonorhyncha, Streptopelia orientalis, Chloris 

sinica, Calidris subminuta, Tringa nebularia, Yuhina brunneiceps, 

Hirundo tahitica, Lanius cristatus, Gallinula chloropus, Falco 

tinnunculus, Streptopelia tranquebarica, Hypsipetes leucocephalus, 

Egretta eulophotes, Threskiornis aethiopicus, Acridotheres tristis, 

Hirundo rustica, Anser domestica, Ixobrychus cinnamomeus, 

Acridotheres grandis, Pycnonotus taivanus, Streptopelia chinensis, 

Sinosuthora webbiana, Himantopus himantopus, Rostratula 

benghalensis, Calliope calliope, Columba livia, Pandion haliaetus, 

Passer montanus, Pica pica, Lonchura punctulata, Prinia crinigera, 

Turdus eunomus, Turnix suscitator, Riparia chinensis, Lanius schach, 

Abroscopus albogularis, Cisticola juncidis, Anas clypeata, Cairina 

moschata (domestic), Centropus bengalensis, Horornis 

diphone/canturians, Sturnus sericeus, Anas platyrhynchos var. 

domestica, Ixobrychus sinensis, Phoenicurus auroreus, Tringa brevipes, 

Phylloscopus inornatus, Cisticola exilis, Motacilla citreola, Bubulcus 

ibis, Motacilla tschutschensis, Cygnus atratus (Domestic), Hypothymis 

azurea, Gorsachius melanolophus, Elanus caeruleus, Saxicola maurus, 

Chlidonias hybrida, Calidris alpina, Gracupica nigricollis, Milvus 

migrans, Lonchura atricapilla, Emberiza spodocephala, Phylloscopus 

borealis, Acridotheres burmannicus, Cacatua galerita, Falco 

peregrinus, Phoenicurus fuliginosus, Treron sieboldii, Butorides striata, 

Anas platyrhynchos (Domestic), Zosterops japonicus, Porzana fusca, 

Alcedo atthis, Charadrius mongolus, Ardea cinerea, Otus lettia, 

Accipiter trivirgatus, Muscicapa latirostris, Alauda arvensis, Sturnus 

vulgaris, Prinia inornata, Aplonis panayensis, Eudynamys scolopaceus, 

Dendrocitta formosae, Estrilda melpoda, Estrilda astrild, Glareola 

maldivarum, Sterna hirundo, Phasianus colchicus, Charadrius hiaticula, 
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Actitis hypoleucos, Alcippe morrisonia, Tarsiger cyanurus, Monticola 

solitarius, Copsychus saularis, Troglodytes troglodytes, Tringa glareola 
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Glossary of Terms 

Affiliation network are two mode networks that describe not only the direct linkage between 

members but also the events these members attend to (biologically, the habitat that species 

occupy) and the relationship among events. 

Asymptote (of species accumulation curve) represents the saturation point in species richness, 

it can help determine the least sampling effort for estimating total richness in ecologically 

similar regions.  

Clench function is derived from the Michaelis-Menten kinetics which is an enzymatic 

reaction rate curve based on the concentration of a substrate. Biologically, this means that 

the probability of adding new species increases (up to an asymptote) as more time is spent 

in the field.  

Edge (in a network) represents the connection by a relationship between a pair of node (the 

basic unit of network).  

Fowlkes-Mallows index is an index compares two clusters and evaluates the extent of 

similarity or dissimilarity between the clusters. 

Indicator species define characteristics of habitat and can be applied to predict the habitat type 

of unknown or unsampled sites. 

Michaelis-Menten kinetics is an equation in biochemistry describing the rate of enzymatic 

reactions by relating reaction rate to the concentration of a substrate. The reaction plot is a 

saturate curve with asymptote representing maximum reaction rate achieved by the system.  

Modularity defines subgroups (termed modules) in a network. The connections between nodes 

(the basic unit of network) are measured and nodes possess a higher degree of connections 

are assigned in the same module, with lower degree of connections to nodes in other 

modules. 
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Mode (in a network) means the type of nodes (e.g. two-mode network), or the type of network 

(e.g. default mode network).   

Modules (in a network) are subgroups within a network. Nodes in one module have stronger 

or more frequent connections among them comparing to nodes outside this module.  

Module hub is the node with the highest degree in a module and represents the most dominant 

member (i.e. the member that links to most other members). This type of node can efficiently 

indicate the presence of other members in this module. 

Network (ecological) representing biological interactions in an ecological communities. In this 

type of network nodes usually are species and the edges stands for interactions between 

species. The property of ecological networks can be used to illustrate the stability or fragility 

of ecological communities. 

Nestedness is a measure of structure in an ecological system. In a species-sites system, species 

richness in each site are arranged from speciose site to depauperate site and the species in 

depauperate site are a subset of those in speciose ones. Nestness is measured by ‘temperature’ 

which indicates the system entropy. Therefore low nestedness reflects high turnover of 

species in space or time wheareas high nestedness means ordered accumulation or loss. 

Node (in a network) is the basic element for constructing a network.  

Rarefaction curve is a technique to assess species richness from a given number of individual 

samples, based on rarefaction which reduce the curve length for comparing species richness 

data among sets with different sample sizes. This curve is a plot of the number of species as 

a function of the number of samples by multiple random re-sampling process. 

Species accumulation curve is a plot descries the relationship between species richness and 

sampling effort or area. Species number accumulates along with the increase of sampling 

size or sampling area. 

Species distribution model applies environmental variables to modelling species spatial 

distribution based on species’ environment requirements (realized ecological niche). 
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TWINSPAN is a short form of Two Way Indicator Species Analysis which is a numerical 

method on habitat association of species assemblage. 
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