

1 **Estimating Scenarios for Domestic Water Demand under**

2 **Drought Conditions in England and Wales**

3 B. Anderson *, D. Manouseli*, M. Nagarajan**

4 * Energy & Climate Change Division, Faculty of Engineering and the Environment University of Southampton, United
5 Kingdom, d.manouseli@soton.ac.uk

6 ** Coventry University, United Kingdom

7 **Abstract**

8 This paper presents preliminary results from the development of IMPETUS model, a domestic water demand
9 microsimulation model which was developed to estimate the results of a range of scenarios of domestic demand
10 under drought conditions. The model is intended to enable water resource management practitioners to assess the
11 likely impact of potential interventions in particular catchment areas. It has been designed to be driven by seasonal
12 catchment level forecasts of potential hydrological droughts based on innovative climate and groundwater models.
13 The current version of the model is driven by reconstructed historical drought data for the Colne catchment in the
14 East of England from 1995 to 2014. This provides a framework of five drought phases (Normal, Developing,
15 Drought, Severe and Recovering) which are mapped to policy driven interventions such as increased provision of
16 water efficiency technologies and temporary water-use bans. The model uses UK Census 2011 data to develop a
17 synthetic household population that matches the socio-demographics of the catchment and it microsimulates (at
18 the household level) the consequences of water efficiency interventions retrospectively (1995-2014). Demand
19 estimates for reconstructed drought histories demonstrate that the model is able to adequately estimate end-use
20 water consumption. Also, the potential value of the model in supporting cost-benefit analysis of specific
21 interventions is illustrated. We conclude by discussing future directions for the work.

22

23 **Keywords** Climate change-Domestic water demand-Drought-End uses-Microsimulation

24 **Acknowledgements** This work was supported by the UK Natural Environment Research Council funded
25 “IMPETUS: Improving Predictions of Drought for User Decision-Making” project under the RCUK Drought
26 Programme via grant NE/L010216/1.

27 An earlier version of this paper was presented at the International Water Association (IWA) Efficient Conference
28 2017, Bath, UK 18-20 July.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2 INTRODUCTION

3 The Department for Environment, Food and Rural Affairs (DEFRA 2008) states that as a result
4 of growing population, and changes in the way people use water in the UK, more than half of
5 the current public water supply is for residential use. As a result, controlling domestic water
6 demand is a priority in the UK. Whilst work on improved 'water supply' side forecasting is
7 well established, limited attempts to effectively address uncertainties related to climate change
8 and water demand management measures in demand forecasting models for longer term
9 resource planning purposes have been reported. In the UK, the total range of forecasts found
10 in Water Resource Management Plans of UK water providers is almost 50%, demonstrating
11 the uncertainty and the high geographic variance of water demand (Atkins 2015). As a result
12 there are few tools that can enable stakeholders to assess the likely costs and benefits of
13 particular conservation and/or intervention measures (Parker and Wilby 2013).

14 There is a general consensus that the UK will probably experience warmer conditions and
15 lower summer rainfall (Jenkins et al. 2010; Parker 2014; Water UK 2016) Repeated
16 occurrences of dry winters, prolonged lack of rainfall and lack of ground water recharge due
17 to urban flooding, can lead to drought conditions which in turn increase the risk of water
18 resources not meeting quality standards (Met Office 2014, Environment Agency UK 2017). In
19 South East England, a region already suffering water stress, summer precipitation is projected
20 to decrease by 9% by the 2080s (Jenkins et al. 2010). Droughts have severe impacts on
21 societies, economies, and agriculture and forward planning is critical for managing the
22 potential impacts of drought. Early warning of impending drought conditions making use of
23 improved meteorological, hydrological and also demand forecasts would enable stakeholders
24 to take appropriate demand mitigation actions and to effectively manage diminishing water
25 resources to minimize adverse impacts. Continued lack of rainfall can lead to temporary water
26 restrictions imposed by water providers on non-essential uses such as garden watering and car
27 washing. A few studies show that temporary use bans (TUBs) can decrease consumption by
28 over 30%, especially for high water users (Polebitski and Palmer 2010). In parallel, UK water
29 providers have been launching domestic water efficiency initiatives over the past ten years and
30 recent research has shown that there is scope for substantial per capita water savings especially
31 if the programs are focused on certain groups such as smaller and financially stretched
32 households (Manouseli et al. 2017).

33 However, little is still known about householders' response to drought or water efficiency
34 measures in the UK and there are few if any studies which incorporate this evidence into models
35 of demand forecasting in support of operational decisions about the most likely cost-effective
36 drought management measures. In addition, accurate long term forecasting is restricted by the
37 difficulties in gathering all the necessary data, as it is usually hard and costly to collect (Memon
38 and Butler 2006; Atkins 2015). Further, Census data are commonly published as separate
39 aggregated tables rather than microdata resulting in information loss (Clarke et al. 1997) and
40 forcing area level 'average' projections. To address these limitations, and following a
41 substantial evidence and methods review (Manouseli, Anderson, and Nagarajan 2017), we have
42 implemented a microsimulation model of domestic end-use water demand.

43 Microsimulation is an established methodology in urban and regional modelling. It has been
44 used since 1957 (Orcutt 1957) mainly to examine the effect of policies before they are
45 implemented (Birkin et al. 1996; Tanton et al. 2009; Anderson 2012) as well as for tax and
46 benefit modelling (Harding et al. 2009). Microsimulation has also been proved to be extremely
47 useful in generating small area estimates using survey data and a large volume of research has
48 been undertaken in this direction in Britain and Australia. The main benefit of such models is

1 that they allow a survey designed for generating large area estimates to be used to produce
2 reliable estimates on the micro-level (households or individuals) as well, avoiding the need to
3 increase the sample size (Tanton, Williamson, and Harding 2014).

4 Recently published research shows that there is scope of using the technique in the area of
5 resource demand for the residential sector. (Zuo, Birkin, and Malleson 2014) used the
6 technique to investigate variations in energy demand within and between household groups,
7 taking climate change and behavioural changes into account. A detailed survey by the UK
8 Department of Energy and Climate Change was used in this study. (Chingcuanco and Miller
9 2012) used household energy microdata in Toronto, putting forward a model of residential
10 space heating demand-a first step towards a comprehensive urban energy demand model.

11 However, microsimulation has not been as widely used in the field of urban water demand
12 forecasting (Clarke et al. 1997; Mitchell 1999; Williamson et al. 2002). Williamson et al.
13 (2002) used a 'static microsimulation' method in their study. A 30% increase in household
14 water consumption was predicted for the Yorkshire Water region from 1991 to 2025 and the
15 most probable cause of this increase was consumer behaviour change. They compared these
16 results with those resulted from (Herrington 1996) who used a micro-components based model,
17 stressing that the demographic part of his model was driven only by changes in average
18 household size. However, they acknowledge that their model has limited application to small
19 areas. Advocates of 'static microsimulation' claim that this technique addresses the limitations
20 that micro-component studies have, such as the lack of spatially relevant information on trends,
21 by incorporating enhanced spatial resolution and a stronger approach to dealing with household
22 consumption monitor data that usually suffer from bias. Instead of classifying households into
23 a limited number of groups (e.g. household size, Acorn class), each household is represented
24 by a list of potentially unique attributes relating to water-consuming behaviour (Williamson et
25 al. 2002).

26 The process described in the present work comprises the first stage of modelling. Our second
27 stage will be using household responses to a water-using practices survey and will infer
28 monthly consumption out of the reported practices for a sample of 1800 households. The
29 IMPETUS practices-based model will explore whether the introduction of practices in a
30 microsimulation model improves our understanding of how water is used in the household and
31 how drought management measures implemented during relevant drought phases affected
32 domestic water demand.

33

34 METHODS

35 The model reported here uses a synthetic sample of 1800 households, which was created to
36 match the distribution of household sizes reported by the UK Census 2011 for the Colne
37 catchment in the East of England. The end uses (micro-components) that are incorporated in
38 the model are: Basin, Bath, Dishwasher, External, Kitchen Sink, Shower, WC and Washing
39 Machine (see Figure 1).

40 We started by setting each component to the relevant median litres per day as reported in Table
41 1 (Parker 2014) and applied occupancy based adjustments using coefficients from (Parker
42 2014) (regression coefficients for 2, 3, 4 and 5 occupants-Table A.3 & Table A.4). To introduce
43 random variation into the micro-components' distributions we then applied a skewed normal
44 distribution to each household micro-component using the original occupancy-based median
45 as the distribution mean. Unfortunately, we had no information on the correct standard
46 deviation (s.d) nor skewness but through experimentation we have identified a range of s.d
47 values and xi (skewness) parameters that, when used with the R function rsnorm for the

1 simulation of a stationary Gaussian time series (Wuertz et al. 2016), produce results that are
 2 similar to Parker's (2014) per capita/day distributions.

3 **Table 1** Descriptive statistics of the daily microcomponent values. Source: Parker (2014)

	Metered				Unmetered			
	Mean % of daily total l/H	Mean/Median (l/H)	Standard Error (l/H)	Sample Size	Mean % of daily total l/H	Mean/Median (l/H)	Standard Error (l/H)	Sample Size
Basin	11	24/17	0.09	81976	10	34/27	0.07	166298
Bath	10	62/55	0.19	29419	15	89/83	0.14	95589
Dishwasher	4	26/23	0.09	17205	2	27/25	0.05	23684
Kitchen sink	17	38/32	0.1	85114	16	53/46	0.09	173665
Shower	7	46/31	0.16	22750	7	51/40	0.12	66496
WC	36	84/78	0.17	80323	34	116/113	0.14	167485
Washing machine	15	85/78	0.17	33266	16	101/88	0.13	89555

4 Monthly values for mean temperature, overall rainfall and total sunshine hours for the East of
 5 England, which includes the Colne catchment area, were extracted from the UK Met Office
 6 website. Although these are available from 1910 onwards, we extracted values between 1995
 7 and 2012 to match the CEH reconstructed historical drought series (see below) and applied the
 8 monthly and climate related regression coefficients reported in (Parker 2014) to the micro-
 9 component values for each household to produce estimated baseline consumption (litres/day)
 10 for each household for each month during the period 1995-2014. Specifically, the coefficients
 11 were used to implement monthly adjustments for mean daily temperature, sunshine and
 12 rainfall, as well a year on year increase/reduction in demand for both metered and unmetered
 13 households. This produced an overall dataset of 1800 households for each of the 120 months.

14

15
 16 **Figure 1:** Structure and procedural flow of IMPETUS baseline model

17 Finally, we used a simple linear uptake model to estimate the uptake of dual flush WCs and
 18 low flow shower heads over this period. EST data suggested that by 2011, 41% of households
 19 had a dual flush WC and 25% had a low flow shower head (Energy Saving Trust 2013). Further
 20 it was estimated that 2% of households per year switch from single to dual flush WCs and 1%
 21 switch from a normal to a low flow shower head. The simple uptake model we have

1 implemented assumes that all appliances are switched at the same time and that uptake is
2 randomly distributed. Further, once a switch has occurred, the EST report suggests that dual
3 flush WCs lead to a 47% reduction in WC water use whilst the value for low flow shower heads
4 is 61%. The final output of the baseline model was therefore estimated litres per day for each
5 of the listed micro-components for each month of the period 1995-2014 for a sample of 1800
6 households.

7 The final stage of the model's formation was the introduction of reconstructed historical
8 seasonal drought series for 1995-2014 provided by the Centre for Hydrology (CEH, (Parry et
9 al. 2016)) which indicates 'drought phase' in each month. The drought histories were used to
10 apply additional efficiency interventions in the five relevant drought phases (Normal,
11 Developing, Drought, Severe Drought and Recovering. Drought histories were provided by the
12 CEH, from 1994 until 2012. For the Normal phase, no additional efficiency measures were
13 introduced in the model. For the Developing phase, double the rate of baseline water efficiency
14 uptake was introduced. Accordingly, this was tripled and quadrupled for the Drought and
15 Severe Drought phases respectively. Additionally, for the Drought and Severe Drought phases,
16 a temporary use ban was introduced, affecting the highest 14% and 28% of consumers
17 respectively. Based on discussions with industry stakeholders and recent research (UKWIR
18 2013), we hypothesized that only 44% of them would comply with the restrictions and would
19 in turn reduce their consumption by 18%. As before, the output of this model was also estimated
20 litres per day for each of the listed micro-components for each month of the period 1995-2014
21 for a sample of 1800 households but adjusted to model the potential consequences of the above
22 drought response scenarios.

23 RESULTS AND DISCUSSION

24 *Results validation for IMPETUS baseline model.* The "At Home with Water" report by (Energy
25 Saving Trust 2013) analyzes water use in British households, using datasets of self-reported
26 water demand information of more than 86,000 households, recorded through the Water
27 Energy Calculator, an online self-completion tool. The tool also enables consumption
28 disaggregation into micro-components. Micro-component litres/household/day reported by
29 EST were compared to the results derived from our baseline model (Figure 2) for validation
30 purposes. Comparing these values with the IMPETUS model is not straightforward as not all
31 of the usages match to the micro-components modelled. However, the chart attempts to show
32 all values on the same graphs as far as possible. These charts suggest that compared to the EST
33 (2013) estimates our model underestimates shower use and over-estimates bath use. However,
34 given that the EST estimates used a self-selecting sample who may have been more likely to
35 be 'careful' water users, this may be because respondents to the Water Energy Calculator were
36 more likely to use showers than baths.

1

2 **Figure 2** Water consumption by use (% of total household use). Comparison of results from
3 EST (2013) research and IMPETUS model. Wider bars indicate values which cannot be
4 matched. Figure 3 presents the distribution of micro-components across all months for 2012
5 once all the adjustments described were implemented for the Seasonal consumption model
6 (1995-2014). In general, metered households appear to consume less water than non-metered
7 ones for all end uses whilst some signs of seasonality can be detected for the shower, external,
8 bath and washing machine use.

All uses (2012 only)

9 **Figure 3** Output of the seasonal baseline model. Distribution of micro-components for 2012
10 for metered and unmetered households.

11 Figure 4 illustrates a comparison between the Baseline model and the Drought (final) model.
12 It is evident that the additional water efficiency measures and the TUBs during specific drought

1 phases have caused household consumption to decrease much quicker in the Drought model.
2 The large impact of these measures during periods of Drought or Severe Drought is more
3 prominent for the 1995-97 period, where consumption for the Drought model shows a very
4 steep decline in line with the drought phases for this period (see Figure 5). This can be attributed
5 to the Severe Drought that the Colne catchment was experiencing during that period. By the
6 end of the period the baseline model showed a reduction of 6% whilst the drought model
7 showed a reduction of 9.38% (Figure 4) whilst the maximum difference in consumption levels
8 between the baseline and drought model was approximately 4.4% in May 2011, a period of
9 drought in the Colne catchment (Figure 5).

1 **Limitations**

2 It should be noted that the regression coefficients used are part of an overall model of each
3 micro-component's litres/day and includes a range of covariates that are not in our model such
4 as day of the week, ACORN class, Temperature range, rainfall over previous seven days and
5 an estimate of soil moisture deficit. This means that it may not be entirely appropriate to apply
6 *just* the occupancy, climatic and monthly coefficients in the baseline estimation. However,
7 without the ability to re-estimate the regression coefficients ((Parker 2014) with the reduced
8 variable set, we have little choice.

9 **CONCLUSIONS**

10 Overall, the IMPETUS microsimulation model of micro-component consumption at the
11 household level was able to adequately estimate end-use water consumption, subject to the
12 limitations described above. Our model slightly overestimates some end uses as described
13 earlier. Accounting for the usages that are not directly comparable (basin, taps, kitchen sink
14 etc.) to results from a study conducted by EST (2013), the mean 'Total' usage figures were
15 broadly comparable, showing that if more accurate and statistically significant adjustment
16 coefficients are provided for occupancy and climate, the results would become much more
17 robust. Our model in its final form, which takes drought histories into account as well as
18 relevant water efficiency measures and TUBs, shows whether household consumption is
19 affected by these interventions and how. This is a very important step towards integrated
20 demand forecasting in times of drought, as the model can be modified to include future drought
21 scenarios. The next step is the development of a second version of the model. The new version
22 will use water consumption data derived from a detailed survey on water using practices at
23 home, completed by 1800 households.

24

25 **REFERENCES**

26 Anderson B. (2012). Estimating Small-Area Income Deprivation: An Iterative Proportional
27 Fitting Approach. In: Tanton R, Edwards K (eds) Spatial Microsimulation: A
28 Reference Guide for Users. Springer Netherlands, pp 49–67

29 Atkins E. (2015). UK Demand Forecasting: A Cross-Sector Review.
30 https://www.academia.edu/21028008/UK_Demand_Forecasting_A_Cross-Sector_Review. Accessed on 16/11/17.

32 Birkin M., Clarke G. P., Clarke M. (1996). Urban and regional modelling at the microscale.
33 In: Microsimulation for Urban and Regional Policy Analysis. Pion, London

34 Chingcuanco F., Miller E. J. (2012). A microsimulation model of urban energy use:
35 Modelling residential space heating demand in ILUTE. Comput Environ Urban Syst
36 36:186–194. doi: 10.1016/j.compenvurbsys.2011.11.005

37 Clarke G. P., Kashti A, McDonald A, Williamson P. (1997). Estimating Small Area Demand
38 for Water: A New Methodology. Water Environ J 11:186–192. doi: 10.1111/j.1747-
39 6593.1997.tb00114.x

40 DEFRA (2008). Future Water The Government's water strategy for England.
41 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69346/pb13562-future-water-080204.pdf. Accessed on 16/11/17

43 Energy Saving Trust (2013). At home with water. London, UK.
44 <http://www.energysavingtrust.org.uk/sites/default/files/reports/AtHomewithWater%2087%29.pdf>. Accessed on 16/11/17

1 Environment Agency UK (20175). Drought response: our framework for England.
2 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/625006/LIT_10104.pdf. Accessed on 16/11/17

3 Halich G. S. (2005). Estimating Changes in Residential Water Demand for Voluntary and
4 Mandatory Water-Use Restrictions Implemented during the 2002 Virginia Drought.

5 Harding A., Vu Q. N., Tanton R., Vidyattama Y. (2009). Improving Work Incentives and
6 Incomes for Parents: The National and Geographic Impact of Liberalising the Family
7 Tax Benefit Income Test*. *Econ Rec* 85:S48–S58. doi: 10.1111/j.1475-
8 4932.2009.00588.x

9 Herrington P. (1996). Climate Change and the Demand for Water. H.M. Stationery Office

10 Jenkins G., Murphy J., Sexton D., Lowe J., et al Jones P., Kilsby C. (2010). UK Climate
11 Projections: Briefing report.

12 Manouseli D., Kayaga S.M., Kalawsky R. (2017). Evaluation of Water Efficiency Programs
13 in Single-Family Households in the UK: A Case Study. *Water Science and
14 Technology: Water Supply*. doi: DOI: 10.2166/ws.2017.071

15 Memon F. A., Butler D. (2006). Water consumption trends and demand forecasting
16 techniques. *Water Demand Manag* 2006:1–26.

17 Met Office (2014). Too hot, too cold, too wet, too dry: Drivers and impacts of seasonal
18 weather in the UK. [https://naturalresources.wales/media/2757/drivers-and-impacts-of-
19 seasonal-weather-in-the-uk-met-office-report.pdf](https://naturalresources.wales/media/2757/drivers-and-impacts-of-seasonal-weather-in-the-uk-met-office-report.pdf). Accessed on 16/11/17

20 Mitchell G. (1999). Demand forecasting as a tool for sustainable water resource management.
21 *Int J Sustain Dev World Ecol* 6:231–241. doi: 10.1080/13504509909470014

22 Orcutt G. (1957). A new type of socio-economic system. *Review of Economics and Statistics*
23 1(1):3–9. DOI: 10.2307/1928528

24 Parker J. M. (2014). Assessing the sensitivity of historic micro-component household water-
25 use to climatic drivers. A Doctoral Thesis. Submitted in partial fulfilment of the
26 requirements for the award of Doctor of Philosophy of Loughborough University,
27 Loughborough

28 Parker J. M., Wilby R. L. (2013). Quantifying Household Water Demand: A Review of
29 Theory and Practice in the UK. *Water Resour Manag* 27:981–1011.

30 Polebitski A., Palmer R. (2010). Seasonal Residential Water Demand Forecasting for Census
31 Tracts. *J Water Resour Plan Manag* 137:27–36.

32 Tanton R., Vidyattama Y., McNamara J., et al (2009). Old, Single and Poor: Using
33 Microsimulation and Microdata to Analyse Poverty and the Impact of Policy Change
34 among Older Australians*. *Econ Pap J Appl Econ Policy* 28:102–120. doi:
35 10.1111/j.1759-3441.2009.00022.x

36 Tanton R., Williamson P., Harding A. (2014). Comparing Two Methods of Reweighting a
37 Survey File to Small Area Data. *Int J Microsimulation* 7:76–99.

38 UKWIR (2013). Understanding the impacts of drought restrictions. Report Ref. No.
39 14/WR/01/13. London

40 Water UK (2016). Water resources long term planning framework (2015-2065).
41 <https://www.water.org.uk/water-resources-long-term-planning-framework>. Accessed
42 on 16/11/17

43 Williamson P., Mitchell G., McDonald A. T. (2002). Domestic water demand forecasting: a
44 static microsimulation approach. *Water Environ J* 16:243–248.

45 Wuertz D. and, Chalabi Y. Miklovic Y. C. with contribution from Boudt C., et al (2016).
46 Package fGarch: Rmetrics - Autoregressive Conditional Heteroskedastic Modelling.
47 <https://cran.r-project.org/web/packages/fGarch/fGarch.pdf>. Accessed on 16/11/17

48 Zuo C., Birkin M., Malleson N. (2014). Spatial microsimulation modeling for residential
49 energy demand of England in an uncertain future. *Geo-Spat Inf Sci* 17:153–169.

50

1 UKWIR. 2013. 'Understanding the Impacts of Drought Restrictions'. Report Ref. No.
2 14/WR/01/13. London.

3 Water UK. 2016. 'Water Resources Long Term Planning Framework (2015-2065)'.
4 https://dl.dropboxusercontent.com/u/299993612/Publications/Reports/Water%20resources/WaterUK%20WRLTPF_Final%20Report_FINAL%20PUBLISHED.pdf.

5 Williamson, P., G. Mitchell, and A. T. McDonald. 2002. 'Domestic Water Demand
6 Forecasting: A Static Microsimulation Approach'. *Water and Environment Journal* 16
7 (4):243–248.

8 Wuertz, Diethelm, Yohan Chalabi with contribution from Michal Miklovic, Chris Boudt,
9 Pierre Chausse, and others. 2016. *fGarch: Rmetrics - Autoregressive Conditional
10 Heteroskedastic Modelling*. <https://CRAN.R-project.org/package=fGarch>.

11 Zuo, Chengchao, Mark Birkin, and Nicolas Malleson. 2014. 'Spatial Microsimulation
12 Modeling for Residential Energy Demand of England in an Uncertain Future'. *Geo-
13 Spatial Information Science* 17 (3):153–169.

14

15