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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
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Doctor of Philosophy

by Tim Matthews

In this thesis we investigate means by which the semantic and visual spaces of texture

may be tied together, and argue for the importance of explicit semantic modelling in

human-centred texture analysis tasks such as retrieval, annotation, synthesis, and zero-

shot learning.

We take a new approach to semantic texture labelling by adopting a pairwise comparison

framework robust to human biases, and within a semantic space consisting of attributes,

low-level visual features acting as building blocks for more expressive semantic ontologies.

We crowdsource a dataset of approximately 140,000 pairwise comparisons across 319

classes of texture and 98 attributes — to our knowledge the largest of its kind.

To aid in learning from sparsely labelled pairwise comparison datasets such as this we

derive a new Bayesian probabilistic approach, providing a natural framework in which to

incorporate prior knowledge and to measure uncertainty, and outperforming the often-

used Ranking SVM on incomplete and unreliable data. We demonstrate how the error

variance present in our pairwise comparison data may be precisely quantified, allowing

us to identify and discard rogue responses in a principled way.

Existing texture descriptors are then assessed in terms of their correspondence to the

attributes comprising the semantic space. Textures with strong presence of attributes

connoting randomness and complexity are shown to be poorly modelled by existing

descriptors. These effects are likely due to disparities between human perception of

what texture entails, and definitions adopted prior to (or, sometimes, after) the design

of computational texture analysis systems.

Despite the deficiencies of the visual descriptors they are based upon, we demonstrate

the benefit of semantically enriched descriptors in a retrieval experiment. Semantic

modelling of texture is shown to provide considerable value in both feature selection and

in analysis tasks.
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Chapter 1

Context and Contributions

Visual texture is an important cue in numerous processes of human cognition. It is known

to be used in the separation of ‘figure’ from ‘ground’, as a prompt in object recognition,

to infer shape and pose, as well as in many other aspects of scene understanding (see

Figure 1.1). Over eons of human existence this importance has led to the development

of a rich lexicon suitable for concise description of texture. We may speak of fractured

earth, or of a rippling lake, and in doing so are able to convey considerable information

about the surface and appearance of these objects.

(a) The figure (the centre ‘square’)
is readily segmented from ground
based only on the orientation of tex-
ture primitives.

(b) The depicted object is identifi-
able due to its distinctive texture.

(c) The pose of the wall is inferred
from the perspective effect of its tex-
ture.

Figure 1.1: Three examples of texture’s importance in human scene understanding.

Although computational texture analysis has achieved fine results over recent decades,

there still remains a disparity between the visual and semantic spaces of texture – the

so-called semantic gap. Computational approaches usually operate on the basis of a

priori notions of texture not necessarily tied to human experience. This means they are

often unsuitable for applications requiring closer or more intuitive human interaction.

The overall goal of this thesis is therefore to investigate the semantic and visual spaces

of texture and to attempt to identify correspondences between these spaces that align

1



2 Chapter 1 Context and Contributions

well with human perception. We discuss real-world motivations for doing this in the

next section, the challenges we will face in Section 1.2, and give an overview of the

contributions we make to solving this problem in Section 1.3.

1.1 Motivation and applications

We pursue our goal primarily from the perspective of content-based image retrieval

(CBIR). Systems of this type attempt to retrieve images in response to user queries,

based only (or at least in part) on the visual content of those images. Typical CBIR

systems operate on low-level features such as colour histograms and co-occurrence ma-

trices (see Section 2.3.2.1) but this approach is often unsatisfactory for human users with

a sophisticated understanding of the high-level concepts contained in the images. For

this reason there has been a greater focus towards designing CBIR systems with explicit

modelling of these high-level semantics (Liu et al., 2007). Separate semantic modelling

has been shown to improve retrieval of natural scenes (Vogel and Schiele, 2007), gait

signatures (Samangooei et al., 2008; Reid et al., 2014), and indoor-outdoor classification

of photographs (Serrano et al., 2004).

CBIR is part of a more general class of problems known as symbol grounding problems,

which have wide-ranging applications. We discuss the symbol grounding problem in

more detail in Section 2.4. Solving the symbol grounding problem also opens up the

possibility of zero-shot learning in classification tasks. Here, a classification system can

be taught new categories without ever needing to observe them, through processing of

some semantic description of the category. This is of particular use in robotics, where

the environment is unpredictable and so it is advantageous to learn dynamically about

possible interactions and scenarios without first having to encounter them (Palatucci

et al., 2009).

Further applications lie in the related problems of texture synthesis and texture de-

scription. In the former of these, textures are computationally generated to conform to

specifications communicated through semantic user input without the user requiring any

knowledge about the specific underlying generating algorithms or their parameters. The

inverse description problem involves the automatic annotation of texture images using

forms borne from the expressive semantic space of texture. The latest MPEG standard

– MPEG-7 – mandates standards for the semantic description of visual multimedia and

employs basic measures of regularity and coarseness as part of a rudimentary texture

browsing descriptor (Manjunath et al., 2001). Its introduction can be interpreted as a

response to growing consumer interest in the benefits such description schemes provide.
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1.2 Challenges

The simplest form of symbol grounding – mapping pixel-wise image intensities to expres-

sive high-level semantic forms – is challenging due to the dimensionality of the data in

question and the complexity held within it. Instead, appropriate structuring of both the

semantic and visual spaces is desirable. One common consideration in this structuring

is in the problem of feature selection, the selection of succinct measures representa-

tive of visual (or semantic) qualities. Much of this thesis will be devoted to exploring

possible forms these spaces may take in order to identify a balance between efficiency

and expressiveness. The creation of CBIR systems also comes with its own specific chal-

lenges – for instance the design of similarity measures and efficient indexing and retrieval

mechanisms – although we will not concern ourselves with these issues in this thesis.

Further challenges lie in replicating human visual performance. Humans are able to

process and interpret complex scenes extremely accurately in fractions of a second, and

very little is known about the exact mechanics of how this is done. On top of this,

humans possess a remarkable ability to generalise – to learn new and unfamiliar visual

stimuli quickly and reliably. Again, the details of how this is done are hazy. We state

what we do know about the human cognitive processes for texture in Section 2.2, and

may hope to take inspiration from these in an eventual computational implementation.

Texture in particular provides interesting challenges of its own, partly because it has

historically proven so difficult to definitively define. We devote some attention to this

issue in Section 2.1.

1.3 Contributions

The main contributions of this thesis are:

• A new approach to texture characterisation and analysis, tying together previous

literature on the semantic and visual spaces of texture with a pairwise comparison

and probabilistic learning procedure to model how texture is described by human

subjects. We explore semantic modelling in general, as well as specific issues that

arise when applying it to texture, and demonstrate excellent performance within

this setting.

• A large publicly-available dataset of 140,000 labels of 319 classes of texture from

the Outex dataset (Matthews, 2014). The design and format of the labelling is

described in Chapter 3.

• A new probabilistic technique for learning item ratings from pairwise comparison

data. This Bayesian technique allows users to incorporate prior knowledge into
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the learning procedure and to precisely quantify the uncertainty surrounding the

inferred item ratings. This is done in Chapter 4.

• An appraisal of how well a selection of visual texture descriptors are able to cap-

ture this semantic data, and a demonstration of the benefits of explicit semantic

modelling for texture retrieval, both given in Chapter 5, and comprising a paper

presented at CVPR-2013 (Matthews et al., 2013).

We finish with discussion of our results and an outline of our future intentions in Chap-

ter 6. The next chapter begins with a review of relevant literature and background

material.



Chapter 2

Background and Literature

Review

We begin this chapter by characterising what is meant by visual texture in more detail,

starting with its definition in the next section, how it is used and understood by humans

in Section 2.2, and how it is processed by computer systems in Section 2.3. We then

discuss the symbol grounding problem and its application to texture in Section 2.4,

before providing an overview of semantic spaces in Section 2.5.

2.1 What is texture?

In general usage “texture” describes the tactile sensation of a surface caused by its

three-dimensional structure: the Chambers 21st Century Dictionary gives its primary

definition of the word as “the way the surface of a material or substance feels when

touched”. For instance, the closely packed blades of grass of a mown lawn feel bristled,

and touching sculpted marble provides a sensation of smoothness. When light incident

on a surface is reflected to some observer, the resultant image contains visual informa-

tion about this 3D surface structure. The human brain is adept at discerning surface

properties based on this visual information due to – we may presume – the obvious prac-

tical advantages of not being required to individually touch the surfaces comprising an

unknown scene in order to learn about it, and the ubiquity of texture within the natural

world. We can introduce a tentative initial definition of visual texture as being those

properties of an image region which convey tactile information about a corresponding

surface. From this we note that visual texture is necessarily a scale-dependent image fea-

ture, it being a product of both the observer’s visual resolution and viewing conditions

as well as of the scale of the surface structure (see Figure 2.1).

5



6 Chapter 2 Background and Literature Review

(a) Close-up view of mown grass,
demonstrating an irregular, un-
even appearance with repeated lin-
ear elements

(b) Elevated view of mown grass,
revealing a regular striping pattern
caused by the mowing technique

Figure 2.1: Scale-dependence of texture

At this point we may extend this initial definition to also include properties which convey

any distinguishing information about a surface, not necessarily the result of 3D structure.

The geological composition of marble causes its characteristic smudges and veins which –

whilst not appreciable tactually – allow it to be rapidly recognised and distinguished by

an observer. This extension introduces an issue of complexity, as even quite convoluted

and non-obvious visual information may be used to distinguish a surface given sufficient

attention by the observer. Indeed, pioneering work in Julesz (1962) and Julesz (1975)

introduced various measures of texture complexity, and demonstrated a correspondence

between these complexity measures and the ability of the preattentive visual system –

the part of the visual system responsible for rapid, non-conscious scene understanding

– to use them as cues in texture discrimination. An example of the role played by

preattentive processing in texture segmentation is shown in Figure 2.2. Here, there is a

clear difference between the ability of the preattentive visual system to segment the two

images, but it is difficult to express specific properties of texture that affect this. Visual

texture is therefore a context-dependent quality, with visual properties holding textural

meaning in proportion to how rapidly they may be processed by the visual system and

how useful they are for scene understanding once processed.

This definition is of course hazy and subjective to some observer. It is intended primarily

for illustration of the notions of scale-dependence and complexity and of the importance

of texture as a visual cue. It also allows us to stress the distinction between tactile

texture and visual texture – throughout the remainder of this thesis “texture” given

without specification will be in reference to the latter. Even within disciplines in which

texture is of high importance – such as computer vision – it has proven difficult to

obtain unified assent for a specific definition of texture. Objective definitions have been

proposed based variously on generative rules and regional statistics (Tuceryan and Jain,

1998); or a posteriori based on dataset contents or the outputs of existing algorithms

designed to detect or synthesise texture (Nixon and Aguado, 2012). Although a precise

definition is desirable at this early stage due to its influence on dataset and feature

selection (amongst other things), for our specific purposes a subjective definition of

texture embedded in human experience may be appropriate. Because our task involves
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(a) Image in which the bottom-
right quadrant is preattentively
distinguishable from the remain-
ing three quadrants.

(b) Image in which the bottom-
right quadrant requires a degree
of conscious inspection in order to
distinguish the bottom right quad-
rant, through random jittering of
(a).

Figure 2.2: Images in which the bottom-right quadrant is the inverse of the other
three quadrants. Taken from Julesz (1962).

tying some visual texture space to a semantic space borne from human interpretation

of that visual space, it is fitting to adopt a definition of texture derived from human

perception. In this sense texture is anything describable by constructions from our

semantic space and emerges as a natural consequence of our eventual definition of that

space.

It is also worth making specific reference to colour, the understanding of which is far

more sophisticated than for any other visual cue. It is known that the entire gamut of

human colour vision can be represented in three dimensions and that distances between

the colours within this gamut can be calculated which exhibit good accordance to human

perception. A cross-cultural study by Berlin and Kay (1969) provided evidence that, not

only is colour understanding driven by innate rather than cultural processes, but also

that the way language is used directly reflects the underlying cognitive structure. Fur-

thermore, reasonably successful methods of mapping colour semantics onto this gamut

have been devised (Tominaga, 1985; Mojsilovic, 2005). Despite the physical processes

underlying colour being far simpler than that for texture, the field of colour research is

well worth looking towards as a model for progress in understanding texture. Because

of this relatively mature understanding, we consider colour to be a completely separate

visual cue that can be used to augment an achromatic texture model at a future point.

We thus only consider the achromatic properties of texture throughout this thesis.

In the next section we give an overview of how visual texture is processed and understood

in biological visual systems.
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2.2 Cognition of texture

As with most visual processing, human cognition of texture is complex and not fully

understood. However, biologically-inspired machine analogs of vision are highly desirable

due to the performance and flexibility of the human system (presumably due to its

architecture and cognitive processes), as well as the intuition that visual cognition is

intrinsically tied to language, and so understanding the nature of this cognition brings

us some way closer to understanding the linguistic structure.

Unfortunately, the neurological underpinnings of textural processing within the visual

cortices of the brain are difficult to decipher and attach functional meaning to. Study

of the brain at this level is the domain of neurophysiology, but this field has obtained

only limited explanatory success. Research can alternatively adopt a psychophysical

methodology, treating the brain as a “black box” for which the behaviours are to be

determined experimentally and then seeking plausible cognitive architectures which co-

hesively explain these empirical observations. Clearly, study can be approached from

multiple directions, and this fact may be expressed in terms of the abstractional tiers

of Marr (1982), those three levels of analysis necessary to gain full understanding of a

visual system:

• Computational understanding: the overall goals of the system and its constraints.

• Representational understanding: the representations and algorithms used to ma-

nipulate and process visual texture.

• Implementational understanding: the physical architecture of the system.

In the remainder of this section we provide an overview of human cognition of texture

in terms of these three levels of analysis.

2.2.1 Computational analysis

In humans, even the computational aspect of texture is unclear: it is not known defini-

tively what texture is used for or how, at a high-level, it is processed. As mentioned

previously, texture is known to play a fundamental role in segmentation – the parti-

tioning of visual scenes into contiguous regions – as well as in the related problem of

figure-ground separation, whereby objects of interest are given focus through preat-

tentive separation from irrelevant background noise. Lamme et al. (1999) proposes two

possible high-level logical processes for texture segmentation, one initiating from bound-

ary detection followed by a texture-guided ‘filling-in’, and another based on clustering

of visible surfaces using texture measures as similarity metrics. His experiments support

the former of these hypotheses, suggesting that texture is an important secondary cue,
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gaining cognitive significance only after the detection of more fundamental visual fea-

tures. This corroborates the hypothesis of Marr (1982) in which vision proceeds from a

2D “primal sketch” – formed from basic features such as edges – to a full 3D model only

via an intermediate ‘2.5D’ level, at which texture cues are used to flesh out the initial

sketch.

2.2.2 Implementational analysis

The physical process of textural understanding commences when photons are reflected

from some visual field onto the retina, an area of tissue at the back of the eye consisting

of an array of approximately 130 million structures individually sensitive to the inten-

sity and wavelength of light (Hubel, 1995). Wavelength-sensitive excitation of these

structures is collated across the retina and eventually processed to create the sensa-

tion of colour. In accordance with our achromatic perspective of texture (as set out

in Section 2.1) we ignore colour and restrict our attention to the corresponding inten-

sity excitations. Intensity-sensitive responses collected across the retinal structures are

subject to rudimentary preprocessing before undergoing spatial compression: the ≈130

million responses are mapped onto a far smaller number of ganglion cells. These ganglia

comprise the optic nerve, a pathway from each eye transmitting the spatially compressed

retinal information to the optic chiasm – responsible for extracting the left and right

visual fields from both retinal images for subsequent binocular processing – and in turn

to the visual centres of the brain. Each visual field is localised to one of the two brain

hemispheres, with the left hemisphere handling the right visual field and vice versa: the

remainder of this overview is hemisphere-specific (although both operate similarly upon

their visual field).

The first centre to receive visual input is the lateral geniculate nucleus, which acts in part

as a relaying hub to different areas of the brain. In particular, each lateral geniculate

nucleus forwards input to a visual cortex, which may be loosely viewed as an umbrella

over five interconnected child areas, labeled V1 to V5, built up of a connected network

of neurons, each tuned to fire a signal to its neighbours in response to specific stimuli.

These five areas roughly establish a pathway, with more complex representations of

form and shape elaborated along this pathway. Of these areas, V4 is thought to be

the most important in texture understanding (Hanazawa and Komatsu, 2001), with

lesions in this area shown to inhibit discrimination between textures (Schiller, 1993;

Merigan, 2000). Most knowledge has come from functional magnetic resonance imaging

of macaque monkeys, known to have a similar brain structure to humans. It seems

texture understanding proceeds in V4 through neuronal encoding of elements ranging

in complexity from basic oriented lines (Desimone and Schein, 1987) to complex shapes,

with the most complete picture due to Okazawa et al. (2015), who found V4 neurons

appear to be tuned towards “sparse combinations of higher order image statistics”, in
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particular those of Portilla and Simoncelli (2000) whose statistics comprise in part the

outputs of Gabor-like filters at various locations, scales, and orientations.

2.2.3 Representational analysis

Early representational analysis of texture proceeded from definitions of texture based

on the spatial arrangement of certain texture primitives. Julesz (1981) labelled these

primitives textons, and considered them to be the atomic units of preattentive texture

cognition, considered loosely to be small elements such as dots and lines. No real attempt

was made to formalise these atomic units, or to explain their representational form, and

Julesz’s analysis was largely restricted to artifically synthesised textures. Work by Karni

and Sagi (1991) suggested the internal texton representations within the brain were in

fact adjustable through training, suggesting they are learnt from the primitive features

in textures encountered through normal existence – so-called natural textures.

Other research has eschewed the notion of specific primitives. Harvey and Gervais (1981)

subjected viewers to synthesised textures and found “visual internal representation of

stimuli is based on spatial frequency analysis rather than feature extraction”. Experi-

mentation on macacques performed by Arcizet et al. (2008) determined banks of Gabor

filters – spatially localised frequency detectors – to be good approximations to texture

perception, and numerous models have operated under this assumption (Malik and Per-

ona, 1990; Landy and Bergen, 1991).

These different approaches – based on primitives and frequency responses – are not

necessarily conflicting. Primitives may be united cohesively with filtering processes

by interpreting them to be the responsive peaks of these processes, as they may be

in Gabor filter banks. Alternatively, any combination of representational forms may

exist in conjunction, either in parallel, or as different levels of an overall pyramidal

representation. Zhu et al. (2005) formalise the notion of textons and integrate them

with oriented spatial frequency filter within a hierarchical generative model allowing

dictionaries of textons to be learned and, from these texton dictionaries, dictionaries of

filters to be derived.

Having given an overview of human texture processing, in the next section we give an

outline of computational efforts at performing the same task.

2.3 Computational texture representations

In this section we present six different feature space representations for visual texture,

which will be referred to throughout this thesis. We look at two main categories of
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representation: decompositional approaches, which convert image data to some alterna-

tive representation before proceeding with a separate feature extraction procedure; and

statistical, in which features are extracted directly from the intensities of the original

image.

2.3.1 Decompositional representations

Decompositional approaches to feature extraction operate by decomposing the input

image into some alternative representation, where this representation is chosen in the

hope it sheds light on some aspect of texture. Features are then computed from these

alternate representations.

2.3.1.1 Fourier transforms

The Fourier transform of an image is a representation of that image within the frequency

domain. It derives from the theory of Fourier analysis, whereby it is shown that any

signal can be decomposed into a sum of sinusoids of different frequencies. An example

transform is shown in Figure 2.3. Fourier transforms are appealing for texture analysis

(a) Source image, demonstrating regular
horizontal repetition.

(b) Amplitude component of the Fourier
transform of the image, with the highest
amplitudes aligned to the vertical image
axes due to the source image’s horizontal
repetition.

Figure 2.3: Fourier transform of a highly repetitive image.

due to their ability to capture information regarding the repetitive nature of texture.

Highly repetitive texture can be expected to possess peaks in frequency. As such, we

may expect Fourier-based methods to discriminate well between ordered and disordered

textures, which we shall see in Section 3.2.2 occupy an important place in the semantic

space of texture.

Feature selection for Fourier transforms should thus focus on measures able to succinctly

capture the degree and form of repetition. Liu and Jernigan (1990) propose a set of 28
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Fourier transform features, with an emphasis on good performance in noisy conditions.

These are derived from the normalised Fourier transform FN , obtained by dividing the

source transform F by the root of its squared amplitudes:

FN (u, v) =
|F (u, v)|√∑

u6=0,v 6=0 F (u, v)2
(2.1)

Identical normalised transforms are also calculated specific to the four quadrants of F ,

denoted FN1 , . . . , FN4 . A subset of eight of the 29 Liu features, f1, . . . , f8, are designated

as being “optimal” descriptors and are listed below:

• 1) Normalised amplitude of the major peak:

f1 = max
u,v

[FN (u, v)] (2.2)

• 2) Laplacian of the major peak. That is, the sum of the amplitudes of the major

peak’s four neighbours:

(u1, v1) = arg max
u,v

[FN (u, v)] (2.3)

f2 = FN (u1−1, v1)+FN (u1 +1, v1)+FN (u1, v1−1)+FN (u1, v1 +1)−4f1 (2.4)

• 3) Squared major peak frequency:

f3 = u2
1 + v2

1 (2.5)

• 4) Inertia in first quadrant:

f4 =
∑

u>0,v>0

√
u2 + v2FN (u, v) (2.6)

• 5 & 6) Total amplitude of first two quadrants:

f5 =
∑

u>0,v>0

FN (u, v) (2.7)

f6 =
∑

u<0,v>0

FN (u, v) (2.8)

• 7 & 8) Relative entropy of first two quadrants:

f7 =

∑
u,v F

N
1 (u, v) lnFN1 (u, v)∑

u,v I [FN1 (u, v) > 0]
(2.9)

f8 =

∑
u,v F

N
2 (u, v) lnFN2 (u, v)∑

u,v I [FN2 (u, v) > 0]
(2.10)
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where I denotes the 0− 1 indicator function.

A special case of the Fourier transform is described in the next section: the Gabor

transform.

2.3.1.2 Gabor transforms

A Gabor transform is a special case of a Fourier transforms localised to a specific spatial

area using a Gaussian window. Multiple Gabor filters are typically used in combination,

tuned to different orientations and scales. An example of a combination of Gabor filter

responses is shown in Figure 2.4: because the filters are not orthogonal, they are spaced

such that their half-peak responses touch. Banks of Gabor filters formed in this way

have been reported to bear functional similarities to the primary visual cortex of the

human brain (Jones and Palmer, 1987). Manjunath and Ma (1996) use the mean and

standard deviation of each individual Gabor filter response as elements in a texture

feature vector.

Figure 2.4: A combination of Gabor filters distributed over five orientations and at
three different scales (a total of 15 filters) across two dimensions of spatial frequency, u
and v. The circle perimeter represents the half-peak response of a single filter. Example

textures delivering a high response for two of the filters are shown.

2.3.1.3 Statistical geometrical features

This approach was devised by Chen et al. (1995), and proceeds by decomposing an image

into a stack of binary images by thresholding at regularly spaced intensity intervals. In

the case of an 8-bit grayscale representation the decomposition process is lossless, as each

of the 256 intensity levels can be thresholded to form corresponding binary images which
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– when summed – combine to recreate the original image. An example decomposition

for an image with four intensity levels is shown in Figure 2.5.

Figure 2.5: Decomposition of an image into three binary images by intensity thresh-
olding.

Statistics are then calculated based on the number and shape of blobs across the range

of binary images. The following quantities are obtained for each binary image:

• The number of white regions.

• The number of black regions.

• Average irregularity across white regions, where irregularity of a region is defined

as the ratio between the largest distance between region pixels and the square root

of the region area.

• Average irregularity across black regions.

Finally, the maximum, mean, sample mean, and sample standard deviation of each of

these four measures are calculated across all binary images and combined to form a

sixteen-dimensional feature vector.

Having described three decompositional texture representations, in the next section we

describe three statistical alternatives.
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2.3.2 Statistical representations

As opposed to decompositional approaches, statistical approaches of texture analysis op-

erate directly on image intensity values, attempting to find patterns of localised grayscale

structure characteristic to individual textures.

2.3.2.1 Co-occurrence matrices

Introduced by Haralick (1979), the co-occurrence matrix is a two-dimensional histogram

of how often pairs of pixel intensities co-occur at a given distance and orientation from

each other. For instance, a co-occurrence matrix may be used to count how many times

an intensity of 244 occurred one pixel to the right of an intensity of 202. Clearly, for an

8-bit grayscale image the fully specified co-occurrence matrix will contain 256 × 256 =

65,536 elements and will be mostly sparse, and for this reason it is often desirable to

quantise the image intensities in some way. An example co-occurrence matrix for a 4x4

image quantised to contain only four intensity levels is shown in Figure 2.6.

Figure 2.6: Example of a co-occurrence matrix counting intensity co-occurrences at
a distance of one pixel in the direction of the positive x-axis.

Unless quantisation is performed co-occurrence matrices are generally too high-dimensional

to be used as feature vectors themselves. Instead the matrix is normalised by dividing

each element by the sum over all elements such that it may be interpreted as a two-

dimensional discrete probability distribution. Then, various statistical measures are

obtained from the weighted sum of these normalised matrix elements. Using pij to rep-

resent the normalised co-occurrence between the ith and jth intensities of an image with
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n total intensity levels, the statistical measure m can be represented as:

m =
n∑
i=1

n∑
j=1

pijwij (2.11)

where wij is an element-specific weighting towards m, and m is interpreted in different

ways depending on the values of w. Some common interpretations are given in Table 2.1

below. Many of these are appealing in their intuitive meaning. Caution should be

Interpretation of m wij

Dissimilarity |i− j|
Contrast (or Inertia) |i− j|2
Homogeneity 1

1+|i−j|
Uniformity (or Energy) pij
Entropy − ln pij
i mean, µi i
j mean, µj j
i variance, σ2

i (i− µi)2

j variance, σ2
j (j − µj)2

Correlation
(i−µi)(j−µj)

σiσj

Table 2.1: Common statistics computed from normalised co-occurrence matrices.

exercised in the weight placed on these interpretations however, as studies such as that

of Tamura et al. (1978) have indicated only low correspondence between, say, contrast

as defined in the table, and ordinary usage of the term as applied to visual texture.

2.3.2.2 Local binary patterns

Local Binary Patterns are a technique for texture analysis introduced in Ojala et al.

(1996) which identifies the histogram of the frequency of binary codings formed by

taking focus pixels, and then thresholding pixels at a fixed distance from the focus

based on its intensity. An example of this is shown in Figure 2.7 for eight points spaced

regularly around the perimeter of a circle centred at the focus pixel. As eight perimeter

points are used, the total number of possible codes is 28 = 256.

Further study in Ojala et al. (2002b) identified specific patterns with the greatest dis-

criminative power, named uniform binary patterns. These patterns had in common that

they consisted of only two contiguous regions of lighter or darker pixels. It so happens

that the local binary pattern depicted in Figure 2.7 is also a uniform binary pattern.

Patterns of this type have appealing intuitive interpretations, as they can be seen to

represent points, edges, corners, and line terminations – similar in many respects to

the primitive textons of Julesz. The uniform binary patterns corresponded to succes-

sive powers of 2 – 20, . . . , 28 – in the original codings, and can be trivially made to be
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Figure 2.7: Example Local Binary Pattern yielding the code 111111002 (where 1
corresponds to green, and 0 to red) based on the intensity of pixels relative to the

central yellow square.

invariant to rotation. These (normalised) histograms may be used as feature vectors

directly: for n points selected around the circle perimeter, n + 1 uniform binary pat-

terns are present. A further histogram bucket is often defined to count the number of

non-uniform binary patterns, giving a final feature vector of size n+ 2.

Interestingly, codings formed in this manner have found success elsewhere in computer

vision – seemingly independently – as the basis for the FAST feature detector of Rosten

and Drummond (2006), where they have been selected due to their robust properties in

stereo correspondence problems and the speed in which they may be calculated.

2.3.2.3 Tamura texture features

Tamura et al. (1978) presented a set of six empirically selected texture attributes for

which computational forms were derived. Although reasonably unprincipled in design

and surpassed in intervening years by more sophisticated methods of texture analysis,

Tamura et al.’s methods are interesting due to similarities with our own work. They

share an attribute-based approach in common with our own, and a similar method of

pairwise comparison was used to demonstrate good correlation between computational

and human measures of attribute intensity for textures taken from the Brodatz dataset.

In the next section symbol grounding is discussed, it being at the heart of the problems

tackled in this thesis.
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2.4 The symbol grounding problem

Symbol grounding refers to the association of external meaning with the internal sym-

bol set of a cognitive system. The problem of how this association is achieved in both

biological beings and computational models has received considerable philosophical and

psychological attention, and touches on fundamental aspects of cognition, computation,

and consciousness. Artificial intelligence has often contributed and looked toward dis-

course on symbol grounding in its pursuit of models exhibiting intelligent behaviour,

and various subfields assign their own name to specific forms of the problem: in the

context of a robotic entity attaching meaning to sensory input it may be referred to

as the “anchoring problem” (Coradeschi and Saffiotti, 2003), or as the “semantic gap

problem” when associating query input with entries within some dataset, as in CBIR.

In a seminal paper on the topic, Harnad (1990) asks “How can the semantic interpreta-

tion of a formal symbol system be made intrinsic to the system, rather than just parasitic

on the meanings in our heads?”. Here, a formal symbol system is a system in which

symbolic tokens are manipulated according to well-defined syntactic rules, and which is

semantically interpretable, such that the state of the system and its constituent symbols

at any point in time has intrinsic meaning. But can this meaning be inherent to the

system at hand, instead of due to some external interpreter? It is not enough to en-

code the meanings of the symbols in some higher system as this encoding in turn must

be composed of symbols, so leading to an infinite regress. Harnad instead argues that

grounding must proceed from non-symbolic representations: an iconic representation

consisting of projections of raw sensory data, and from this a categorical representation

consisting of those invariant features of the iconic representation that have been deter-

mined to distinguish a (symbolic) category from others. From this perspective, symbol

grounding is then the problem of how categorical associations are formed and maintained

between continuous sensor data and discrete symbols sharing the same physical referent,

so-called categorical perception (Harnad, 1987).

It is informative to relate the problem addressed in this thesis to the more fundamental

problem of symbol grounding, and in particular to Harnad’s representations described

above. For a texture understanding system the iconic representation arises in the form

of a feature space processed from raw signal data, examples of which were outlined in

the previous section. The exact mechanism by which these iconic representations are

distinguished and invariantly associated with symbols is a subject of active debate, but

inextricably related to the underlying symbol system and the rules governing it. Com-

putational models of categorical perception have found success, but address a far vaster

problem than ours as they are often concerned with learning these representations from

scratch. Instead we concern ourselves with just the interface between pre-defined iconic

and symbolic representations, by adopting a few key assumptions about the symbolic

representation, which we discuss below.
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Firstly, we are sure the symbolic representation must consist in part of elementary base

symbols corresponding to the invariant feature sets distinguished in the categorical rep-

resentation. These base symbols are manipulated to establish higher level symbols,

suggesting a hierarchical structure. Hierarchical structures have been commonly em-

ployed in computational visual systems, in which machine learning algorithms operate

at the interface between these elementary symbols and visual feature spaces to learn

the features distinguishing them. An example of a multi-level structuring adopted by

Hudelot et al. (2005) is given in Figure 2.8, whereby the iconic representation is given

in terms of spatially-localised statistics of the raw data, and the symbolic represention

is an a priori defined concept ontology. Belkhatir (2005) uses a similarly structured

approach specific to texture, in which primitive lexical units such as bumpy are tied to

features detected using a bank of frequency filters.

Figure 2.8: Multi-level hierarchy of Hudelot et al. (2005). The disparity between the
two spaces is the semantic gap. The authors aim to close this gap by uniting the two

lowest levels.

Next, how can we determine the elementary symbols? The approaches just described

have in common that their symbolic representations are based on language. But do these

computational systems employ language simply for ease of interpretation, or can lan-

guage be seen as a reflection of the internal structure of the formal symbol system that

is our mind? Certainly our mind’s categorical representations are driven at least partly

through language: were it the case that they were established purely through sensori-

motor interaction, it would not be possible to be able to represent and distinguish new

categories that have not been directly sensed. In computational models the communica-

tion of symbolic categories between entities (“symbolic theft”) has been demonstrated to

be more effective for learning categories than interacting with the physical environment

(“sensorimotor toil”) (Cangelosi and Harnad, 2001), and Vogt (2002) presents an ex-

periment in which mobile robots establish a grounded lexicon through simple language

games, stating “language through its conventions offers a basis for invariant labeling of

the real world”. There is also evidence that language is not only important for social
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knowledge transfer, but also plays a vital cognitive role in its own right through one’s

internal monologue (Jackendoff, 1996; Carruthers, 2002).

Our task then is in learning associations between feature space representations of texture

and linguistic units relating to texture, which we take to be representative of the lowest

levels of an underlying symbolic hierarchy, the grounded symbols from which higher level

cognition proceeds. We refer to this shared structure between symbols and language as

a semantic space, and explore different forms of semantic space in the next section.

2.5 Semantic spaces

In this section we specify how we may describe texture data in a flexible and expres-

sive way, whilst simultaneously accounting for experimental and algorithmic feasibility.

There is of course no one-to-one mapping between the visual and semantic spaces of tex-

ture. We demonstrate this in Figure 2.9, in which multiple forms of semantic description

are given of the depicted texture, each with varying connotations, applicability, and de-

grees of expressiveness. These broad categories of semantic form are outlined below (and

Figure 2.9: Visual texture with various descriptions corresponding to the semantic
forms given in the text: a) Granite; b) Like marble; c) Small smudged blobs distributed

randomly across a lighter surface; d) Blemished, blotchy, random.

correspond to those given in the figure):

• a) Denotational – the physical object or surface the texture corresponds to.

• b) Analogy – by reference to some other known category with similar appearance.

• c) Visual – description of the texture through reference to fundamental visual

elements such as shape, and nature of repetition.

• d) Attributes – individual adjectives, the combination of which express the overall

appearance of some texture (as discussed in Section 2.5.1).
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Across these categories we note the recurrence of abstractional layers, in keeping with

the multi-level view of symbol grounding introduced in Section 2.4. In particular, the

denotational, visual, and attribute forms can be considered to represent decreasing

levels of abstraction. Attributes can thus be seen as occupying the lowest layer of

abstraction of all the forms listed above. In using them as building blocks for the

other higher-level forms we strip away much of the linguistic and ontological complexity,

and can consider the alleviation of these complexities as independent problems whose

solution would eventually give rise to a fully-fledged semantic description system. In the

next section we discuss attributes and their advantages in more detail.

2.5.1 Attributes

Attributes in computer vision denote low-level visual qualities – often adjectives – shared

between objects, and they have received much attention in recent literature in the field,

particularly within object recognition. Their use permits a shift in perspective from the

traditional approach of object recognition in which object classes themselves are atomic

units of recognition. They allow the association of visual data with shared low-level

qualities, facilitating efficient class-level learning and generalisation, and they provide

a means for intuitive and fine-grained description, such as when describing unusual

features of an object, or in stating the ways in which one object is similar to another.

Farhadi et al. (2009) state that attributes allow us to “shift the goal of recognition from

naming to describing”.

Because attributes are shared across objects in this manner they naturally may vary in

their degree of expression across these objects, and so are amenable to flexible expression

along some continuum, rather than in a binary fashion as is traditionally the case for

category names. Consider the expressiveness of the attribute ‘size of eyes’ as a contin-

uous descriptor to be applied to cats, moles, and tarsiers (see Figure 2.10), as opposed

to its binary equivalent ‘has-eyes’, or – in the naming case – the broad and intrinsically

binary categories of cat, mole, and tarsier themselves. It is clear that normal binary

classification is insufficient for such attributes, as they correspond specifically to the

degree of expression of visual features rather than to simply their presence or absence.

Attributes have therefore found use in domains in which key features exist along con-

tinua, such as biometrics (Kumar et al., 2009; Reid and Nixon, 2011; Samangooei et al.,

2008) and scene classification (Oliva et al., 1999; Rogowitz et al., 1998). Similarly, we

see texture as being ill-suited to strict categorisation: key properties in which texture

has been stated to vary include its coarseness, linearity, and regularity (Laws, 1980;

Tamura et al., 1978), all of which are intuitively continuous qualities.
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Figure 2.10: A tarsier.

2.5.2 Relative attributes

The continuous nature of many attributes has important consequences during data elic-

itation, in which human-provided labels are collected for each attribute in order to learn

which visual features they align best with.

One common approach seen in the literature is to have subjects rate the perceived

strength of attributes within each texture along a bounded rating scale, as is done for

texture in Rao and Lohse (1993). Such scales typically require the respondent to select

one of a number of rating levels, which labellers must reconcile with their own subjective

interpretations — the scale cannot be grounded objectively, and different respondents

may have different interpretations of what, say, ‘average eye size’ entails. The inherent

lack of grounding introduces inconsistency between respondents, and leaves them prone

to numerous error factors — they may avoid extremal answers and be swayed towards

anchor points along the scale (Chapman and Johnson, 2002), among other sources of

bias (Tversky and Kahneman, 1974). Although careful experimental design can to some

extent alleviate these flaws (Samangooei et al., 2008), the entire notion of a bounded

continuum may still be inappropriate: the implication, for example, that there exists a

maximally marbled texture is unreasonable and unintuitive.

An alternative technique involves having subjects hierarchically cluster items according

to their similarity – as has been done for texture words by Bhushan et al. (1997).

This approach removes many of the cognitive biases associated with rating scales, but

hierarchical clustering places a greater cognitive burden on the respondent, typically

requiring them to process the entire corpus of items for each attribute, which can be

time-consuming and error-prone.

Instead, throughout this thesis, we operate within the framework of pairwise compari-

son, a psychometric procedure in which a subject is shown two stimuli simultaneously

and prompted to choose the stimulus exhibiting more of some quality. Each pairwise
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comparison represents a snapshot of the underlying continuum for a given attribute,

with inference proceeding using the differences between item features, rather than from

the features themselves. In this way we work with so-called relative attributes, rendering

the details of the underlying continuum immaterial to the respondent, who is concerned

only with the binary decision of choosing which of two items exhibits more of the spec-

ified attribute. This is a cognitively simpler task which frees the subject from many of

the aforementioned biases associated with other labelling schemes. Ultimately, a rank-

ing function is learned, used in order to obtain attribute ratings for new unseen items.

We will make use of pairwise comparisons, relative attributes, and ranking functions

throughout this thesis.

Working with relative attributes offers numerous advantages, and the pairwise compar-

ison setting is critical to our crowdsourced texture dataset described in Chapter 3, and

to the specialised learning techniques we subsequently apply to this dataset. Relative

attributes and pairwise comparisons have been shown to better reflect respondent beliefs

than ordinary categorical attributes in retrieval tasks (Parikh and Grauman, 2011; Reid

and Nixon, 2011) and to provide a more intuitive and natural user experience (Kovashka

et al., 2012). They allow for greater nuance over traditional attributes, catering for forms

such as ‘animals with eyes larger than a tarsier but smaller than an owl ’ that would not

be otherwise expressible.

We mentioned earlier the impressive capacity for the human brain to generalise and

to learn new categories of objects. Relative attributes represent a promising vehicle

for between-class knowledge transfer – crucial in generalisation – and encouraging early

results have been obtained when using them in such a way (Lampert et al., 2009; Farhadi

et al., 2010). Taking this to the extreme, attributes facilitate zero-shot learning of

completely unseen object categories through comparison with other categories that have

already been learned (Wang et al., 2010). Parikh and Grauman (2011) present a neat

way of doing this by calculating per-attribute rankings, mapping a semantic description

on to them, and then deriving a newly learned feature vector corresponding to this

description using the known features of similarly ranked items.

Pairwise comparison has previously been used specifically for texture by Tamura et al.

(1978) across six attributes, but never on a large scale in a modern setting. There is

evidence that the pairwise comparison scheme is particularly well-suited for texture: it

has been hypothesised that the textural processes of the human cognitive system operate

using such a comparison mechanism (Harvey and Gervais, 1981).

2.6 Summary

Much of what has been discussed in this chapter acts as a framework for the rest of

the material in this thesis. We have looked in detail at texture – its definition and
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cognition –and at symbol grounding and appropriate structurings of the visual and

semantic spaces. Flexible, expressive, low-level semantic units known as attributes will

be heavily employed in coming chapters as we create a new dataset of texture words,

formed using a cognitively appealing pairwise comparison procedure. As mentioned,

little is known about how humans process visual texture or map it to the rich lexicon

of words describing it, and so we must identify novel ways of learning from pairwise

comparison data, seeking inspiration from data-rich domains such as machine learning

and information retrieval.

We continue in the next chapter with the creation of a new crowdsourced dataset of

relative attributes.
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Representations of Texture

In the last chapter we introduced the notion of a multi-level semantic and visual hierar-

chy (see Figure 2.8), where we may attempt to bridge the semantic gap by tying the two

lowest levels of this hierarchy. In this chapter we give an overview of possible representa-

tions of these visual and semantic spaces, finishing by conducting a large-scale labelling

task resulting in 140,000 pairwise comparison labels — one of the largest datasets of its

kind.

We commence by detailing the dataset of visual texture we will use throughout this

thesis.

3.1 Texture datasets

In selecting a dataset, it is useful to refer back to our characterisations of texture given

in Section 2.1. Here, texture was presented as a nebulous visual quality, only loosely

corresponding to the tactile sensation of physical surfaces. The importance of texture in

human understanding of natural scenes was emphasised, as well as how this importance

has given rise to the expressive semantic space which is the subject of this thesis. As

such, our chosen dataset should span a diverse selection of textures, not simply limited

to fabrics, abstract patterns, or any single domain in particular.

One of the largest and most widely-used datasets in texture analysis is the Outex

dataset (Ojala et al., 2002a). The samples within this dataset vary in rotation, illumi-

nation, and scale. We assume texture perception to be both rotation and illumination-

invariant, and although it is commonly held that visual perception of texture in humans

is scale-invariant (Kingdom and Keeble, 1999; Zhang and Tan, 2002) we believe that it

does not necessarily follow that this invariance exists within the semantic space: con-

sider, for instance, how disordered circular primitives may appear either speckled or

bumpy when observed respectively from afar or up close.

25
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The size of the dataset, its widespread use, and its use of multiple samples of each texture

are appealing, and we use the 319 texture classes included in test suite Outex TC 00016

throughout the rest of this thesis. We use samples within each class varying in illuminant

(horizon, inca, tl84), and rotation (0◦, 30◦, 60◦, 90◦), but not in scale (only 100dpi

is used). This gives twelve samples per texture class, for a total of 3828 samples all

together.

Colour is taken to be a separate visual cue, and so all texture samples are converted to

grayscale before experimentation. Examples of Outex textures can be seen in Figure 3.1.

Figure 3.1: Examples of Outex textures.

Having set out the exact source of our visual space of texture, in the next section we

describe the semantic space to which we will aim to tie it.

3.2 Semantic space of texture

Unlike for visual texture, where feature-space representations are well-studied and can

be calculated directly from raw image data, the semantic space of texture is far more

inscrutable, its structure having to be teased out through careful linguistic studies and

psychometric surveys. Our aim is to find low-level semantic units — attributes, to use

the terminology introduced in Section 2.5.1 — which will collectively make up a compact

lexicon that is representative of how humans describe texture. In the next section we

define the desirable qualities such a lexicon must have, before introducing the important

study of Bhushan et al. (1997) who create an appealing texture lexicon which will prove

fundamental to the rest of this thesis.
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3.2.1 Lexicon selection

In defining a lexicon of attributes a trade-off must be made between two conflicting

lexical qualities: expressiveness, and efficiency. The lexicon must be sufficiently ex-

pressive to be able to capture the variability of the visual texture space and, naturally,

increasing the size of the lexicon will aid in achieving this goal due to the nuances of

meaning connoted by the newly added terms. However the dimensionality of the lexicon

has a direct influence on the complexity of algorithms involved in the eventual solu-

tion, and is known to play an important role in the accuracy of information retrieval

systems (Ceglarek et al., 2010). As such we also wish to pursue the opposing goal of

minimising its size – making it more efficient. Our focus, therefore, is on selecting a set

of attributes which maximises some measure of expressivity, whilst remaining as small

as possible.

Building up such a lexicon in an automated way is challenging, but the emergence of

image-sharing sites such as Flickr featuring extensive user-submitted databases of tags

– or folksonomies – has provided a rich source of descriptive data usable as a basis

for knowledge extraction (Van Damme et al., 2007). Furthermore, some success has

been found in work such as that of Neviarouskaya et al. (2011) in expanding sentiment

word lists using the lexical ontology of WordNet (Fellbaum, 1998). Many authors such

as Tamura et al. (1978) consider a manually selected attribute set based on their own

empirical analysis of what appears to constitute texture. We may look to take a more

principled approach, selecting words according to actual usage through the assumption

that linguistic evolution has to a good extent balanced the expressiveness–efficiency

trade-off for us. Fields such as food technology and petrology in which texture is of

prime importance have developed mature, articulate lexicons to aid in their work. In

the latter, for instance, vesicular describes a rock “being pitted with many cavities at its

surface”, but is a term – like many of the other terms used in such specialised fields –

likely too unfamiliar to general audiences.

We have implicitly assumed our lexicon to consist of words from the English language.

Many dozen WordNets have been constructed for languages other than English1, and

languages represented within the WordNet framework feature the advantage that stan-

dard tools – such as similarity measures – may be readily applied to them. It is also

worth noting that a multilingual analysis can shed light on the underlying cognitive

representation. A seminal study into colour semantics by Berlin and Kay (1969) across

twenty languages revealed an intrinsic cognitive hierarchy of eleven categories. We leave

the study of multilingual texture semantics for future work.

Of particular interest throughout this thesis is the lexicon compiled in Bhushan et al.

(1997) using dictionary searching followed by a pruning process. The resulting 98 word

lexicon reflected the semantic space of texture well enough to be able to account for 82%

1A listing is available at http://www.globalwordnet.org/gwa/wordnet_table.html

http://www.globalwordnet.org/gwa/wordnet_table.html
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of the total variability of their experimental data. The methodology is specifically based

around human textural understanding, and they are able to make numerous interesting

characterisations of the semantic space of texture. We devote more attention to this

study in the next section.

3.2.2 Bhushan et al.’s “Texure Lexicon”

To create their lexicon, Bhushan et al. used the following procedure. Initially, a 367 word

lexicon of texture words was created through dictionary searching. Words were selected

relating to texture or patterns and by examining synonyms of previously selected words.

This was eventually pared down to a much smaller size by omitting rare and obscure

words and words relating to light effects (e.g. transparent) to yield a lexicon of 141

words. These words were then presented to 20 subjects in a pilot study. Subjects were

encouraged to form clusters of the 141 texture words based on their perceived semantic

similarity. A similarity matrix was created based on how often pairs of words were

clustered together by the respondents. A principal components analysis was performed

on the results in order to remove insufficiently expressive words. The first seven principal

components explained 70% of the variance in the data, and words without a high score

in at least one of these components were removed from the lexicon as these words lacked

the power to usefully describe different textures. This left a final lexicon of 98 words.

Next, the clustering task was performed again in a larger study involving 40 participants,

and another similarity matrix was constructed, this time of size 98×98. Two important

insights into the space of texture words were made using this similarity matrix:

• First, it was used to perform hierarchical clustering of the texture words, revealing

eleven distinct clusters. We list interpretations of the eleven clusters in Table 3.1.

• Secondly, the authors performed multidimensional scaling on the similarity matrix

and determined that three dimensions of visual texture were sufficient to explain

82% of variability in the collected similarity data. Only 59% of total variabil-

ity was explained in the two dimensional case, while moving to four dimensions

yielded only a 4% improvement. For this reason the authors focused on the three-

dimensional structure. To better illustrate the structure of the space we plot the

three-dimensional locations of a sample word from each of the eleven clusters in

Figure 3.2.

The authors then confirmed a strong correlation between the semantic and visual spaces

of texture through reference to the results of Rao and Lohse (1993), who performed a

similar study restricted to the visual space of texture. The intuitive properties of this

98 word texture lexicon make it appealing for use as a source of low-level attributes

in bridging the semantic gap. In particular, more modern dimensionality reduction
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Cluster interpretation Sample words

Linear orientation furrowed, lined, pleated
Circular orientation coiled, flowing, spiralled
Weave-like structure cross-hatched, meshed, woven
Well-ordered regular, repetitive, uniform
Disordered jumbled, random, scrambled
Disordered linear primitives cracked, crinkled, wrinkled
Disordered circular primitives dotted, speckled, spotted
Disordered circular 3D primitives bubbly, bumpy, pitted
Disordered weave-like structure frilly, gauzy, webbed
Disordered indistinct circular primitives blemished, blotchy, smudged
Disordered indistinct linear primitives marbled, scaly, veiny

Table 3.1: Interpretations of the eleven texture word clusters identified in Bhushan
et al. (1997)
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Figure 3.2: Representative attributes from each of the clusters in Table 3.1, with
approximate locations (normalised between 0 and 1) across the three texture dimensions

identified in Bhushan et al. (1997).

techniques could be applied in order to determine the most expressive subset of the

lexicon of a given size, although unfortunately detailed results for the dataset are no

longer available2.

It is also worth emphasising the neat methodology employed by the study: the primary

goal – maximising the expressiveness of a lexicon for texture – is too complex to elicit

2Established through e-mail correspondence with Rao.



30 Chapter 3 Representations of Texture

from subjects directly, and they are instead only ever required to cluster the words

based on perceived similarity. Clustering is a process essentially involving a series of

binary comparisons, a particularly natural methodology for both experimenters and

respondents, requiring less design input from the former and reducing the cognitive

burden on the latter. Responses are less likely to be biased or inconsistent and so less

likely to lead to incorrect interpretations, in the same way as for the pairwise comparison

methodology introduced in Section 2.5.2.

The procedure above is very important, as it yields a lexicon which balances the expressiveness–

efficiency trade-off through recourse to human cognition. As such, we can expect it to

be sufficient for describing the textures held in the Outex dataset introduced in Sec-

tion 3.1, without being redundant or of too high a dimension. In the next section we use

the pairwise comparison framework to label the Outex textures with the 98 attributes

derived above.

3.3 Labelling task

The pairwise comparison framework introduces certain new challenges, however. For

the Outex dataset of 3828 textures, there are
(

3828
2

)
= 3828×3827

2 comparisons possible

for each of the 98 attributes: approximately 718 million comparisons in total. However,

it has been indicated (Parikh and Grauman, 2011) that only relatively few comparisons

– in the order of the number of items being compared – are needed to achieve results

comparable to that of the complete case. We can also reduce the burden in the following

ways:

• Removing redundancy from the visual and semantic spaces: Due to the PCA anal-

ysis of Bhushan et al. (1997) (see Section 3.2.2) this has already been performed

to some extent for our semantic space, which was pared down to 98 texture words

from an initial set of 367. Because our visual space of 3828 textures is actually

composed of 319 textures captured at 12 different variations of illumination and

rotation, we may easily reduce the dimensionality of this space by assuming com-

parisons to apply equally to all 12 samples within each texture class, owing to

the natural human visual robustness to illumination and rotation when describing

surface texture. As such, only textures with rotation of 0◦ and illumination of

horizon need be displayed to users, and labels can be automatically propagated

between the remaining 143 combinations of between-class samples. The number of

unique pairwise comparisons for each attribute is thus
(

319
2

)
, for a total of around

5 million.

• Exploiting similarities in the visual and semantic spaces: Often many of the items

in the visual space, and many attributes in the semantic space, are very similar
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to other items in those spaces. When this is the case comparisons can be propa-

gated so as to apply equally for similar items (and attributes), even if the original

respondent did not view those items.

• Selecting only the most informative comparisons: Following from the previous

point, the learning task can often be completed more quickly by always selecting

the most informative comparison to show to respondents. In this way, the data

elicitation task is made to be iterative, with the comparison shown to users at any

point a function of all previous comparisons. Such a procedure is often known as

active learning.

To address the latter two of these issues, we derive a new method for learning from pair-

wise comparisons informed by correlations in the visual and semantic spaces in Chap-

ter 4. Also in that chapter, in Section 4.4.2, we quantitatively investigate the effect the

number of comparisons has on predictive accuracy with a synthetic dataset.

Next, we describe the methodology employed for the labelling task.

3.3.1 Methodology

Our methodology is as follows: a subject is shown two textures side-by-side along with

a single attribute, as shown in Figure 3.3. The subject is prompted to select the texture

that expresses a greater level of the attribute in question, or to rate them as similar.

To ensure the soundness of the basic procedure above we obtained a small number of

comparisons in a limited pilot study conducted with around ten members of our research

group. From this it was observed that pairs of textures appeared reasonably often which

could not be said to be describable by the displayed attribute. Although computationally

we would prefer respondents to mark pairs such as these as similar (as they both express

similarly minimal levels of the attribute), it was observed that cognitively there was often

a degree of hesitancy and doubt. To correct for this we added an extra option: “Neither

texture appears to be <adjective>”. Absence comparisons are equivalent to a similarity

judgement in all subsequent analysis.

The attribute shown is the one involved in the fewest comparisons at that point. We

made a deliberate design decision to target breadth rather than depth in the responses;

that is, to achieve as many different pairwise comparisons as possible, rather than mul-

tiple responses from different subjects for each pairwise comparison used, so as to min-

imise the sparsity of the resultant dataset. To this end, the textures shown were chosen

randomly among those that had not previously been directly compared.

Because of the massive amount of labels required, we used the Amazon Mechanical Turk

(https://www.mturk.com) crowdsourcing platform to procure them, on which workers

https://www.mturk.com
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Figure 3.3: Web interface used for obtaining texture comparisons.

are paid fees to perform small tasks for requesters. However, it is well-established that

crowdsourced data can be unreliable (Kittur et al., 2008): respondents are anonymous,

may be unfamiliar with the task at hand, and have a financial incentive to respond

quickly, even at the expense of quality. To avoid the risk of garbage responses, potential

workers were required to complete a brief English proficiency examination in order to

submit labels. Each examination consisted of five multiple choice questions requiring

answerers to select which of four words is most synonymous with another candidate word.

Applicants required at least four correct answers out of the five in order to continue to

the labelling task. In practice, the presence of the examination acted more as a deterrent

to users with poor English proficiency: few people failed the examination, and almost

all who took it scored five out of five. Later in this thesis, we will evaluate and prune

the data from accepted workers before subsequent experimentation (Section 5.1).

Comparisons were sent to accepted workers in sets of ten, with $0.05 paid for a completed

set. The labels obtained through Amazon Mechanical Turk are analysed in the next

section.
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3.3.2 Analysis

137,995 comparisons were obtained from 568 different respondents, averaging approxi-

mately 243 comparisons per respondent. Note that this is just 3% of the total possible

98×
(

319
2

)
comparisons. Table 3.2 shows respondents grouped by how many comparisons

they made — around half of all comparisons were made by just the top 34 respondents,

who each made 1000+ comparisons individually. This reliance on just a few dozen peo-

ple meant our results were susceptible to noise from rogue users: we examine the dataset

from a noise-reduction perspective in Section 5.1, identifying respondents whose overall

contribution was deleterious to further analysis.

Comparisons Respondents

1—10 155
11—100 202

101—1000 177
>1000 34

Total 568

Table 3.2: Groupings of respondents by how many comparisons they made.

Each attribute received just over 1400 comparisons on average, corresponding to around

9 comparisons per texture. The patterns of responses over all comparisons are displayed

in Table 3.3. A large number of neither responses were received. Although these are

still useful, as they map to similarity constraints in subsequent analysis, they suggest

that the typical attribute only applied to a subset of the items, and some time could

have been saved by inferring which item pairs were likely to be uninformative.

Response #

Left 38,526
Right 40,612
Similar 7345
Neither 53,551

Total 137,995

Table 3.3: Number of comparisons for each response category.

To better illustrate our chosen attributes and how they relate to the Outex dataset

we display in Appendix A an exemplar texture for each of the ninety-eight attributes,

learned using the direct inference method of David (1987) introduced in Chapter 4.2.1.

Empirically, we can see there is generally a good accordance between the exemplar

texture and each attribute, giving an indication that any noise in our label dataset is

outweighed by good responses. The results in the experiments detailed in Chapter 5 go

on to support this suspicion quantitatively.
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3.4 Summary

In this chapter we obtained a large crowdsourced dataset of pairwise comparison labels

for a selection of texture images (Matthews, 2014). Although, we can measure the at-

tribute strengths of the involved textures directly from the pairwise comparison data,

it is desirable to be able to infer the semantic strength of our attributes for new, un-

seen textures. This can be done based only on their visual properties using the visual

descriptors described previously. Methods for learning attributes strength ratings for

both seen and unseen texture are described in the next chapter. We also derive a prob-

abilistic method for inference from pairwise comparison data, which we eventually use

to measure respondent reliability for the dataset collected above in Section 5.1.



Chapter 4

Bridging the Semantic Gap

Now that we have obtained a large dataset of labels, we may work on bridging the

semantic gap by learning the correspondences between them so that we can automatically

label, synthesise, and describe texture. To this end, in the current chapter we will outline

current methods of learning from sets of pairwise comparisons; derive a new probabilistic

method we may use to learn from sets of pairwise comparisons; and then evaluate the

performance of this method on synthetic data.

We start by defining the problem of bridging the semantic gap more precisely in the next

section.

4.1 Problem statement

In this section we introduce the notation used throughout this chapter and in the rest of

the thesis, and formally state the problem to be solved – that of bridging the semantic

gap.

4.1.1 General notation

We make use of various specialised operations on matrices.

The Kronecker product of two matrices, denoted A ⊗ B where A is M × N and B is

P ×Q, is defined as the block matrix

A⊗B =


a1,1B a1,2B · · · aN,1B

a2,1B a2,2B · · · aN,2B
...

...
. . .

...

aM,1B aM,2B · · · aM,NB

 (4.1)

35
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and hence is of size MP ×NQ.

The vectorised form of a matrix, denoted vec(A), is a vector created by stacking each

of the columns of its parameter matrix:

vec(A) = [a1,1, · · · , aM,1, a1,2, · · · , aM,2, · · · , a1,N , · · · , aM,N ]> (4.2)

Vectorisation is related to the Kronecker product through the equation below, which we

make use of throughout this chapter:

vec(ABC) = (C> ⊗A)vec(B) (4.3)

The Moore-Penrose pseudoinverse is a generalisation of the matrix inverse to non-square

matrices (Penrose, 1956). The pseudoinverse of A is denoted A† and is a least squares

solution to a system of linear equations:

A† = (A>A)−1A> (4.4)

We now formally state the problem to be solved.

4.1.2 Bridging the semantic gap

We consider problems involving N items and P attributes. Each item i = 1, . . . , N is

represented by a D-dimensional feature vector xi = (xi,1, . . . , xi,D), occupying the ith

row of feature matrix X ∈ RN×D. Each attribute j = 1, . . . , P is associated with an N -

dimensional strength vector rj = (r1,j , . . . , rN,j)
>, where ri,j is the unknown real-valued

strength of attribute j for item i. Each rj occupies the jth column of an attribute

strength matrix R ∈ RN×P , to be estimated as part of the learning problem.

Our response data is represented by a set C of M pairwise comparison tuples:

C = {(a, b, y)1, (a, b, y)2, . . . , (a, b, y)M} (4.5)

where for tuple (a, b, y)i, a, b ∈ {1, . . . , N}, y ∈ {−1, 0, 1} and a 6= b. y = 1 indicates

the respondent felt that item a exhibited a greater quantity of attribute p than item b;

y = −1 indicates the opposite; and y = 0 indicates the respondent felt both a and b

exhibited similar levels of the attribute.

From this we define the sets of dominance relations, CD, and similarity relations, CS , as:

CD = {(a, b, y)i|(a, b, y)i ∈ C ∧ y ∈ {−1, 1}} (4.6)

CS = {(a, b, y)i|(a, b, y)i ∈ C ∧ y = 0} (4.7)
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Similarly, for the pth attribute, we obtain a total of M (p) pairwise comparison tuples:

C(p) =
{

(a, b, y)
(p)
1 , (a, b, y)

(p)
2 , . . . , (a, b, y)

(p)

M(p)

}

For mathematical convenience, we encode these tuples in a sparse matrix, C(p) ∈
{−1, 0, 1}M(p)×N and a response vector y(p) ∈ {−1, 0, 1}M(p)×1, where for tuple (a, b, y)

(p)
i ,

C
(p)
i,a = 1, C

(p)
i,b = −1, and y

(p)
i = y. We also define the (unknown) rating difference for

each pairwise comparison:

z(p) = C(p)rp (4.8)

such that z
(p)
i = ra,p − rb,p

Next, we introduce structures that contain data concerning pairwise comparisons across

all attributes. In this way: M =
∑P

i M
(i), and:

C =


C(1) 0 · · · 0

0 C(2) · · · 0
...

...
. . .

...

0 0 · · · C(P )

 y =


y(1)

y(2)

...

y(P )

 z =


z(1)

z(2)

...

z(P )

 (4.9)

Hence, C ∈ {−1, 0, 1}M×NP , y ∈ {−1, 0, 1}M×1 and z ∈ RM×1. Following from Equa-

tion 4.8, z is calculable directly from C and R as:

z = Cvec(R) (4.10)

Given a set of pairwise comparisons held in C and y it is of great interest to be able

to accurately estimate the unknown attribute strength matrix R. However, our goal

in bridging the semantic gap is to be able to assess the attribute strength ratings for

unseen textures and attributes which weren’t involved in the initial labelling process,

a problem known as learning-to-rank. For this reason any learning mechanism suitable

for bridging the semantic gap should not only accurately estimate R, but also provide

some means for generalisation.

In the next section we outline selected techniques for learning item ratings from pairwise

comparisons, both in the case where the ratings are learned directly from the compar-

isons, and in the case where the ratings are calculated by applying a learned ranking

function to the item features.
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4.2 Learning rankings

In this section we introduce two fundamentally different methods of estimating attribute

strength ratings from pairwise comparisons. The first is a statistical technique operating

directly on the pairwise comparison graph and hence cannot be used to infer ratings for

unseen items, but is useful in cases where generalisation is not required and a feature

space has not been defined. The second – RankSVM – belongs to a class of inference

algorithms known as learning-to-rank where generalisation is possible through learning

a ranking function which maps feature space representations of items to a real-valued

ranking value. We start the section with an example of the former of these.

4.2.1 Statistical inference

Often it is useful to be able to directly infer attribute strengths from pairwise comparison

data, even when a feature space representation is unavailable or undesirable. Doing so

allows us to answer simple questions about the dataset – as we did when calculating the

exemplar textures in Appendix A – and may serve as a ground truth measure against

which the outputs ranking functions can be judged. Such rankings could also be used

to derive semantic modifiers to our basic attribute forms, allowing constructs such as

“slightly spiralled” or “extremely bumpy”.

Inference methods of this kind often proceed using a preference matrix, A, where Aij is

the number of times item i was preferred over item j, with similarity relations counting

as half a dominance relation (Andrews and David, 1990). Item win and loss totals are

calculated from the row and column sum respectively:

w = A1N

l = A>1N
(4.11)

where w is a vector of item win totals, l is a vector of item loss totals, and 1N is an

N -length vector of ones.

In this thesis we use the simple mechanism introduced by David (1987) designed to

operate on incomplete sets of pairwise comparisons such as ours. In this system the

strength ratings for an attribute, r, are calculated as:

r = w − l+ Aw −A>l (4.12)

Intuitively, the method works by scoring item i as follows:

• The score of item i is the number of times i dominates another item. . .

• . . . plus the number of times those items dominate any other item. . .
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• . . . minus the number of times i is dominated by another item. . .

• . . . minus the number of times those items are dominated by any other item.

Using the notation that ri is the score of item i and that CD is a set of dominance

orderings as defined in Equation 4.6, we can present the above scoring system as follows:

ri =
∑

(i,a)∈CD
(1 +

∑
(a,b)∈CD

1)−
∑

(a,i)∈CD
(1 +

∑
(b,a)∈CD

1) (4.13)

Similarity orderings, held in CS , are introduced by considering similar items as having

half the effect of dominating and half the effect of being dominated.

wi =
∑

(i,j)∈CD
1 +

∑
(i,j)∈CS

1

2
(4.14)

li =
∑

(j,i)∈CD
1 +

∑
(i,j)∈CS

1

2
(4.15)

ri = wi − li +
∑

(i,j)∈CD
wj −

∑
(j,i)∈CD

lj +
∑

(i,j)∈CS

1

2
(wj − lj) (4.16)

A ranking can then be derived naturally from these scores by sorting in descending order.

In the next section we introduce the Ranking SVM – a technique for learning a ranking

function from a feature space representation of the items, such that items uninvolved in

the pairwise comparison procedure can also be rated.

4.2.2 Ranking SVM

The traditional Support Vector Machine (SVM) aims to determine the optimally sepa-

rating hyperplane between the feature space representations of two classes of data. Using

xi to represent the location in feature space of the ith item in a dataset of N items, yi to

denote the classification (either 1 or -1) of that item, and w as the normal vector to the

separating hyperplane, we can display this aim in the form of an optimisation problem:

minimise
w

1

2
||w||2

subject to yiw · xi ≥ 1, i = 1, . . . , N
(4.17)

In cases where the two classes of data are not linearly separable within the feature space

a soft-margin SVM (Cortes and Vapnik, 1995) can be used. This formulation introduces

so-called slack variables, where ξi is the misclassification error of item i. The quadratic

sum of the slack variables is included as a term in the objective function, with C acting

as the trade-off between maximising the margin and minimising the misclassification
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error:

minimise
w

1

2
||w||2 + C

N∑
i=1

ξ2
i

subject to yiw · xi ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N

(4.18)

The Ranking SVM (Joachims, 2002) is an analog to the traditional SVM with the

aim of determining the optimally separating hyperplane between differences of feature

vectors, rather than between the feature vectors themselves. These difference vectors

are classified according to whether they represent a greater-than or less-than relation.

The Ranking SVM without similarity constraints is thus formulated as:

minimise
w

1

2
||w||2 + C

M∑
i=1

ξ2
i

subject to yw · (xa − xb) ≥ 1− ξi, ξi ≥ 0, (a, b, y)i ∈ CD
(4.19)

In this context w is interpreted not just as a separating hyperplane between greater-than

and less-than relations, but also as a ranking function capable of mapping new, unseen

feature vectors to a real-valued measure of attribute strength.

Support for similarity constraints is gained using the formulation of Parikh and Grauman

(2011):

minimise
w

1

2
||w||2 + C

M∑
i=1

ξ2
i

subject to yw · (xa − xb) ≥ 1− ξi, (a, b, y)i ∈ CD

w · (|xa − xb|) ≤ ξi, (a, b, y)i ∈ CS

ξi ≥ 0

(4.20)

This formulation departs slightly from that of the traditional SVM structure and so

cannot be solved using specialised solvers. However, traditional quadratic programming

approaches still apply.

4.2.3 Summary

In light of the introductions given above, it is helpful to formulate a list of properties a

system for inferring attribute ratings might possess, paying no regard at this point to

whether these properties are jointly achievable:

• Accuracy — To deliver a ratings estimate R̂ that reflects as accurately as possible

the true ratings R given a set of pairwise comparisons C.

• Resilience — To be able to deliver this estimate even if C is incomplete – it does

not hold every single possible comparison – or includes erroneous labels.
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• Time efficiency — To be able to deliver the estimate as efficiently as possible as

the dimensionality of C increases.

• Certainty — To quantify the degree of uncertainty in its estimates.

• Generalisability — To be able to generalise and deliver rating estimates for new,

unseen items and attributes. It is this property that differentiates a learning-to-

rank approach from a purely statistical one.

The Ranking SVM possesses many of these properties, and is hence one of the most

widely used learning-to-rank techniques for pairwise comparison datasets: it is accurate,

and is in a sense optimal in that it will obtain the maximally separating hyperplane for a

set of comparisons; this optimisation problem can be solved in a time efficient manner;

it is somewhat resilient due to the regularisation term ||w||2 in the objective function

protecting against overfitting; and it outputs a ranking function allowing it to easily

generalise to new, unseen items.

However, we argue that it is deficient in situations where there are only relatively few

pairwise comparisons. In these situations it may be expensive to obtain the requisite

number of comparisons to properly rate a set of items with confidence, and information

about the structures of the item and attribute spaces could be used to better infer

missing comparisons. In fact, the Ranking SVM does not incorporate any information

about the attribute space at all: each attribute must be learned individually and it is not

possible to generalise the output to new attributes. Furthermore, the degree of certainty

is unknown, and only point estimates of item ratings are provided.

In the next section we derive a Bayesian probabilistic approach that addresses these

concerns by learning a probability distribution over the sought after ratings based on

information about the structure of the item and attribute spaces.

4.3 Probabilistic inference from pairwise comparisons

This section derives a probability distribution over the unknown attribute ratings, Pr(R|C).
As we intend for the framework to operate with large numbers of attributes whose vi-

sual form may be unknown or difficult to capture a priori, we wish to avoid using any

explicit feature space representation for inference. This is unlike traditional learning-to-

rank formulations, which take a feature matrix, X, to have been fully defined.

Instead, due to the nature of our pairwise comparison dataset, we choose to make use

of similarity measures between both textures and attributes. Loosely, if we are sure a

particular texture is visually similar to some other texture, and an attribute has similar

meaning to some other attribute, then it is reasonable to assume both textures express

both attributes at similar levels, even if we have no other feature information about the
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textures or attributes. This is a particularly natural framing for our attributes, them

being simple atomic descriptive units for which a feature space representation is not

forthcoming in the same way as for say, textures, which are backed by raw signal data.

To this end, we assume we instead provide a symmetric matrix of between-item sim-

ilarities S ∈ RN×N , and between-attribute similarities, T ∈ RP×P . To be precise, in

our probabilistic formulation these similarity matrices take the form of covariance (or

correlation) matrices, and can be defined in numerous ways depending on the problem

at hand and the nature of the space. For instance, similarities could be calculated using

a computational distance measure based on some underlying feature space representa-

tion; by a psychometric procedure such as that performed by Bhushan et al. (1997) (and

outlined in Section 3.2.2); using specialised notions of similarity such as those developed

for semantic distance in WordNet(Budanitsky and Hirst, 2001); or handcrafted using

expert knowledge of the structure.

In this way S and T effectively act as an implicit feature space without requiring an

explicit feature selection stage, and they introduce an appealing symmetry between items

and attributes: both spaces have identical mathematical structures and are given equal

prominence within the formulation, in contrast to traditional “item-centric” approaches.

This symmetry permits generalisation across both items and attributes, with ratings for

new, unseen categories learned by evaluating their similarity to existing items in an

appropriate way, updating S and T, and then re-calculating Pr(R|C,S,T). We shall

also see later in this chapter that this transposability allows for an entire set of ratings

across multiple items and attributes to be jointly learned, rather than inferred one

attribute at a time.

We begin the derivation of the probabilistic framework in the next section.

4.3.1 Multivariate normal distribution

The multivariate normal distribution is a multivariate generalization of the normal dis-

tribution. It allows us to impose a probabilistic structure on a K-dimensional vector.

Parametrised with a mean vector, µ ∈ RK×1, and covariance matrix, Σ ∈ RK×K , it is

defined as:

N (x|µ,Σ) = (2π
K
2 |Σ|

1
2 )−1 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(4.21)

As the support of the multivariate normal distribution is a vector in RK×1, we can seek

to learn the parameters for this distribution over the unknown vector of strength ratings

for a single attribute, denoted rp for attribute p, and hence quantify the uncertainty in

these ratings in a principled way.
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To do this, we recall notation from Section 4.1.2 differentiating between the actual

(unknown) strength differences, denoted z(p), and the perceived (subjective) strength

difference response, which are instead denoted y(p). Although we have defined y(p) to

take values in the set {−1, 0, 1} corresponding to “less than”, “similar to”, and “greater

than” judgements respectively, for now we will proceed as if responses in y(p) can take

any real value, such that we can interpret them probabilistically as being randomly

perturbed instances of the unknown strength differences. This perturbation can account

for subjective variations in how the attributes and visual textures are interpreted as well

as accounting for noise and other effects. We represent these perturbations in a random

error vector, ε, like so:

y(p) = z(p) + ε (4.22)

However, as mentioned, for the dataset we collected in the previous chapter the exact na-

ture of this perturbation is complicated by the fact we don’t have available a real-valued

measure of each response (although a different experimental setup could provide this).

Instead, for experimental simplicity we elicited only relative judgements reflecting dom-

inance or similarity. Distributions involving truncation and discontinuities such as this

are typically less convenient to work with. Although in principle the resulting treatment

could proceed using any noise model the eventual Bayesian analysis is made especially

simple when using distributions with certain properties. In particular, the normal (and

multivariate normal) distributions are particularly simple to work with analytically, par-

ticularly when it comes to an eventual Bayesian formulation, and throughout this section

we proceed under the assumption of normally distributed noise. Gaussian noise of this

kind is a key assumption of our model. Furthermore we take ε to be homoscedastic –

each error term has the same variance, equal to σ2. However, if more information were

known about the biases and tendencies of the respondents then the covariance matrix

could be formulated to better reflect the subjective error. For simplicity, we proceed

using homoscedastic Gaussian noise.

With the above in mind, by assuming each element of the error vector is independent

and normally distributed with zero mean and variance σ2, we have:

ε ∼ N (0, σ2I) (4.23)

Combining equations Equation 4.22 and Equation 4.23 yields a probabilistic form for

y(p), the perceived strength differences:

y(p) ∼ N (z(p), σ2I) (4.24)

In Equation 4.8 we have defined z(p) such that it can be obtained by multiplying our

comparison matrix C(p) by the vector of unknown strength ratings rp. As such, we can
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substitute z with Cr to obtain:

y ∼ N (Cr, σ2I) (4.25)

Here and from this point on we will stop using the attribute-specific (p) indicator when

discussing derivations based on the multivariate normal distribution, when it is clear

through context that only a single attribute is being discussed.

The probability of a subject perceiving the rating differences held in y is therefore:

Pr(y|C, r, σ2) = N (y|Cr, σ2I) (4.26)

= (
1

2πσ2
)M/2 exp

(
− 1

2σ2
δ>δ

)
(4.27)

δ = y −Cr (4.28)

Our goal is to infer the unknown attribute strengths r from observations of attribute

strength differences, y. In the next section we do this using maximum likelihood and

later using a Bayesian inference scheme.

4.3.1.1 Maximum likelihood estimate

The maximum likelihood estimate of the mean parameter of this distribution is given

by the sample mean of the data. The log-likelihood function is:

lnL(r, σ2|y) = ln Pr(y|C, r, σ2) (4.29)

= −M
2

ln 2π − M

2
lnσ2 − 1

2σ2
δ>δ (4.30)

δ = y −Cr (4.31)

Differentiating with respect to the attribute ratings gives:

∂ lnL
∂r

= − 1

2σ2

(
−2C>y + 2C>Cr

)
(4.32)

Setting this equal to zero and solving yields:

r̂MLE = (C>C)−1C>y (4.33)

= C†y (4.34)

This demonstrates the well-known result that the maximum likelihood estimate in this

setting is equivalent to the matrix solution to the system of linear equations given by

Equation 4.8.
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However, this maximum likelihood treatment is limited in many ways. It provides just a

single fixed estimate of r, and we have no means of quantifying the uncertainty associated

with this estimate. It is a common trait of maximum likelihood estimators that they

are prone to overfitting, and the sparseness of our crowdsourced dataset makes this

a particularly pertinent issue, exacerbated by the fact we have no means of imposing

additional structure upon the estimated ratings. We wish to use our knowledge of the

texture and semantic spaces to influence the output of the inference, and to then be able

to measure the uncertainty associated with that output. These goals are possible with

Bayesian techniques, which we introduce in the next section.

4.3.1.2 Bayesian inference

In a Bayesian approach to inference our prior belief of the distribution some unknown

parameters take, Pr(Ω), is updated upon observation of some data, X , so as to obtain

a new posterior belief conditional on this data:

Pr(Ω|X ) =
Pr(X|Ω) Pr(Ω)

Pr(X )
(4.35)

This is Bayes’ rule. Importantly, this rule allows us to quantify our uncertainty over the

parameters through inspection of the posterior, and to avoid overfitting the parameters

to the data through incorporation of prior knowledge of the parameter structure. For

particular forms of the likelihood distribution, Pr(X|Ω), it is possible to choose a prior

distribution which will yield a posterior distribution of the same analytical form — such

priors are known as conjugate priors.

For the problem at hand, the data likelihood function Equation 4.26 is a multivariate

normal distribution. Here, the mean is governed by the unknown attribute ratings, r,

and the covariance is scaled by σ2. The normal-inverse-gamma distribution is a conjugate

prior over the mean and variance of a multivariate normal distribution (Gelman et al.,

1995), and so:

Pr(r, σ2) = NG−1(r, σ2|m,Σ, a, b) (4.36)

= N (r|m, σ2Σ)G−1(σ2|a, b) (4.37)

=
ba

(2π)
D
2 |Σ|

1
2 Γ(a)

( 1

σ2

)a+D
2

+1
exp

(
− 1

σ2

[
b+

1

2
δ>Σ−1δ

])
(4.38)

δ = r −m (4.39)

where m and Σ are the prior normal mean and covariance hyperparameters, and a

and b are hyperparameters for the inverse gamma distribution over σ2. By setting

these hyperparameters appropriately, we are able to impose additional structure on the

eventual estimate of r. In particular, the between-item similarity matrix S described in
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the introduction to Section 4.3 can be used to inform the prior covariance, Σ = S, in

turn influencing r.

From Bayes’ rule (Equation 4.35), the posterior distribution is calculated as proportional

to the product of Equation 4.36 (the prior) and Equation 4.26 (the likelihood). Because

the normal-inverse-gamma is a conjugate prior for a multivariate normal likelihood distri-

bution with unknown mean and variance, the posterior is also a normal-inverse-gamma:

Pr(r, σ2|y) ∝ N (y|r, σ2I)NG−1(r, σ2|m,Σ, a, b) (4.40)

= NG−1(r, σ2|m∗,Σ∗, a∗, b∗) (4.41)

where:

Σ∗ = (Σ−1 + C>C)−1 (4.42)

m∗ = Σ∗(Σ
−1m+ C>y) (4.43)

a∗ = a+
M

2
(4.44)

b∗ = b+
1

2
(m>Σ−1m+ y>y −m>∗ Σ−1

∗ m∗) (4.45)

Next, we marginalise over σ2 to obtain a distribution over r. This is a characteris-

tic feature of Bayesian methods compared to frequentist approaches such as maximum

likelihood: we are able to eliminate so-called nuisance parameters such as σ2 to ob-

tain predictive distributions purely over the parameters of interest r which incorporate

all our uncertainty surrounding σ2. The marginal distribution of the mean vector of a

normal-inverse-gamma distribution is a multivariate t-distribution (Gelman et al., 1995):

Pr(r|y) =

∫ ∞
−∞

Pr(r, σ2|y) dσ (4.46)

=

∫ ∞
−∞
NG−1(r, σ2|m∗,Σ∗, a∗, b∗) dσ (4.47)

= T (r|m∗,
b∗
a∗

Σ∗, 2a∗) (4.48)

=
Γ(a∗ + N

2 )

Γ(a∗)π
N
2 |2b∗Σ∗|

1
2

(
1 +

1

2b∗
δ>Σ−1

∗ δ

)−a∗−N
2

(4.49)

δ = r −m∗ (4.50)

The primary output of Bayesian inference is the posterior distribution over the param-

eters, and often subsequent analysis can operate directly on this complete distribution.

Occasionally it is desirable to obtain a point estimate for the parameters. This is typi-

cally done by identifying the mode of the posterior distribution, as this is the parameter

value for which the posterior probability is highest. This is known as a maximum a

posteriori (MAP) estimate.
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As the mode of a multivariate t-distribution is m∗, the MAP estimate for r is:

r̂MAP = (Σ−1 + C>C)−1(Σ−1m+ C>y) (4.51)

Likewise, the MAP estimate of the error variance, σ2, is the mode of an inverse Gamma

distribution, and equal to:

σ̂2
MAP

=
b∗

a∗ + 1
(4.52)

Although not of direct interest here, we demonstrate in Section 5.1 how σ̂2
MAP

can be

used to identify respondents who provided poor quality labels.

Also worth noting is the posterior predictive distribution over the responses y? to newly

observed comparisons held in C?:

Pr(y?|y) =

∫
Pr(y?|rp, σ2) Pr(rp, σ

2|y) drp dσ2 (4.53)

=

∫
N (y?|C?rp, σ

2I)NG−1(rp, σ
2|m∗,Σ∗, a∗, b∗) drp dσ2 (4.54)

= T (y?|C?m∗,
b∗
a∗

(C?Σ∗C
?> + I), 2a∗) (4.55)

The posterior predictive distribution gives the most complete account of the uncertainty

surrounding the responses in a new dataset, taking into consideration both the model

uncertainty captured by σ2, as well as the uncertainty in the posterior distribution due

to the data. It is well-suited to areas involving human-computer interaction such as

active learning (Settles, 2009), where an algorithm designed to learn from some dataset

plays an active part in the dataset’s construction by presenting training examples to

users that will most improve its performance. An active learning variety of our labelling

task described in Section 3.3 might use the posterior predictive distribution to determine

the texture pair with the greatest response uncertainty, present this pair to a respondent

for labelling, and then update its posterior and repeat for the next label.

The Bayesian approach derived above gives us a full distribution over r rather than

just a point estimate, and — through Σ, m, a, and b — allows us to incorporate our

prior knowledge of the visual space. However as it is based on a multivariate normal

distribution over vector quantities, we must still estimate the strengths for each attribute

independently, depriving ourselves of the ability to better inform our ratings using the

between-attribute similarities in T. In the next section we outline an approach to jointly

estimating r1, . . . , rp using a distribution over matrix quantities.
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4.3.2 Matrix-variate normal distribution

The matrix-variate normal distribution is a generalization of the multivariate normal

distribution with support over matrices rather than vectors. It has one matrix-valued

location parameter (M ∈ RK×P ) and two covariance matrices (U ∈ RK×K ,V ∈ RP×P )

governing row and column covariance respectively. Its probability density function is:

N (A|M,U,V) = (2π
KP
2 |U|

P
2 |V|

K
2 )−1 exp

(
−1

2
tr
[
V−1(A−M)>U−1(A−M)

])
(4.56)

It is well-suited to certain transposable datasets in which both the rows and columns

have equal claim as features, such as in recommender systems where it has been used

to model between-viewer and between-film similarities for the Netflix prize (Allen and

Tibshirani, 2010).

Every matrix-variate normal distribution can be represented by an equivalent multivari-

ate normal distribution (Gupta and Nagar, 1999):

N (A|M,U,V) = N (vec(A)|vec(M),V ⊗U) (4.57)

It is appealing to harness the matrix-variate normal distribution to fully model the

between-item and between-attribute structure belying the attribute strengths, R. For

the multivariate normal case described in the previous section—and recalling the attribute-

specific (i) notation described in Section 4.1.2—the complete probability distribution over

the perceived rating differences y is:

Pr(y|C,R) =
P∏
i=1

N (y(i)|C(i)ri, σ
2I) (4.58)

By using the vectorisation of R and Equation 4.57, we can express this equivalently

without the product as:

Pr(y|C,R) = N (y|Cvec(R), σ2I) (4.59)

Note that this continues to treat each individual comparison response as an indepen-

dent observation corrupted by normally-distributed errors with variance σ2, having an

identical form as in the single attribute case shown in Equation 4.25. We can thus

proceed in an identical fashion as previously by imposing a normal-inverse-gamma prior

distribution over R and σ2:

Pr(R, σ2) = NG−1(vec(R), σ2|m,Σ, a, b) (4.60)

= N (vec(R)|m, σ2Σ)G−1(σ2|a, b) (4.61)
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By letting m = vec(M) and Σ = V ⊗U, we may express the prior as:

Pr(R, σ2) = NG−1(vec(R), σ2|vec(M),V ⊗U, a, b) (4.62)

= N (vec(R)|vec(M), σ2V ⊗U)G−1(σ2|a, b) (4.63)

We can see that the multivariate normal component of this prior has an identical form

to that of Equation 4.57, and hence we are able to imbue R with the properties of a full

matrix-variate normal distribution by choosing our hyperparameters a, b, M, U and V

appropriately such that they are informed by the structures of the visual and semantic

spaces.

Often it is the case that there is no special prior knowledge of M governing the mean of

the prior ratings and so M = 0 (also simplifying some of the associated mathematics).

However, it is often possible to craft a N ×N matrix of item covariances, S, or a P ×P
matrix of attribute covariances, T, based on knowledge of the problem structure, and

so useful to set U = S and V = T. For the aforementioned Netflix example, we may

assume films from similar genres receive similar ratings, or that viewers from similar

demographics issue similar ratings. Likewise, we can expect texture attributes from

the same cluster (see Section 3.2.2) to be reasonably similar in sentiment, and so for

attributes i and j from the same cluster we could set Tij to some positive value indicating

that fact. In this way we are able to model more completely the underlying structure of

the attribute strength matrix and to make better estimates of its values when provided

with only modest numbers of pairwise comparisons.

The derivation of the posterior distribution follows in an identical manner as for the

single attribute case (Equation 4.40):

Pr(R, σ2|y) = NG−1(vec(R), σ2|vec(M∗),Σ∗, a∗, b∗) (4.64)

with posterior hyperparameters obtained analogously to Equation 4.42. Likewise, the

marginal posterior distribution over the item ratings is derived as for the single attribute

case (Equation 4.46):

Pr(R|y) = T (vec(R)|vec(M∗),
b∗
a∗

Σ∗, 2a∗) (4.65)

The mode of the posterior distribution over R thus follows from Equation 4.51, and by

making use of the identity in Equation 4.3 can be expressed as:

vec(R̂MAP) = (V−1 ⊗U−1 + C>C)−1(vec(U−1MV−1) + C>y) (4.66)

We note that this estimate requires the inversion of a matrix whose dimensions are

quadratic in both N and P . For large N and P we are required to seek ways of attaining
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R̂MAP without explicitly calculating the Kronecker product between U and V or the

block-diagonal matrix C. A discussion of such techniques is given in Appendix B.

4.3.3 Generalisation

Now that a probabilistic model has been defined, in this section we briefly discuss means

by which the outputs of the model can be used to generalise to new items and attributes.

As mentioned previously, the most natural means of doing this within the probabilistic

formulation is by updating S (for items) or T (for textures) to reflect the similarity of

the new items or attributes to those that have already been observed in the pairwise

comparison data, and to then re-evaluate the posterior distribution with these updated

priors. Although this allows generalisation across both textures and attributes, it is com-

putationally expensive to calculate the posterior, prohibitively so when large numbers

of unseen items must be rated.

Instead, we may desire our model to output a ranking function as part of the learning

phase, which can then be used independently without requiring the training data again.

For the (linear) Rank SVM trained on comparison data for attribute p, this output takes

the form of a vector wp which can be applied to a feature space representation of the

items to obtain rating estimates:

r̂p = Xwp (4.67)

In contrast, for the probabilistic formulation in this chapter r̂p is the primary output

of the model. In this context, solving the system of linear equations above to find the

unknown value wp leads to:

wp = X†r̂p (4.68)

This makes use of the Moore-Penrose pseudoinverse and so wp represents a least squares

solution to the linear system (Penrose, 1956). It applies equally to a matrix ranking

function over multiple attributes:

W = X†R̂ (4.69)

However, these least squares solutions neglect to make use of the full probabilistic dis-

tribution over R̂, only working on a single estimate.

Alternatively, we may seek to obtain a distribution over a particular ranking function

Pr(wp|yp) as the primary learned output of the model, such that we can directly quan-

tify the likelihood of a particular ranking function, or marginalise over the space of

ranking functions when evaluating ratings. Such an approach could proceed by noting
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again Equation 4.67, and so can perform this substitution in most of the distributions

and estimates outlined in this chapter. In this way, for instance, we can acquire a

posterior distribution Pr(wp|yp) and an associated MAP estimate:

ŵMAP
p = (Σ−1 + X>C(p)>C(p)X)−1(Σ−1m+ X>C(p)>yp) (4.70)

However, when extending this to the matrix normal setting the support is no longer over

a N ×P matrix of ratings, but over a N ×D matrix of ranking function coefficients, and

so the between-column prior covariance matrix represents associations between ranking

function coefficients rather than attributes. It is therefore not as simple to incorporate

T, our knowledge of the attribute space structure, and so we lose the benefit of jointly

learning multiple attributes.

4.3.4 Summary

In this section we derived a probabilistic approach to inferring attribute strengths from

pairwise texture comparison based on the multivariate Gaussian distribution. This ap-

proach was designed with the texture dataset described in the previous chapter in mind,

which we know to be both sparse (only a small percentage of the total possible labels

were obtained) and likely featuring a non-negligible proportion of mislabellings due to

it being crowdsourced from remote workers with a financial incentive to work quickly.

To combat the sparsity we employed a Bayesian methodology, allowing us to define prior

distributions over R in order to influence the form of the posterior distribution Pr(R|y)

based on knowledge of the attribute and texture spaces. The fewer the number of

comparisons provided as evidence when calculating the posterior distribution, the greater

the effect the prior distribution has in avoiding overfitting. Specifically, we describe

how similarity matrices over the texture and attribute spaces may be constructed, how

these can be used to inform the prior covariance, and how they can be used to allow

generalisation over both attributes and items. We assess the resilience of the model to

sparsity in Section 4.4.2, and its resilience to mislabelling in Section 4.4.3.

Next, to deal with erroneous labels from respondents the derivation explicitly models

the error associated with labels to be zero-mean normally-distributed homoscedastic

noise (Equation 4.23). We test how the model performs under varying levels of Gaussian

noise in Section 4.4.4.

Finally but importantly, because the primary learned output of the model is a prob-

ability distribution, we are able to acquire a deeper understanding of the ratings and

associated data than with a single estimate, including the ability to predict future com-

parisons (Equation 4.53), to estimate model error (Equation 4.52), and to quantify how

certain a particular rating was.
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RankSVM MVN MLE MVN Bayes Matrix Bayes

Section Section 4.2.2 Section 4.3.1.1 Section 4.3.1.2 Section 4.3.2

Inputs X — S
(and hyperparameters)

S,T
(and hyperparameters)

Ratings

Obtain w using
Equation 4.20

r = Xw

Equation 4.33 Equation 4.51 Equation 4.66

Rating
distribu-

tion
— — Equation 4.46 Equation 4.65

Rating
new item

Obtain feature
vector x

r = x>w

—

Update S and
re-calculate
posterior

(Section 4.3.3)

Update S and
re-calculate
posterior

(Section 4.3.3)

Rating
new

attribute
— — —

Update T and
re-calculate
posterior

(Section 4.3.3)

Table 4.1: Key methods and equations for (i) the Ranking SVM, (ii) the maximum
likelihood estimate of the multivariate normal distribution, (iii) the Bayesian treatment
of the multivariate normal distribution, and (iv) the Bayesian treatment of the matrix-

variate normal distribution.

However, there are some drawbacks to the probabilistic methodology. Primarily, it is

far more computationally expensive to compute the posterior distribution or its related

estimates than it is to solve the optimisation problem inherent to the Rank SVM. Cal-

culation of the full MAP estimate (Equation 4.66) for a large problem with dense U

and V involves K iterations of the conjugate gradient method taking O(N2P 2K) time,

where K is the condition number of V−1 ⊗U−1 + C>C (Saad, 2003). In comparison

solving the primal form of the traditional Rank SVM for P attributes can be done in

time O(PND + PN logN) (Chapelle and Keerthi, 2010). This makes the probabilistic

method intractable for large problems that the Rank SVM can handle easily.

For comparison, the key features of each approach is shown in Table 4.1. In the next

section we test the assumptions of our model and assess the performance of these learning

approaches across a variety of tests using synthetic data.

4.4 Evaluation

We generated a synthetic dataset to test the techniques described in the previous sec-

tions under controlled conditions. This allows us to easily control for varying numbers

and qualities of pairwise comparison responses, and to test the impact of the dataset’s

between-item and between-attribute correlation structure. For each test, we compared

the rating estimates given by the Ranking SVM (Rank, Equation 4.20), the multivariate
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normal maximum likelihood estimate (MLE, Equation 4.33), and the matrix-variate nor-

mal MAP estimate (MAP, Equation 4.66). Following is a description of how the synthetic

dataset was generated and how results were collected.

4.4.1 Experimental setup

Results were averaged over 1000 iterations for each experiment: in all cases standard

errors were sufficiently low for conclusions to be drawn unambiguously. The number of

items, N , their feature vector dimensionality, D, the number of attributes, P , and the

number of comparisons, M , were all variables defined for each experiment and constant

between iterations.

Data generation

At each iteration the synthetic dataset was regenerated in the following manner:

• Between-item correlations S were randomly generated using the vine method de-

scribed in Lewandowski et al. (2009) with η = 1,

• A (P +D)× (P +D) correlation matrix is generated, A, again using the method

above with η = 1. Between-attribute correlations T are taken as the top-left P×P
sub-matrix, between-feature correlations F are taken as the bottom-right D ×D
sub-matrix. In this way unknown correlations are induced between attributes and

features, as with real data.

• An N × (P + D) matrix was sampled from a zero-mean matrix-variate normal

distribution with between-row and between-column covariance matrices set to S

and A respectively. The first P columns of this matrix constitute R, and the latter

D columns constitute X,

• The variance of the subject error was sampled from an inverse gamma distribution:

σ2 ∼ G−1(1, 1).

In this way the generated data provides S, T, X as input for the models, and R, the

unknown rating matrix, defined such that its items and attributes share an underlying

covariance structure with X.

Comparison generation

A comparison was then generated for each attribute in turn, with the two items chosen

randomly each time, until all M comparisons had been done. The comparison outcome

was sampled as if from the distribution in Equation 4.26, and then truncated to be either

1 or −1 so as to imitate genuine pairwise comparison data.

Model parameters
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The MAP estimate is a function of Σ and M, hyperparameters of the Bayesian prior over

the ratings. We set Σ = T ⊗ S and M = 0, as set out in Section 4.3.2. For Rank, the

trade-off between maximising the margin and minimising the misclassification error is

set as C = 1.

Evaluation function

Each estimation technique was then trained on these pairwise comparison results using

the relevant equation in Table 4.1, and evaluated by calculating the mean Spearman

rank correlation between the estimated and actual item ratings across all attributes. The

Spearman correlation is appropriate because it is only concerned with the monotonic

relation between two variables and the attribute strength ratings are essentially scaleless.

For estimated ratings R̂ and actual ratings R the mean Spearman correlation ρ is:

ρ =
1

P

P∑
p=1

(
1−

6
∑N

i (R̂RANK
ip −RRANK

ip )2

N3 −N

)

where the superscript RANK denotes the rank of the specified rating within each attribute,

rather than the raw value.

We begin in the section by investigating the effect of varying numbers of pairwise com-

parisons.

4.4.2 Effect of number of pairwise comparisons

We first investigate the effect of varying M for fixed values of N , P and D. Given

values for N and P , the total number of unique pairwise comparisons that can be made

is P ×
(
N
2

)
. In Figure 4.1 results are shown for combinations of N = {10, 50, 100} and

P = {10, 50, 100}, with D = 10 for all experiments. A logarithmic scale is used for the

x-axis so that results are emphasised for smaller values of M — we expect this to be

the prevailing situation when collecting pairwise comparison data.

In all cases the Bayesian probabilistic MAP estimate dominates over both the ordinary

maximum likelihood estimate MLE as well as Rank. This advantage is more pronounced

for increasing values of P due to the incorporation of the between-attribute similarities

T into the normal-inverse-gamma hyperparameters. When the correlations held in T are

suitably strong even very lower numbers of attributes per comparison can deliver good

results, as they effectively contribute to the ratings of all sufficiently related attributes.

This can be seen, for example, for N = 50, P = 100, where just ten comparisons per

attribute are sufficient for MAP to achieve a 90% mean rank correlation while Rank is only

able to attain 70%. However, ordinary maximum likelihood estimation only wins out

over Rank for the largest values of M , indicating that if no particular prior knowledge is
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known for the distribution of R and a probabilistic interpretation is not required then

the Ranking SVM is still preferred.

Finally, inspection of the graphs provides more evidence that only relatively low numbers

of comparisons are needed to reach near-optimal performance for a given estimator, in

the order of N comparisons per attribute. This corroborates findings reported in Parikh

and Grauman (2011).
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(b) N = 50, P = 10
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(c) N = 100, P = 10
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(d) N = 10, P = 50
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(e) N = 50, P = 50
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(f) N = 100, P = 50
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(g) N = 10, P = 100
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(h) N = 50, P = 100
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Figure 4.1: Mean Spearman rank correlation coefficients across all attributes, calcu-
lated for varying M with P and N held fixed. x-axes are shown with a logarithmic

scale to emphasise lower values of M .
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4.4.3 Effect of similarity strength

Because the probabilistic methods we have derived operate on similarity matrices, we

can expect their performance to deteriorate when correlations are weakened and vice

versa. As observed in the previous experiment, MAP performs better than Rank, but to

what extent does the correlation structure have to break down for it to approach the

performance of MLE? For the synthetic dataset, random positive-semidefinite correlation

matrices are generated using the vine method of Lewandowski et al. (2009). Here,

partial correlations are generated between 0 and 1 for each pair of indices, which are

then recursively formed into a full positive-semidefinite correlation matrix. We generate

each partial correlation such that it is drawn from a Beta(η, η) scaled and translated to

have support from −1 to 1, where η dictates the strength of the partial correlations and

takes values of 2k for k = 0, . . . , 7. Probability density functions for selected values of η

are shown in Figure 4.2, where it can be seen that progressively larger values of η bias

the distribution towards small correlations. For non-synthetic datasets the equivalent

η value can be estimated by fitting a Beta distribution to the non-diagonal elements of

the correlation matrix.
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Figure 4.2: Probability density functions of Beta(η, η) scaled and translated to sup-
port −1 to 1 for selected values of η.

The test was conducted with M = N = P = 50. The results in Figure 4.3(a) show each

technique suffers roughly equally when the level of correlation is reduced. Although MAP

may have been expected to be particularly sensitive to the effects of dataset correlations

due to it depending directly upon them, it can be seen that both MLE and Rank suffer

proportionately due to the greater likelihood of learnt ranking matrices being unable to

generalise to unseen data. For higher values of η this unseen data has a greater prob-

ability of being unrelated to previous observations, an effect which impacts all learning
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algorithms equally. Thus, the correlation structure of the dataset needn’t influence

which technique is chosen so long as the prior covariance over R properly reflects that

structure.

2 4 8 16 32 64 128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

M
e

a
n

 r
a

n
k
 c

o
rr

e
la

ti
o

n

 

 

MLE

MAP

Rank

(a) Varying η

σ
2

2
-3

2
-2

2
-1

2
0

2
1

2
2

2
3

M
e

a
n

 r
a

n
k
 c

o
rr

e
la

ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MLE

MAP

Rank

(b) Varying σ2

Figure 4.3: Mean Spearman rank correlation coefficients across all attributes, calcu-
lated for varying η (left) and σ2 (right) with M = N = P = 50.

4.4.4 Effect of respondent reliability

In real-world situations the pairwise comparison data elicited from respondents will be

prone to subjective error. This error may be due to the respondent’s personal interpreta-

tion of the attribute meaning, cognitive bias associated with the pairwise methodology,

or even simply boredom and lack of interest. It was one of our stated goals that the

learning procedure should be robust to noise in y, and here we test the degree to which

each technique is resilient to erroneous responses.

In the synthetic dataset we can influence the degree of respondent error by changing the

value of σ2, the variance of the corruption to each pairwise comparison response. With

higher levels of corruption respondents are more likely to deliver erroneous responses

as their perception of each attribute strength has a greater probability of deviating

considerably from the mean (the actual attribute strength). We tested for σ2 = 2k for

k = −3, . . . , 3 and with M = N = P = 50; results are shown in Figure 4.3(b).

It can be seen that for very low values of σ2 — right down to when σ2 = 0 and there

is no subjective error — MAP and Rank perform fairly similarly. However, the former’s

performance deteriorates more gradually, only decreasing 0.18 over the course of the

values shown, compared to 0.35 for Rank, and 0.53 for MLE. This effect is due to the

Bayesian prior over the attribute strength ratings softening the influence of data which
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contradicts these priors. Hence a probabilistic approach with well-informed priors is

advantageous when it is suspected that respondents may give sub-optimal data, and

furthermore provides a natural framework in which individual respondent reliability can

be tested and possibly discarded. We describe an experiment to do this in Section 5.1.

4.5 Summary

In this chapter we derived a new Bayesian probabilistic framework for learning from

pairwise comparison data. Being probabilistic, this framework has the natural advantage

that it can provide a principled measure of uncertainty and — in a Bayesian setting

— incorporate prior knowledge about the semantic and visual spaces into the learning

procedure, allowing it to perform well with fewer numbers of comparisons and in the face

of considerable error in the pairwise comparison labels. When evaluated on synthetic

data we demonstrated that the Bayesian maximum a posteriori estimate attained better

performance than the popular Ranking SVM, especially when applied to sparse or noisy

data. However, the time complexity of computing the MAP estimate of the Bayesian

posterior is quadratic in both N and P but linear for the Ranking SVM, which is a

better choice for large problems or problems where there is no particular prior knowledge

about the ratings structure.

The next chapter takes the learning procedures described above and uses them on the

label dataset described in Chapter 3 to perform a range of experiments.



Chapter 5

Experiments

In this chapter we combine the labelling created in Chapter 3 with the learning procedure

derived in the previous chapter to investigate the visual and semantic spaces of texture

further:

• We use our Bayesian posterior distributions to evaluate the reliability of respon-

dents to our labelling exercise.

• We appraise numerous visual texture descriptors in terms of how well they align

with human perception of texture.

• We conduct a retrieval experiment to demonstrate how normal visual descriptors

may be semantically enriched by combining them with our label dataset.

We begin with the evaluation of respondent reliability in the labelling task.

5.1 Respondent reliability

As described in Section 3.3 our pairwise comparison dataset was crowdsourced and

unsupervised. Subjects received no assistance beyond help text accompanying each

comparison and, furthermore, they possessed a monetary incentive to answer questions

quickly. For this reason it is important to analyse the dataset and check for and discard

any poor-quality responses.

Previous work has addressed this by designing redundancy into the elicitation proce-

dure and then deferring to majority vote for each comparison point (Whitehill et al.,

2009); using information theory (Simpson et al., 2013); or by minimising a global cost

function measuring ranking inconsistencies (Fu et al., 2016). However, the probabilistic

framework from the last chapter actually provides us with a natural setting in which

59
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to quantify the value of each subject’s responses in a principled way due to its ability

to measure the degree of respondent error present in the dataset. This can be done

using the MAP estimate of the per-response error variance, σ̂2
MAP

, as in Equation 4.52.

Here, σ̂2
MAP

is an estimate of the variance of the response error under the assumption

responses are corrupted by normally distributed noise.

Calculating across all comparisons in the dataset, the error variance is found to be

σ̂2
MAP

= 0.3065. Next, for each subject in turn who submitted responses we again

calculate the error variance across all comparisons omitting that subject. This gives an

assessment of the level of error present in the dataset had that subject not been involved.

By comparing this value to the value calculated across the whole dataset above we can

calculate the impact each respondent has had on total response noise. To be precise,

for an estimated variance of σ̂2
MAP

i obtained when omitting respondent i who made

mi comparisons, we can calculate the respondent’s mean per-comparison impact on the

total error, ei, as:

ei =
σ̂2

MAP

i − σ̂2
MAP

mi
(5.1)

Here, positive values indicate that there was greater total error variance without the

respondent, and vice versa for negative values.

A bar graph showing the e values for all 568 respondents is shown in Figure 5.1. To aid

in visualisation, subjects have been sorted in ascending order by their e scores — that

is, subjects with scores above zero can be said to have had a positive impact on overall

error variance, and vice versa.

We may look to use these values to cull unhelpful responses from the dataset, possibly

because the respondent did not understand the attribute, or did not properly consider the

comparison in order to progress through them quicker and earn more money. However,

simply removing responses by all respondents with negative scores fails to distinguish

between genuinely biased comparisons and those which by chance exhibit a natural

variance due to the nature of the attributes or textures they feature.

To determine the optimal cut-off point at which to cull respondents we performed a

four-fold cross-validation classification procedure calculated over the range of e values.

Attribute strength ratings were calculated from the training set, and the misclassifica-

tion rate was measured across all of the dominance relations in the holdout set. The

method of David (1987) (see Section 4.2.1 for details) was used to calculate the attribute

strength ratings, as it does not require any explicit feature space representation and op-

erates directly on the pairwise comparison data. A graph plotting this data is shown

in Figure 5.2.

From this graph it can be seen that for the very highest cut-off values the misclassification

rate is high — barely better than random. This is because these cut-off values are overly
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Figure 5.1: Each subject’s mean contribution towards the error variance reduction.
Subjects are sorted in ascending order of their contribution for ease of visualisation.
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Figure 5.2: Misclassification rate calculated for different cut-off values of e when
respondents with a value below the cut-off are omitted from the dataset.

restrictive, with only very few comparisons retained in the resulting datasets. As the cut-

off is lowered and more comparisons are included the misclassification rate quickly drops,

until it reaches a minimum at around −1×10−6. Beyond this point the misclassification

rate gently rises again, as lower quality comparisons are included by respondents with

the most negative effect on the total error variance. With a cut-off of −1×10−6 there are

152 respondents and just under 25,000 pairwise comparisons excluded from the resultant
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dataset, leaving a total of 115,204 comparisons by 416 respondents – about 83% of the

size of the original dataset.

In this section we have demonstrated a way of pre-processing pairwise comparison data

in order to identify and remove noisy responses probabilistically using the Bayesian MAP

estimates derived in the previous chapter. The technique is independent of any feature

space representation, operating directly on the pairwise comparison graph, and can be

naturally extended to operate online as results arrive, so that unhelpful respondents can

be identified quickly and discarded, improving time and cost effectiveness.

5.2 Semantic appraisal of visual descriptors

In this section we appraise each of the texture descriptors introduced in Section 2.3 in

terms of how well they reflect the structure of the semantic comparison graph for each

of the ninety eight attributes and, therefore, how well they capture human perception of

these attributes. These results allow us to identify regions within the semantic space of

texture which are poorly modelled by current techniques, as well as the visual features

which correspond best with human perception and which will provide the basis for our

semantically-enriched descriptors.

5.2.1 Visual features to be assessed

Five different texture descriptors were assessed. For more detail on each descriptor refer

to Section 2.3:

• Co-occurrence matrices (Haralick, 1979) are calculated for points situated along the

perimeters of circles of radii 1, 2, 4, 8, and 16 pixels. Each of these five matrices are

summarised in terms of their contrast, homogeneity, uniformity, entropy, variance,

and correlation, resulting in a 30-element feature vector. (CoM)

• The mean and standard deviation of the Gabor wavelet responses of 24 orientation

and scale combinations given in Manjunath and Ma (1996), yielding a feature

vector of 48 elements. (Gab)

• The 8 optimal Liu noise-resistant features of the Fourier transform (Liu and Jerni-

gan, 1990). (Liu)

• 16-dimensional feature vector derived from the Statistical Geometrical Features

procedure (Chen et al., 1995) being performed at 31 regularly-spaced threshold

levels. (SGF)
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• Uniform (local) binary patterns (Ojala et al., 2002b) calculated for eight points

around circles of three different radii: 2, 4, and 8. This gives a total concatenated

feature vector of dimension 30. (UBP)

In the next section we describe the methodology used to assess these five descriptors.

5.2.2 Methodology

The semantic correspondence of each of the visual descriptors described above is eval-

uated using a 4-fold cross-validation procedure. For this experiment we are assessing

each visual descriptor in terms of how well it is able to detect each individual attribute.

For this reason the attribute strength ratings R̂ are learned from the training images

using the Ranking SVM estimate shown in Equation 4.66, as we do not require the

probabilistic features of the multivariate normal estimators.

The free parameter in the Ranking SVM equation, C, is allowed to vary between 21 log-

arithmically spaced values (4−10, 4−9, . . . , 49, 410), the optimal value of which is selected

through the cross-validation procedure.

A per-attribute ranking of all 319 textures is then derived from R̂. The misclassification

rate is calculated over all dominance comparisons involving at least one of the textures

in the hold-out set by simply comparing the rankings of the respective textures.

5.2.3 Results and analysis

Misclassification rates for each combination of descriptor and attribute are shown in Ta-

ble 5.1, while average rates for each combination of descriptor and attribute cluster are

shown in Table 5.2.

One of the descriptors best able to capture the structure of the semantic comparison

graph was the Liu descriptor, comprising frequency measures based on the Fourier trans-

form. It performed well for the two clusters involving regular placement of linear texture

primitives: cluster I (linear orientation) and cluster II (weave-like structure).

Inspection of the learned ranking function reveals that a high moment of inertia and low

proportion of energy for the first quadrant of the normalised Fourier transform are the

pertinent features for these two attributes. The Liu descriptor is also amongst the best

performers for the polar notions of order (cluster IV) and disorder (cluster V): here, the

inertia and energy of the first quadrant is again decisive. Low inertia and high energy

indicates random texture while the opposite aligns more closely with repetitive texture.

The Gabor descriptor — like the Liu descriptor, based on a Fourier transform — also

performed well, but appeared to be more resilient to disorder than the Liu descriptor.
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Cluster I — Linear orientation

Attribute CoM Gab Liu SGF UBP

Banded 0.29 0.23 0.18 0.36 0.23
Corrugated 0.36 0.33 0.33 0.34 0.36
Furrowed 0.34 0.30 0.35 0.34 0.31
Grooved 0.39 0.33 0.28 0.37 0.29
Lined 0.29 0.18 0.15 0.32 0.15
Pleated 0.31 0.25 0.23 0.34 0.26
Ribbed 0.34 0.26 0.23 0.32 0.22
Ridged 0.34 0.29 0.33 0.35 0.31
Stratified 0.37 0.36 0.29 0.39 0.34
Striated 0.35 0.28 0.27 0.38 0.27
Zigzagged 0.33 0.29 0.34 0.32 0.30

Cluster II — Weave-like structure

Attribute CoM Gab Liu SGF UBP

Chequered 0.26 0.26 0.25 0.29 0.33
Cross-hatched 0.32 0.26 0.23 0.32 0.26
Fibrous 0.36 0.32 0.35 0.33 0.32
Gridlike 0.30 0.26 0.20 0.33 0.27
Honeycombed 0.27 0.28 0.32 0.28 0.31
Knitted 0.23 0.27 0.21 0.28 0.22
Matted 0.39 0.42 0.41 0.41 0.41
Meshed 0.29 0.31 0.32 0.29 0.34
Netlike 0.32 0.29 0.27 0.32 0.31
Waffled 0.31 0.31 0.25 0.33 0.30
Woven 0.28 0.24 0.23 0.29 0.24

Cluster III — Circular orientation

Attribute CoM Gab Liu SGF UBP

Coiled 0.34 0.36 0.35 0.40 0.32
Corkscrewed 0.31 0.34 0.37 0.37 0.28
Flowing 0.30 0.27 0.31 0.31 0.29
Spiralled 0.34 0.34 0.36 0.38 0.37
Swirly 0.32 0.32 0.33 0.36 0.30
Twisted 0.33 0.33 0.40 0.38 0.39
Whirly 0.35 0.34 0.34 0.35 0.33
Winding 0.34 0.33 0.39 0.35 0.34

Cluster IV — Well-ordered

Attribute CoM Gab Liu SGF UBP

Crystalline 0.40 0.40 0.41 0.42 0.40
Cyclical 0.32 0.34 0.30 0.34 0.32
Facetted 0.31 0.30 0.35 0.31 0.33
Fine 0.23 0.24 0.26 0.26 0.26
Harmonious 0.35 0.30 0.33 0.33 0.35
Lattice 0.32 0.28 0.23 0.35 0.30
Periodic 0.34 0.31 0.31 0.35 0.34
Regular 0.27 0.27 0.25 0.32 0.29
Repetitive 0.34 0.30 0.30 0.35 0.30
Rhythmic 0.34 0.29 0.27 0.37 0.31
Simple 0.21 0.23 0.23 0.24 0.24
Smooth 0.17 0.16 0.27 0.16 0.21
Uniform 0.26 0.25 0.26 0.29 0.29
Well-ordered 0.28 0.23 0.19 0.27 0.23

Cluster V — Disordered

Attribute CoM Gab Liu SGF UBP

Asymmetrical 0.28 0.22 0.25 0.32 0.27
Complex 0.24 0.23 0.28 0.24 0.25
Discontinuous 0.24 0.25 0.23 0.28 0.26
Disordered 0.24 0.23 0.22 0.27 0.24
Indefinite 0.46 0.43 0.36 0.50 0.38
Irregular 0.24 0.23 0.23 0.29 0.25
Jumbled 0.21 0.20 0.19 0.24 0.22
Messy 0.21 0.19 0.20 0.25 0.23
Non-uniform 0.26 0.25 0.24 0.30 0.26
Random 0.27 0.23 0.19 0.29 0.23
Scattered 0.22 0.18 0.21 0.26 0.23
Scrambled 0.25 0.21 0.20 0.27 0.22

Cluster VI
Disordered circular primitives

Attribute CoM Gab Liu SGF UBP

Dotted 0.31 0.25 0.35 0.27 0.27
Flecked 0.30 0.25 0.30 0.30 0.26
Freckled 0.30 0.26 0.29 0.28 0.24
Polka-dotted 0.32 0.28 0.37 0.31 0.30
Spattered 0.33 0.30 0.28 0.33 0.27
Speckled 0.30 0.27 0.27 0.29 0.24
Spotted 0.35 0.31 0.34 0.32 0.31
Sprinkled 0.26 0.23 0.23 0.28 0.22

Cluster VII
Disordered weave-like structure

Attribute CoM Gab Liu SGF UBP

Braided 0.33 0.31 0.25 0.32 0.25
Cobwebbed 0.41 0.38 0.39 0.39 0.37
Entwined 0.33 0.29 0.31 0.36 0.31
Frilly 0.36 0.36 0.36 0.35 0.37
Gauzy 0.36 0.30 0.32 0.34 0.34
Interlaced 0.36 0.28 0.26 0.34 0.28
Intertwined 0.31 0.28 0.31 0.33 0.32
Lacelike 0.36 0.30 0.30 0.37 0.34
Webbed 0.34 0.28 0.27 0.35 0.35

Cluster VIII
Disordered indistinct circular primitives

Attribute CoM Gab Liu SGF UBP

Blemished 0.35 0.38 0.33 0.35 0.33
Blotchy 0.32 0.32 0.31 0.38 0.26
Mottled 0.37 0.35 0.35 0.40 0.30
Smeared 0.30 0.32 0.34 0.30 0.25
Smudged 0.32 0.30 0.38 0.32 0.28
Stained 0.38 0.31 0.37 0.38 0.34

Cluster IX
Disordered linear primitives

Attribute CoM Gab Liu SGF UBP

Cracked 0.30 0.28 0.30 0.29 0.32
Crinkled 0.34 0.35 0.36 0.35 0.39
Crow-footed 0.35 0.32 0.37 0.34 0.33
Fractured 0.26 0.27 0.27 0.30 0.26
Rumpled 0.37 0.35 0.34 0.35 0.38
Wizened 0.43 0.43 0.38 0.39 0.46
Wrinkled 0.37 0.35 0.36 0.40 0.38

Cluster X
Disordered indistinct linear primitives

Attribute CoM Gab Liu SGF UBP

Marbled 0.31 0.28 0.36 0.32 0.21
Scaly 0.33 0.30 0.36 0.34 0.31
Veined 0.31 0.27 0.29 0.32 0.29

Cluster XI
Disordered circular 3D primitives

Attribute CoM Gab Liu SGF UBP

Bubbly 0.28 0.25 0.28 0.28 0.22
Bumpy 0.23 0.22 0.31 0.21 0.25
Gouged 0.28 0.28 0.31 0.27 0.36
Holey 0.30 0.30 0.37 0.33 0.30
Perforated 0.29 0.29 0.36 0.30 0.34
Pitted 0.27 0.26 0.32 0.27 0.29
Porous 0.28 0.29 0.38 0.27 0.32
Potholed 0.27 0.25 0.28 0.29 0.29
Studded 0.28 0.27 0.34 0.27 0.28

Table 5.1: Misclassification rates for each combination of descriptor and attribute.
Boldface denotes the strongest scoring descriptor for an attribute.
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# Cluster CoM Gab Liu SGF UBP

I Linear orientation 0.34 0.28 0.27 0.35 0.28
II Weave-like structure 0.31 0.30 0.28 0.32 0.30

III Circular orientation 0.33 0.32 0.35 0.35 0.33
IV Well-ordered 0.29 0.27 0.28 0.31 0.29
V Disordered 0.26 0.24 0.23 0.29 0.25

VI Disordered circular primitives 0.31 0.27 0.30 0.30 0.26
VII Disordered weave-like structure 0.35 0.30 0.31 0.35 0.32

VIII Disordered indistinct circular primitives 0.34 0.33 0.34 0.36 0.30
IX Disordered linear primitives 0.34 0.33 0.34 0.35 0.36
X Disordered indistinct linear primitives 0.32 0.29 0.33 0.33 0.27

XI Disordered circular 3D primitives 0.27 0.26 0.33 0.27 0.29

Table 5.2: Mean misclassification rates for each combination of descriptor and at-
tribute cluster across all attributes in that cluster. Boldface denotes the strongest

scoring descriptor for an attribute.
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Figure 5.3: Sample attributes from each cluster plotted within the three-dimensional
semantic space of Bhushan et al, coloured according to their scaled misclassification

rate showing a deficiency in capturing attributes evoking complexity and disorder.

Indeed, it had among the lowest misclassification rates for clusters V through to XI, all

associated with aspects of randomness. It has been speculated by Arcizet et al. (2008)

that the primitive structures in human cognition of texture operate somewhat akin to

Gabor filter, and our finding that a method based on them performs well on a large-scale

dataset of human labels corroborates this.

The uniform binary patterns descriptor performs well for those attributes relating to

disordered placement of small-scale primitives – clusters VI, VIII and X – as well as

for another attribute associated with disorder, marbled. The uniform binary pattern

descriptor is calculated as a histogram of local intensity patterns and so it is unsurprising
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that it performs relatively well for spatially-localised primitives such as speckles and

bumps. By its nature the histogram makes no regard for placement rules making it

better suited to capturing aspects of disorder. However, it is not amenable to deeper

understanding as the local intensity patterns it detects have no immediately intuitive

definition.

The two remaining descriptors, the co-occurrence matrix and statistical geometrical fea-

tures, achieved good correspondence for certain attributes, but were invariably eclipsed

by one of the other three descriptors.

Overall, the results indicate that there is considerable opportunity for improvement

in the identification of visual features corresponding closely to human perception, es-

pecially for attributes exhibiting aspects of complexity or disorder such as in clusters

VII to IX. Furthermore, textures involving strong elements of circular orientation were

poorly assessed compared to those with linear orientation. These deficiencies are hardly

unexpected, and tally with our knowledge of the workings of visual texture descriptors,

but it is notable too that even correspondence with strongly regular attributes such as

chequered and repetitive is only average.

Even despite the lack of correspondence between these human and machine interpre-

tations of texture, semantic data may still be used to improve performance in tasks

involving texture analysis. In the next chapter we demonstrate that semantic texture

description results in considerable performance gains over a purely visual approach.

5.3 Content-based image retrieval

In this section we demonstrate the practical benefit of semantic data in a retrieval

experiment.

5.3.1 Methodology

Each of the 3828 samples in the dataset is used in turn as a query texture against the

remaining 3827 textures in the target set, of which only 11 are relevant to each query

(each texture class has 12 samples due to variation in rotation and illumination). All

textures in the target set are then sorted by the Euclidean distance of their descriptors

from the query texture’s descriptor yielding a ranking r where ri = 1 if the member of

the target set at rank i is relevant to the query, and 0 otherwise. This is done for all

five descriptors introduced in Section 5.2.1.

For each descriptor a corresponding rating matrix was calculated using the MAP esti-

mate given in Equation 4.66. That is, ratings for all 98 attributes are jointly learned

from all comparisons involving textures in the test set. We then generalise to the unseen
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query texture by calculating a ranking function using the least-squares solution detailed

in Section 4.3.3.

This ranking function was then applied to the texture features to create a new 98-

dimensional semantic descriptor for each texture sample. As such, for each of the five

visual descriptors we also have a corresponding set of semantic feature vectors.

Here, we set M = 0. The 319 texture classes that the 3828 textures belong to are

unknown in the setting of the retrieval experiment, and as such we assume no prior

knowledge of the item covariance structure and set U = IN . However, we impose a mild

correlation structure on the attribute space by setting Vij = 0.5 for all attributes i and

j which belong to the same cluster of texture words (see Table 5.1).

Lastly, we created a concatenated descriptor from all five visual descriptors which in turn

allows another semantic descriptor to be learned from the most discriminative features

across all descriptors. Again, the distances between the target set samples and the query

sample are calculated for these concatenated and semantic descriptors, and a ranking

derived.

From the relevance indicators of the n closest textures (r1, . . . , rn) for each query image

we are able to calculate precision and recall measures, where precision is the proportion

of the retrieved samples that are relevant, and recall is the proportion of the relevant

samples that are retrieved:

precision(n) =

∑n
i=1 ri
n

(5.2)

recall(n) =

∑n
i=1 ri
11

(5.3)

Precision and recall are then calculated as n is allowed to vary from 1 to 3,827. We also

calculate two summary measures of the ranked data:

• Mean average precision (MAP). The average precision (AP) for a given query is

the average of the precision at each rank at which a relevant item is located:

AP =

∑3,827
i=1 ri precision(i)

11
(5.4)

This quantity is in turn averaged over all 3,828 queries.

• Equal error rate (EER). denoting the error rate at the point where the true positive

rate (the recall) equals the false positive rate. It is calculated as the point on an

ROC curve which intersects the diagonal connecting 100% on the x and y axes.

In the next section we discuss the results obtained when performing this methodology.
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MAP EER
Descriptor Visual Semantic Visual Semantic

CoM 19.4% 42.0% 18.2% 8.8%
Gab 21.4% 35.8% 20.3% 11.8%
Liu 18.9% 23.6% 22.7% 12.8%
SGF 27.7% 25.3% 14.0% 15.6%
UBP 76.9% 58.0% 5.6% 5.4%
Concatenated 43.6% 64.4% 9.7% 3.0%

Table 5.3: Mean average precision (MAP) and equal error rates (EER) for each
descriptor across all 3,828 texture queries. Boldface denotes the highest scorer of each

visual and semantic descriptor pair.

5.3.2 Results and analysis

Precision-recall curves for both the visual and semantic version of each descriptor are

shown in Figure 5.4. MAP and EER scores are shown in Table 5.3.

For four of the six curves it is immediately evident that the semantic descriptor gives

higher retrieval performance than for the corresponding low-level visual descriptor, and

very similar for one other, (SGF). The exception is uniform binary patterns, which was

trained to perform well using the Outex dataset.

The benefit of the semantic descriptors is especially pronounced for higher rates of recall,

where they often retrieve relevant textures with a considerably higher rate of precision.

This improved precision at higher recall values could be interpreted as being indicative

of greater robustness in the semantic descriptor: whereas the visual descriptors appear

to struggle to recall all variations of rotation and illumination for a given query, the

semantic descriptor is imbued with the invariant qualities that come from learning from

the semantic comparison graph, and so generally is able to better recall variations of

the same texture. This initial impression from inspecting the curves is reinforced upon

viewing the summary values in Table 5.3: the semantic descriptor achieves higher EER

scores in all cases but one. However, although the semantic form of the concatenated

descriptor is the best overall descriptor in terms of EER, the visual form of the UBP

descriptor is the best in terms of MAP.

It is worth noting that results could be further improved using a specialist retrieval

metric based on probability, rather than Euclidean distance, by interpreting the semantic

features not as point estimates, but as random matrices drawn from the multivariate

t-distribution Equation 4.46. However, we have restricted our attention to Euclidean

distance to enable a more like-for-like comparison.

Next, we summarise the experiments performed in this chapter.



Chapter 5 Experiments 69

Recall (%)

0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Visual

Semantic

(a) Co-occurrence matrix

Recall (%)

0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Visual

Semantic

(b) Gabor

Recall (%)

0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Visual

Semantic

(c) Liu

Recall (%)

0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Visual

Semantic

(d) Statistical geometrical features
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(e) Uniform binary patterns
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(f) Concatenated descriptor

Figure 5.4: Average precision-recall curves for each descriptor across all 3,828 texture
queries. For each query there are 11 relevant and 3,816 irrelevant samples.

5.4 Summary

In this chapter we ran three experiments. The first used our probabilistic framework

to prune unhelpful comparisons in a principled way, by assessing the subject’s average

contribution to total error variance. Next we demonstrated how visual descriptors could

be assessed in terms of how well they represent the semantic space of texture, identifying

which techniques work well and finding numerous regions of the semantic space which

are captured poorly. Lastly, we ran a retrieval experiment to investigate the benefit of

semantically enriched texture descriptors.

We conclude this thesis in the next chapter.
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Conclusions

In this thesis we presented the first approach to semantic texture characterisation and

analysis, demonstrating that explicit semantic modelling provides considerable benefit

when describing textures. Core to our approach was a ninety-eight word semantic space

for texture, identified by Bhushan et al. (1997) as capturing much of the variability

in human texture expression, and acting as low-level semantic attributes particularly

well-suited to symbol grounding.

A psychologically-appealing pairwise comparison methodology was employed to elicit

attribute strength ratings for 319 classes of visual texture, forming a large crowdsourced

dataset of almost 140,000 pairwise comparison labels (Matthews, 2014) — to our knowl-

edge, the largest of its kind. This methodology removes many of the cognitive biases

associated with conventional data elicitation techniques, and the resultant dataset en-

ables new semantically focused performance metrics to be used when assessing texture

descriptors.

Pairwise comparison data presents a special challenge for inference, which must proceed

using indirect evidence of the texture strengths in the form of comparisons, rather than

through direct observations. Typical approaches to doing this offer no way of incorpo-

rating prior knowledge of the attribute strength structure, cannot measure uncertainty

in the data, and must infer strengths for each attribute individually. To combat this

we derived a new Bayesian probabilistic approach to learning from pairwise comparison

data based on the matrix-variate normal distribution, allowing the specification of prior

knowledge through Bayesian hyperparameters, a precise probabilistic quantification of

uncertainty, and joint learning across all attributes. We demonstrated its effectiveness

over a maximum likelihood approach and over the Ranking SVM, and showed how it

could be used to measure the worth of the comparisons performed by each respondent

to our crowdsourcing task, and to prune those that were not beneficial.

We then performed a semantic appraisal of existing visual texture descriptors, evaluating

in a principled way how well they were able to model the ninety eight attributes we had

71
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selected. Numerous deficiencies were identified which saw the visual descriptors fail to

capture the variability of the semantic space as held in the comparison responses. It

is important that these deficiencies are addressed so as to properly bridge the semantic

gap for texture and to pave the way for closer correspondence to human perception and

expectations in user-centred visual applications.

Even despite this we demonstrated that an explicit semantic modelling step provides

numerous benefits when describing textures. As well as allowing for more user-friendly

interaction due to the bridging of the semantic gap, we demonstrated an improvement

in retrieval rate for all but one of the visual descriptors tested. Furthermore, the use of

attributes introduces a natural efficiency and robustness in the design of feature vectors,

owing to the evolution of human language and the invariant qualities of human visual

perception.

We hope in future to further improve our retrieval results and, consequently, to continue

to close the semantic gap for texture. There are many avenues of exploration available

beyond this initial demonstration of semantic modelling, some of which we detail in the

next section.

6.1 Future work

It would be beneficial to repeat the lexicon creation procedure of Bhushan et al. (1997)

with a probabilistic methodology. In this way, attributes would not occupy precise points

within the semantic space of texture but probabilistic regions dictated by the consistency

of subject responses. This data would allow a deeper analysis to be performed when

subsequently learning from pairwise comparisons, and would better inform our between-

attribute correlation structure held in T. This also makes intuitive sense: it seems likely

that a word like bumpy does not have the same unwavering definition from subject-to-

subject, but varies according to individual perception and understanding.

Our probabilistic framework is also a natural setting in which to employ an active

learning methodology, whereby data elicitation is dynamic and adaptive, with each

pair of textures displayed to subjects according to some utility measure based on all

the pairwise comparisons that went before it. For instance, it is of greater use to learn

about the relationship between two textures for which the attribute strengths are quite

uncertain, than it is to learn about the relationship between two very different textures

for which we are already very certain of the ordering. Furthermore, respondents prone

to submitting noisy data can be identified and excluded early in the elicitation process,

rather than during pre-processing as we demonstrated in Section 5.1. These approaches

allow data to be crowdsourced in a more efficient manner, achieving a greater coverage

of the space of pairwise comparisons for the same cost, and improving the quality of

subsequent inferences.
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It was also demonstrated that there still exists a substantial semantic gap between

numerous visual texture descriptors and the semantic space of texture. This is unim-

portant for most machine-centred applications of texture, but it is vital it be closed for

human-focused tasks such as content-based image retrieval. Although it has long been

known that certain categories of texture are more easily characterised by machines than

others, it has been difficult to quantify the disparity and to guide further exploration.

Our dataset, probabilistic framework, and semantic appraisal methodology are all tools

that can be used to guide a principled exploration of novel texture features that align

particularly closely with human perception. High-quality visual feature equivalents can

be discovered on an attribute-by-attribute basis, and the semantic correspondence of

those features can be readily evaluated using the appraisal experiment performed in this

thesis.

We may also look to apply our results on a new dataset of visual texture that is more

representative of the real-world, as is done in Cimpoi et al. (2014). In this paper the

authors use a smaller version of the Bhushan dataset to label wild textures found through

internet search engines, rather than captured under controlled conditions as done with

the Outex dataset. This may be expected to better represent the kind of texture humans

encounter in every day life, and that language has evolved to describe. They report

excellent results in a retrieval experiment: in future work it would be very interesting to

translate their approach to the pairwise comparison setting, and evaluate the benefits

relative attributes bring to subsequent results.





Appendix A

Exemplar textures

The ninety-eight texture attributes of Bhushan et al. (1997) are shown in the figures

below, along with an exemplar texture for each attribute calculated directly from our

pairwise comparison dataset with the procedure of David (1987) (see Section 4.2.1).

(a) Banded (b) Blemished (c) Blotchy

(d) Braided (e) Bubbly (f) Bumpy

(g) Chequered (h) Cobwebbed (i) Coiled

Figure A.1: Exemplar textures: Banded to Coiled.
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(a) Complex (b) Corkscrewed (c) Corrugated

(d) Cracked (e) Crinkled (f) Crosshatched

(g) Crow-footed (h) Crystalline (i) Cyclical

(j) Discontinuous (k) Disordered (l) Dotted

(m) Entwined (n) Facetted (o) Fibrous

Figure A.2: Exemplar textures: Complex to Fibrous.
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(a) Fine (b) Flecked (c) Flowing

(d) Fractured (e) Freckled (f) Frilly

(g) Furrowed (h) Gauzy (i) Gouged

(j) Grid-like (k) Grooved (l) Harmonious

(m) Holey (n) Honeycombed (o) Indefinite

Figure A.3: Exemplar textures: Fine to Indefinite.
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(a) Interlaced (b) Intertwined (c) Irregular

(d) Jumbled (e) Knitted (f) Lacelike

(g) Latticed (h) Lined (i) Marbled

(j) Matted (k) Meshed (l) Messy

(m) Mottled (n) Net-like (o) Non-uniform

Figure A.4: Exemplar textures: Interlaced to Non-uniform.
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(a) Perforated (b) Periodic (c) Pitted

(d) Pleated (e) Polka-dotted (f) Porous

(g) Pot-holed (h) Random (i) Regular

(j) Repetitive (k) Rhythmic (l) Ribbed

(m) Ridged (n) Rumpled (o) Scaly

Figure A.5: Exemplar textures: Perforated to Scaly.
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(a) Scattered (b) Scrambled (c) Simple

(d) Smeared (e) Smooth (f) Smudged

(g) Spattered (h) Speckled (i) Spiralled

(j) Spotted (k) Sprinkled (l) Stained

(m) Stratified (n) Striated (o) Studded

Figure A.6: Exemplar textures: Scattered to Studded.
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(a) Swirly (b) Symmetrical (c) Twisted

(d) Uniform (e) Veined (f) Waffled

(g) Webbed (h) Well-ordered (i) Whirly

(j) Winding (k) Wizened (l) Woven

(m) Wrinkled (n) Zigzagged

Figure A.7: Exemplar textures: Swirly to Zigzagged.





Appendix B

Computational considerations

with the Bayesian posterior

In Chapter 4 a Bayesian procedure for learning attribute strength ratings was introduced.

Recall that the MAP estimate of the full N × P rating matrix R could be expressed:

vec(R̂MAP) = (V−1 ⊗U−1 + C>C)−1(vec(U−1MV−1) + C>z̃) (B.1)

The calculation of this estimate — and indeed, the calculation of many of the distri-

butions associated with the Bayesian procedure (Equation 4.40, Equation 4.46, Equa-

tion 4.53) — involves a Kronecker product of two potentially large matrices and, resul-

tantly, the inverse of a very large matrix. Below we discuss some of the means used to

alleviate this complexity so as to achieve the results described in this thesis.

Firstly, it is often the case that a sparseness structure can be imposed on V, U, and M

to simplify the time and memory requirements of the Kronecker product and subsequent

calculations. If the between-attribute correlations are particularly weak then the single

attribute multivariate normal formulation is usually sufficient instead of the full matrix-

variate variety. Also, usually no specific prior information is known about the mean of

R and so M can be set to zero, eradicating one part of the equation above.

Next, the block-diagonal structure of C admits various time-saving operations: the

transpose and inverse of a block-diagonal matrix can be computed upon only its con-

stituent blocks. The products C>C and C>z̃ can also be computed in a blockwise

fashion, so C need never be held in memory in its entirety.

Finally, the symmetric positive-definite U and V allow the equation to be solved itera-

tively using the conjugate gradient method (Hestenes and Stiefel, 1952). Here, particular

systems of linear equations with a symmetric positive-definite coefficient matrix can be

solved after k iterations, where k is the number of elements in the coefficient matrix,
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whilst avoiding the explicit calculation of that matrix. By expressing the equation above

as:

(V−1 ⊗U−1 + C>C)vec(R̂MAP) = (vec(U−1MV−1) + C>z̃) (B.2)

we can see readily that (V−1 ⊗U−1 + C>C) is symmetric positive-definite due to the

nature of U, V, and C.
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