
Anderson, B., Manouseli, D. and Nagarajan, M., (2017) Estimating Scenarios for Domestic Water Demand under Drought Conditions in 
England and Wales, Water Science and Technology: Water Supply (in press). 

Page 1 of 10   	

Estimating Scenarios for Domestic Water Demand under 1	

Drought Conditions in England and Wales 2	

B. Anderson *, D. Manouseli*, M. Nagarajan** 3	

* Energy & Climate Change Division, Faculty of Engineering and the Environment University of Southampton, United 4	
Kingdom, d.manouseli@soton.ac.uk 5	
** Coventry University, United Kingdom 6	

Abstract 7	

This paper presents preliminary results from the development of IMPETUS model, a domestic water demand 8	
microsimulation model which was developed to estimate the results of a range of scenarios of domestic demand 9	
under drought conditions. The model is intended to enable water resource management practitioners to assess the 10	
likely impact of potential interventions in particular catchment areas. It has been designed to be driven by seasonal 11	
catchment level forecasts of potential hydrological droughts based on innovative climate and groundwater models.  12	
The current version of the model is driven by reconstructed historical drought data for the Colne catchment in the 13	
East of England from 1995 to 2014. This provides a framework of five drought phases (Normal, Developing, 14	
Drought, Severe and Recovering) which are mapped to policy driven interventions such as increased provision of 15	
water efficiency technologies and temporary water-use bans. The model uses UK Census 2011 data to develop a 16	
synthetic household population that matches the socio-demographics of the catchment and it microsimulates (at 17	
the household level) the consequences of water efficiency interventions retrospectively (1995-2014). Demand 18	
estimates for reconstructed drought histories demonstrate that the model is able to adequately estimate end-use 19	
water consumption. Also, the potential value of the model in supporting cost-benefit analysis of specific 20	
interventions is illustrated. We conclude by discussing future directions for the work. 21	
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 1	

INTRODUCTION 2	

The Department for Environment, Food and Rural Affairs (DEFRA 2008) states that as a result 3	
of growing population, and changes in the way people use water in the UK, more than half of 4	
the current public water supply is for residential use. As a result, controlling domestic water 5	
demand is a priority in the UK. Whilst work on improved ‘water supply’ side forecasting is 6	
well established, limited attempts to effectively address uncertainties related to climate change 7	
and water demand management measures in demand forecasting models for longer term 8	
resource planning purposes have been reported. In the UK, the total range of forecasts found 9	
in Water Resource Management Plans of UK water providers is almost 50%, demonstrating 10	
the uncertainty and the high geographic variance of water demand (Atkins 2015). As a result 11	
there are few tools that can enable stakeholders to assess the likely costs and benefits of 12	
particular conservation and/or intervention measures (Parker and Wilby 2013). 13	

There is a general consensus that the UK will probably experience warmer conditions and 14	
lower summer rainfall (Jenkins et al. 2010; Parker 2014; Water UK 2016) Repeated 15	
occurrences of dry winters, prolonged lack of rainfall and lack of ground water recharge due 16	
to urban flooding, can lead to drought conditions which in turn increase the risk of water 17	
resources not meeting quality standards (Met Office 2014, Environment Agency UK 2017). In 18	
South East England, a region already suffering water stress, summer precipitation is projected 19	
to decrease by 9% by the 2080s (Jenkins et al. 2010). Droughts have severe impacts on 20	
societies, economies, and agriculture and forward planning is critical for managing the 21	
potential impacts of drought. Early warning of impending drought conditions making use of 22	
improved meteorological, hydrological and also demand forecasts would enable stakeholders 23	
to take appropriate demand mitigation actions and to effectively manage diminishing water 24	
resources to minimize adverse impacts. Continued lack of rainfall can lead to temporary water 25	
restrictions imposed by water providers on non-essential uses such as garden watering and car 26	
washing. A few studies show that temporary use bans (TUBs) can decrease consumption by 27	
over 30%, especially for high water users (Polebitski and Palmer 2010). In parallel, UK water 28	
providers have been launching domestic water efficiency initiatives over the past ten years and 29	
recent research has shown that there is scope for substantial per capita water savings especially 30	
if the programs are focused on certain groups such as smaller and financially stretched 31	
households (Manouseli et al. 2017).  32	

However, little is still known about householders’ response to drought or water efficiency 33	
measures in the UK and there are few if any studies which incorporate this evidence into models 34	
of demand forecasting in support of operational decisions about the most likely cost-effective 35	
drought management measures. In addition, accurate long term forecasting is restricted by the 36	
difficulties in gathering all the necessary data, as it is usually hard and costly to collect (Memon 37	
and Butler 2006; Atkins 2015). Further, Census data are commonly published as separate 38	
aggregated tables rather than microdata resulting in information loss (Clarke et al. 1997) and 39	
forcing area level ‘average’ projections. To address these limitations, and following a 40	
substantial evidence and methods review (Manouseli, Anderson, and Nagarajan 2017), we have 41	
implemented a microsimulation model of domestic end-use water demand. 42	

Microsimulation is an established methodology in urban and regional modelling. It has been 43	
used since 1957 (Orcutt 1957) mainly to examine the effect of policies before they are 44	
implemented (Birkin et al. 1996; Tanton et al. 2009; Anderson 2012) as well as for tax and 45	
benefit modelling (Harding et al. 2009). Microsimulation has also been proved to be extremely 46	
useful in generating small area estimates using survey data and a large volume of research has 47	
been undertaken in this direction in Britain and Australia. The main benefit of such models is 48	
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that they allow a survey designed for generating large area estimates to be used to produce 1	
reliable estimates on the micro-level (households or individuals) as well, avoiding the need to 2	
increase the sample size (Tanton, Williamson, and Harding 2014). 3	

Recently published research shows that there is scope of using the technique in the area of 4	
resource demand for the residential sector. (Zuo, Birkin, and Malleson 2014) used the 5	
technique to investigate variations in energy demand within and between household groups, 6	
taking climate change and behavioural changes into account. A detailed survey by the UK 7	
Department of Energy and Climate Change was used in this study. (Chingcuanco and Miller 8	
2012) used household energy microdata in Toronto, putting forward a model of residential 9	
space heating demand-a first step towards a comprehensive urban energy demand model.  10	

However, microsimulation has not been as widely used in the field of urban water demand 11	
forecasting (Clarke et al. 1997; Mitchell 1999; Williamson et al. 2002). Williamson et al. 12	
(2002) used a ‘static microsimulation’ method in their study. A 30% increase in household 13	
water consumption was predicted for the Yorkshire Water region from 1991 to 2025 and the 14	
most probable cause of this increase was consumer behaviour change. They compared these 15	
results with those resulted from (Herrington 1996) who used a micro-components based model, 16	
stressing that the demographic part of his model was driven only by changes in average 17	
household size. However, they acknowledge that their model has limited application to small 18	
areas. Advocates of ‘static microsimulation’ claim that this technique addresses the limitations 19	
that micro-component studies have, such as the lack of spatially relevant information on trends, 20	
by incorporating enhanced spatial resolution and a stronger approach to dealing with household 21	
consumption monitor data that usually suffer from bias. Instead of classifying households into 22	
a limited number of groups (e.g. household size, Acorn class), each household is represented 23	
by a list of potentially unique attributes relating to water-consuming behaviour (Williamson et 24	
al. 2002). 25	

The process described in the present work comprises the first stage of modelling. Our second 26	
stage will be using household responses to a water-using practices survey and will infer 27	
monthly consumption out of the reported practices for a sample of 1800 households. The 28	
IMPETUS practices-based model will explore whether the introduction of practices in a 29	
microsimulation model improves our understanding of how water is used in the household and 30	
how drought management measures implemented during relevant drought phases affected 31	
domestic water demand.  32	

 33	

METHODS 34	

The model reported here uses a synthetic sample of 1800 households, which was created to 35	
match the distribution of household sizes reported by the UK Census 2011 for the Colne 36	
catchment in the East of England. The end uses (micro-components) that are incorporated in 37	
the model are: Basin, Bath, Dishwasher, External, Kitchen Sink, Shower, WC and Washing 38	
Machine (see Figure 1).  39	

We started by setting each component to the relevant median litres per day as reported in Table 40	
1 (Parker 2014) and applied occupancy based adjustments using coefficients from (Parker 41	
2014) (regression coefficients for 2, 3, 4 and 5 occupants-Table A.3 & Table A.4). To introduce 42	
random variation into the micro-components’ distributions we then applied a skewed normal 43	
distribution to each household micro-component using the original occupancy-based median 44	
as the distribution mean. Unfortunately, we had no information on the correct standard 45	
deviation (s.d) nor skewness but through experimentation we have identified a range of s.d 46	
values and xi (skewness) parameters that, when used with the R function rsnorm for the 47	
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simulation of a stationary Gaussian time series (Wuertz et al. 2016), produce results that are 1	
similar to Parker's (2014) per capita/day distributions.  2	

Table 1 Descriptive statistics of the daily microcomponent values. Source: Parker (2014) 3	

 Metered Unmetered 

 
Mean % 
of daily 
total l/H 

Mean/   
Median 

Standard 
Error 

Sample 
Size 

Mean % 
of daily 
total l/H 

Mean/ 
Median 

 Standard    
Error 

Sample 
Size 

 (l/H) (l/H)  (l/H) (l/H)  
Basin 11 24/17 0.09 81976 10 34/27 0.07 166298 
Bath 10 62/55 0.19 29419 15 89/83 0.14 95589 
Dishwasher 4 26/23 0.09 17205 2 27/25 0.05 23684 
Kitchen sink 17 38/32 0.1 85114 16 53/46 0.09 173665 
Shower 7 46/31 0.16 22750 7 51/40 0.12 66496 
WC 36 84/78 0.17 80323 34 116/113 0.14 167485 
Washing 
machine 15 85/78 0.17 33266 16 101/88 0.13 89555 

Monthly values for mean temperature, overall rainfall and total sunshine hours for the East of 4	
England, which includes the Colne catchment area, were extracted from the UK Met Office 5	
website. Although these are available from 1910 onwards, we extracted values between 1995 6	
and 2012 to match the CEH reconstructed historical drought series (see below) and applied the 7	
monthly and climate related regression coefficients reported in (Parker 2014) to the micro-8	
component values for each household to produce estimated baseline consumption (litres/day) 9	
for each household for each month during the period 1995-2014. Specifically, the coefficients 10	
were used to implement monthly adjustments for mean daily temperature, sunshine and 11	
rainfall, as well a year on year increase/reduction in demand for both metered and unmetered 12	
households. This produced an overall dataset of 1800 households for each of the 120 months. 13	

 14	

	15	
Figure 1: Structure and procedural flow of IMPETUS baseline model 16	

Finally, we used a simple linear uptake model to estimate the uptake of dual flush WCs and 17	
low flow shower heads over this period. EST data suggested that by 2011, 41% of households 18	
had a dual flush WC and 25% had a low flow shower head (Energy Saving Trust 2013). Further 19	
it was estimated that 2% of households per year switch from single to dual flush WCs and 1% 20	
switch from a normal to a low flow shower head. The simple uptake model we have 21	

1800	households
•Occupancy	level	set	to	
match	Colne	catchment

Set	initial	
microcomponents	for	
each	household
•Using	Parker’s	(2014)	
median	values

Adjust	for	occupancy
•Using	Parker’s	(2014)	
regression	coefficients

Apply	skewed	normal	
distribution

Adjust	for	month	
(season)	and	climate
•Using	Parker’s	(2014)	
regression	coefficients

Adjust	for	water	
efficiency	uptake
•Apply	linear	water	efficiency	
uptake	model



Anderson, B., Manouseli, D. and Nagarajan, M., (2017) Estimating Scenarios for Domestic Water Demand under Drought Conditions in 
England and Wales, Water Science and Technology: Water Supply (in press). 

Page 5 of 10   	

implemented assumes that all appliances are switched at the same time and that uptake is 1	
randomly distributed. Further, once a switch has occurred, the EST report suggests that dual 2	
flush WCs lead to a 47% reduction in WC water use whilst the value for low flow shower heads 3	
is 61%. The final output of the baseline model was therefore estimated litres per day for each 4	
of the listed micro-components for each month of the period 1995-2014 for a sample of 1800 5	
households. 6	

The final stage of the model’s formation was the introduction of reconstructed historical 7	
seasonal drought series for 1995-2014 provided by the Centre for Hydrology (CEH, (Parry et 8	
al. 2016)) which indicates 'drought phase' in each month. The drought histories were used to 9	
apply additional efficiency interventions in the five relevant drought phases (Normal, 10	
Developing, Drought, Severe Drought and Recovering. Drought histories were provided by the 11	
CEH, from 1994 until 2012. For the Normal phase, no additional efficiency measures were 12	
introduced in the model. For the Developing phase, double the rate of baseline water efficiency 13	
uptake was introduced. Accordingly, this was tripled and quadrupled for the Drought and 14	
Severe Drought phases respectively. Additionally, for the Drought and Severe Drought phases, 15	
a temporary use ban was introduced, affecting the highest 14% and 28% of consumers 16	
respectively. Based on discussions with industry stakeholders and recent research (UKWIR 17	
2013), we hypothesized that only 44% of them would comply with the restrictions and would 18	
in turn reduce their consumption by 18%. As before, the output of this model was also estimated 19	
litres per day for each of the listed micro-components for each month of the period 1995-2014 20	
for a sample of 1800 households but adjusted to model the potential consequences of the above 21	
drought response scenarios. 22	

RESULTS AND DISCUSSION 23	

Results validation for IMPETUS baseline model. The “At Home with Water” report by (Energy 24	
Saving Trust 2013) analyzes water use in British households, using datasets of self-reported 25	
water demand information of more than 86,000 households, recorded through the Water 26	
Energy Calculator, an online self-completion tool. The tool also enables consumption 27	
disaggregation into micro-components. Micro-component litres/household/day reported by 28	
EST were compared to the results derived from our baseline model (Figure 2) for validation 29	
purposes. Comparing these values with the IMPETUS model is not straightforward as not all 30	
of the usages match to the micro-components modelled. However, the chart attempts to show 31	
all values on the same graphs as far as possible. These charts suggest that compared to the EST 32	
(2013) estimates our model underestimates shower use and over-estimates bath use. However, 33	
given that the EST estimates used a self-selecting sample who may have been more likely to 34	
be 'careful' water users, this may be because respondents to the Water Energy Calculator were 35	
more likely to use showers than baths. 36	
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 1	
Figure 2 Water consumption by use (% of total household use). Comparison of results from 2	
EST (2013) research and IMPETUS model. Wider bars indicate values which cannot be 3	
matched.Figure 3 presents the distribution of micro-components across all months for 2012 4	
once all the adjustments described were implemented for the Seasonal consumption model 5	
(1995-2014). In general, metered households appear to consume less water than non-metered 6	
ones for all end uses whilst some signs of seasonality can be detected for the shower, external, 7	
bath and washing machine use. 8	

Figure 3 Output of the seasonal baseline model. Distribution of micro-components for 2012 9	
for metered and unmetered households.  10	

Figure 4 illustrates a comparison between the Baseline model and the Drought (final) model. 11	
It is evident that the additional water efficiency measures and the TUBs during specific drought 12	
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phases have caused household consumption to decrease much quicker in the Drought model. 1	
The large impact of these measures during periods of Drought or Severe Drought is more 2	
prominent for the 1995-97 period, where consumption for the Drought model shows a very 3	
steep decline in line with the drought phases for this period (see Figure 5). This can be attributed 4	
to the Severe Drought that the Colne catchment was experiencing during that period. By the 5	
end of the period the baseline model showed a reduction of 6% whilst the drought model 6	
showed a reduction of 9.38% (Figure 4) whilst the maximum difference in consumption levels 7	
between the baseline and drought model was approximately 4.4% in May 2011, a period of 8	
drought in the Colne catchment (Figure 5). 9	

 10	
Figure 4 Comparison of IMPETUS Baseline and Drought models (Mean litres per household 11	
per day) 12	

 13	

              14	

Figure 5 Comparison of IMPETUS Baseline and Drought models with drought phases overlay 15	
(% difference, Developing = "yellow", Drought = "orange", Severe Drought = "red", 16	
Recovering = “light green”) 17	
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Limitations 1	

It should be noted that the regression coefficients used are part of an overall model of each 2	
micro-component’s litres/day and includes a range of covariates that are not in our model such 3	
as day of the week, ACORN class, Temperature range, rainfall over previous seven days and 4	
an estimate of soil moisture deficit. This means that it may not be entirely appropriate to apply 5	
just the occupancy, climatic and monthly coefficients in the baseline estimation. However, 6	
without the ability to re-estimate the regression coefficients ((Parker 2014) with the reduced 7	
variable set, we have little choice.   8	

CONCLUSIONS 9	

Overall, the IMPETUS microsimulation model of micro-component consumption at the 10	
household level was able to adequately estimate end-use water consumption, subject to the 11	
limitations described above. Our model slightly overestimates some end uses as described 12	
earlier. Accounting for the usages that are not directly comparable (basin, taps, kitchen sink 13	
etc.) to results from a study conducted by EST (2013), the mean 'Total' usage figures were 14	
broadly comparable, showing that if more accurate and statistically significant adjustment 15	
coefficients are provided for occupancy and climate, the results would become much more 16	
robust. Our model in its final form, which takes drought histories into account as well as 17	
relevant water efficiency measures and TUBs, shows whether household consumption is 18	
affected by these interventions and how. This is a very important step towards integrated 19	
demand forecasting in times of drought, as the model can be modified to include future drought 20	
scenarios. The next step is the development of a second version of the model. The new version 21	
will use water consumption data derived from a detailed survey on water using practices at 22	
home, completed by 1800 households.  23	

 24	
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