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“Other than the laws of physics, rules have never really worked out for me."

Craig Ferguson



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES

Chemistry

Doctor of Philosophy

DENSITY FUNCTIONAL THEORY APPLIED TO METALLIC

NANOPARTICLES

by Jolyon Aarons

This thesis will focus on DFT for calculations of large metallic nanoparticles. It will show new
algorithms that were developed for reduced scaling DFT methods for metals; the testing, verifica-
tion and design of new descriptors for predicting the catalytic activity of metallic nanoparticles;
application of large-scale DFT calculations to model nanoparticle sequences to show size and
oxygen adsorption coverage trends, and finally the application of these techniques and knowl-
edge to perform a study of oxygen adsorption on real-world, experimentally determined platinum
nanoparticles in collaboration with the Nellist group at Oxford materials.
We explore the binding of atomic oxygen to cuboctahedral platinum nanoparticles of up to
∼1000 atoms using DFT calculations in ONETEP. We demonstrate convergence to the infinite
slab limit for single oxygen adsorption in chapter 4 and correlate adsorption strength against
popular descriptors for catalytic activity, such as the d-band centre approach. This approach is
possible because of work which will be described in chapter 3 to implement angular momentum
projected density of states calculations in ONETEP. The effects of oxygen coverage on the
Pt55 and Pt147 cuboctahedral nanoparticles will also be analysed, which serves to advance our
simulations towards realistic conditions.
We show in our investigation into half monolayer, hemispherical oxygen coverage on platinum

nanoparticles that oxygen tends to gravitate towards the edges and lower coordinated sites in
the nanoparticle and away from the centres of facets. This effect correlates with the site specific,
single oxygen adsorption energies on Pt309 and experimental platinum nanoparticles which is
presented in chapter 5. We show that when subdividing the binding of monolayers of oxygen
into only (111) and (100) facets that these have a lower adsorption strength per oxygen atom than
combined (100) and (111) facets as well as lower binding strength than single oxygen adsoprtion.
In the next part of the study, which is discussed in chapter 5, we show large scale DFT cal-

culations on real platinum nanoparticles, which were measured by the Nellist group at Oxford
materials using advanced electron microscopy techniques. These DFT calculations provide the
electronic structure of the experimentally measured nanoparticles, which allowed us to apply
electron density based catalytic activity descriptors to the nanoparticles, such as the d-band
centre approach, or our own electronic density based descriptor described in chapter 3. We
find that surface roughness of the experimental nanoparticles contributes to more potential oxy-
gen binding sites with low electron density, which correlatates with stronger oxygen adsorption
strength in our model, when compared with the relative smoothness of cuboctahedral and trun-
cated octahedral facets. In the analysis which is presented in chapter 5, the proportion of sites
which lie within 0.2 eV of the oxygen binding strength required for optimum catalytic activity
is predicted with high efficiency, based on our catalytic activity descriptor.
Finally, in chapter 6 we describe a new method for large scale DFT calculations on metallic

systems which we call the AQuA-FOE method. We show how this method can have a compu-
tational cost which increases effectively linearly with the number of atoms. The AQuA-FOE
method works by implicitly heating and quenching the electrons in the system to find the one-
particle density matrix, while conserving the electron number. We show validation of this method
inside the EDFT procedure by comparing numerically with the diagonalisation based EDFT that
is already implemented in ONETEP showing agreement in the energies to better than 10−5 EH
per atom. We will also demonstrate the effectively linear-scaling computational cost of our
method with calculation times on regular truncated octahedral Palladium nanoparticles ranging
from 2,406 to 12,934 atoms.

http://www.soton.ac.uk
http://www.southampton.ac.uk/faculties/faculty_natural_environmental_sciences.html
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Chapter 1

Introduction

1.1 Background

The physical laws governing the interactions of subatomic physical particles are known

as quantum mechanics. Having been vindicated by countless experiments from the early

20th century up to the present day, quantum mechanics has allowed some of the most

accurate predictions of the physical world in all of science.

The principal equation in quantum mechanics is the Schrödinger equation,

i~
∂

∂t
Ψ = ĤΨ, (1.1)

where i is the unit imaginary number, ~ is the reduced Planck constant, h/2π, Ψ is

the wavefunction which represents the state of the system and Ĥ is the Hamiltonian

operator, which operates on the wavefunction to give the energy of the system. The

Schrödinger equation is a wave equation which represents how the system evolves in time,

but for stationary states, where the wave function is separable and remains stationary

in space, provided the Hamiltonian operator is time independent, the time independent

Schrödinger equation is written as an eigenvalue equation as

ĤΨ = EΨ, (1.2)

where E are the energy eigenvalues of the Hamiltonian. In practice, the Schrödinger

equation is solvable only for very few systems analytically and becomes rapidly infeasible

to solve numerically with increasing system size.

1.1.1 The Problem of the Many-body Wavefunction

The fundamental object in the original formulation of quantum mechanics is the wave-

function. The wavefunction holds all information about an isolated system and physical

observables are obtained from it by applying operators. For a single particle, before

1
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considering spin, it is expressed as

Ψ(~r, t), (1.3)

where the arguments t and ~r index over time and the three dimensioned coordinate

space of the particle. As particles are added to the system, the dimensionality of the

wavefunction increases, for instance, for two particles:

Ψ(~r1, ~r2, t), (1.4)

the spatial dimensionality is now 6. This has fairly serious implications, in that when we

consider the general N-body problem in quantum mechanics, the wavefunction will have

3N + 1 dimensions;

Ψ(~r1, ~r2, · · · , ~rN , t). (1.5)

In order to solve a quantum mechanical problem, such as this on a digital computer it

would be necessary to discretise space and time, but even assuming a very coarse grid in

space in each dimension, it is apparent that merely the storage of such an object becomes

rapidly infeasible. This is because for each value of each dimension, every value of every

other dimension must be considered. When moving from 1D to 2D, given a constant

grid spacing along each dimension, the number of values to be evaluated is squared, and

cubed when going to 3D; likewise, when considering a generalised Hilbert space of 3N

dimensions, the number of grid-points to be evaluated is n3N , where n is the number of

grid-points along each dimension. If a ridiculously coarse grid-spacing is chosen simply

for the sake of the argument, for instance: 2 grid points in each dimension, then only

13 particles are needed before the wavefunction alone would fill the largest commonly

available consumer hard disk drive twice over, as of 2014 (assuming four byte, double

precision arithmetic):

D14,2 = ((23∗14) ∗ 4B)/(1024 ∗ 1024 ∗ 1024 ∗ 1024) = 16TB. (1.6)

Now, given a slightly less extremely (but still extreme) coarse grid of 10 grid-points along

each dimension,

D14,10 = ((103∗14) ∗ 4B)/(1024 ∗ 1024 ∗ 1024 ∗ 1024) = 3.6 ∗ 1030TB, (1.7)

which is 9 billion times the number of transistors ever produced up until 2015, according

to Intel[13]. Try to store the many-body wavefunction for 30 particles at this coarse

sampling and more Terabytes would be needed than there are atoms in the observable

universe. So quantum mechanics offers predictive power unrivaled in accuracy on the

atomic and electronic scale, but this power can never be fully harnessed in the many-body

wavefunction formulation.
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1.2 Density Functional Theory

Density Functional Theory (DFT) offers a way to sidestep this problem. The main

premise of DFT is that ground state observables (physical properties of the system at its

lowest energy configuration) are available from the 3 dimensioned density of the system,

rather than the 3N dimensioned wavefunction. The way to show why this is so, is

through the Hohenberg-Kohn theorems which are presented in the next sub-section.

1.2.1 The Hohenberg-Kohn Theorems

Assuming first of all that there exist two external potentials, V1(~r) and V2(~r) which both

give rise to the same charge density, n0 which are associated with two Hamiltonians, Ĥ1

and Ĥ2 and wavefunctions, Ψ1 and Ψ2.

By the variational principle:

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉, (1.8)

meaning that the Hamiltonian of a system has a lower minimum energy eigenvalue when

applied to the wavefunction of the same system compared with when applied to a different

wavefunction. Where 〈Ψ2|Ĥ1|Ψ2〉 can be written as:

〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉 (1.9)

and because the number of electrons is constant in both systems, the kinetic and elec-

tronic part of Ĥ1 − Ĥ2 cancel, giving V̂ext1 − V̂ext2, so:

E1 < E2 +

∫
[V2(~r)− V1(~r)]n0(~r) ~dr (1.10)

But, for Ĥ2:

E2 < E1 +

∫
[V1(~r)− V2(~r)]n0(~r) ~dr (1.11)

And when added together, the latter two equations give:

E1 + E2 < E1 + E2 (1.12)

Proving by contradiction, therefore, that the external potential and hence, the ground

state energy of a system of electrons is a unique functional of the ground state charge

density.[14] This is the first Hohenberg-Kohn theorem.

The Hamiltonian can be written as

Ĥ = T̂ + V̂ee + ˆVext, (1.13)
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where the potential term has been split into electron-electron and external parts. The

wavefunction which minimises the expectation value of the Hamiltonian gives the ground-

state energy and this wavefunction has been shown to be unique to one charge density.

It follows that Ψ is a functional of density.

Ψ = Ψ[n(~r)] (1.14)

Consequently, the ground-state energy must also be a functional of density.

E[n(~r)] = 〈Ψ|Ĥ|Ψ〉 (1.15)

Since the energy contribution of an electro-static potential is known from electromag-

netism (eq.1.16), the total ground-state energy of the system can be written as eq.1.17

for some external potential.

U =
1

2

∫
V (~r)n(~r) ~dr (1.16)

E[n(~r)] = F [n(~r)] +

∫
V (~r)n(~r) ~dr (1.17)

Also, if the ground state density n0 of a system corresponds uniquely to a particular

Hamiltonian Ĥ1, then some other density n1, which corresponds to a different Hamilto-

nian Ĥ2, the energy of the system is given by (eq.1.15) and by (eq.1.8) it is clear that

there is some charge density which minimises the total energy of the system, which is

consequently the ground-state energy. Applying the variational principle leads to the

Euler-Lagrange minimisation problem (eq.1.18). This is the second Hohenberg-Kohn

theorem.

µ =
∂F [n(~r)]

∂n(~r)
+ V (~r) (1.18)

1.2.2 Kohn-Sham DFT

So far, the formulation of DFT has been conceptually elegant, but not particularly useful

for actual computation, as it is known that there is a unique functional of the charge

density which minimises the total energy of the system, but there is no clear way to know

what this functional actually is.

Kohn-Sham DFT presents a way to evaluate at least part of the functional, through the

reintroduction of wavefunctions. Rather than the many-body beast introduced previ-

ously, however, this is a wavefunction of a system of non-interacting particles and hence,

its Hilbert space after discretisation spans Nn3 values rather than n3N in the interacting

case.

Solving a system of non-interacting particles in an effective potential designed to give

the same density (and hence energy) of the interacting problem is equivalent to solving
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the eigenvalue equation (
− ~2

2m
∇2 + veff(~r)

)
φi(~r) = εiφi(~r), (1.19)

where the density of the system is written as

n(~r) =
N∑
i

|φi(~r)|2. (1.20)

In order to determine the effective potential veff in Kohn-Sham DFT, it is necessary to

compute all components of the energy functional,

E[n] = T [n] +

∫
d~r vext(~r)n(~r) + VH [n] + EXC[n], (1.21)

including both those which are expressed in terms of Kohn-Sham orbitals and those

expressed in terms of the electronic density. In the above expression T [n] is the Kohn-

Sham Kinetic energy, VH is the Hartree potential, or the electron-electron Coulombic

potential vext is the external potential, which is usually the electron-nucleus potential

and EXC is the exchange correlation energy. The Kinetic energy is expressed in terms of

the Kohn-Sham wave functions as

T [n] =
N∑
i=1

∫
d~r φ∗i (~r)

(
− ~2

2m
∇2

)
φi(~r), (1.22)

All the other terms are written in terms of the density, which is calculated from the wave

functions as above, where the Hartree term is given as:

VH =
e2

2

∫
d~r

∫
d~r′

n(~r)n(~r′)

|~r − ~r′|
. (1.23)

By inspection, the kinetic energy term is already present in the Kohn-Sham eigenvalue

equation, so that the external potential is given from the energy functional as:

veff(~r) = vext(~r) + e2

∫
n(~r′)

|~r − ~r′|
d~r′ +

δExc[n]

δn(~r)
(1.24)

where the last, exchange-correlation term,

vxc(~r) ≡
δExc[n]

δn(~r)
, (1.25)

has no known analytic form and must be approximated. The minimum ground state

density can then be found (subject to a decent approximation for the XC functional)

by variationally optimising with respect to the wave functions / orbitals. Because the

orbitals give the density, the density gives the potential and the potential gives a new
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set of orbitals, this can be solved to self-consistency and is often known as self-consistent

field (SCF) Kohn-Sham DFT.

The idea is that if the charge density of a system uniquely determines its wavefunction

and hence its physical observables in a one to one relationship, then it does not matter

how this charge density is constructed. So, if a ficticious system of non-interacting

particles is designed to give the same charge density as the physical system of interacting

particles, then the Kinetic energy of the system could be calculated1.

1.2.3 Exchange-Correlation Functionals

In Kohn-Sham DFT, all of the unknowns are bundled up into what is known as the

Exchange-Correlation (XC) term. This is in effect what is not known of the mapping

from the system of interacting particles on the the system of non-interacting Kohn-Sham

particles. What is remarkable, however, is that despite not knowing a form for this term,

a great many approximations have been proposed, some of which have been tremendously

sucessful, in terms of accuracy and predictive power.

The exchange-correlation term may be further divided into two terms. The exchange

energy, otherwise known as Pauli repulsion is the energy associated with the change

in sign of the wavefunction upon exchange of indistinguishable Fermions2, which serves

to keep them separated from each other. The second term is the correlation energy,

which represents any electron-electron interaction outside of the Coulombic interaction

of Hartree’s term. The XC term can then be written as the sum,

EXC(n) = EX(n) + EC(n). (1.26)

1.2.3.1 Local Density Approximation (LDA)

The LDA class of XC functionals are the simplest class which are useful in practical

calculations. LDA functionals are most broadly defined as those which are functionals

solely of the electronic density field and the most widely used and well-known of these are

all based on the homogeneous electron gas model. This represents an approximation that

maps electron density at each point in the simulation cell to a homogeneous electron gas

of the same density, for which analytic expressions exist for the calculation of exchange

and correlation terms;

ELDA
XC [n] =

∫
n(r)εXC(n) dr, (1.27)

1It is worth noting that this does not violate the first Hohenberg-Kohn theorem because HK-1 states
only that there is a unique mapping between the charge density and many-body wavefunction for inter-
acting particles, but says nothing against producing a matching charge density from different kinds of
particle

2It has been assumed from this point onward, that particles are referred to that they are spin 1/2
integer Fermions unless otherwise stated.
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where εXC(n) is an exchange-correlation energy distribution function for charge density

n.

The exchange energy of a homogeneous electron gas is known exactly[15],

ELDA
X [n] = −3

4

(
3

π

)1/3 ∫
n(r)4/3 dr (1.28)

which makes expressions for the XC energy in terms of the homogenous electron gas

appealing. The correlation energy term is not known analytically, however, and provides

most of the variation between the various LDA XC functionals. Limits of the correlation

energy are known in the high[16] and low[17] density limits, together with computed

intermediate values (typically computed with quantum Monte Carlo techniques), then

functions which interpolate between the various pieces of evidence and match the be-

haviour in the limits are produced[18], with the particular qMC measurements determin-

ing the major differences between the various LDA schemes.

LDA schemes are expected to be a good approximation in the case where the density

is slowly varying, because the sampling from the independent homogenous electron gas

problems at each point in the simulation cell are discontinuous. If the density is slowly

varying, the discontinuity will be minimised. Despite this, remarkable agreement from

LDA results has been shown for metallic systems

1.2.3.2 Generalised Gradient Approximation (GGA)

As opposed to LDA functionals, GGA functionals take into account the gradient vector

field of electron density as well as solely the electron density.

EGGA
XC [n] =

∫
n(r)εXC(n,∆n) dr, (1.29)

This is important because in many systems under study the electron density may vary

more rapidly than is appropriate for modelling with an LDA functional based on the

homogeneous electron gas, however, due to the many successes of LDA functionals, it

would be good to base improvements upon such a model.

Most GGAs seek to reproduce the correct physics predicted by the LDA in some well

defined limits as well as fitting computed datapoints in and respecting constraints on the

electron density gradient. One of the first useful and reliable GGA functionals was the

PW91.

The Perdew-Burke-Ernzerhof, or PBE functional was developed as a simplification to

the methodology used to conglomerate all of the data used in the development of the

PW91 functional, while retaining all of the relevant physics [19]. It is one of the most

widely used XC functionals because of its versatility.
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The PBE functional defines the exchange contribution as

EPBE
X [n(r)] =

∫
n(r)εLDA

X (n)FX(s)dr, (1.30)

where

FX(s) = 1 + κ− κ

1 + bs2/κ
, (1.31)

and

s =
|∇n|
2kFn

. (1.32)

The parameter kF = (3π2r)1/3 and κ = 0.84 and b = 0.21951. These were derived by

the authors from the Lieb-Oxford bound and by requiring that the gradient coefficient

for correlation cancels the exchange coefficient.

As for the correlation contribution in the PBE functional, this is written as

EPBE
C [n(r)] =

∫
n
[
εLDA
C (n) + h(n, t)

]
dr, (1.33)

where

h(n, t) = γ ln

{
1 +

βt2

γ

[
1 +At2

1 +At2 +A2t4

]}
, (1.34)

A =
β

γe−ε
LDA
C /γ − 1

, (1.35)

and

t =
|∇n|
2ksn

, (1.36)

where the parameter ks =
√

4kF /π and β = 0.066725 and γ = 0.031091. The β and

γ parameters were derived by the authors from the high-density limit of the gradient

expansion of the homogeneous electron gas correlation energy expression. The PBE

functional is one of the most widely used of the generalised gradient exchange correlation

options and we will make extensive use of its reparameterised cousin, rPBE in this work.

rPBE is a re-parameterisation of PBE developed within the Nørskov group, which sought

to improve adsorption energies, particularly in the context of catalysis, i.e. reaction

barriers [20]. This XC functional has been shown to be good over a wide class of systems

and observables [21], it is one of the most accurate of the GGA class of functionals.

1.2.3.3 Hybrid Functionals

It must be stated that every known XC functional is an approximation. Many of them

are far more accurate than one might expect, considering the complexity of the problem

being modelled, however, they will never give the correct values for every observable

in every material. The XC functional used to perform predictive material and chemical
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calculations must be carefully chosen to be appropriate based on prior studies and known

system applicability.

Hybrid functionals are a class of empirical XC functionals based on the observation that

DFT and Hartree-Fock methods tend to get properties wrong in opposite directions. A

proportion of Hartree-Fock exact exchange,

EHF
X [{ψ(r)}] = −1

2

∑
i,j

∫ ∫
ψ∗i (r)ψ∗j (r)

1

|r− r′|
ψ∗i (r

′)ψ∗j (r
′)drdr′, (1.37)

is added to the XC functional. For example, the PBE0 function is written as

EPBE0
XC [n (r) , {ψ (r)}] =

1

4
EHF

X [{ψ (r)}] +
3

4
EPBE

X [n (r)] + EPBE
C [n (r)] , (1.38)

in terms of the Hartree-Fock exact exchange and the PBE exchange and correlation.

This emperical mixing is arbitrary, and many possible mixing schemes exist, each tuned

in some way to cancel out error with respect to a test basket of systems for which

experimental or more accurate results exist.

1.2.4 Basis Functions in Kohn-Sham DFT

An important adverse effect of Kohn-Sham DFT is the (re-)introduction of wavefunctions

and hence, basis functions are required to be used in calculations. Two of the oldest and

most widely established basis sets in DFT are the plane-waves and the various flavours

of Gaussian basis sets.

Typically, the basis set employed in a calculation is decided based on the material or

molecule under study. If the calculation is of an isolated molecule, then it is likely that

a localised basis set comprised of, for instance Gaussian functions would be appropriate.

For a bulk or surface calculation, where at least two of the spatial dimensions of the

simulation cell are periodic, then a plane-wave basis set is probably a reasonable choice.

The first step, irrespective of the choice of basis set is to expand the wavefunctions in

terms of the basis functions:

ψi =
∑
α

cαφα, (1.39)

where ψi are molecular orbitals or electron bands and φα are basis functions.

1.2.4.1 Plane-waves

If the system under study is inside a unit cell defined by vectors ( ~a1, ~a2, ~a3), periodicaly

repeating in space, then any point in the cell can be mapped to the equivalent point in

any of the periodic image cells with a translation vector of the appropriate number of

lattice vectors. For instance, if

~r → ~r + ~R, (1.40)
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where ~r represents some point in the cell and ~R represents some linear combination of

lattice vectors given by
~R = n1 ~a1 + n2 ~a2 + n3 ~a3, (1.41)

if ni are integers, then such a system is infinitely periodically repeating in all dimensions

in space, but can be represented solely (i.e. all of the physics can be captured) by one cell

and a vector ~R. What has been described so far in simply periodic boundary conditions,

ideally suited to a periodically repeating system. Plane waves share this symmetry, so

are well matched in such cases. The plane wave expansion of the cell may be written

ψn(~r) =
1√
Ω

∑
~G

ψ̃(~G)ei
~G·~r, (1.42)

where Ω is the volume of the cell, ~G is a wave-vector and quantities over-written with a

tilde (~) have been Fourier transformed. Applying equation (1.40) to plane waves, the

plane waves which are considered are only those which share the same periodicity as the

lattice, or those for which:

ei
~G·(~r+~R) = ei

~G·~r. (1.43)

Then a grid of wave-vectors which satisfy this criterion can be written in terms of the

reciprocal lattice vectors as:

~Gj1,j2,j3 = (j1 −
N1

2
)~b1 + (j2 −

N2

2
)~b2 + (j3 −

N3

2
)~b3, (1.44)

and where the reciprocal lattice vectors are defined in the usual way as:

~b1 = 2π
~a2 × ~a3

Ω
, (1.45)

~b2 = 2π
~a1 × ~a3

Ω
, (1.46)

~b3 = 2π
~a1 × ~a2

Ω
. (1.47)

Finally, the plane-wave expansion of the bands is

ψn(~r) =
1√
Ω

N1∑
j1=1

N2∑
j2=1

N3∑
j3=1

ψ̃n(~Gj1,j2,j3)ei
~Gj1,j2,j3 ·~r, (1.48)

where the three summations go over the dimensions of the computational grid, so that a

denser grid involves more Fourier components and hence can represent frequency com-

ponents in the bands that are higher (more rapidly oscillating) than a coarser grid.

Due to the Planck relationship between frequency and energy, the density of the grid

and maximum frequency component can be written as a single transferrable parameter

which defines the accuracy of the basis set. The cut-off energy determines a sphere of
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’radius’ Ecut in reciprocal space and can be increased systematically until convergence

with any given physical observable. The inequality for the cut-off energy of the electron

bands is given by

Ecut >
1

2
|~G|2. (1.49)

The electronic density is also frequently represented in terms of plane-waves and contains

8 times more plane-waves as an equivalent density because the density is formed from

the wave functions by a band-band inner product. This is given by

4Ecut >
1

2
|~G|2. (1.50)

Typically, plane-wave basis sets are used for periodic calculations, but instead open

boundary conditions can be employed through the use of a cut-off Coulomb operator. [22]

This method cuts off all long-range interaction in periodic cells and restricts interactions

to those within a pre-defined radius in real space. The method is applied in reciprocal

space.

1.2.5 Pseudopotential Approximation

Electrons in the core region tend to be concentrated close to the atomic nucleus, where the

nuclear, Coulombic potential is large. This leads to rapidly varying core wave functions

and densities, which in turn require many Fourier coefficients to accurately represent in

a plane-wave basis. As most chemistry is only concerned with the valence electrons, in

practice, relatively few electronic states are modelled in a modified “pseudo-potential”,

while the core states are frozen and interact in the calculation only as a combined effective

potential together with the nucleus.

It is important in practice that the potential in the valence region is accurate. For

this reason, a form is chosen which accurately matches the correct potential outside of

a given radius around the nucleus rc (See figure 1.1). Within this radius, the form is

chosen to vary more smoothly than a Coulombic potential would and to have a finite

limiting behaviour as the radius goes to zero. The larger the cut-off radius (in common

vernacular, the larger this is, the “softer” the pseudo-potential is said to be), the fewer

Fourier terms are needed, but the less accurate is the approximation.

In the pseudopotential approximation, the core and valance parts of the electronic prob-

lem are separated:

Ĥ|ψc〉 = εc|ψc〉 (1.51)

Ĥ|ψv〉 = εv|ψv〉, (1.52)

where |ψc〉 are the core states and |ψv〉 are the valance states. A set of smooth valance
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1�r
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Pseudopotential

Pseudowavefunction

YHrL

Figure 1.1: Pseudopotentials are configured to have a profile which exactly matches
the all electron potential outside of a nuclear-centred sphere of radius rc. Within this
sphere, the potential is allowed to differ from the all electron version to reduce the
number of plane waves required to represent it accurately. Figure courtesy of Valerio

Vitale[2].

states can be constructed from these in the form suggested by Phillips and Kleinman[23],

with a lower maximum frequency component required for an accurate plane wave basis

representation. This can be expressed as

|ψ̂v〉 = |ψv〉+
∑
c

Bcv|ψc〉, (1.53)

where Bcv are orthogonality coefficients given by

Bcv = 〈ψc|ψ̂v〉. (1.54)

The pseudowavefunction also obeys a Schrödinger equation,

ĤPS|ψ̂v〉 = εv|ψ̂v〉, (1.55)

with the Hamiltonian

ĤPS = Ĥ +
∑
c

(εv − εc) |ψc〉〈ψc|. (1.56)

The term added onto the Hamiltonian is an energy-dependent repulsive potential, that

cancels the nuclear Coulomb potential in the core region. The potential associated with
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the new Hamiltonian is then

VPS = V +
∑
c

(εv − εc) |ψc(r)〉〈ψc(r′)|. (1.57)

which is a sum of the unscreened nuclear potential and this non-local repulsive potential.

In practice, the non-local part of the pseudopotential is usually given semi-local form,

where it can reproduce the scattering behaviour of the nucleus by being formed from

several contributions with resolved angular momentum channels.

The way semi-local pseudopotentials are usually set up is due to Kleinman and Bylander[24],

which avoids the computational problem with the way semi-local pseudopotentials are

constructed naively:

VPS = Vloc +
∑
l

l∑
m=−1

|Ylm〉Vl〈Ylm|, (1.58)

which scales quadratically with the number of basis functions. The Kleinman and By-

lander form avoids this problem by constructing a separable set of matrix elements which

are a sum of a ratio of two integrals involving only one basis function in each integral.

This means that the scaling is linear and so this construction is more efficient in practice.

The representation is given by

VPS = Vloc +
∑
l

l∑
m=−1

|Vlχlm〉〈χlmVl|
〈χlm|Vl|χlm〉

, (1.59)

where the eigenstates of the pseudo Hamiltonian are given by

χlm(r) = R(PS) l(r)Ylm(θ, φ). (1.60)

One way to determine the optimum cut-off radius is to compare the integral of the

amplitude-squared of the all-electron potential and pseudo-potential and to choose the

value which gives the same value for each. Pseudo-potentials of this form are known as

norm-conserving, where they have the same charge within the core region, but different

shape, but Gauss’s law ensures that they are indistinguishable from the all electron

equivalent, electrostatically.

Further reduction of the number of plane waves which are necessary for an accurate repre-

sentation, known as softening in the pseudo-potentials is possible, via either a Vanderbilt

ultrasoft or projector augmented wave approach.

1.2.6 The Projector Augmented Wave (PAW) Method

A similar approach to the Vanderbilt ultrasoft pseudopotential method is the Projector

Augmented Wave or PAW method. PAW offers the possibility of performing accurate
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all-electron calculations in a computationally efficient manner like plane-wave pseudopo-

tential calculations. This is done by defining a linear operator between all electron and

pseudo wavefunctions, which maps from one to the other in spherical core regions centred

on atoms. In so doing, the pseudo wavefunctions which are defined to vary smoothly

on a grid of a given sampling without aliasing can be optimised in situ and the all

electron wavefunctions can be represented in terms of another basis set and effectively

“put back” into the wavefunction when needed to apply operators. This means that for

quantities that require accurate wavefunctions and densities close to the nucleii, such as

Nuclear Magnetic Resonance (NMR) calculations which are impossible with conventional

pseudopotentials, PAW can be used.

∣∣ψn〉 =
∣∣ψ̃n〉+

(
|ϕν〉 − |ϕ̃ν〉

)〈
p̃ν
∣∣ψ̃n〉, (1.61)

where the projectors 〈p̃ν | project onto the pseudo partial waves, 〈ϕ̃ν |. This then allows

for the construction of the all electron wavefunction
∣∣ψn〉 as in equation 1.61 from the

pseudo wavefunction
∣∣ψ̃n〉 by projecting out the pseudo partial waves and replacing these

spherical regions with the all electron partial waves, |ϕν〉.
In practice, this operation is not performed explicitly, as a basis which could accurately

represent the all electron wavefunctions would be required, making PAW redundant if

such a basis set were possible. Instead, operator matrix elements and expectation values

are calculated by calculating contributions from the pseudo wavefunction and all electron

partial wave terms separately and accumulating the result.

1.2.7 Gaussian Basis Functions

Gaussian basis functions were developed in 1950 by S. Boys after noting that Slater

type orbitals (STOs), themselves based on eigenfunctions of the Hydrogenic Schrödinger

equation could be modified to be more easily integrable.

Hydrogen orbitals are given by:

φ(r, θ, φ) = Rn,l(r)Yl,m(θ, φ), (1.62)

where Rn,l is the radial and Yl,m the angular contribution to the solutions. Yl,m are

spherical harmonics, whereas Rn,l are linear combinations of spherical Neumann and

Bessel functions. To obtain STOs, this radial contribution is replaced with a smooth

node-less exponential decay which matches the hydrogenic radical solutions in the short

and long range limits, i.e. it has the exponential tail at infinite separation and the

Coulombic cusp singularity at the nucleus.

The problem with STOs is that no analytic form exists for the overlap, so a four-index

numerical integral must be performed, which becomes very expensive as the number of
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electrons in a calculations increases. To avoid this issue, gaussian orbitals were intro-

duced, which substitute the e−r radial contribution for Gaussians e−r2 . Of course, the

integration is now trivial, but the limiting behaviour is lost, because the Gaussian func-

tion has zero gradient at the origin and non-exponential decay in the limit r →∞. This

presents a number of problems, but in practice, over decades of numerical calculations,

Gaussian functions have proved to be a useful tool, and sometimes a highly accurate

basis set in computational Chemistry, when used in an appropriate linear combination.

Compared with plane waves, Gaussian functions have several advantages and several

disadvantages. Gaussian orbitals do not possess the systematic improvement in basis set

accuracy that plane-waves offer, whereas plane-waves need pseudo-potentials to remove

the rapidly varying potential of the core-electrons, whereas Gaussian orbitals can be used

adequately for all electrons in an atom. Plane-waves are orthogonal and can represent

any potential or density given a high enough sampling (plane-wave cut-off energy), but

Gaussians typically need far fewer functions to represent the same system with the same

accuracy (provided a suitable arrangement of basis functions had been chosen).

Finally, Gaussians are localised, whereas plane-waves are delocalised. This is neither an

advantage nor a disadvantage. Usually, the particular basis set is chosen based on the

geometry of the system under study.

1.3 Density Matrix Formalism

Kohn-Sham DFT can also be written in terms of a density kernel, which is a general-

isation of occupancy to non-orthogonal functions. Where, for orthogonal systems, the

occupancy of the states of a Hamiltonian can be imposed by multiplying the Hamiltonian

by a diagonal matrix with diagonal elements of the occupancy of a state, a non-orthogonal

system can have state occupancy imposed upon it without diagonalisation by multiplica-

tion by a non-diagonal matrix. This matrix is defined to be the matrix with occupancy

eigenvalues in the same basis as (same eigenvectors as) the Hamiltonian:

ρ(~r, ~r′) =
∑
n

fnψ
∗
n(~r)ψn(~r), (1.63)

where in the case of Kohn-Sham DFT, the single-electron wave functions, φn are the

eigenvectors of the Kohn-Sham Hamiltonian. In the case of systems at zero Kelvin, the

density matrix is obviously idempotent, as the occupancy profile is a Heaviside function;

one up to the chemical potential and zero at higher energy states. This means that:

ρ(~r, ~r′) = ρ2(~r, ~r′), (1.64)
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which has implications for the calculation of density matrix computationally. This prop-

erty also implies that the trace of the density kernel is equal to the total number of

electrons, which is true not only for zero Kelvin systems, but also finite temperature

systems.

Two further important properties of the density matrix are (assuming spin degeneracy):

firstly that the band-structure total energy of the system may be written in terms of the

trace of the product of the Hamiltonian and density kernel as

Ebs = 2Tr(ρHKS), (1.65)

and the electronic density of the system may be written in terms of the density matrix

as

n(~r) = 2ρ(~r, ~r). (1.66)

1.4 Linear Scaling DFT

In a seminal 1996 paper, Prof. Walter Kohn introduced the concept of "nearsightedness

of electron matter" and shows that local electronic properties depend on the external

electronic potential only in the local region of space. The effect of changing the electronic

potential at some point in space on the electronic properties at some other point decays

to zero rapidly as the distance between the two points is increased.

ρ(~r, ~r′)→ 0 as |~r − ~r′| → ∞ (1.67)

For an insulating material, the decay function with distance is exponential and for a metal

it is algebraic. In practice, this means that interactions occurring over (or equivalently

elements of the density matrix corresponding to) a distance of greater than some arbitrary

cut-off radius can be assumed to be zero and hence not calculated, but that the cut-off

distance which will give acceptable accuracy in computed quantities will be further for

a metal than an insulator.

This is important for computationally efficient DFT calculations because linear-algebraic

operations such as matrix-vector and matrix-matrix products scale as O(N2) and O(N3)

with matrix dimension (N) for dense matrices (where all of the elements are considered

because they may be non-zero), but areO(N) scaling when dealing with sparse matrices

(where the number of non-zero elements, NNZE << N) and the bandwidth of the

matrix remains constant as the dimension is increased. Since the Hamiltonian can be

made sparse through the use of a localised basis set, but the density matrix remains

dense whatever the basis-set, the nearsightedness of electron matter must necessarily be

exploited to perform all linear algebra on sparse matrices and hence achieve linear scaling
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with system size and the ability to apply DFT to large systems which would be inhibited

by cubic scaling.

Care must be taken when adjusting the cut-off distance, because if it is reduced too far,

then the accuracy of the simulation will be impaired, however, while if it is made too

large then linear scaling may not be achieved. It is another convergence parameter which

calculations must be tested against to ensure decent accuracy.

1.4.1 ONETEP

As localised basis-functions are necessary for linear-scaling calculations, it might be ex-

pected that Gaussian orbitals would be the basis-set of choice. It is of course possible to

create a linear scaling Gaussian code and this has been achieved [25], however, as with

Gaussian basis codes in general, speed comes at the expense of systematic basis set im-

provement which can be achieved with plane-wave codes. A code with a plane-wave basis

set, on the other hand cannot obviously be made linear scaling because basis-functions

have no locality in space.

ONETEP is a code which achieves plane-wave systematic improvement of the basis-set

with linear scaling. This is possible because of Wannier functions, defined as

Φ(~r) =
1√
N

∑
BZ

e−i
~k·~Rψ~k(~r), (1.68)

where ψ~k are bands as before and the summation is over a discretised Brillouin zone.

The set of Wannier functions are an orthonormal basis-set, but which are not necessarily

localised. This comes from the freedom to multiply the bands by any phase factor and

not affect the result, afforded by the bands being eigenvectors of the Hamiltonian. For

this reason, the phase factor e−i~k·~R could become any phase factor and the generalised

Wannier functions would still be a valid orthonormal basis for the bands. It has been

shown that there is always a choice of phase-factor which leads to localisation.[26]

Expressed slightly differently, this implies that the electron bands of a system which are

plane-waves through Bloch’s theorem can always be represented in terms of localised

functions if the correct matrix of phase factors is known. This is useful in that it shows

that a localised basis of rotated (in phase space) plane-waves is always possible, but is

only helpful in this form if the optimised eigenvectors of the Hamiltonian are already

known. Then the rotation with maximises locality under some norm can be found to

give a generalised Wannier function basis.

ONETEP approaches this problem from a different perspective. A set of basis functions

are assumed to be local to begin with, so are defined on local lattices centred on each

atom. Because these functions must remain local, they are constructed from linear

combinations of p-sinc functions (the 3 dimensional generalisation of the cardinal sine
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function). This choice of function allows for the direct recovery of a plane-wave basis

through a Fourier transform [27], hence reinforcing their equivalency, but also crucially

allows for the systematic improvement of the basis-set by increasing the density of the

real-space grid of p-sinc functions from which ONETEP’s Wannier basis functions are

built.

In ONETEP, to minimise to computational expense, the vast majority of the computation

is done in the subspace of the Wannier functions, rather than the p-sinc support functions,

as this is vastly reduced in dimension. In order to achieve this, the density matrix must

be written in a separable form as

ρ(~r, ~r′) =
∑
α,β

∑
~R

φα,~R(~R)Kα,βφ∗
β, ~R

(~r′), (1.69)

where the Wannier functions have become non-orthogonal because of this construc-

tion and are known as "Non-orthogonal Generalised Wannier Functions", or NGWFs in

ONETEP terminology. These are the basis functions in ONETEP. The non-orthogonality

is expressed tensorially, where upper and lower indices have their standard tensor mean-

ing (contra-variant and co-variant quantities, respectively). Kα,β is known as the density

kernel and is a generalisation of state occupancy to non-orthogonal functions.

1.4.2 PAW in ONETEP

As the central idea of PAW is to define a transformation operator between all-electron and

pseudised eigenstates, to use it in a density matrix based code such as ONETEP, where

eigenstates are not available, the idea must be recast in terms of density matrices[28]. In

ONETEP, the PAW density matrix can be considered in terms of the NGWFs as

ρ = ρ̃+
∑
νµ

(|ϕν〉 〈ϕµ| − |ϕ̃ν〉 〈ϕ̃µ|) 〈p̃ν |ρ̃|p̃µ〉 , (1.70)

where the density matrix in conventional ONETEP becomes ρ̃

ρ̃ = |φα〉Kαβ 〈φβ| . (1.71)

As in conventional, norm-conserving ONETEP, the density matrix is never explicitly

computed, but its implicit representation through the NGWFs and density kernel in

the NGWF basis is. In constrast with norm-conserving ONETEP where ρ̃ is made to

conserve the number of electrons through Tr[ρ̃] = Ne, in PAW mode, this conservation

is must be through Tr[ρ] = Ne and is enforced via the density kernel:

KαβSβα = Ne. (1.72)
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The other important condition on the density matrix is that its eigenvalues equal the

state occupancies. In zero Kelvin DFT, this is enforced via the density kernel as an

idempotency condition:

KαγSγδK
δβ = Kαβ, (1.73)

where the NGWF overlap matrix has its standard form: Sγδ = 〈φγ |φδ〉. So that through

idempotency, the occupancy eigenvalues have only zeros and ones. In finite temperature

ONETEP calculations, where the state occupancy is fractional, the effective generalised

eigenvalue problem to be solved in order to impose the correct occupancy distribution is

given by:

KαγSγδM
δ
i = Mα

iλi, (1.74)

where {M} are the eigenvectors of the Hamiltonian matrix and λi are the ocupancies of

the molecular orbitals. In order to apply either of these options in ONETEP, with PAW,

no changes are necessary beyond norm-conserving calculations if the overlap matrix is

redefined for PAW to be

Sαβ = 〈φα| [1 + |p̃ν〉 (〈ϕν |ϕµ〉 − 〈ϕ̃ν |ϕ̃µ〉) 〈p̃µ|] |φβ〉 . (1.75)

In ONETEP PAW, the quantities close to nucleii which oscillate rapidly and are not

representable on the standard ONETEP uniform grids of p-sinc functions, such as the

all electron partial waves |ϕµ〉, are represented on atom centred radial grids, bespoke

routines are available for performing integrals of these quantities with low frequency

quantities such as NGWFs.

In PAW, the electronic density, which is needed to calculate the density dependent com-

ponents of the Hamiltonian can be written down in terms of the PAW projectors

n(~r) = ñ(~r) + n1(~r)− ñ1(~r), (1.76)

where ñ(~r) is just the electronic density from conventional ONETEP,

ñ(~r) = φα(~r)Kαβφβ(~r), (1.77)

and the core region all-electron and pseudo densities are given as

n1(~r) = ϕν(~r)ρνµϕµ(~r), (1.78)

and

ñ1(~r) = ϕ̃ν(~r)ρνµϕ̃µ(~r), (1.79)
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respectively. The projection of the density matrix within the PAW core spheres is cal-

culated simply as

ρνµ = 〈p̃ν |φα〉Kαβ 〈φβ|p̃µ〉 , (1.80)

since it has only ‘on-atom’ contributions, it is block diagonal with only ν and µ blocks

on the same atom having non-zero contribution.

For most calculations, such as standard singlepoint energies and geometry optimisations,

PAW may be used without ever performing overlap integrals of the all electron core

regions with quantities on the uniform grid. This is achieved by setting up the so-called

compensation density

n̂(r) =
∑
L,M

ρνµQ̂LM
νµ . (1.81)

In the compensation density the difference between the pseudo and all electron densities

are fitted with low bandwidth (soft), angular momentum resolved functions, Q̂LM
νµ which

are designed to replicate the density difference. Using the compensation density, the

total energy can then be written in three terms, without integrals of all electron core

regions with uniform grid quantities:

E = Ẽ + E1 + Ẽ1, (1.82)

where the individual terms are given by

Ẽ = Kαβ 〈φβ| −
1

2
∇2 |φα〉 +

EXC[ñ+ ñc] + EH[ñ+ n̂] +

∫
VH[nZc ](ñ+ n̂)dr + EII (1.83)

E1 = ρνµ 〈ϕµ| −
1

2
∇2 |ϕν〉 +

EXC[n1 + nc] + EH[n1] +

∫
VH[nZc ]n

1dr (1.84)

Ẽ1 = ρνµ 〈ϕ̃µ| −
1

2
∇2 |ϕ̃ν〉 +

EXC[ñ1 + ñc] + EH[ñ1 + n̂] +

∫
VH[ñZc ](ñ

1 + n̂)dr. (1.85)

1.5 Finding the Ground-State of Insulators

The total energy functional which is minimised in ONETEP with norm-conserving pseu-

dopotentials is given by

E
[
{φα(r)},Kαβ

]
= EK [{φα(r)}] + ENL [{φα(r)}] + EL

[
{φα(r)},Kαβ

]
+EH

[
{φα(r)},Kαβ

]
+ EXC

[
{φα(r)},Kαβ

]
+ EEwald, (1.86)
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where the Kinetic energy and non-local pseudopotential energies are “density indepen-

dent”, and depend solely on the NGWFs. The local pseudopotential, Hartree term

and exchange-correlation terms depend on the density and hence require both the NG-

WFs and the density kernel for computation. The Ewald term comes from the Ewald

summation[29], which is used to efficiently compute the electrostatic interations between

nuclei, with periodic boundary conditions.

This total electronic energy functional is minimised self consistently to the ground state

in a two loop approach, where the total energy is minimised with respect to the NGWF

p-sinc expansion coefficients in the outer loop and with respect to the density kernel

matrix elements in the inner loop. This approach can be summarised as finding the

minimum of the Lagrangian

EGS = min
{φα(r)}

min
{Kαβ}

L
[
{φα(r)},Kαβ

]
. (1.87)

For insulators, we know that the state occupancy distribution is a step function and so

the density kernel is idempotent. The McWeeny purification[30]

K→ 3KSK− 2KSKSK (1.88)

takes an almost idempotent density kernel and makes it more idempotent by effectively

applying the polynomial 3x2−2x3 to the eigenvalues of K. This polynomial is sigmoidal

on the interval [0:1] and provided the original eigenvalues are in the interval [1−
√

3
2 :1+

√
3

2 ],

the eigenvalues of the purified matrix will become closer to 0 for eigenvalues < 0.5 and 1

for eigenvalues > 0.5. This transform can be applied recursively to produce idempotent

matrices.

The problem with this approach is that it is non self consistent and non variational. Li,

Nunes and Vanderbilt developed a variational approach which is often referred to as just

“LNV” [31, 32]. This technique defines a new functional in terms of an auxiliary density

kernel, Lαβ . The LNV functional, which is minimised subject to the contraint that the

number of occupied states is kept constant, is given by

ELNV = tr [(3LSL− 2LSLSL)H] . (1.89)

For LNV optimisation, provided the density kernel K is kept weakly idempotent, with

eigenvalues in the interval [0:1] and the constraint on the number of occupied states is

enforced, the derivative of the LNV energy functional with respect to auxiliary density

kernel L points in the direction of lower energy, and hence, also leads to an idempotent

density kernel. The density kernel is kept weakly idempotent through the use of an

auxiliary density by K = 3LSL − 2LSLSL. The constraint on number of occupied
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states can be enforced by multiplying ELNV by Nocc/tr(3LSL − 2LSLSL), where Nocc

is the target number of occupied states.

A standard conjugate gradients (CG) non-linear optimisation procedure is used to min-

imise the LNV functional, making use of the functional derivative of ELNV

∂ELNV

∂Lαβ
= 6(SLH + HLS)αβ − 4(SLSLH + SLHLS + HLSLS)αβ, (1.90)

however, since the auxiliary density kernel is contravariant, a contravariant gradient is

expected and the one which is used in the CG minimisation procedure, which is given as

[33]
∂ELNV

∂Lαβ
=
[
S−1

]αγ ∂ELNV

∂Lγδ

[
S−1

]δβ
. (1.91)

The CG procedure is performed in ONETEP using a line search

L→ L + γ

[
∂ELNV

∂Lαβ

]
, (1.92)

where the parameter α is chosen so as to minimise the energy along the search direction.

The LNV procedure may be started from an auxiliary density kernel generated with

purification through equation 1.88, starting from a scaled Hamiltonian matrix as the

initial density kernel

K0 = [H− µI] /w, (1.93)

where w is an estimate for the spectral width of the Hamiltonian matrix, perhaps deter-

mined through a norm of the Hamiltonian matrix. This method has been shown to be

an efficient way to start LNV [34].

As for the outer loop, where the energy is minimised with respect to the NGWF p-

sinc expansion coefficients, a CG procedure is also used in a similar fashion, but with

the appropriate search direction, this time formed from the LNV energy functional by

taking the derivative with respect to the NGWFs

∂ELNV

∂φα †(r)
=
[
Ĥφβ(r)Kβα + φβ(r)(QS)βα

]
, (1.94)

where the Q matrix is given by

Q = 3LHL− 2LSLHL− 2LHLSL, (1.95)

in the case of LNV. In the case of Ensemble-DFT optimisation, the Q matrix has a

different form which will be discussed in chapter 2, section 2.3.2 (see equation 2.45 for

more details).

As with the inner loop gradient, the tensorial characteristics must be taken into account.

The NGWFs are covariant vectors, so the contravariant quantity in equation 1.94 must
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be multiplied by the overlap matrix S to make it covariant

∂ELNV

∂φ†α(r)
= Sαβ

∂ELNV

∂φβ †(r)
. (1.96)

With the exception of the line search in the NGWFs, analagous to the line search in the

inner loop,

φα(r)→ φα(r) + λ
∂ELNV

∂φ†α(r)
, (1.97)

this completes the LNV scheme as performed by ONETEP. The procedure is iteratively

repeated with an inner loop within each outer loop iteration, until convergence is reached

in both loops.

1.6 An introduction to DFT for Metals

The majority of DFT calculations are performed with the Kohn-Sham approach which

describes the energy of the system as a functional of the electronic density n(r) and

molecular orbitals {ψi} The Kohn-Sham equations are non-linear and in practice they

need to be solved iteratively until the wavefunctions, occupancies and the density no

longer change with respect to each other, which is what is termed a self-consistent solution

to these equations. Typically this solution is obtained by a Self-Consistent-Field (SCF)

process where υ̂KS[n] is built from the current approximation to the density; then the

Kohn-Sham equations are solved to obtain new wavefunctions and occupancies to build

a new density; from that new density a new υ̂KS[n] is constructed and these iterations

continue until convergence.

This formulation of DFT is suitable for calculations on materials with a band gap (or

HOMO-LUMO gap in molecules), and a wide range of algorithms have been developed

for the efficient numerical solution of these equations. The absence of a gap at the

Fermi level of metallic systems makes the application of DFT approaches for insulators

unsuitable for metallic systems. The extension of DFT to finite electronic temperature

by Mermin can overcome this limitation by providing a canonical ensemble statistical

mechanics treatment of the electrons. In this approach, the existence of a universal

functional FT [n] of the electronic density for the canonical ensemble electronic system

at temperature T is shown, and the Helmholtz free energy of the electronic system is

written as:

A[n] = FT [n] +

∫
υext(r)n(r) dr (1.98)

where υext(r) is the external potential and FT [n] contains the kinetic energy, the electron-

electron interaction energy and the entropy of the electronic canonical ensemble.

A Kohn-Sham mapping of canonical ensemble DFT to a system of non-interacting elec-

trons can be carried out by analogy with the derivation of standard Kohn-Sham DFT for
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zero electronic temperature. In this description, the electronic system is represented by

the single particle states (molecular orbitals) {ψi} which are solutions of a Kohn-Sham

eigenvalue equation. The electronic density is constructed from all the single particle

states

n(r) =
∑
i

fiψi(r)ψ∗i (r). (1.99)

where the fractional occupancies fi of the states follow the Fermi-Dirac distribution:

f
(FD)
i (εi) =

[
1 + exp

(
εi − µ
σ

)]−1

, (1.100)

where µ is the chemical potential and σ = kBT , where T is the electronic temperature

and kB is the Boltzmann constant. For this distribution of occupancies, the electronic

entropy is given by

S(fi) = −kB
∑
i

filn(fi) + (1− fi)ln(1− fi) . (1.101)

As in the zero temperature case, the non-interacting system is constructed to have the

same density as that of the interacting system. The Helmholtz free energy on the inter-

acting electronic system is expressed as:

A[T, {εi}, {ψi}] =
∑
i

fi 〈ψi| T̂ |ψi〉+

∫
υext(r)n(r)dr

+ EH [n] + Exc[n]− TS[{fi}],
(1.102)

and consists of the kinetic energy of the non-interacting electrons, and the known ex-

pressions for the external potential energy and Hartree energy of the electrons and the

unknown exchange-correlation energy expression. Also, the entropic contribution to the

electronic free energy −TS[{fi}] is included. In practice, this is a functional not only

of the density but also of the molecular orbitals (as they are needed for the calculation

of the non-interacting kinetic energy, and the orbital energies, which determine their

fractional occupancies.

Another aspect which is particularly relevant for DFT calculations of metallic systems

is Brillouin zone sampling. Because of the extremely complicated Fermi surface in some

metallic systems, incredibly dense k-point sampling must be done to sample the Bril-

louin zone adequately, for instance by using a Monkhurst-Pack grid [35], or the VASP

tetrahedron method [36]. As the systems become larger, even in metallic systems, the

k-point sampling becomes less demanding as the bands flatten.

Solving these canonical ensemble Kohn-Sham equations is not trivial and presents more

difficulties than working with the zero temperature Kohn-Sham equations[37]. One has

now to determine, in principle, an infinite number of states (instead of just N states in
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the zero temperature case) - although we can in practice neglect the states whose energy

is higher than a threshold beyond which the occupancies are practically zero. Another

complication is the fact that most exchange-correlation functionals that are used in

practice have been developed for zero temperature, so their behaviour and accuracy in

a finite temperature calculation is not well understood.

Due to operations such as diagonalization, the computational effort to perform DFT cal-

culations, whether on insulators or metals, formally increases with the third power in the

number of atoms. This scaling constitutes a bottleneck in efforts to apply DFT calcula-

tions to more than a few hundred atoms, as is typically the case in problems involving

biomolecules and nanostructures. Walter Kohn showed the path for removing this lim-

itation for insulators with his theory of the “nearsightedness of electronic matter"[38]

which states that the 1-particle density matrix (or equivalently the Wannier functions)

decay exponentially in a system with a band gap:

ρ(r, r′) =
∑
i

fiψi(r)ψ∗i (r
′) ∝ e−γ|r−r′| . (1.103)

Several linear-scaling DFT programs have been developed during the last couple of

decades, based on reformulations of DFT in terms of the density matrix or localized

(Wannier-like) functions[39][40][41][42][43] and a wide array of techniques have been for-

mulated to allow linear scaling calculations[44][45]. Typically these methods take ad-

vantage of the exponential decay to construct highly sparse matrices and use operations

such as sparse matrix multiplication and storage where the CPU and memory used scale

only linearly with system size.

However, for metallic systems, there is not yet a linear-scaling reformulation. The density

matrix for metals is known to have algebraic rather than exponential decay at zero

temperature and while exponential decay is recovered at finite temperature, the exponent

and the temperature at which it becomes useful for linear-scaling have not been explored

adequately for practical use[46].

Due to the importance of calculations on metallic systems, methods have been developed

with the aim of performing such calculations in a stable and efficient manner and these

methods will be expored further and much more deeply in Chapter 2.

1.7 Catalysis and the Motivation for this Project

Electronic structure theory calculations, using the Density Functional Theory (DFT) ap-

proach are widely used to compute and understand the chemical and physical properties

of molecules and materials. The study of metallic systems, in particular, is an important

area for the employment of DFT simulations as there is a broad range of practical ap-

plications. These applications range from the study of bulk metals and surfaces to the
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study of metallic nanoparticles, which is a rapidly growing area of research due to its

technological relevance [47].

For example, metallic nanoparticles have optical properties that are tunable and entirely

different from those of the bulk material as their interaction with light is determined

by their quantization of energy levels and surface plasmons. Due to their tunable opti-

cal properties, metal nanoparticles have found numerous applications in biodiagnostics

[48][49] as sensitive markers, such as for the detection of DNA by Au nanoparticle mark-

ers. Another very promising area of metallic nanoparticle usage concerns their magnetic

properties which intricately depend not only on their size but also on their geometry[50],

and can exhibit effects such as giant magnetoresistance[51][52]. However, by far the

domain in which metallic nanoparticles have found most application so far is the area

of heterogeneous catalysis. Catalytic cracking of hydrocarbons produces the fuels we

use, the vehicles we drive contain catalysts to control the emissions released, and the

production of certain foodstuffs also rely on catalytic processes, all of which can use

metallic nanoparticles. Catalysis also has a significant role to play in Proton Exchange

Membrane (PEM) fuel cells, for example, offering a promising source of clean energy,

producing electricity by the electrochemical conversion of hydrogen and oxygen to wa-

ter. Either monometallic or alloyed, metallic nanoparticles are used as catalysts in these

processes, and anchored to a support such as an oxide or carbon. The size, shape and

composition (e.g. core-shell, bulk alloy, segregated structure)[53] of these nanoparticles

influence their chemical properties, and catalytically important sizes of nanoparticles

(diameters of 2-10nm) can consist of hundreds to thousands of atoms.

Even though extended infinite surface slabs of one type of crystal plane are often used

as models[54], which correspond to the limit of very large nanoparticles (& 5nm) we can

see from Figure 4.1 that this limit is not reached before nanoparticles with thousands

of atoms are considered. The slab model has been applied successfully in screening

metal and metal alloys for a variety of reactions, providing guidance on how to improve

current catalysts or identifying novel materials or compositions [55]. However, these

types of models, while providing useful insight, do not capture the complexity of the

nanoparticle[56], for example, the effect the particle size has on properties or edge effects

between different crystal planes. The influence of the support can modify the electronic

structure and geometry of the nanoparticle as well as cause “spillover effects” which

may, in turn, affect catalytic activity[57]. Metallic nanoparticles are also dynamic, and

interaction with adsorbates can induce a change in their shape and composition, which

can modify their behaviour. A fundamental understanding of how catalytic reactions

occur on the surfaces of these catalysts is crucial for improving their performance, and

DFT simulations play a key role [58][59] [60][61][62].

The need to understand and control the rich and unique physical and chemical properties

of metallic nanoparticles provides the motivation for the development of suitable DFT
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methods for their study. Conventional DFT approaches used to model metallic slabs are

unsuited to modelling metallic nanoparticles larger than hundreds of atoms as they are

computationally very costly with an increasing number of atoms. Therefore, development

of DFT methods for metals with reduced (ideally linear) scaling of computational effort

with the number of atoms is essential to modelling nanoparticles of appropriate sizes

for the applications mentioned above. Such methods also allow for the introduction of

increased complexity into the models, such as the effect of the support or the influence

of the environment such as the solvent.

In this project we were, therefore, interested in studying industrially important nanopar-

ticles for catalysis and developing methods which allow for more realistic conditions to

be simulated. The outcomes of this work will be discussed in chapters 4 and 5 and

development of methods to perform the calculations is discussed in chapters 3 and 6.

In the remainder of this section, we will discuss the background of catalysis and of the

computational study of catalysis.

1.7.1 Computational Study of Catalysis

The appeal of using computational techniques in catalyst development is that under

the related assumptions that such techniques can be made sufficiently accurate and fast

enough to be useful, that the throughput of testing proposed catalysts could be greater,

because producing the chemicals (arranging the atoms) and setting up the experiments

(running the calculations) are much less involved on the computer screen. What’s more,

in a simulation, properties which may be difficult or impossible to measure experimen-

tally, or at least that may take several different experiments to measure along with a set

of other measurements can usually be calculated with built-in functionality or can be im-

plemented reasonably straightforwardly after the derivation of an appropriate equation.

Computational catalysis is likely to always be intimately linked with experiment, not least

because the value in it is always to test and possibly predict the behaviour of catalysts in

real-world applications, but also because the trade-off between expediency and accuracy

of present-day techniques necessitates regular sanity checks and comparisons between

computed quantities and those obtained through experiment.

The approach to improving catalysts in general is often tied closely with the analysis of

trends. If the catalytic behaviour of a set of materials or variants of the same material

is plotted against some property thereof, and a relationship between this property and a

descriptor of catalytic performance, such as activity is established, then materials which

maximise the activity (for instance) may be predicted.

It is in the calculation of properties of predicted catalysts based on experimentally derived
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Figure 1.2: Top: In bulk metallic systems, the atomic energy levels split to form
a continuum band structure, where the energy of the lowest conduction band and
highest valence band overlap, so that electronic occupancy of the conduction band is
energetically favourable. Bottom: In a nano-cluster, the energy levels may remain
discrete, being too few in number to form a continuum. In a sufficiently diminutive
nano- cluster, however, as insufficient splitting of energy levels has occurred to form
continuous bands, and the energy level structure may be such that there is still a gap
between the highest valence and lowest conduction energy levels, even when formed

from atomic species which are bulk-metallic.

trends that computational catalyst study is presently employed. If a proven computa-

tional technique can be shown to reproduce the same trend as was measured experimen-

tally, then it is a reasonable assumption that this technique could be used to assess the

merit of predicted catalysts within this trend.

1.7.2 Proton Exchange Membrane Fuel Cells (PEMFCs)

As the world continues to develop, it will be necessary to reduce and eventually eliminate

its reliance upon the diminishing supply of fossil fuels. In order to achieve this, a reliable

and convenient means through which to store and transport energy must be fashioned. If

hydrogen is to replace gasoline in this capacity, several challenges must be met, such as:

sufficient mass production of hydrogen (the world currently consumes around 1.8×1020 J

in automotive applications and this has been projected to increase by 38% by 2040

[63]), development of storage systems with enough specific energy and energy density for

vehicular application and performance engines capable of replacing those in machines

today (with the current best in class generation and drive systems, a specific energy of

∼ 10MJ/kg and energy density of ∼ 10MJ/L must be reached from current values of

∼ 5.7MJ/kg and ∼ 2.8MJ/L respectively [64]).

One particularly novel and promising possibility for the energy conversion from that in

stored hydrogen is to use fuel cells to generate electricity. Proton exchange membrane

(PEM) fuel cells can convert molecular hydrogen and oxygen to usable electric current

without the use of a combustion-coupled heat engine, thereby allowing for the extraction

of energy from the fuel without the limits imposed on efficiency by Carnot’s theorem.

Such a system was employed on NASA’s Apollo program, from the eighth mission onward
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Figure 1.3: A hydrogen PEM fuel cell cartoon schematic showing how humidified
hydrogen gas and oxygen from air is passed into the inlets on the anode and cathode
sides of the fuel cell, respectively. The hydrogen gas flows past the anode catalyst and
any which does not react is cycled past again. The hydrogen is catalytically split into
hydrogen ions which pass through the proton exchange membrane and electrons which
provide a current between the anode and cathode that can do work in an electrical
circuit. The extraction of energy is up to 60% efficient [3]. The remaining energy is lost
as heat. The fuel cell must be cooled to avoid drying the PEM or boiling the solution.

The only product is water.

as it was capable of running on the hydrogen and oxygen fuel used for the rocket motors,

while providing electricity in a package far lighter than equivalent battery and solar cell

technologies of the day could provide, and having the added advantage that it could

supply drinking water for the astronauts on board [65].

At the anode of the fuel cell, hydrogen is split into electrons and protons, while at the

cathode, hydrogen ions are reacted with oxygen to form water. Both the anode and the
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Figure 1.4: A reaction diagram showing the progression of the ORR on a hydrogen
PEM-fuel cell cathode, where k are rate constants and a, equilibrium probabilities [4].

cathode require catalysts to split the molecular gases into ions which will be reacted in

turn.

In a PEM fuel cell, the oxygen reduction reaction (ORR) occurs on the cathode, whereby

molecular oxygen is reduced in the presence of protons, to form water. [66]. ORR can

occur via a ’four-electron’, direct pathway, where molecular oxygen is directly reduced to

H2O, or ’two-electron’ indirect pathway where oxygen is serially reduced to H2O2, then

H2O, as shown in figure 1.4 [67].

The preferred pathway in ORR has been determined to be the direct pathway in acidic

and alkaline electrolytic environments [68]. Although it has been suggested that both

pathways may operate in parallel in platinum catalysts [69], and that the dominant

reaction pathway may depend upon the surface concentration of oxygen [58], much is

still unknown about the precise reaction kinetics.

Electrolytic membranes have been developed with high proton conductivity and hence,

in PEM fuel cells, the ORR on the cathode is presently the main bottleneck in their

performance; the slow kinetics of the reaction limit the efficiency of energy conversion,

with respect to mass in particular. To reach a target energy conversion rate, the surface

area of the device must thusly be altered. The most important consequence of this

relationship is that with current cathode-catalyst technology, PEM fuel-cells may be too

heavy or bulky for mobile applications. Furthermore, as platinum is used most commonly

as the catalyst, increasing the mass of the catalyst is also expensive[70].

As improving the Pt mass activity is of such great concern to groups attempting to make

PEM fuel cells viable in mobile and automotive applications, several schemes have been

employed to improve it, both by increasing surface area and by improving the activity

per site [71], such as depositing Pt on a substrate to form a mono-layer [72] forming

platinum nano-particles [73] and depositing Pt on nano-particles [74][75].

Specifically, for automotive applications, the platinum-specific power density needs to

reach < 0.2gPt/kW, at cell voltage of ≥ 0.65V [71], because a reduction in the over-

potential means that the cell is operating closer to the thermodynamically determined

reaction potential, and inefficient endothermic intermediate reaction steps have been

reduced [58].
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Figure 1.5: A photograph showing the depletion of water on a fuel-cell membrane,
which will reduce its proton conductivity and the overall efficiency of the cell. Repro-

duced from Wheeler et al [5].

An increase of the Pt-specific power density to the required level represents an approxi-

mately five-fold increase in stable catalytic activity from the best in class (in 2009) PEM

fuel-cell performance with a pure Pt(111) surface catalyst [76].

The most commonly used electrolyte membranes are perfluorosulphonated acids (PFSA),

such as Nafion by Dupont, which must be wet in order to support proton transfer. The

requirement of water to function limits the maximum temperature at which present-day

fuel cells can operate to under 100 ◦C. Despite this, alternative membrane materials and

modified PFSA membranes with non-water solvents are in development, which would

allow for an efficiency gain associated with higher running-temperature, principally due

to the faster kinetics on the cathode.

With regard to the membrane electrolyte assembly (MEA), further work must be done on

water-management systems if water-solvent based PFSA electrolyte membranes are to be

used in high-power, highly efficient PEMFCs. The effect of having an under-performing

water-management system can be appreciated in figure 1.5 where the membrane has

partially dried out, reducing the efficiency of the cell. While the membrane must be

kept moist, flushing with liquid water is not an option, despite usually having a liquid

water cooling-system, because efficiency can be reduced if ion-rich electrolyte solvent

is flushed. The system, therefore, must balance the need for humidification with a

need to minimise excess liquid water, finely. This is achieved in practice with careful

temperature management, optimisation of the porosity of the separator between the

coolant and electrolyte and careful tuning of the topology of the MEA[5].

Finer grained analyses have been performed on the reaction by several groups with den-

sity functional theory calculations and experimentally using the technique of Damjanovic
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Figure 1.6: A ’volcano’-plot, showing how catalytic activity varies (through ∆G0).
The rate-limiting step is either that corresponding to ∆G1 or ∆G4. Reproduced from

Rossmeisl et al [6].

et al [77], showing how the reaction mechanism is split into several intermediate-steps[73],

as can be seen in figure 1.7; furthermore, topology can strongly affect the reaction mech-

anism, for example, it has been shown that the binding strength of intermediate species

appears to decrease with decreasing surface lattice constant [78][69].

It has been empirically shown that there is a roughly linear relationship between the

adsorption energies of O∗ and both OH∗ and HOO∗ [6]. This same linear relationship

was said to be representative of both changes to the catalyst species and of adsorbate

coverage allowing both to be investigated in the same analysis.

As a method has been developed for calculating the free-energy of intermediate reaction

steps ∆Gi using density functional theory (DFT), by Nørskov et al [58], and the reaction

rate is directly related to the overall free-energy change in the reaction, then these ∆Gi

can be used as a relative measure of the activity, since the slowest intermediate rate

corresponds to the upper-bound on the overall reaction rate.

Plotting all ∆Gi corresponding to endothermic intermediate reaction steps, as a function

of the adsorption energy of oxygen leads to a graph like the one in figure 1.6, where it

can be seen clearly which reaction intermediate step is limiting the rate of the reaction

at a given data-point.

In the case of hydrogen bonding to a platinum surface, the binding energy is contributed

from a filled, bonding molecular orbital (MO) formed from the hydrogen 1s orbital and

the platinum 6s band (the anti-bonding MO is empty), and hybridisation of this σ orbital

with the platinum d-band, resulting in a filled, bonding (d − σ) orbital and a partially

filled antibonding, (d− σ)∗ orbital. The σ bond varies little across the transition metal

elements, however the level of filling of the (d − σ)∗ MO is determined by the surface

electronic states of the metal and hence vary tremendously with altered surface geometry.
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Figure 1.7: A reaction-path energy transition diagram, showing the identified inter-
mediate steps in the ORR. Two of the intermediate reaction steps require energy; the

first and last. Reproduced from Nørskov et al [6].

(a) A ‘volcano’-plot, showing how catalytic ac-
tivity varies across the elemental catalysts for
the ORR reaction. Reproduced from Nørskov

et al [58].
(b) A ‘volcano’-plot, showing how catalytic ac-
tivity varies across Pt(111) mono-layers on var-
ious substrate metals, versus pure Pt(111). Re-

produced from Greeley et al [76].

Figure 1.8: Figures showing how activity varies with differing surface composition.

It has been observed that the filling of this anti-bonding MO is highly correlated with

the energy of the d-band centre [79]. This observable can then be used experimentally or

in simulation to find better catalysts, as filling of the (d− σ)∗ destabilises the hydrogen-

catalyst bond, so that this can be used with the Sabatier principle to find a surface with

just the right amout of binding.

The argument for using d-band centres to predict catalytic activity was made for hydro-

gen, but this was later extended to oxygen [80].
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Abstract

This chapter reviews the theory of DFT calculations on metallic systems with a focus on

methods for large-scale calculations, as required for the study of metallic nanoparticles

with thousands of atoms. Linear-scaling DFT methods for calculations on insulators,

with thousands of atoms are now sufficiently efficient and the computational hardware

is adequately powerful that running such large calculations is currently feasible. Such

methods are not, however, applicable to metallic systems, where the continuum of states

through the chemical potential and the partial occupation of those states must be cor-

rectly accounted for. Less mature and advanced, methods for calculations on metallic

systems with large numbers of atoms, with correct treatment of the electrons have been

developed, however, driven by current research challenges in areas such as energy and

bioscience.

DFT calculations on large metallic nanoparticles, together with appropriate human anal-

ysis can provide insight from quantum mechanics into poorly understood aspects of prob-

lems in technologically important processes such as fuel-cell catalysis and magnetic mate-

rials. To perform these large calculations, approaches for electronic energy minimization

35
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which are appropriate for metals need to be used. In this chapter, the (Pulay) density-

mixing and EDFT approaches which were mentioned in chapter 1 will be presented in

greater detail. Additionally, because diagonalisation of the Hamiltonian matrices of such

large systems are either impractical or impossible, methodologies which are required

to impose partial state occupancies from smeared occupancy distributions (such as the

Fermi-Dirac distribution) without access to the electronic Hamiltonian eigenvalues, will

be explored in depth. Particular attention will be paid to the classes of methods known

as Fermi Operator Expansions and Integral Expansions.

Great progress has been made in the last decade in advancing the state of the art in

partial-occupancy expansion methods towards larger systems and reducing prefactors and

scaling. This chapter attempts to put these methods in context, present the methods’

benefits as well as their shortcomings with respect to each other and finally to offer

predictions for the possible future directions of the field.

2.1 Introduction

This chapter forms an in-depth discussion of methods for large-scale DFT simulations

of metallic systems. It will focus on methods for metallic nanoparticle applications, as

the motivation of this project has always been on metallic nanoparticles for industrially

important catalytic reactions, however, the techniques are applicable widely to other

classes of metallic systems.

The majority of this chapter forms a review of “operator expansion” methods. Operator

expansion methods are a promising area in recent DFT metals methodology research

which can serve to remove the cubic scaling bottleneck in very large metals calculations,

by replacing the work of diagonalising the Hamiltonian matrix with a method which

has a reduced scaling. We also discuss associated methodology and algorithms which

are needed for some of these techniques, such as chemical potential search and matrix

inversion, as well as matrix sparsity, although this is discussed in much greater depth

in chapter 6. As an aside, there is also a brief section introducing KKR methods, as

an alternative to DFT based techniques, which is frequently used by other groups for

solid-state metals calculations.

Before introducing operator expansions, this chapter will begin with a general background

to the methods for performing sucessful DFT calculations on metals, expanding on the

brief introduction in chapter 1.
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2.2 DFT for Metals

In DFT for insulators, it is not necessary to introduce the concept of state occupancy,

because in ground state systems with a bandgap at the Fermi level, occupancy is deter-

mined by the Aufbau principle. That is, the electronic states are filled with spin-pairs

of electrons or single electrons in ascending order of energy up to the Fermi energy.

In systems without a bandgap, the situation becomes more complicated. At zero Kelvin,

the Fermi-Dirac distribution function is a Heaviside step function centred on the Fermi

energy implying integer occupancy, and where the density operator is given by Γ̂N =

|ψ〉〈ψ| and energy by 〈H〉 = 〈ψ|H|ψ〉 = tr(ĤΓ̂N ). Numerically, this is a problem how-

ever, as in the optimisation of the Kohn-Sham wavefunction, states may increase or

decrease in energy with respect to each other. If this happens at the Fermi energy, then

states will be discontinuously occupied or unoccupied, leading to discontinuous changes

in the total energy of the system, where a small change in density leads to a large change

in energy and resulting in a scenario in which a numerical optimisation scheme will

struggle to proceed in a descent direction.

Knowing that at finite temperature, the Fermi-Dirac function becomes continuous through

the chemical potential, a way to achieve convergent behaviour in the optimisation scheme

is to increase the electronic temperature, in the way originally derived for Hohenberg-

Kohn DFT by Mermin [81]. At finite (non-zero) temperature, pure states become mixed

states, where occupancy cannot be represented by a vector, instead a density matrix is

required, so that the density operator becomes

Γ̂0
N =

∑
i

fi|ψi〉〈ψi|, (2.1)

where fi is the fraction in each state, |ψi〉.
This will, however, change the total energy of the system in that now the quantity being

considered is a total electronic Helmholtz free energy(A = E − TS), given by

A[Γ̂N ] = tr

{
Γ̂N

(
Ĥ +

1

β
ln
(

Γ̂N

))}
, (2.2)

where β is the thermodynamic quantity, β = 1/kBT . The applied temperature should

therefore be the minimum required to see convergent behaviour in the optimisation, in

the hope that the effect on the total energy of the system will also be minimal and that

relative energies will be comparable with the zero Kelvin equivalents.

Another side-effect of having a smoothly varying sigmoid through the chemical potential,

rather than a step is that occupancy becomes real-valued on the closed interval [0, 1].

This is not a problem quantum mechanically speaking; it is perfectly admissible for states

to be partially occupied, provided that each state is normalised to have one electron per
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spin channel.

2.2.1 Smearing Functions

It has been addressed that physically, the reason that numerical optimisation of the total

energy of metals is unstable at zero Kelvin is that the Fermi-Dirac distribution function

f(εi, µ, β) =
1

1 + e(εi−µ)β
(2.3)

is discontinuous through the Fermi level, and a way to remedy this is to apply a small

electronic temperature to make the optimisation possible but not to significantly affect

the energies and properties of the system. This temperature can be viewed as a numerical

device to improve the convergence of the algorithm.

Therefore, there is no reason that any smoothly varying sigmoidal function should not

be used in place of the Fermi-Dirac distribution function (1.100). For metallic systems,

this choice of smearing function is a major consideration and there are several options to

choose from. The major benefit of Fermi-Dirac occupation is that the electronic smearing

corresponds to a physical thermal distribution at temperature T . If thermally distributed

electrons are not of interest and the free energies obtained can be “corrected” to approx-

imate zero Kelvin energies, then any other sigmoidal distribution which converges to a

step function in some limit might be used. A significant downside to Fermi-Dirac smear-

ing is that the function tails off very slowly, so a large number of very slightly occupied

conduction bands must be used to capture all of the occupied states fully.

As a well known example of a non Fermi-Dirac occupation function, the error function

as obtained by integrating a Gaussian bell-curve is smooth, sigmoidal and monotonic,

although without a closed algebraic form. An advantage of “Gaussian smearing” as

it is known is that the curve decays more rapidly to zero and one than the Fermi-

Dirac distribution. This is advantageous because it reduces the number of empty states

required above the chemical potential as fewer of those high energy states which may have

some partial occupancy at some point during the optimisation process with Fermi-Dirac

smearing will be partially occupied with Gaussian smearing.

Gaussian smearing solves the issue with the long tails of the distribution neatly. The

smearing function is given by

f
(G)
i (εi) =

1

2

[
1− erf

(
εi − µ
σ

)]
, (2.4)

where a shifted and scaled error function is used for state occupancy. Using Gaussian

smearing, therefore, means that calculations will need relatively fewer partially occupied

conduction states to be effective. In this approach, the “smearing width”, σ no longer

has a physical interpretation and the free energy functional to be minimized becomes an
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analogue generalized free energy. Despite this, the approach has been used successfully

for decades (it is the default smearing scheme in the CASTEP plane-wave DFT code,

for instance) and the results can be effectively extrapolated to zero σ [37] by using

Eσ=0 =
1

2

(
A′ + E

)
+O(σ2), (2.5)

where A′ is the generalized free energy functional. This is a post hoc correction and

hence is applied at the end of a calculation, while forces and stresses are not variational

with respect to this unsmeared energy.

Another approach to recover non-smeared results for metals is to use a smearing function

which knocks out the σ dependence of the generalized entropy. First order Methfessel-

Paxton Hermite polynomial smearing [82],

f
(MP )
i (εi) =

1√
π

(
3

2
−
(
εi − µ
σ

)2
)
e
−
(
εi−µ
σ

)2

, (2.6)

has only a quartic dependence on σ, so that results obtained using this approach need

not be extrapolated back to zero σ, but may be used directly. A significant disadvantage

of this method is that it yields non-physical negative occupancies. This can lead to

difficulties in finding the particle number conserving chemical potential, as the thermal

distribution has degeneracies, but may also lead to more serious concerns such as areas

of negative electron density.

Marzari-Vanderbilt “cold smearing”[83] solves all of these issues by using a form

f
(MV )
i (xi) =

1

π

(
ax3 − x2 − 3

2
ax+

3

2

)
e−x

2
, (2.7)

where xi = (εi− µ)/σ and a is a free parameter for which the authors suggest a value of

-0.5634.

With a non-Fermi-Dirac smearing function, the functional of energy which is minimised

becomes a generalised free-energy functional in that the “entropy” contribution is not

thermal entropy, but some generalisation of it with absolutely no physical meaning,

which must be considered carefully.

This generalised entropy, S[{fn}] can be expressed in general, in terms of the integral of

a broadening function (differential of the occupancy function) given by [84]

S[{fn}] =

∫ − ε−µ
σ

−∞
−tg(t)dt. (2.8)

If the form of the broadening function is chosen to be

g(t) =
2

(et/2 + e−t/2)2
, (2.9)
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or the differential of the Fermi-Dirac distribution function, then the generalised entropy

function recovers the standard Fermi-Dirac entropy,

S[{fn}] = −2
∑
n

(fn/2)log(fn/2) + (1− fn/2)log(1− fn/2). (2.10)

Using this formalism allows either grand canonical DFT or any generalised smearing

scheme which adheres to a set of conditions, such as that state occupancy lies on the

open interval (0, 1) or (0, 2) for spin-polarised systems, and that the occupancy is sampled

from a smooth and monotonic function of state energy.

Using a non-step function occupancy distribution will affect the total energy and forces

obtained from the system, but with a low (cold) enough (generalised-) temperature, the

relative energies and other observables should be very close to the zero-Kelvin limit. The

Mermin-Hohenberg-Kohn free energy functional is given as

AV [n] = FT [n] +

∫
Vext(~r)n(~r) ~dr, (2.11)

which is the equivalent of the Hohenberg-Kohn energy functional in zero temperature

DFT. The same treatment may be used as in Kohn-Sham DFT to obtain an energy

functional for an equivalent non-interacting quasi-particle system, so as to improve the

evaluation of the kinetic energy term, but at the expense of introducing a set of orbitals.

More generally, however, any smooth occupancy operator can be used rather than the

Fermi-Dirac function, provided it offers an expression for the entropy. So for any distri-

bution of electronic state occupancies, the generalised free energy is given by

A[σ; {φn}, {fn}] =
∑
n

fn〈φn|T̂c + V̂nl|φn〉 + EH,xc[n]− σS[{fn}] + µ(N −
∑
n

fn)

+
∑
n

fnεn(〈φn|φn〉 − 1), (2.12)

assuming orthogonal basis functions, where µ and fnεn are Lagrange multipliers used to

ensure charge conservation and orbital normalisation, respectively, and σ is some scalar

representing the width of the distribution given by the derivative of the state occupancy

distribution. This would be temperature if fn were distributed according to the Fermi-

Dirac distribution and the expression would recover Mermin DFT.

The energy functional has three arguments; (generalised) temperature, Hamiltonian and

wave-functions. Temperature is purely used as a numerical device and is usually fixed

for the duration of a calculation, leaving two variable arguments. This means that the

functional must be minimised with respect to both, knowing that the problem will be

self consistent at the ground state.
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2.3 Methods for Solving the Mermin-Kohn-Sham Equa-

tions

With a fractional state occupancy, approaches like LNV (Discussed in Chapter 1) will not

work, as they rely on the idempotency of the density matrix. With fractional occupancy,

the density matrix is sometimes said to be “weakly idempotent”[85, p. 235] and techniques

such as LNV or purification will lead to full idempotency and a step function (zero Kelvin)

occupancy distribution.

With a step function occupancy distribution, any state crosses the Fermi-level at zero-

Kelvin, for instance in electronic optimisation, then it is spontaneously (de-)occupied

by the zero-Kelvin step function limit of the Fermi-Dirac distribution function. This

is a significant impediment to performing calculations on metals, because the energy

derivatives which are used to direct the system to the ground-state are discontinuous

and hence useless (i.e. a small change in density will result in a large change in energy).

To avoid this, an optimisation technique which is compatible with fractional state oc-

cupancy must be used. In this section, two such approaches will be discussed. These

techniques (Density Mixing and Ensemble DFT) are mainly used for systems without

bandgaps or with narrow bandgaps (where states lie very close to the Fermi-level) but

will work also for insulating systems, despite being less efficient.

2.3.1 Density Mixing

One method for minimising the electronic energy in a DFT calculation is known as direct

inversion in the iterative subspace (DIIS). First introduced by Peter Pulay for Hartree-

Fock calculations [86] [87], this method was later adapted for DFT calculations by Kresse

et al [88] and applied successfully to systems of up to 1000 metal atoms using the VASP

code[89]. A similar technique has been implemented in the linear scaling DFT code

CONQUEST[90], and while not linear scaling for metals, the authors show how such

techniques may be applied successfully to density matrix based DFT approaches and

perform some operations in a linear scaling way.

The central assumption in this method is that a good approximation to the solution can

be constructed as a linear combination of the approximate solutions of the previous m

iterations.

xi+1 =
m−1∑
j=0

αi−j x
i−j , (2.13)

where x can represent any of the variables of the solution, such as the Hamiltonian

matrix, the density or the one-particle wavefunctions. The DIIS method constructs a set

of linear equations to solve which yield the expansion coefficients αj .
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Kresse et al discuss two uses for DIIS, RMM-DIIS, for the iterative diagonalization of

a Hamiltonian and Pulay mixing of densities. RMM-DIIS, which is a form of iterative

diagonalization allows for the first N eigenpairs of a Hamiltonian matrix to be found

without performing a full diagonalization of the whole matrix - detailed information can

be found in Kresse and Furthmüller[88]. The method for Pulay mixing of densities is

described as follows.

Directly inputting the output density (from equation 1.99) into the next construction

of the Hamiltonian can result in an unstable SCF procedure where large changes in the

output density result from small changes in the input, known as charge-sloshing. Density

mixing attempts to damp oscillations in the SCF procedure, by mixing densities from

previous iterations with the density produced from the wavefunctions and occupancies

at the current iteration (the output density).

The simplest approach is linear mixing of densities where the new density, ni+1(r) is

constructed from the density of the previous iteration as

ni+1
in (r) = α niout(r) + (1− α) niin(r), (2.14)

where niin(r) and niout(r) are the input and output SCF solutions at the ith iteration. A

better option regarding stability and efficiency is to use a mixing scheme based upon a

history of previous densities, such as Pulay’s DIIS procedure. Under the constraint of

electron number conservation
∑

i α
i = 1, the next input density is given as

ni+1
in (r) =

m−1∑
j=0

αi−j ni−jin (r). (2.15)

In DIIS, the mixing coefficients αi are found by firstly considering the density residual,

R[niin(r)] = niout(r)− niin(r), (2.16)

which can incidentally be used to reformulate linear mixing as

ni+1
in (r) = niin(r) + αR[niin(r)]. (2.17)

If the DIIS assumption is used that the residuals are linear in nin(r), then

R[ni+1
in (r)] =

m−1∑
j=0

αi−j R[ni−jin (r)], (2.18)
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the Pulay mixing coefficients, αi which minimize the norm of the residual associated with

the current iteration are given as

αi =

∑
j(A

−1)ji∑
kl(A

−1)kl
, (2.19)

where A is the matrix with elements aij the dot products of the residuals with index i

and j.

To apply such a scheme for metals, a preconditioner is additionally required to ensure the

convergence has an acceptable rate. The Kerker preconditioner damps long-range com-

ponents in density changes more than short-range components[91], because, in metals,

long-range changes in the density are often the cause of charge-sloshing effects,

G(k) = A
k2

k2 + k2
0

(2.20)

where A is a mixing weight and the parameter k0 effectively defines a “length-scale"

for what is meant by long-range. The k are the wave vectors via which the density is

represented. Thus G(k) is used to multiply the ni+1
in density in reciprocal space and thus

damp the “charge-sloshing” that can occur at long wavelengths. Furthermore, as in all

approaches for metals, a smeared occupancy distribution must be used. Head-Gordon et

al have explored expansions of the various smearing functions and present comparisons

of convergence with the order of the expansions and the number of operations involved

[92].

2.3.2 EDFT

Density mixing is non-variational in the sense that it can produce “converged” solutions

below the minimum, but more than this it can take a long time to reach convergence,

or it can even be unstable without a reliable mixing scheme and preconditioner. This

is particularly the case in systems with a large number of degrees of freedom. Ideally,

a variational approach, where every step is guaranteed to lower the energy towards the

ground state energy would be preferred over a density mixing approach, if it could ensure

that the ground state energy would always be reached through a stable progression.

Marzari et al proposed such a scheme[93] in 1997, which in the literature has become

familiar as Ensemble DFT (EDFT). EDFT should not be confused with Mermin’s original

finite temperature DFT formalism that is often referred to with the same name. A

variational progression towards the ground state energy is achieved by decoupling the

problems of optimising the 1-particle wavefunctions and of optimising the electronic

occupancy of these wavefunctions with respect to the energy of the system. This is

achieved by performing an occupancy optimization process with fixed wavefunctions at

every step in the optimization of the wavefunctions themselves.
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The Helmholtz free energy of equation 6.1 is expressed in an equivalent way in terms

of the occupancies of the molecular orbitals A[T ; {fi}, {ψi}], due to the existence of a

one-to-one mapping between the orbital energies and their occupancies . The method

generalizes the occupancies to non-diagonal form {f ′i,j} by working with molecular or-

bitals {ψ′i} which can be considered to be a unitary transformation of the orbitals in

which the occupancies are diagonal. In practice, the following energy expression is used

A[T ; {f ′i,j}, {ψ′i}]. Working with this expression provides a stable direct energy mini-

mization algorithm because the optimization of occupancies is not slowed down by nearly

degenerate unitary rotations of the molecular orbitals. The optimization of the energy

is done in two nested loops as follows: within the inner loop, occupancy contribution

to the energy is minimized and in the outer loop the orbital contribution is minimized

using the projected functional

A[T, {ψ′i}] = min
{f ′ij}

A[T; {ψ′i}; {f ′ij}], (2.21)

which allows an unconstrained optimization of both the orbitals and the occupancies.

To minimise the Mermin-Kohn-Sham equations, Marzari et al [93] propose a two-loop

“Ensemble-DFT” approach, with wave-function minimisation as the outer loop and Hamil-

tonian or density matrix minimisation nested within each iteration. This means that

upon each iteration of the inner loop, the Hamiltonian matrix corresponding to the min-

imum functional must be found. To do this, a trial Hamiltonian is constructed as a

non-self-consistent guess at the argument of the minimum of the functional, where all

density dependent terms are updated (wave-function dependent terms are constant as

the wave-functions are constant during the inner loops) and used as a search direction

toward the minimum, so that

Hn+1
ij = (1− λ)Hn

ij + λH̃n
ij . (2.22)

where H and H̃ are the initial Hamiltonian and the trial Hamiltonian and λ is a scalar

mixing parameter on the interval (0, 1). Applying a 1D numerical optimiser to λ will give

the optimum Hamiltonian for a given set of wave functions along the search direction.

In principle, this is a fast process, however in order to produce H̃m, the Hamiltonian is

reconstructed as

H̃m = 〈ψ|T̂ + V̂ext + V̂H [nm] + V̂XC [nm]|ψ, 〉 (2.23)

which requires a trial electronic density nm be constructed from the occupancies and

basis functions as

nm(r) =
∑
n

fiψi(r)ψ∗i (r), (2.24)

which in turn requires that the trial Hamiltonian be diagonalised to construct the density
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matrix. This is the step in the algorithm which will limit the size of the system which

can be studied, as diagonalisation is a cubically scaling operation. For an alternative

approach which has the potential to reduce the scaling of this step, see chapter 3. The

density matrix at each step is given in terms of the smearing function, f(ε) and the

eigenvectors of the hamiltonian, Z as:

ρm = Zmdiag(f(ε), µ)Zm∗, (2.25)

where f(ε, µ) has the correct number of electrons, determined by the chemical potential.

As for the outer loop, this proceeds in an analogous way, defining a linear mixing function

|ψl+1〉 = |ψl〉+ ν|Ξl〉, (2.26)

where Ξl is a search direction in the wave-function space. Rather than defining it based

on a trial wave-function, in the wave-function space, a derivative can be taken which is

usually used to form a conjugate-gradients search direction, but in the simplest case can

just be the steepest descent direction, with no pre-conditioning:

∂A′l

|ψl〉
= Ĥ l|ψl〉ρl (2.27)

Where A′ is the functional projected onto the lower dimensional surface of A with con-

stant Hamiltonian.

Despite the clear advantages of the Marzari method, one weakness is that the mapping

from the occupancies to the unbounded range of orbital energies is very ill-conditioned,

as typically there is a large number of occupancies close to zero that can map on to

very different orbital energies. This issue can be allieviated by performing the inner-loop

search in terms of the Hamiltonian matrix rather than the density matrix 1. Alter-

natively, Freysoldt, et al [95] have attempted to address this issue by developing an

equivalent scheme where one works directly with the molecular orbital energies instead

of the occupancies. In the spirit of the Marzari approach, they employ a non-diagonal

representation of orbital energies, which is the Hamiltonian matrix, and minimize the

following functional

A[T] = min
{H′ij}{ψ′i}

A[T; {ψ′i}; {H ′ij}]. (2.28)

The combined minimization of {H ′ij} and {ψ′i} is performed using line searches along an

augmented search direction in a joint space.
1The search has been performed in terms of the Hamiltonian in Castep for many years, but anecdotally

the energy surface in the line search is more complicated than the quadratic or cubic often needed to fit
the occupancy search, possibly leading to poorer performance[94]
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2.3.2.1 EDFT in ONETEP

Recently an EDFT method has been implemented within the ONETEP DFT package[7].

The implementation of EDFT in ONETEP follows the prescription outlined in the pre-

vious sections very closely, but differs slightly in order to handle the NGWF basis.

ONETEP already optimizes the NGWFs variationally with respect to the energy in

a manner similar to the outer loop of the EDFT method, minimising the energy func-

tional along a descent direction in NGWF space projected onto the surface of constant

Hamiltonian. The psinc basis set allows a systematic convergence to the complete basis

set limit with a single plane-wave cutoff energy parameter much like plane waves do for

periodic calculations. Techniques such as PAW, which has gained favour in many codes

for the efficient representation of core electrons, may also be applied to the spatially

localized NGWFs {φα} in EDFT calculations.

The inner loop minimises the energy functional with respect to a descent direction in

Hamiltonian space with constant NGWFs, subject to constraints on orthogonality and

the number of electrons, which is determined entirely by the chemical potential.

In ONETEP, the density matrix is constructed as an expansion in the NGWFs as

ρ(r, r′) =
∑
αβ

φα(r)Kαβφ∗β(r′), (2.29)

where Kαβ is the generalized occupancy of the NGWFs, i.e. its eigenvalues are {fi} and
is known as the density kernel. EDFT is implemented [7] by taking the Hamiltonian

eigenvalue approach of Freysoldt et al, but also taking advantage of the localized nature

of the NGWFs which obviously also requires dealing with non-orthogonality and hence

careful consideration of the tensorial nature of every quantity used. As usual, the density

can be constructed from the density matrix as

n(r) = ρ(r, r). (2.30)

In ONETEP EDFT, the free energy functional is optimized firstly with respect to the

Hamiltonian matrix, {Hα,β} while keeping the NGWFs {φα} fixed. The orbital contri-

bution to the free energy can then be minimized by optimising a projected Helmholtz

functional,

A′[T; {φα}] = min
{Hαβ}

A[T; {Hαβ}; {φα}] (2.31)

with respect to {φα}.
The steepest descent direction in the NGWF space is given by the negative of the gra-

dient,

|Γ̃(l)
α = Ĥ(l)|φ(l)

γ 〉KγβS
(l)
βα − |φ

(l)
γ 〉KγδH

(l)
δα , (2.32)
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which is then modified for occupancy and preconditioning, before having non-local com-

ponents projected out. This descent direction can be used directly in a steepest descent

optimisation, or conjugated in any of the standard ways to perform conjugate gradients

optimisation. Either way, a line search is performed along the descent direction as

|φ(l+1)
α 〉 = |φ(l)

α 〉+ η|χ(l)
α 〉, (2.33)

where χ(l)
α is the modified, local descent direction and η is a scalar mixing parameter,

determined by line-search.

The eigenvectors of the Hamiltonian can then be updated for the change in basis using

M̃α
i = Sαβ(l+1)〈φ(l+1)

β |φ(l)
γ 〉M

γ
i, (2.34)

allowing the density kernel to be reconstructed without diagonalisation as

K̃αβ =

Nb∑
i

M̃α
ifiM̃

†α
i (2.35)

and subsequently the density as

nl+1(~r) = φ(l+1)
α (~r)K̃αβφ

∗(l+1)
β (~r), (2.36)

before updating the density dependent terms in the functional (the Hartree and XC

terms) and the orbital dependent terms, and rotating the Hamiltonian into the current

basis.

The inner loop is performed by diagonalising the Hamiltonian as

H
(m)
αβ M

β(m)
i = SαβM

β(m)
i ε

(m)
i , (2.37)

but in practice, the diagonalization of the Hamiltonian within the inner loop is done by

orthogonalising, and then by solving a standard eigenvalue problem using parallel solvers.

It can alternatively be done directly with a generalized parallel eigensolver, but to facil-

itate the expedient replacement of the eigensolver with an expansion method (discussed

in the next section) orthogonalization is performed first. The orthogonalization step can

be carried out in many ways; using Gram-Schmidt, Cholesky or Löwdin methods, or

simply by taking the inverse of the overlap matrix and left-multiplying the Hamiltonian

matrix by this to construct a new orthogonal Hamiltonian.

The Löwdin approach requires the overlap matrix to the power 1/2 and -1/2. Due to

work of Jansík et al [96], it is possible to construct Löwdin factors in a linear-scaling

way using a Newton-Shultz approach, without an expensive eigendecomposition.
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The Hamiltonian matrix in the basis of Löwdin orthogonalized orbitals can be written

as

H ′ij = (S−1/2HS−1/2)ij (2.38)

and subsequently, the Kohn-Sham Hamiltonian eigenvalues can be found by diagonalising

this orthogonal matrix with a standard parallel eigenvalue solver.

The next step in this EDFT inner-loop method is to construct a non-self consistent

density matrix from the Hamiltonian matrix. This density matrix can be represented as

a function of the eigenvalues εi of the Hamiltonian as:

Kαβ =
N∑
i

Mα
if(εi)M

†β
i , (2.39)

where the eigenvalues (band occupancies) of the finite-temperature density kernel, Kαβ

are given in terms of a smearing function (1.100): The matrixM contains the eigenvectors

of the Hamiltonian eigenproblem:

HαβM
β
i = SαβM

β
i εi. (2.40)

Such eigenvalue based approaches will always scale as O(N3) as they employ matrix

diagonalization algorithms. The construction of the Hamiltonian and orthogonalization

procedures are however linear-scaling which significantly reduces the prefactor of this

approach (See Fig. 2.1) versus a comparable EDFT implementation in conventional

plane-wave codes.

the density kernel is constructed from the eigenvectors and the Fermi-Dirac (or alterna-

tive smearing function) applied to the eigenvalues as

Kαβ(m) =

Nb∑
i

M
α(m)
i f

(m)
i M

†β(m)
i , (2.41)

where the chemical potential used to construct the occupancy is adjusted to conserve

electron-number. Since the NGWFs do not change in the inner loop, only density de-

pendent terms need to be evaluated for the energy functional. The density is evaluated

as in the outer loop for new density kernel. The full Hamiltonian is given by

H̃
(m)
αβ = 〈φα|T̂ + V̂ext + V̂H [n(m)] + V̂XC [n(m)]|φβ〉, (2.42)

and minimization is performed in the space of Hamiltonians and a search direction is

constructed as

∆
(n)
αβ = H̃

(n)
αβ −H

(n)
αβ , (2.43)
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Figure 2.1: The scaling of the computational effort with the number of atoms in the
EDFT metals method in ONETEP. The computationally demanding steps of the calcu-
lation such as the construction of the density dependent (DD) and density independent
(DI) parts of the Hamiltonian and the NGWF gradient are linear-scaling and thus allow
large numbers of atoms to be treated. However, there is a diagonalization step which
is cubic-scaling and eventually dominates the calculation time. Reproduced from [7].

where a new Hamiltonian matrix, H̃ has been constructed from the updated density

kernel. The Hamiltonian can then be updated as

H
(n+1)
αβ = H

(n)
αβ − λ∆

(n)
αβ , (2.44)

where λ is a scalar line search parameter. Once the inner loop has converged, and the

contribution to the energy from the Hamiltonian can no longer be reduced, the outer loop

is resumed and this process continues to self-consistency. At self-consistency, i.e. when

the calculation has converged, the Hamiltonian will commute with the density kernel.

It should be noted that the outer loop proceeds in the same way as described in section

1.5 of chapter 1, except that the Q matrix in equation 1.95 is instead given by

Q = −KHS−1, (2.45)

because the derivative with respect to NGWFs needed for the search direction in the outer

loop is in this case a derivative of the EDFT total energy functional, rather than the

LNV version, so the derivative ∂ELNV/∂φ
†
α(r) in the outer loop line search of equation

1.97 is replaced with the tensorially corrected

∂EEDFT

∂φ†α(r)
= Sαβ

∂EEDFT

∂φβ †(r)
, (2.46)
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where ∂EEDFT/∂φ
β †(r) is given by

∂EEDFT

∂φα †(r)
=
[
Ĥφβ(r)Kβα + φβ(r)(QS)βα

]
, (2.47)

but where the Q matrix is defined as in equation 2.45 and the density kernel has been

calculated using the EDFT inner loop procedure and has fractional occupancy eigenval-

ues.

2.4 Matrix Inversion

In all of the methods which follow in section 2.5, there is a need for matrix inversion or

factorization. In fact, even if one needs an orthogonal representation of the Hamiltonian

matrix in general, or for computing derivatives of molecular orbitals for optimizing these

orbitals, an inverse or factorization of the overlap matrix is necessary.

The overlap matrix of strictly localized functions is itself a highly sparse matrix, since spa-

tial separation of atoms in systems with many atoms, ensures that most matrix elements

will be zero and hence S is localized. As for the inverse overlap sparsity of insulators,

this can be shown to be exponentially localized by treating S as a Hamiltonian matrix

and taking its Green’s function at a shift of zero[32]. Since Green’s functions are always

exponentially localized at shifts outside of the eigenvalue range of the “Hamiltonian"

(the overlap matrix is positive definite), the inverse overlap matrix too is exponentially

localized. Nunes and Vanderbilt[32] state that the decay length of the exponential lo-

calization is dependent upon the ratio of maximum eigenvalue to minimum eigenvalue.

So, systems involving overlap matrices with large `2 condition number will have a long

decay length in the inverse overlap matrix.

In many cases it may be desirable to entirely avoid matrix inversion and solve matrix

equations directly using a decomposition, but this entirely depends on whether a matrix

decomposition can be efficiently computed for a sparse matrix in parallel[97].

If inversion is called for, as in several of the techniques in section 2.5, because the matrices

involved are sparse, conventional inversion techniques cannot be employed efficiently, so

more specialized techniques are used. The Newton-Shultz-Hotelling (NSH) inversion is a

generalization of the application of the Newton-Raphson method for iterative inversion

of scalars to matrices. As in the scalar case, the roots of an equation, in this case

f(X) = Q−X−1 are found iteratively with the Newton-Raphson approach. This can be

performed simply by recursive application of the iteration:

Xn+1 = Xn(2I−QXn), (2.48)

where Q is the matrix to be inverted and Xn converges quadratically to the inverse
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matrix in the limit of n→∞, provided that Q is non-singular and X0 is initialized with

a matrix which guarantees convergence of the iteration[98],

X0 = αQT , (2.49)

where α = 1/(||Q||1 ||Q||∞) is a good choice in general, according to Pan and Schreiber[99].

This is discussed in detail in Ozaki[100], along with several other possibilities for matrix

inversion in linear-scaling electronic structure theory calculations. This method, however,

has been picked up by the community and is used extensively in modern methods[101]

and codes[102].

Another approach which has been developed for the inversion of matrices on the poles

of a contour integral (see section 2.5.4) but which may be applicable more widely is

Selected Inversion (SI). In effect this amounts to a Cholesky expansion (or LDL or LU

decomposition) of the matrix in order to compute selected matrix elements, such as the

diagonal, of the inverse matrix exactly [103].

Assuming that the matrix to be inverted is sparse then it can be decomposed as

LDL† = PQPT , (2.50)

with sparse L, which are lower triangular factor matrices and where D is a diagonal

matrix and P is a permutation matrix chosen to reduce the amount of “fill-in" in the

sparsity pattern of L with respect to Q. If we write PQPT → Q for simplicity, then the

inverse matrix,

Q−1 = L−†(LD)−1, (2.51)

so, provided that the LDL factorization of the sparse Q matrix can be performed, the

potentially sparse (but likely with high fill-in) Q−1 matrix may be calculated trivially

by back substitution.

Rather than forming the inverse matrix in this fashion, however, SI may be used to

calculated solely the selected elements of the inverse matrix on a pre-defined sparsity

pattern. Firstly, the LDL factorization can be computed recursively, using the block

factorization:A B

C D

 =

 I 0

CA−1 I


A 0

0 D−CA−1B


I A−1B

0 I

 . (2.52)
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In the case that A is a scalar, a and the matrix to be factorized is block-symmetric, so

that C is a vector c = bT , and then a b

bT D

 =

1 0

l I


a 0

0 D− bTb/a


1 lT

0 I

 (2.53)

where the vector l = b/a. The Schur complement, S = D−bTb/a can then be factorized

recursively and so the inverse can be written using the symmetric block matrix inverse

formula, for scalar a, as

Q−1 =

a−1 + lTS−1l −lTS−1

−S−1l S−1

 . (2.54)

In this way, the inverse can be computed recursively, along with the factorization, by

descending through the recursion hierarchy until the Schur complement can be formed

and inverted using scalar operations, and then the elements of each successive inverse are

calculated from the inverse of the previous level, as the hierarchy is ascended. By com-

puting the inverse recursively in this fashion, the authors[103] show that if the diagonal

of the inverse matrix is required, only those elements of the inverse Schur complements

which have an index equal to the index of a non-zero element of an l vector need to be

calculated. This corresponds to calculating the inverse matrix for only those elements for

which the L matrix has a non-zero element. The authors report computational scaling

of O(N3/2) for 1D systems.

Other methods exist for calculating selected elements of the inverse of a sparse matrix

with similarly reduced scaling. The FIND algorithm[104], which works by permuting the

original matrix to make a desired diagonal element obtainable as the trivial solution to

the equation with one unknown after an LDL or LU decomposition.

This is then repeated for every diagonal element, but the computational cost is made

manageable by performing partial decompositions and reusing information. Another

option is based on Takahashi’s equations[105], this has the advantage of not needing to

invert the triangular factors.

An important point to note with these techniques for inversion is that a sparse matrix

factorization must be used for them to be practical and beneficial. Routines for doing

this are available in libraries such as SuperLU [97] and MUMPS [106]. Both of these

libraries contain distributed-memory parallel implementations of matrix factorizations

for sparse matrices, but it is well known that the parallel scaling of such approaches is

somewhat limited [107].

If a general sparse matrix is factorized in such a way, however, then the factors may

be dense, so the approach does not exploit the sparsity at all and so is not helpful in
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making a fast algorithm. In order to circumvent such a situation, the rows and columns

of the matrix to be factorized must be reordered prior to factorization with a fill-in

reducing reordering. The ideal reordering in terms of number of non-zero elements in the

triangular factor is unknown, as calculating it is an NP-complete problem, however good

[108] algorithms exist for finding approximations. Unfortunately, the best of these are not

well parallelizable. Despite this, libraries such as ParMETIS[109] and PT_SCOTCH[110]

exist and do this operation with the best parallel algorithms currently known. It is

perhaps worth noting that the best performing reordering methods differ, depending

whether serial or parallel computers are used for the calculation.

2.5 Expansion Approaches

2.5.1 Introduction to expansion approaches

As in linear-scaling methods for insulators, the idea behind expansion and other reduced

scaling approaches is to be able to perform an SCF calculation without using an (in-

herently) cubic-scaling diagonalization step. Thus these methods attempt to compute a

converged density matrix for metallic systems directly from the Hamiltonian, using for

example (potentially linear-scaling) matrix multiplications, as the Fermi operator expan-

sion approach which is one of the early approaches of this kind. in this way, the cycle of

having to diagonalize the Hamiltonian to obtain wavefunctions and energies from which

to build the occupancies and the density is no longer needed.

The idea for Fermi operator expansions (FOE) was first proposed by Goedecker &

Colombo in 1994 [111]. The density matrix with finite-temperature occupancies, which

can be constructed as a function of the eigenvalues of the one-particle Hamiltonian, as

in EDFT, is instead built as a matrix-polynomial expansion of the occupancy function.

In most works this occupancy function is the matrix analogue of the Fermi-Dirac occu-

pancy function, but can equally be a generalized occupancy function, such as Gaussian

smearing, or either Methfessel-Paxton[112] or Marzari-Vanderbilt[93] cold-smearing. For

simplicity, this work will only consider Fermi-Dirac style occupancy smearings, however.

As an alternative to the eigenvalue based methods mentioned in the previous section,

FOE methods begin instead by writing the occupancy formula in matrix form:

f(X) = (I + eX)−1, (2.55)

where I is the identity matrix and

X = (H− µI)β. (2.56)
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where H is the Hamiltonian matrix expressed in an orthonormal basis, µ is the chemical

potential and β = 1/kBT . For instance, H can be obtained using a Löwdin orthog-

onalization, see equation 2.38, using for instance, the previously mentioned iterative

refinement method of Jansík et al, or the with the combination of a recursive factor-

ization of the overlap matrix and iterative refinement of the approximate result[113], as

proposed by Rubensson et al [114]. This method for calculating the Löwdin factor (and

inverse Löwdin factor) allows for rapid convergence in a Newton-Schultz style refinement,

scheme, while providing heuristics for the requisite parameters, without reference to even

extremal eigenvalues. As the title of the work suggests, for sparse matrices, this method

can be implemented in a linear scaling way.

In practice, the matrix formula of equation 2.55 cannot be applied directly as the con-

dition number of the matrix to be inverted will be too large in general. Instead, the

operation in 2.55 is performed as an approximate matrix-expansion of this function.

In all of the following methods, matrix inversion plays an important role. The following

section include discussion of three of the major flavours of expansion approaches; firstly

the rational expansions, where the density matrix is made up from a sum involving in-

verses of functions of the Hamiltonian matrix, secondly the Chebyshev expansions, where

the density matrix is formed from as a matrix Chebyshev polynomial approximating the

Fermi-Dirac function of the eigenvalues, and thirdly the recursive approaches, where sim-

ple polynomial functions are applied recursively to the Hamiltonian matrix to produce

the density matrix.

2.5.2 Chebyshev expansion approaches

A way to perform the operation of applying the Fermi-Dirac occupation function to the

eigenvalues of a Hamiltonian matrix was proposed by Goedecker and Teter in 1995 as

a Chebyshev expansion [115]. In order to do this, the Fermi function is written as a

Chebyshev expansion

f(X) =

N∑
i=0

aiTi(X), (2.57)

where {Ti} are the Chebyshev matrices of the first kind, of degree i and {ai} are the

expansion coefficients. The Chebyshev matrices are in the standard form:

T0(X) = I

T1(X) = X (2.58)

Tn+1(X) = 2XTn(X)−Tn−1(X).

The coefficients can be developed by simply taking the Chebyshev expansion of the
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scalar Fermi-Dirac function and applying these to compute a Chebyshev Fermi oper-

ator evaluation. As the Chebyshev polynomials can also be defined trigonometrically;

Tn(cos(ω)) = cos(nω), then the coefficients can be found simply through a Discrete

Cosine Transform:

{ai} = DCT

(
1

1 + ecos(x)

)
, (2.59)

where xi = 2(((ei − µ)β) − e0)/(eN − e0) − 1 so that the range of equispaced ei covers

at least the range of the eigenrange of the Hamiltonian matrix (e0:eN ) and the interval

is scaled and shifted to cover the useful interpolative range of Chebyshev polynomials

(−1 : 1). This operation need only be performed once, the coefficients are stored for every

subsequent evaluation and is effectively negligible in the complexity and timing of the

algorithms based on such an expansion. This way of performing the expansion requires

approximately N terms for a given accuracy, where N is a function of the smearing width,

β, the required accuracy 10−D and the width of the Hamiltonian eigenvalue spectrum

∆E. This implies that if matrix multiplication operations can be at best O(N) scaling

for tight-binding calculations such as those for which this technique was first proposed,

then of the order of M ≈ Dβ∆E matrix multiplications would be required [116].

An improvement to the original Chebyshev series of Goedecker was proposed by Liang

and Head-Gordon in 2003; this uses a divide and conquer approach to re-sum the terms

of a truncated Chebyshev series[92], which is closely related to the divide and conquer

approach for standard polynomials suggested in S. Paterson and L. J. Stockmeyer [117].

This approach factors the polynomial into a number of terms which share common sub-

terms. The authors propose three algorithms, the simplest of which is recursive binary

subdivision, where the polynomial terms are grouped into even and odd sub-polynomials,

for instance
N∑
i=0

aiX
i =

Neven∑
j=0

a2jX
2j +

Nodd∑
j=0

a2j+1X
2j+1, (2.60)

then a factor of X can be taken out of the odd sum, to give

N∑
i=0

aiX
i =

Neven∑
j=0

a2j(X
2)j + X

Nodd∑
j=0

a2j+1(X2)j , (2.61)

If this process is performed recursively, almost a factor of two in matrix multiplications

can be saved for each sub-division. If done carefully, the amount of work to produce

these terms and combine them to construct the full polynomial is less than the amount

of work to construct the polynomial directly, because of the unduplicated effort. To

experience the most gain, this approach is repeated recursively, until the sub-division can

no longer be performed (efficiently). Using such a divide and conquer scheme reduces

the scaling of a Chebyshev decomposition of the Fermi operator to O(
√
N) number of

matrix multiplications.
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Rather than decomposing the Fermi operator directly in terms of a truncated matrix-

polynomial, Krajewski and Parrinello propose a construction based on an exact decom-

position of the grand-canonical potential for a system of non-interacting Fermions[118]:

Ω = −2Tr ln(I + e−X). (2.62)

By decomposing the quantity in parentheses as

I + e−X =

P∏
l=1

MlM
∗
l , (2.63)

where

Ml = I− ei(2l−1)π/2P e−H/2P , (2.64)

where P is an integer which Ceriotti at al. suggest should be in the range 500-1000

for optimal efficiency[119]. Krajewski et al show that expectation values of physical

observables can be calculated using a Monte-Carlo, stochastic method leading to an O(N)

scaling approach, at the expense of noise on values of the calculated properties[120]. In

a separate publication, the authors also show that the approach scales linearly without

Monte-Carlo sampling in the case of 1D systems such as carbon nanotubes[121].

In later work, Ceriotti, Kühne and Parrinello extend the approach to allow better scal-

ing in general. With this approach the usually expensive and difficult application of the

matrix-exponential operator is reduced to a number of more tractable matrix exponen-

tial problems, in the sense that approximating them effectively through low-order trun-

cated matrix-polynomial expansions is achievable. Through use of this formalism, the

grand-canonical density matrix, otherwise known as the density matrix with Fermi-Dirac

occupancy can be expressed exactly in terms of this expansion by taking the appropriate

derivative of the grand potential,

δΩ

δH
= (I + e−X)−1 =

2

P

P∑
l=1

[I−Re(M−1
l )]; (2.65)

the authors go on to show that the majority of computational effort in such an approach

is in the inversion of the Ml matrices and that the condition number of those matrices

with low values of l is significantly larger than for those with higher l. Furthermore, the

condition number drops off rapidly with l, approaching 1 after tens of terms. In practice,

the authors have shown that to efficiently invert all Ml matrices in an expansion, the

majority of low condition-number matrices can be handled through an expansion about

an approximate diagonal matrix, with the significant advantage that these terms can

all be formed from the same intermediate matrices, reducing the computational effort

markedly. The remaining terms are handled via a Newton-Shultz-Hotelling method,
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which is more expensive, but required only for approximately 10 matrices to achieve

maximum efficiency.

The approach of Ceriotti et al, makes use of the fast-resumming improvements to the

Chebyshev expansion for the decomposition in the high-l regime. It also uses initializa-

tion from previous matrices in the low-l regime. This work provides a useful framework

for analysis of the problems facing such methods, but alone does not bring the scaling

factor down from the previous state of the art. In order to achieve that, Richters and

Kühne go on to improve the approach by computing only the real components of high

condition number M−1
l and computing the high-l expansion by approximating the in-

verse of Ml directly as a Chebyshev expansion[122]. By taking this approach, the scaling

of the method is reduced to O( 3
√
N) matrix multiplications[123].

2.5.3 Recursive methods

Another class of methods which are closely related to purification used in linear-scaling

DFT techniques for insulators are the recursive operator expansions. Techniques such as

these first appeared in the 1970s with the Haydock approach for tight-binding calcula-

tions, which can be performed in a linear scaling manner [124][125].

Niklasson [126] proposed taking a low order Padé approximant of the Fermi operator

(2.55),

Xn(Xn−1) = X2
n−1

(
X2
n−1 + (I−Xn−1)2

)−1 (2.66)

and applying it recursively starting with the initial

X0 =
1

2
I− (H− µ0I)β/22+N , (2.67)

where N is the number of iterates in the expansion. With this method the Fermi operator

can be approximated as

f(H, µ, β) = XN (XN−1(· · · (X0) · · · )). (2.68)

Niklasson reports that the scheme is quadratically convergent and in practice the number

of iterates can often be kept low (N ≈ 10). Given that one inversion must be performed,

or one linear equation solved per iteration which can be seeded from the the previous

iterate, if using an iterative method, this technique is expected to be very quick in

practice.
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2.5.4 Rational expansion approaches

Goedecker was the first to introduce methods for the rational series expansion of the

finite temperature density matrix [127]. The Fermi operator can be expressed as,

f(H, µ, β) =
1

2kBT

∫ µ

−∞

(
2I +

1

2!

(
H− µ′I
kBT

)2

+
1

4!

(
H− µ′I
kBT

)4

+ · · ·

)−1

dµ′,

(2.69)

which still contains a very expensive and ill-conditioned inversion operation. Writing the

expression in this form does however allow it to be further approximated by expressing

the integrand as a partial fraction expansion truncated to order n:

f(H, µ, β) =

∫ µ

−∞

n∑
ν=1

Cν
(H− µ′I)− kBT (Aν + iBν)

dµ′, (2.70)

The coefficients Cν = Aν+iBν , can be calculated, and the partial fraction decomposition

is very quickly convergent [128]. The author suggests an n of 16, giving a compact

expression:

f(H, µ, β) =

n/4∑
ν=1

[∫
Πν

2iBν
H− zI

dz +

∫
Λ+
ν

Aν − iBν
H− zI

dz

+

∫
Λ−ν

Aν + iBν
H− zI

dz

]
,

(2.71)

where the z values are the complex value points along the path used to evaluate each

integral by quadrature. Three paths in the complex plane, Πν ,Λ
+
ν and Λ−ν are used

for quadrature. In essence, the approach works by re-expressing the occupancy formula

(2.55) as in equation 2.71 which consists of contour integrals. These could be formally

evaluated from their residues, but we do not have access to the poles of the function

X. Thus, these integrals are computed by numerically integrating around a contour sur-

rounding the eigenspectrum.

At every point z on the quadrature path, a Hermitian matrix, H− zI must be inverted.

Thus, rational expansion performed as in the contour integral expansion of Goedecker has

scaling of O(ln(M)), but results in a large number of matrix multiplications if performed

with an iterative inversion algorithm) [128].

In subsequent work, Lin Lin et al propose an alternative scheme based on contour inte-

gration of the matrix Fermi-Dirac function, so that:

f(X) = Im

P∑
l=1

ωl
H− (zl + µ)S

, (2.72)



Chapter 2. DFT for Metals 59

Figure 2.2: The typical eigenspectrum of a Hamiltonian matrix for a metallic system
is shown on the real axis of this Argand diagram (blue line). The discretized contour
integral of a matrix smearing function, as used in the PEXSI method, with poles on
the eigenvalues is taken around the black contour, avoiding non-analytic points (iπ/β

and −iπ/β) on the imaginary axis.

where the complex shifts zl and quadrature weights ωl can be calculated from solely

the chemical potential, the Hamiltonian eigenspectrum width and the number of points

on the contour integral, P . A contour based on the complex shifts suggested by the

authors is shown in figure 2.2. Similar techniques to these are used in KKR and related

multi-scattering techniques, (see section 2.7).

In performing this integral, the authors are careful to avoid the non-analytic parts of

Fermi-Dirac function in the complex plane on the imaginary axis greater than π/β and

less than −π/β, by constructing a contour which encompasses the eigenspectrum of the

Hamiltonian matrix, but “necks” sufficiently at zero on the real axis to pass though the

analytic window while enveloping all of the real eigenvalues. A figure showing such a

contour is given in Fig. 2.2.

Within Lin Lin et al, the authors show the poor convergence of the Matsubara expansion

(expansion into even and odd imaginary frequency components) that Goedecker also

reported, though they offer a solution to this in terms of fast multipole (FMP) methods.

They do however show that the integral expansion based on a contour integral requires

fewer inversions than this Matsubara based approach, even with the FMP method. These

methods scale as O(ln(M)) where M is the number of matrix inversions [129].
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Lin-Lin & Roberto Car, et al have proposed a multipole expansion based on Matsubara

theory[130]. Given that

(I + eX)−1 = (I− tanh(X/2))/2, (2.73)

then the Matsubara representation can be written, using the pole-expansion of tanh as

(I + eX)−1 = I− 4Re

∞∑
l=1

(X− (2l − 1)πiI)−1, (2.74)

then combining poles into multi-poles, the overall scaling of the method can be reduced to

O(ln(NI), where NI represents the number of (complex-valued) matrices to be inverted.

While this method may be considered almost linear scaling, one could argue that the

prefactor is large (when using an inversion method such as NSH).

Such an approach necessarily involves a great deal of complex valued matrix inversions

(for each point on the quadrature). This would be a significant problem if an itera-

tive inversion method like NSH was employed, as for instance in a given system, if 50

quadrature points were required for accurate results and perhaps 10 iterations of the NSH

algorithm were required to converge each inversion then as many as 1000 matrix multi-

plications would be required to perform this algorithm. It is necessary, therefore that a

more appropriate matrix inversion method be used. This issue led to the development

of the selective inversion (SI) method by the same authors (see section 2.4). Assuming

that the Hamiltonian matrix is sparse and so are the matrices (H − (zl + µ)S) on each

of the points on the quadrature zl, then each of these matrices can be decomposed as

LDL† = H− (zl + µ)S = Ql, (2.75)

where L is a lower triangular matrix and D is diagonal. and the inverse constructed as

in section 2.4.

Together with the contour integral approach, or the pole-expansion (PEX) for calculating

the density matrices, the authors have named this approach PEXSI. SI is useful because

up until its development all of the contour integral / rational expansions needed a large

number of expensive iterative inversions even though the best rational / contour integral

expansions scale as O(ln(M)).

It is also important to note that expansion methods become computationally advanta-

geous when the matrices under consideration are sparse. This is clear in the case of

insulators due to the short-sightedness of electronic matter, however the exponential de-

cay of the density matrix is also recovered for metals at finite electronic temperature

[46].
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2.6 Chemical Potential Search

A significant issue when using an expansion approach in the canonical ensemble is to find

the correct chemical potential. With standard cubic-scaling plane-wave DFT, this is not

considered an issue, principally because the eigenvalues of the Hamiltonian are readily

available. For this reason, it is not computationally expensive to perform a search in the

eigenvalue space for the chemical potential which gives the correct electron number. This

is not possible without a diagonal representation, as for each trial chemical potential,

a new density matrix must be calculated, making the whole process many times more

expensive.

Several methods have been proposed to improve the situation, including a finite difference

representation of the change in number of electrons with respect to chemical potential

[131].

Niklasson recommends[132] using the analytic derivative of the density matrix with re-

spect to the chemical potential

∂K′

∂µ
= βK′(I−K′), (2.76)

where K′ is the density matrix represented in an orthogonal basis and β = 1/kBT .

Then when using a Newton-Raphson optimization process, the electron number can be

corrected by altering the chemical potential as:

µm = µm−1 + [Nocc − Tr(K′)]/Tr[βK′(I−K′)] (2.77)

at each step in the optimization.

2.7 KKR and related approaches

The Korringa-Kohn-Rostoker method or KKR predates the Hohenberg-Kohn theorem

and Kohn-Sham DFT, having been introduced in 1947 by Korringa[133] and 1954 by

Kohn and Rostoker[134].

The main principle of the KKR method is that by reproducing the scattering behaviour

of electrons and nuclei that the physics of the system will also be reproduced. So, the

Lippmann-Schwinger integral, scattering equation is solved rather than the Schrödinger

differential equation. The complete and orthogonal set of eigenvectors of the Hamiltonian

matrix can be chosen as a basis to expand the Green’s function. In extension to this

approach, the Green’s functions can instead be written in reciprocal space, and then

the integrals become contour integrals over the eigenspectrum of the Green’s function,

where eigenvalues lie on poles[135]. Techniques such as the contour integral approaches
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to expanding DFT density matrices have very similar analogues in KKR and were applied

in such techniques earlier on[136].

KKR approaches remain important for large scale metallic systems, provided that LDA

or LSDA quality results are a valid approximation, as they often are in purely metal-

lic systems. KKR-type methods such as the locally self consistent multiple scattering

(LSMS) technique have allowed for linear scaling (order N) calculations to be performed

on metallic systems within the L(S)DA formalism since the 1990s[137], with the ability

to study alloys coming slightly later [138]. Recent work has seen augmented-KKR ap-

proaches which combine the benefits of KKR with DFT calculations [139] and methods

for linear scaling tight binding KKR on systems of tens of thousands of atoms[140].

It is also worth noting that KKR-type techniques are often applied in a muffin-tin ap-

proach and conventionally, the local scattering environments of the individual atoms are

joined together through boundary conditions between the atomic environments. These

multiple-scattering techniques are particularly suitable for parallelization, as the envi-

ronments are mostly self-contained and independent, except at the boundary.

2.8 Conclusions and Outlook

Density Functional Theory calculations on metallic systems (i.e. systems with zero band

gap) cannot be done with DFT approaches that have been developed for insulators as

such approaches are not designed to cope with a continuum of energy levels at the chem-

ical potential. Mermin’s formulation of finite temperature DFT provided the theoretical

basis for DFT calculations on metallic systems. A great deal of progress has been made

over the last thirty years in studying metallic systems based on Mermin’s DFT, start-

ing with approaches such as density mixing and the more stable ensemble DFT. In the

last decade rapid progress has been made on expansion methods, which however were

introduced much earlier.

Advanced implementations of Mermin’s DFT have allowed calculations with over 1000

atoms to be performed. For example Alfè et al have performed calculations on molten

iron with over 1000 atoms which has provided new unique insights about processes taking

place in the Earth’s core[89], which can not be obtained by experimental means. Other

examples can be found in the work of Nørskov et al who have studied small molecule

adsorption on platinum nanoparticles of up to 1500 atoms[141] and in Skylaris and

Ruiz-Serrano who have reported calculations on gold nanoparticles with up to 2000

atoms[7]. These three examples have used approaches which minimize the number of

O(N3) operations, either the approach of Kresse et al as in VASP and GPAW, in the

first two examples respectively or the approach of Skylaris et al in the latter example.

This turns out to be key for calculations on systems up to the low thousands of atoms,
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at which point the cubic diagonalization step dominates and a different approach with

lower computational scaling is required.

This chapter reviewed the methods for calculations on metallic systems with emphasis on

recent developments that promise calculations with larger numbers of atoms. Fractional

occupancies of states are needed when dealing with metallic systems and conventionally

these are computed after diagonalization of the Hamiltonian which is impractical for

large systems. One way to avoid diagonalization is to use expansion methods which

construct a finite temperature density matrix via matrix expansion of the Hamiltonian,

without needing to access its eigenvalues. Expansion methods have typically been slow

and so unsuitable for increasing the size of the system one can study or reducing the

calculation time. Recent developments have improved this situation.

There is considerable choice, however in the particular expansion chosen to compute

the density matrix. The variants fall roughly into two categories; those based on an

expansion via Chebyshev polynomials and those based on a rational or contour integral

expansion. At present, on balance, it seems that the PEXSI approach which is based on

a contour integral combined with a novel matrix inversion approach is the most compu-

tationally efficient option. Time will tell whether the Chebyshev expansion methods can

be developed further to have improved scaling with system size and become competitive

to the best rational expansion methods, or if stochastic methods become usable.

In the future the ultimate target in methods for metallic systems would be to have

computational CPU and memory cost which increase linearly with the number of atoms

as is the case for insulators where a number of linear-scaling DFT programs currently

exist. This is not at all trivial as the temperature and spatial cutoff at which exponential

decay of the density matrix in a metal would be sufficient to have enough matrix sparsity

for linear-scaling algorithms and acceptable accuracy is not clear and would need to be

explored carefully. So far, the EDFT metals method in ONETEP, which works in the

localized non-orthogonal generalized Wannier function framework, is an intermediate

step towards the development of a linear-scaling method for metals as it benefits from

the framework of a linear-scaling DFT approach (e.g. sparse matrices and algorithms)

but it still requires a cubically-scaling diagonalisation step as it is based on the EDFT

formalism. Two possible extensions of this framework based on expansion methods in

ONETEP have been implemented as part of this project and are described in detail

in Chapter 6. In particular, we show the the AQuA-FOE approach, which we have

developed and describe therein to have a linear scaling computational cost.

Based on this review of the available literature discussing the application of expansion

approaches to DFT calculations, the sizes (i.e. number of atoms) of metallic systems

which have been studied with these methods is quite limited, in comparison to, for

instance, the sizes of insulating systems studied with the same methods. There are

several reasons for this. For example, these algorithms have higher prefactors than do
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the algorithms involved in calculating idempotent density matrices, as used in linear-

scaling DFT.

Production calculations of metallic systems with methods which purport to have a re-

duced or even linear-scaling computational cost with system size have only very recently

begun being reported [142] for the large numbers of atoms that one would have expected,

because the crossover point at which these methods become advantageous over diagonal-

ization remains a very large number of atoms even on currently used High Performance

Computing facilities.

Also, algorithms such as density mixing do not work as well for large systems, as has

been seen in practical observations of the scaling of SCF iterations with the number of

atoms in conventional DFT for metallic systems. If this is indeed a factor, then it is

possible that an alternative, such as EDFT will be required.

Even with these caveats, the class of operator expansions applied to density matrix DFT

methods appears to be the strongest contender for reducing the scaling of accurate DFT

calculations on metallic systems in the future. If such methods are further developed,

and actually start to be routinely applied as computational power increases, we expect

that they will have a great impact on metallic nanostructure and bulk metal surface

engineering for industrial applications in optics, magnetics, catalysis and other areas in

which the unique properties of metallic systems can be exploited.



Chapter 3

Catalytic Descriptors

The method to generate (local) angular momentum projected density of states and d-

band centres from ONETEP was used to compute descriptors in:

L. G. Verga, J. Aarons, M. Sarwar, D. Thompsett, A. E. Russell, and C.-K. Skylaris.

Effect of graphene support on large pt nanoparticles. Phys. Chem. Chem. Phys., 18:

32713–32722, 2016. doi: 10.1039/C6CP07334D. URL http://dx.doi.org/10.1039/

C6CP07334D[12],

in which the contribution of J. Aarons was solely this method.

Abstract

DFT calculations are inherently expensive, even when using advanced techniques to

reduce the scaling and overhead. When trying to characterise the performance of large

numbers of materials and systems, with high throughput for rapid classification and

design of new catalysts, it would be advantageous to use models parametrised from

accurate DFT results, but to reduce the number of DFT calculations actually required.

These kinds of models which give predictions of the activity of catalytic materials with

reduced cost are known as descriptors. Several kinds of descriptors will be discussed

in this chapter ranging from those which have already been used and proven by other

groups, such as the d-band model and generalised coordination number to new ideas

which we have used in this work and have published together with the Nellist group (see

Chapter 5).

This chapter will also explore how decriptors can be combined and how existing descrip-

tors such as d-band centres were implemented and used in the ONETEP code as a part

of this project.

65
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3.1 The d-band Model and Angular Momentum Projected

Density of States (pDOS) in ONETEP

The d-band model, proposed by Nørskov et al [143] provides a qualitative interpretation

of adsorption energies of ligands on transition metal surfaces, which can in turn, via

Sabatier’s principle, be used as a predictor of catalytic activity. Chemisorption of ligands

takes place via bond formation between the ligand valence orbitals and the surface bands

of the metallic surface. The d-band centre model is based on the general observation

that the s energy levels of metallic surfaces form a continuum and hence delocalised

bands which are wide and do not vary much between different surfaces, resulting in a

single narrow band when mixed with an orbital of the ligand. On the other hand the d

energy levels are comparatively localised and instead form distinct narrower peaks in the

band structure of the surface. Thus the strength of the bond is ultimately determined

by the narrower d bands of the transition metal surface and their position with respect

to the Fermi level. The higher the d bands are in energy with respect to the Fermi level,

the closer in energy they are to the orbitals of the ligand and thus they will mix more

strongly with them to produce low energy occupied bonding and empty anti-bonding

bands.

Therefore, Nørskov proposes that the “d-band centre”, which is the energy weighted

average of the d-band can be used as a predictor of ligand binding strength as it is well

correlated with the resultant energy of the anti-bonding states. Since the splitting of

the adsorbate state into bonding / anti-bonding states came about through interaction

with the d-band, the resulting average energy of the anti-bonding states is determined

mostly by the distribution of d-band energies in the raw metal. It is observed that as the

energy of the d-band centre of a transition metal increases, so does the ligand adsorption

affinity.

The density of states (DOS) is a function of the energy ε defined as:

ρ(ε) =
∑
i

〈ψi|ψi〉δ(ε− εi), (3.1)

where εi are the eigenvalues of the Hamiltonian, or band energies and ψi its eigenfunctions

or bands. The d-band centre with respect to the Fermi level εd − εf , is defined as the

average energy of the d-electrons

εd − εf =

∫
ερd(ε)f(ε) dε∫
ρd(ε)f(ε) dε

. (3.2)

where ρd(ε), is the DOS of the d electrons (either for all atoms or for a subset of the

atoms as is the case when we are only interested on the atoms on a surface) and f(ε) is

the occupancy of the bands at energy ε.
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In order to compute a projected density of states such as ρd(ε) in ONETEP, the NGWFs

need to be projected onto basis functions with angular momentum resolution and for this

purpose we use sets of spherical waves with the same centres and localisation spheres as

the NGWFs. Furthermore, in addition to projection to angular momentum we would like

to partition each eigenvalue into contributions associated with a subset of atoms (local

projected DOS), or both (local and angular momentum projected DOS). The electron

bands, ψi(~r) can be written in terms of the NGWFs, φα(~r) using the eigenvalues of the

one-particle Hamiltonian:

ψi(~r) = φα(~r)Mα
i, (3.3)

where we use the summation convention over repeated Greek letter indices, that corre-

spond to non-orthogonal quantities. In terms of the NGWFs the normalisation condition

of the bands becomes:

M † αi 〈φα|φβ〉M
β
i = 1. (3.4)

Now to give angular momentum and atomic resolution, we can insert a basis of truncated

spherical waves,

χA,kn,l,l,m(~r) = jl(kr)Yl,m(Ω)H(a− r), (3.5)

where A represents an atom, n,l and m are the quantum numbers, jl are spherical bessel

functions of the first kind, Yl,m are the spherical harmonics and Ω is the solid angle

corresponding to ~r, H is the Heaviside step function, and finally a the are radii of the

spheres within which the basis functions reside. We can choose at this point either to

use the full set of spherical waves on each atomic centre within a given psinc kinetic

energy cut-off or to contract to a smaller set of functions. We call these spherical wave

contracted functions (SWCFs):

χA,l,ml(~r) =
∑
k

ωkχA,kn,l,l,ml(~r), (3.6)

where ωk are weights which in practice are unity. An identity operator in terms of the

SWCFs can be constructed as follows:

1̂ = |χA,l,m〉OA,l,m|B,l
′,m′〈χB,l′,m′ | (3.7)

where an implicit summation is assumed over repeated indices and OA,l,m|B,l′,m′ is the

inverse overlap matrix of the SWCFs. By inserting (3.4) and (3.7) in equation 3.1 we
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obtain an decomposition of the DOS in terms of atoms and angular momentum channels:

ρ(ε) =
∑
i

M †αi 〈φα|φβ〉M
β
i δ(ε− εi) (3.8)

=
∑
i

M †αi 〈φα|χA,l,m〉O
A,l,m|B,l′,m′〈χB,l′,m′ |φβ〉Mβ

i δ(ε− εi) (3.9)

=
∑
i

RB,l
′,m′

i TB,l′,m′,i δ(ε− εi) (3.10)

where the quantities RB,l
′,m′

i and TB,l′,m′,i are defined from the above equation. We can

then define a set of weights as the Hadamard product of R and the transpose of T, so

that finally the full DOS becomes

ρ(ε) =
∑

B,l′,m′,i

W(B,l′,m′),i δ(ε− εi) (3.11)

The above expression allows us full flexibility to process the DOS according to our re-

quirements by using the matrix of weightsW(B,l′,m′),i allows us to construct various types

of DOS. For example, in order to construct the DOS for the d electrons we can add up

all the weights for l′ = 2 while if we want to restrict this DOS to a subset of atoms of our

system (such as only the atoms on a surface S) we can further restrict the summation

to only these atoms:

ρd,S(ε) =
∑

B∈S,m′,i
W(B,2,m′),i δ(ε− εi) . (3.12)

This expression was derived for the case of norm-conserving pseudopotentials where

ψi are the pseudo wavefunctions. In the case of PAW calculations [144], equation 3.1

becomes

ρ(ε) =
∑
i

〈ψ̃i|τ̂ † τ̂ |ψ̃i〉δ(ε− εi), (3.13)

where ψ̃i are the smooth valence wavefunctions and τ̂ is the PAW operator that trans-

forms these to the valence wavefunctions with all-electron shapes in the core. This results

in replacing the integrals 〈χB,l′,m′ |φβ〉 with 〈χB,l′,m′ |Ŝ|φβ〉 where Ŝ is the overlap oper-

ator (unity operator) in the PAW formalism [144]. These integrals are evaluated using

the existing PAW machinery of ONETEP.

Finally, the number of electrons that occupy a particular DOS can be obtained as the

area under the DOS multiplied by the occupancy, so for the example of equation 3.12 we

would obtain the number of electrons as follows:

Ne(d,S) =

∫
f(ε)ρd,S(ε) dε (3.14)
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provided of course that the weights have been normalised appropriately, so that

Ne =
∑
A,l,m,i

W(A,l,m),if(εi) (3.15)

is the total number of electrons.

3.1.1 Validation tests

Using this approach on various systems shows the correctness of the implementation and

the effectiveness of the method. Firstly, on a single atom system, O, the pDOS partitions

the two peaks into an s and p contribution as would be expected and sums together to

give the total DOS. Moving on to larger systems, a Pt13 cuboctahedral nanoparticle

Figure 3.1: The angular momentum projected DOS for a single oxygen atom showing
that the normalisation is correct and the partitioning is sensible.

which will be discussed in depth in the subsequent sections of this chapter was used as

a test calculation. A single-point energy calculation was performed in both Castep and

ONETEP with simulation parameters set to be as similar as possible. A plane-wave

cut-off energy of 850eV was used in a 50Å cell with a Rappe GGA pseudo potential (see

next section) and an rPBE XC functional. Both calculations were set up to output pDOS

weights in OptaDOS format and then the OptaDOS program [145] was used on both sets

of outputs with a 0.4eV adaptive Gaussian smearing. Beneath the chemical potential,

the profiles are almost identical (see figure ??). Above the chemical potential, differences

are expected. This is discussed in L.E. Ratcliff et al [146] and the techniques discussed

therein could be used if accurate conduction states were necessary. In this work, however,

they are not as in the integration of the d-band for the calculation of d-band centres, the
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Figure 3.2: The angular momentum projected DOS for a Pt13 Cubooctahedral
nanoparticle, as calculated with Castep and ONETEP showing good agreement up

to the chemical potential.

states are weighted by the occupancy and hence, very little contribution comes from the

conduction states.

3.2 Generalised Coordination Number

To describe generalised coordination number, we must first revisit the standard coordi-

nation number, which is defined for an atom with index i in the total set of atoms as the

count of nearest neighbour atoms. As an example which will be important in the rest

of this thesis, atoms of bulk FCC platinum have 12 nearest neighbour platinum atoms,

so are hence 12 coordinated. Taking these 12 atoms together with the central reference

atom out of the bulk and into isolation forms the first cuboctahedral nanoparticle, Pt13

which we will study in greater detail in chapter 4. This nanoparticle has a central atom

which still has a coordination number of 12, but now that it has been cleaved from the

bulk FCC platinum, the other 12 atoms are not 12 coordinated. Instead these “vertex”

atoms have coordination number of 5.

If instead of only cleaving one atom plus its 12 nearest neighbours from the platinum

FCC bulk, we chose to cleave it, its 12 nearest neighbours and their nearest neighbours,

without any multiple counting, then we would have a cuboctahedron with 55 atoms.

This cuboctahedron is comprised of a core atom, a shell of 12 atoms and a further

shell of another 42 atoms. Now if we consider the coordination number of atoms in

this nanoparticle, we find that the 13 “core” atoms are 12 coordinated, the “vertex”

atoms still have coordination number of 5, but we now have atoms with intermediate

coordination. This Pt55 nanoparticle has an “edge” atom between the vertex sites which

has coordination of 7. There is also an atom at the centre of the square facets of

this nanoparticle, which were cleaved along the {100} planes of the FCC lattice, with

coordination number of 8.
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We can keep doing this to get larger and larger cuboctahedral nanoparticles from bulk

FCC platinum (or any FCC metal), and we will keep adding integers between 5 and

12, however the number of distinct coordination numbers saturates at Pt147 (the next

cuboctahedral “magic number” after 55). To get finer grained coordination detail, we turn

to the generalised coordination number of Calle-Vallejo et al, which takes into account

the coordination of an atom’s nearest neighbours’ coordination as well as its own. This

is important because if we want to segregate atoms into groups which may experience

similar chemical environments then we can start by segregating them into groups by

their local geometric environment. Having finer detail than just the integers between 1

and 12 inclusive, is crucial when we have nanoparticles with hundreds or even thousands

of surface atoms as we do for real experimental nanoparticles involved in heterogeneous

catalysis (see chapter 5).

The generalised coordination number is defined as

C̄N(i) =

ni∑
j=1

cn(j)/cnmax, (3.16)

where ni is the number of nearest neighbours of the ith atom, cn(j) is the coordination

number of the jth atom and cnmax is the maximum coordination number of the symmetry

of the system (for example, for FCC this is 12).

The authors of [10] show clearly that this method has better correlation with oxygen

binding strength than the mere coordination number and that it has much greater speci-

ficity. We will make use of the generalised coordination number extensively in chapter

5. It can be seen clearly from figure 5.10(b) in chapter 5 that this descriptor is linearly

correllated with oxygen binding strength calculated explicitly with DFT in ONETEP.

3.3 Electronic Descriptor

We investigated the possibility of using catalytic descriptors to allow for cheaper pre-

diction of catalytic activity than purely through relatively expensive (geometry relaxed)

binding energy calculations with DFT. We also wanted to use the strengths of ONETEP

to perform large-scale DFT calculations, such as the ability to compute electronic den-

sities of relatively large metal systems in the model. This was partly the motivation for

implementing the (l)pDOS method in ONETEP, described in section 3.1 for calculating

d-band centres.

The descriptor described in this section is also based on the electronic density, like the d-

band model, but we also wanted to incorporate the primary advantage of the generalised

coordination number as we see it. We want a descriptor which is based on the density,

but which does not average quantities over facets, instead allowing us to resolve the
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descriptor on individual binding sites like generalised coordination. The advantage with

respect to the generalised coordination number of this approach is that it is atomic

species specific since it is based on the electronic density. Hence, core-shell nanoparticles

and other bi-metallic nanoparticles should be resolved with such a descriptor unlike

with generalised coordination number. This was the motivation for developing a new

descriptor for catalytic activity, but we see a role for every descriptor described in this

chapter in our application work.

The way we wanted to approach this problem was to find an isosurface of a quantity which

encloses the nanoparticle and then to plot the values of the density onto this. With the

right isosurface, the values of the descriptor at atomic sites (and between) could be

read off by projecting the binding position of adsorbate atoms onto the isosurface and

finding the value of density at this intersection on the isosurface. To do this in a high-

throughput manner, as we would have to do with the many nanoparticles being produced

in experiments, through our collaboration with the Nellist group (see 5), we would need

a way to automatically determine where on the nanoparticles oxygen atoms would bind.

3.3.1 α-hulls and automatically determining oxygen binding sites

In order to automatically determine where on the nanoparticles the oxygen binding

locations are, we need first to be able to determine a manifold connecting the surface

atoms of the nanoparticle. The way we achieved this in this work was to take an α-shape,

or α-hull of the nanoparticle atoms. An α-hull is a generalisation of a convex-hull which

results from the operation of taking a ball of radius Rb and defining the manifold of every

point that the centre of the ball can reside where its outside is in contact with at least

one point in the cloud of points defined by the atomic centres and where no atomic centre

is within Rb. This operation is effectively the same as if we could take a ball covered

in paint and roll it over the nanoparticle, painting the spaces between atoms. Once the

paint dried, we would have a shrink-wrapped manifold representing the outside of the

nanoparticle, but with no holes with radius > Rb. This is shown in figure 3.3.

Unfortunately, this physical method for rolling a ball through space and monitoring

collisions would be expensive to run. Instead we opted to use Edelsbrunner’s algorithm

[147]. In essence, this algorithm boils down to three steps:

1. Compute the Delaunay triangulation (gives tetrahedra in 3D) of the point-set de-

fined by the atomic centres of the atoms in the nanoparticle

2. For every triangle face of each tetrahedron, compute the circumsphere and then

determine whether any other points from the point-set lie within this circumsphere.

If none do, then this triangle forms part of the manifold.
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Figure 3.3: The effective procedure of generating an α-hull for the nanoparticles
(atoms represented by the blue circles) is to take a sphere of radius Rb (in red) and
roll it over the surface of the nanoparticle to generate manifold which represents the

surface of the nanoparticle.

3. Decide whether parts of the manifold(s) are the outside of the α-hull or internal,

disgard anything internal.

Firstly, the Delaunay triangulation[148] is defined as the triangulation (connection of

points into triangles) of a set of point for which the circumcircles (circle with each point

of a triangle on its circumference) do not contain any of the other points in the set. This

leads to a triangulation which tends to avoid extremely acute triangles. This triangula-

tion is easily generalised to 3D, where instead the circumspheres of the tetrahedra are

not allowed to contain any of the other points in the set.

Several algorithms exist to compute the Delaunay triangulation of a set of points in 3D,

but of these divide and conquer[149] has been shown to be the fastest[150]. In divide

and conquer, the set of points is divided recursively in half until only three or four points

exist in each partition. A Delaunay triangulation is calculated in any way on each of the

many partitions. At this point, the triangulations are merged in pairs, recursively until

the Delaunay triangulation of the whole set is obtained. In this work, we used the divide

and conquer Delaunay method in the qhull library[151].

The next step in the α-hull algorithm of Edelsbrunner in 3D is to compute the circum-

centre of a sphere of radius Rb on every triangle face of every tetrahedron and then the

centres of the spheres. It is then simply a matter of finding those spheres which do not

either circumscribe four points (one of the Delaunay spheres) or contain points. All the

spheres in this set exist on the outside of the manifold, their circumscribed triangles form

the manifold itself.
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The α-hull must be optimised with respect to the radius of the test sphere, Rb. If the

radius is made too big then the surface features of the nanoparticle will be averaged out

and the hull will approach the convex hull. If the radius is made too small then the test

sphere may pass between the outer points of the nanoparticle and produce unintended

cavities in the hull. In the case of platinum nanoparticles, a radius of 2.3 Å was found

to be a good compromise.

After finding the α-hull, the symmetries of the polygons of the hull must be found. The

first step is to form a network data structure of the triangles on the manifold linking

each triangle to its neighbours, simply by working out which triangles share an edge.

Next, triangles are grouped into sets which are approximately coplanar. This is achieved

by finding the equation of the plane of each triangle, then finding whether the scalar

product of normal vectors is close to one within some tolerance.

Triangles with (111) symmetry may be found by finding all those which have a value

of
√

(α− 60.0)2 + (β − 60.0)2 + (γ − 60.0)2 beneath some threshold, where α,β and γ

are the three angles of the triangles. Triangles which form part of a site with (100)

symmetry may be found by finding neighbouring, coplanar triangles which each have an

angle of approximately 90 degrees and are joined along the hypotenuse. These triangles

are merged to form (100) quads in the data-structure and labelled as such. With this

information it is possible to find the projections of the hollow sites on the hull as the

centroid of either the triangles for (111) sites or quads for (100) sites, the projections of

bridge sites on the hull as the mid-points of the edges connecting any of the shapes and

the projection of top sites as the points themselves. The binding sites are then calculated

by moving off the hull along the normal vectors (or average of adjacent normal vectors for

bridge and top sites) from the projected sites. The distance to travel along the normals

must be known a priori.

The binding sites, projected on the α-hull were found, for bridge sites, by taking the

midpoint of the line connecting two atoms; for 4-fold sites by taking the centroid of the

quadrilateral formed by two polygons of the α-hull, if those polygons are connected along

their hypotenuse, have an angle of approximately 90 degrees (85 to 95 degrees) and are

co-planar; and for 3-fold sites, as the centroid of the α-hull polygons.

To find the position of the adsorbate binding site; on the bridge site, the average of the

normal vectors of the adjoining polygons can be used to project off the α-hull. For 3-

and 4-fold sites, the normal vector of the α-hull polygon itself can be used.

A program was written in Fortran to find the sites using the above procedure, and

making use of the Qhull library (available from www.qhull.org). This program will be

made freely available from the Utilities section of the ONETEP code website:

http://www.onetep.org/Main/Utilities

http://www.onetep.org/Main/Utilities
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3.3.2 Electronic Descriptor Isosurfaces

The first option we considered was to use the electrostatic potential as has been used in

biological descriptors for a similar purpose before[152, 153], to assess the binding affinity

of ligands on biological macromolecules. These methods typically use solutions to the

Poisson-Boltzmann equation to get an electrostatic potential isosurface[154], whereas we

will use electrostatic potentials from DFT. In order to do this with ONETEP, we needed

to implement a routine in ONETEP to compute and output an electrostatic potential

which was compatible with PAW.

The electrostatic potential in DFT should be just the sum of the electronic Hartree term

and nuclear Coulombic term,

VES(r) = VH(r) + Vext(r), (3.17)

however this is complicated by the use of pseudopotentials or the PAW approach in

ONETEP. With norm-conserving pseudopotentials, Vext, which is the local part of the

pseudopotential can be calculated along with VH(r) in one step by computing the Hartree

potential of the valence and core density.

This procedure introduces a difficulty, however, in that in practice the interpolation

between grids introduces ringing noise on the ONETEP fine potential grid after the

reciprocal space application of the Hartree operator. This noise is very small in magni-

tude, too small to affect the results of our calculations and has high frequency on the fine

potential grid, which we can filter out to a good degree using a simple odd-even filter.

To deal with the issue in general, as it affects our visualisation of electrostatic potentials,

for norm conserving pseudopotentials we have opted to use the “smeared ion” approach.

This had previously been implemented in ONETEP by Dziedzic et al [155] for performing

implicitly solvated calculations with the “multigrid” approach to computing the Hartree

operator in real space. By substituting the smeared atomic core regions, which are just

gaussian functions with a width of the core sphere of each atom, into the total density,

nTOT = nion + nelec, (3.18)

where nion is the smeared core density and nelec is the density of the valence electrons

we are able to get smoothly varying electrostatic potential isosurfaces which are accurate

outside of the core spheres.

In the case of PAW, we do not need to turn to anything outside of the PAW formalism.

We use PAW because the “fine” grid in plane-wave codes is not fine enough to represent

the core electrons, so we cannot output the PAW all electron potential on this uniform

grid. Doing so results in large aliasing artifacts which swamp the potential and make

plotting a smooth isosurface impossible. Instead we simply opt to output the Hartree
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Figure 3.4: To find the minimum point of the electrostatic potential we find the
potential along a set of equal length random vectors out of each atomic centre (inset).
The plot of the potential along these vectors is shown for cuboctahedral Pt309, showing

the spread of the distribution.

potential of the pseudo-density. This is computed by summing the valence density with

the PAW augmentation density

nTOT = naug + nelec, (3.19)

and applying the Hartree operator in reciprocal space. This is achieved by taking the

Fourier transform of the density n(r) →
FFT

ñ(G) and feeding it into the Hartree operator,

ṼH(G) =
4πnTOT(G)

ΩSCG2
, (3.20)

where G are wavevectors (points in reciprocal space), G are the modulus of G and ΩSC

is the volume of the simulation cell. The electrostatic potential is then inverse Fourier

transformed back to direct space ṼH(G) →
iFFT

VH(r), and outputted. If non-periodic

boundary conditions are required and the dipole moment of the system is large enough

that a sufficient vacuum gap is too expensive to use, then a Coulomb cutoff[156] or

multigrid [155] (real space) approach to computing the Hartree potential may be used.
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Figure 3.5: The tricubic interpolation defines and interpolant in each cube of grid-
points, based on the values and derivatives of the function at those 8 gridpoints. From

this interpolant, the value of any point within the cube can be found.

Once we had a set of smooth electrostatic potentials, the next step was to ensure that the

isosurfaces that we plotted from these electrostatic potentials had the same meaning on

differing nanoparticle systems. To achieve this we needed a reference potential. Several

options were considered including limr→∞ VES which is difficult to approximate with the

periodic boundary conditions of our calculations, and zero, which was problematic due

to its arbitrary nature under a pseudopotential approximation. The reference we chose

was the minimum point of the electrostatic potential, which we found by plotting the

potential along vectors out of the atomic centres of each atom. We use a single random

vector for each atom, where every vector in the set has the same length. This is shown

pictorially in figure 3.4 along with examples of the potential along the set of vectors

plotted on the main axes (for Pt309).

The direction of the random vectors which we define in figure 3.4, outward from the

atomic centres may not coincide with any points on the uniform grid of the electrostatic

potential. To avoid this issue, we use tricubic interpolation on the grid. Tricubic is the

3D generalisation of cubic interpolation described in Lekien and Marsden [157].

The method described in Lekien and Marsden defines an interpolant in each cube of

gridpoints (shown in figure 3.5), based on the values and derivatives of the function at

those 8 gridpoints. The interpolated value of the function at any point within this cube

can be found by using the following formula in terms of the interpolant values, aijk and
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powers of the components of the coordinates, xi, yj and zk as:

f(x, y, z) =
3∑

i,j,k=0

aijkx
iyjzk, (3.21)

where the three dimensioned aijk can be flattened into a vector:

ā1+i+4j+16k = aijk ∀ i, j, k ∈ {0, 1, 2, 3}, (3.22)

so that if we construct a vector bi of the function at the 8 vertices, label the vertices

as p1 . . . p8 in an arbitrary, but consistant fashion, and use directional derivatives upto

cubic order in the following way:
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Figure 3.6: This figure shows the average of the potentials as found by the method
described in figure 3.4 for 4 platinum nanoparticles. Cuboctahedral Pt309 and Pt561,
and experimental Pt353 and Pt522. This allows us to find the minimum points of the
various nanoparticles which are zoomed in the inset and shift them to the same reference

potential.
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bi =



f(pi), if 1 ≤ i ≤ 8

∂f
∂x (pi−8), if 9 ≤ i ≤ 16

∂f
∂y (pi−16), if 17 ≤ i ≤ 24

∂f
∂z (pi−24), if 25 ≤ i ≤ 32

∂2f
∂x∂y (pi−32), if 33 ≤ i ≤ 40

∂2f
∂x∂z (pi−40), if 41 ≤ i ≤ 48

∂2f
∂y∂z (pi−48), if 49 ≤ i ≤ 56

∂3f
∂x∂y∂z (pi−56), if 57 ≤ i ≤ 64

(3.23)

then the vector ā1+i+4j+16k and hence aijk via equation 3.22 can be found once and for

all for each cube of gridpoints by constructing bi from finite differences and computing

ā = B−1b, (3.24)

where the matrix B−1 has elements which may be found in [158]. For the finite difference

approximations to the derivatives in (3.23), we used a centred difference approach.

After using this interpolation method to take points from the electrostatic potential on

the uniform fine grid, along the vectors of random direction out of each each atomic

centre, the 1D electrostatic potential values were averaged over every centre, giving an

electrostatic potential curve for each nanoparticle, shown in figure 3.6.

At this point we can find the minima of the averaged electrostatic potentials for each

nanoparticle. The shifts to the value of each minima from a reference potential are

calculated, before the negative of these shifts are added onto the function of electrostatic

potential at every point on the uniform grid. This procedure serves to ensure that every

potential has the same reference potential, and in practice, we use one nanoparticle’s

minimum in the average electrostatic potential as this reference.

3.3.3 Computing Values from the Electronic Descriptor

With electrostatic potentials from ONETEP which have been shifted to have an equiv-

alent reference potential, as well as the electronic charge density from ONETEP on the

same uniform grid, we can begin to compute values of our descriptor at sites correspond-

ing to oxygen binding sites on the nanoparticle. A method for finding every possible

oxygen binding site on FCC platinum nanoparticles was shown in section 3.3.1 and with

this site data, we have all the information required to compute values from the electronic

descriptor.
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Figure 3.7: When computing the values of the electronic descriptor on sites, we use
test atoms at the positions where adsorbates would bind to define vectors to intersect

with the isosurface under the site and read off values.

The definition of our electronic descriptor is the value of the electronic charge density

of a bare nanoparticle (no adsorbates) on an isosurface of the electrostatic potential of

the same system, which is closest to the position of a test atom for which we would

like the value of the electronic descriptor. This “test atom” does not exist either in the

ONETEP calculation or in this descriptor post-processing. It is merely the coordinates of

an adsorbate atom if it were adsorbed in the chosen binding site (this is shown pictorially

in figure 3.7). Also, the particular isovalue of the electrostatic potential isosurface does

not matter, apart from that the isosurface should be a closed manifold enclosing the

nanoparticle atoms. It should also not be too far away from the nanoparticle that

electrostatic potential differences cannot be resolved. In chapter 5 where we have used

this approach, we found that an isovalue of 0EH gave a reference potential corrected

isosurface which was ∼2.9 Å away from platinum atomic centres on atop sites.

To automatically find the point on the isosurface which is closest to a test atom, we firstly

compute a fine grid of coordinates on the isosurface, by using the tricubic interpolants

which we described in the previous section in a root finding algorithm on the difference

between the target isovalue and equation 3.21. We then find the closest point in this

set on the isosurface to the test atom coordinates using a simple linear search algorithm

[159] because the site of the isosurface set is small. We then find the value of the tricubic

interpolant of the density at these coordinates and that is the value of the electrostatic

potential. This procedure is repeated for every test atom.
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It can be seen clearly from figure 5.10(a) in chapter 5 that this descriptor is linearly

correllated with oxygen binding strength calculated explicitly with DFT in ONETEP.

This fact leads us to the conclusion that this procedure can also be used sucessfully as a

descriptor, by calculating the value of the descriptor at each site of interest and reading

off the predicted binding strength.

3.4 Predicting Catalytic Activity with Descriptors

The values of the descriptors described in this chapter correlate with the binding strength

of oxygen on metal nanoparticles. To be useful for determining the usefulness of a

particular nanoparticle as a catalyst, for instance on the cathode of a PEM fuel cell,

a descriptor must not only be able to predict binding strength of oxygen, but also to

predict the catalytic activity of a nanoparticle.

In chapter 5 we do this in a conceptually simple way. Because the optimal oxygen

adsorption strength has already been predicted by other groups [58, 76, 80], we use these

predictions as our baseline.

We firstly parameterise a calibration curve by fitting a polynomial through data of oxy-

gen binding strength on a set of binding sites on a model nanoparticle vs the value of

the chosen site specific descriptor, which is also applied on each of these sites (either

generalised coordination number or our electronic descriptor).

Using the α-hull method (see section 3.3.1), we find all of the binding sites on a nanopar-

ticle(s) of interest. We apply the chosen site specific descriptor to these all of these sites

and use the calibration curve to give us a set of predicted binding strengths.

We then find the proportion of this set of binding strengths which lie within some energy

interval around the optimal adsorption strength. In the work which is described in

chapter 5 we choose to use an interval of ±0.2 eV. We argue that nanoparticles with

a larger proportion of binding sites close to the optimal binding strength for catalysis

should make better catalysts.

3.5 Conclusions

This chapter discussed three catalytic descriptors, the generalised coordination number

which is a purely geometric descriptor that gives site specific values; the d-band centre

which is based on local angular-momentum projected density of states and can give

surface averages values, and our electronic descriptor which is based on the electronic

density and electrostatic potential from DFT calculations of bare systems. All of these

descriptors operate with coordinates of or DFT calculations of bare systems, but predict

the binding strength of systems with adsorbates.
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Requiring no calculations, but only coordinate data of the nanoparticle atoms, the gener-

alised coordination number is the cheapest of these descriptors. It has the disadvantage

of not being based on the electronic structure of the system, and hence cannot predict

changes to activity based on changes of species, but is site specific. The d-band centre

is not site specific, but it is based on electronic structure and sensitive to species and in

particular to lattice strain and metal atom separation. Our electronic descriptor is site

specific and based on the electronic structure, so sensitive to species changes. The latter

two calculation

We have described in this chapter how each of these descriptors have been implemented:

the generalised coordinate number as a standalone script, d-band centre as a routine of

ONETEP which computes an angular momentum projected density of states calculation,

as implemented in this project, and our electronic descriptor which has been implemented

as a series of post-processing tools as well as a routine to compute and output electrostatic

potentials from ONETEP after single point energy calculations.

We have used all of these descriptors in our collaboration with the Nellist group, where

we apply them to experimentally measured nanoparticles, which can be seen in greater

detail in chapter 5.



Chapter 4

Simulations of Oxygen Binding on

Platinum Nanoparticles

Abstract

This chapter will explore the binding of oxygen to platinum nanoparticles using DFT

calculations. We were interested in heterogeneous catalysis with metal nanoparticles in

general, rather than a particular chemical reaction, however, the results presented in this

chapter focus on oxygen adsorption on platinum.

Platinum is a good example because it is used as the catalyst in so many catalytic

reactions, including the hydrogenation of liquid vegetable oils to margerines[160], in

cracking large crude oil molecules to form smaller molecules such as those in petrol[160],

in the catalytic decomposition of hydrogen peroxide[161], and of course on both the

anodes and cathodes of fuel cells as explored in chapter 1 in section 1.7.2.

Calculations have been performed on cuboctahedral nanoparticles of up to 1000 atoms

using the ONETEP package using the techniques described in chapter 2. Initially we

performed a study of oxygen adsorption on single facets of the nanoparticles to assess

binding strength trends with nanoparticle size and to determine at which size a slab

model would be an adequate model for a facet of the nanoparticle. The second part of

the study explores oxygen coverage of Pt147 to determine how binding strength is affected

by fractions of a monolayer of oxygen coverage. We have also applied the techniques

outlined in chapter 3 as descriptors of the systems explored in this chapter.

4.1 Cuboctahedral Nanoparticles

Initially, the choice was made to study the adsorption of small molecules on platinum

nanoparticles. Platinum was chosen partly because it lies toward the peak of the Sab-

batier curve for catalytic activity in the oxygen reduction reaction (ORR) figure 1.8a.

83
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There were, however, a great many more options as far as the choice of nanoparticle

composition was concerned[162–164].

Platinum exists in the bulk as a face-centred cubic (FCC)metal [165], so any shape which

can be formed by enclosing a region of bulk within intersecting cleavage planes could be

used as the geometry of the nanoparticle under study. However, the number of possible

shapes is huge, for instance, tetrahedra, cubes, octahedra, truncated cubes, cuboctahedra

and truncated octahedra are all possible regular geometries. Irregular geometries, as

would be found in nature, increase the number of possible atomic arrangements to the

point that it would be impossible to list all possible configurations of even relatively

small nanoparticles, let alone to perform meaningful studies on such large datasets.

Pt13 Pt55 Pt147

Pt309

Pt561

Pt923

~0.6 nm
~1.1 nm

~1.7 nm

~2.2 nm~2.8 nm~3.4 nm

Figure 4.1: The first 6 “magic numbers” of platinum cuboctahedral nanoparticles
showing how the number of atoms scales cubically with the diameter; 5 nm is not

reached until the nanoparticle has 2869 atoms.

To avoid issues with the number of possible configurations, the cuboctahedra were cho-

sen as a model system on which to perform adsorption calculations (see figure 4.1).

This is partly because several experimental studies [166–168] have shown that approxi-

mately cuboctahedral nanoparticles can be produced experimentally. Also, cuboctahe-

dral nanoparticles have a surface area split between (111) and (100) facets, increasing

the number of potential interesting adsorption sites (see figure 4.2).

Using a model structure in this way it is possible to perform a study of how molecular

adsorption is affected by increasing nanoparticle size, while minimising the effect of

external variables such as composition and surface structure. Cuboctahedra of several

“magic numbers”, or atom counts as successive shells of atoms are added to the seed

cuboctahedron remain similar in shape when cleaved from the bulk, retaining the same

number of facets of hexagonal and square symmetries and the same relative areas.
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atop sitehollow site

(100) facet
(111) facet

Figure 4.2: The facets of the Cuboctahedral nanoparticle, with sites on the (111)
facet labelled.

The first 5 magic numbers of the cuboctahedral nanoparticles are (1, 13, 55, 147, 309)

and are given in general as[169]:

Cn = (2n+ 1)× (5n2 + 5n+ 3)

3
, (4.1)

which clearly indicates a cubic order scaling and hence, calculations of many hundreds

or even thousands of atoms will be extremely expensive or even impossible on current

resources with conventional plane-wave DFT packages, though the 13 and 55 atom cases

should present no difficulty and the 147 and 309 atoms systems ought to be possible

on supercomputers. Our interest in these systems, however, was for chemically relevant

systems, which are interesting for catalysis in the ∼ 2–10nm size range, involving hun-

dreds to thousands of atoms. For these systems we anticipated that we would need to

use ONETEP and its EDFT functionality in this study.

As EDFT is a relatively recent addition to ONETEP, it was imperative for us to test and

validate the functionality against established, conventional methods, in software which

are known to be reliable through years of published research output. We opted for Castep

as the benchmark DFT package to validate against as it has had an implementation of

EDFT since the late 1990s, it can use the same pseudopotential format as ONETEP (for

norm conserving pseudopotentials) and it uses a plane-wave basis set which is formally
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equivalent to the p-sinc basis in ONETEP. We chose the Pt55 system with a set of

molecular adsorbates as the testbed on which EDFT functionality in ONETEP would

be validated.

4.2 Validation Against Castep

Modern DFT packages offer hundreds of parameters and configuration options, as well

as using inequivalent unit systems for input/output and differing conventions, for in-

stance, using thermodynamic beta (β) rather than temperature. So rigorous comparison

between DFT packages needs very careful matching of each input parameter, including

units and conventions. The similarity between the Castep and ONETEP input files and

compatibility of pseudopotential files goes some way to minimising the risk of an unfair

test, however, a great deal of care was still taken to ensure that all remaining settings

were equivalent; particularly those parameters which were set from default values rather

than values in the input files. Also, Castep uses eV for energies and Åfor lengths by

default, whereas ONETEP uses EH for energies and a0 for lengths by default.

Some aspects of the calculations will always remain inequivalent, and this is unavoidable

due to the differing natures of the two methodologies. An example of this is in the

representation of the valence electrons (delocalised electron bands vs. NGWFs). Another

is the plane-wave kinetic energy cut-off corresponding to a sphere of wavevectors in

reciprocal space in Castep, but the p-sinc kinetic energy cut-off corresponding to a cube

in reciprocal space in ONETEP. This means that a calculation performed in Castep with a

particular plane-wave energy cut-off is non-equivalent to an otherwise identical as possible

calculation performed in ONETEP and there is no value which is equivalent. This is not

a problem, however, because in the limit of high energy cut-off, where additional wave-

vectors with further increased cut-off have a negligible contribution to the total energy

of the system, the total sum of contributions from wave-vectors should be comparable

between approaches.

For this reason, together with the usual arguments for ensuring a large enough basis-set

size to accurately represent the Kohn-Sham wave-functions, the calculations first had to

be converged individually with respect to plane-wave energy cut-off.

EDFT also requires extra, partially occupied basis functions above the chemical potential,

we chose to have enough of these in our calculations that the occupancy of the highest

energy state is negligible.

At finite temperature, states above the chemical potential are required because they

are partially occupied in a metal and truncating this distribution will affect the total

energy. A secondary reason for needing a large number of conduction states is that

during the electronic energy minimisation process, the extra degrees of freedom allow the

optimisation path toward the energy to temporarily move electron density from valence
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to conduction states. For these reasons it is important to ensure that enough extra

NGWFs in ONETEP and extra electron bands in Castep have been made available to

the calculation. We do not know this number a priori, instead we monitor the calculations

to ensure that at least one or two states are empty at every iteration of the calculation.

Figure 4.3: The orientation and proximity to the nanoparticle of the CO ligand after
geometry optimisation is almost identical between Castep (left) and ONETEP (right).

After converging with respect to kinetic energy cutoff in both codes and number of

NGWFs in ONETEP we found that we could find the same geometries (see figure 4.3)

and absolute and relative energies table 4.1 in both codes using the same (Rappe-Bennett)

set of norm conserving pseudopotentials [170] and spin polarised calculations.

We found that 850 eV kinetic energy cutoff was enough to converge the ONETEP cal-

culations, so this value was used for both sets of calculations. We also used the Γ-point

approximation in Castep because we are simulating isolated systems and because this

most closely matches the ONETEP calculations which are Γ-point only.

We have compared the ONETEP EDFT approach on some small demonstrative calcula-

tions on Pt13 against Castep, which is a conventional plane-wave code with an alternative
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Table 4.1: A table showing the remarkable agreement between Castep and ONETEP
on converged calculations. The results show that not only the relative energies agree,

but also the total energies.

(eV) Castep ONETEP

Pt55 Total Energy -39220.418 -39220.413

O2 Total Energy -858.217 -857.879

Combined Total Energy -40079.377 -40079.105

Adsorption Energy -0.741 -0.812

CO Total Energy -584.501 -584.228

Combined Total Energy -39806.478 -39806.198

Adsorption Energy -1.559 -1.556

EDFT implementation.[171] The same norm-conserving pseudopotentials were used in

both Castep and ONETEP.

We have computed the oxygen binding energy of a fully relaxed Pt13 nanoparticle ac-

cording to equation 4.7, with both codes, while applying periodic boundary conditions

in a cubic simulation cell with sides of 25 Å. The energies of the individual species, as

well as the binding energy, as computed with each code, are shown in Table 4.2. We can

observe that the binding energies agree to within 0.01 eV which is about 0.23 kcal/mol

which is well within the level of precision required for chemical accuracy (which is of the

order of 1 kcal/mol).

Table 4.2: Comparison of energies between Castep and ONETEP on Pt13. All cal-
culations performed with periodic boundary conditions in 25 Å, cubic simulation cells.

All energies are in eV.

Castep ONETEP

Pt13 -9302.94 -9302.47

Pt13 −O(111) -9734.48 -9733.94

1/2O2 -429.11 -428.94

Binding Energy -2.44 -2.53

4.3 DFT calculation set up

Our Density functional theory (DFT) calculations were performed with the ONETEP

linear-scaling DFT program,[40] using its ensemble-DFT (EDFT) method,[7] which al-

lows large-scale DFT calculations on metallic systems with thousands of atoms. ONETEP

is based on the one-particle density matrix formulation of DFT and employs a two-

resolution approach to describe the density matrix. At the coarse level it employs a
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set of non-orthogonal generalised Wannier functions (NGWF) which are optimised in

situ[172] during the calculation as they are expanded in a basis set of psinc functions

which are equivalent to plane waves. The quality of the psinc basis set can be con-

trolled with a single parameter, which is equivant to the kinetic energy cut-off in plane

wave approaches. As the psinc functions are independent of atomic positions, ONETEP

calculations do not suffer from basis set superposition error.[173] NGWFs are, strictly

localised in spherical regions and so they are appropriate for the isolated nanoparticle

systems under investigation here as vacuum is effectively free in terms of computational

cost.

ONETEP can either use norm-conserving pseudopotentials or the Projector Augmented-

Wave (PAW) approach [144] to represent the core electrons. When using the norm-

conserving approach, we have used the norm-conserving PBE library of the Rappe

group[170]. When performing PAW calculations, we have used the PBE data from the

GBRV [174] library.

For all the calculations we employed the rPBE generalised gradient approximation exchange-

correlation functional of Hammer and Nørskov,[20] which is known to be particularly

good for calculations of binding energies on surfaces[21]. Since the highest psinc kinetic

energy cut-off is determined by the atomic species with the hardest pseudopotential,

which in out case is platinum, we investigated the convergence of the total energy with

respect to the kinetic energy cut-off for a Pt13 nanoparticle and we have chosen a kinetic

energy cut-off of 850eV for all our calculations as at this cut-off the total energy of Pt13

is already converged to 0.0001 Eh.

Our calculations were performed in simulation cells which obey periodic boundary con-

ditions, but with large vacuum gaps and the spherical Coulomb-cutoff approach in order

to eliminate interactions between periodic images.[156] The radius of the sphere used for

the cut-off in the Coulomb operator was calculated using:

rcc = max(daa) + 2rNGWF + 5, (4.2)

where daa is the inter-atomic separation, rNGWF is the radius of the NGWF localisation

spheres and the 5 is to account for Gibbs oscillations associated with the cut-off in the

Coulomb operator, which is performed in reciprocal space. The radius of the NGWF

spheres was chosen to be 4.8 based on platinum total energy convergence data. The

Brillouin zone was sampled solely at the Γ point. The Fermi-Dirac occupancy smearing

scheme was used, with 0.1 eV electronic temperature which corresponds to 1160 K and

a plane-wave kinetic energy preconditioning parameter of 3.8Å−1.

For geometry optimisation calculations the BFGS quasi-Newton method was employed

to relax ionic coordinates in cells of fixed dimension.[175] The geometry optimisation

tolerances that we used were: 2.72×10−5eV in electronic free energy, 0.1eV/ in maximum
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absolute force component and 0.003 in atomic displacement.

We have also performed calculations on Pt slabs using the CASTEP code. The slabs

consisted of 5 layers of Pt cleaved along the (111) surface in the geometry of bulk Pt

as previously optimised with CASTEP. The top 4 layers were geometry optimised with

a vacuum gap of 15.0 Å. The cell consisted of 4 hollow sites so that placing an O on

one of these sites corresponds to 0.25% monolayer coverage. A 5×5×1 Monkhorst-

Pack grid of k-points was used and the calculations were performed with CASTEP’s

EDFT algorithm using Fermi-Dirac occupancy smearing with a width of 0.1 eV, as in

the ONETEP calculations and the same plane wave kinetic energy cut-off (850 eV) as

ONETEP was used.

Table 4.3: A table showing several of the most important parameters used in
ONETEP, which would be necessary to reproduce the calculations that have been

performed.

Parameter Value

Plane-wave cut-off energy 850 eV

XC functional rPBE

Fermi-Dirac smearing width in EDFT 0.1 eV

Coulomb cut-off radius Ø(nanoparticle) + 2rNGWF + 5Å

Plane-wave kinetic energy pre-conditioning 2.0 eV

Number of NGWFs Pt : 9 H : 1 O : 4 C : 4

NGWF radius 9 Å

4.3.1 Computation of binding energies

Binding energies of O to Pt nanoparticles were calculated with reference to an isolated

O2 molecule and nanoparticles as:

Eb = Ep+O − Ep −
1

2
EO2 , (4.3)

where the nanoparticle energies were computed in cubic cells of dimension at least 2rcc+5.

The O2 energy was computed in a cubic cell of 10 as a triplet electronic state, after the

strucutre of O2 was optimised.

We can differentiate our binding energy calculations into two cases by the type of struc-

tures we used. In the first case, the nanoparticles are generated as perfect cuboctahedrals

(cleaved from bulk Pt with a Pt-Pt distance of 2.76 Å) and are kept constrained to their

initial geometries throughout the calculation of the binding energy. So, in this case the

binding energy is computed as

ECon
b = ECon

p+O − ECon
p − 1

2
EO2 , (4.4)
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where the superscript Con indicates that in all these structures the Pt atoms are held

fixed and constrained in the perfect cuboctahedral geometry in which the particle was

constructed. Therefore ECon
p+O signifies that this is the energy of the nanoparticle with

only the O atom coordinates relaxed.

In the second case, the binding energy is computed as

EFRel
b = EFRel

p+O − EFRel
p − 1

2
EO2 , (4.5)

where the superscript FRel indicates that the atomic positions in the structures used to

calculate this binding energy have been fully relaxed. This is a more rigorous approach

to calculate the binding energy of O on Pt nanoparticles. This procedure is especially

time-consuming in the stage of structural relaxation of the nanoparticle plus O system

(needed to obtain EFRel
p+O) as it takes a large number of geometry optimisation steps due

to the way most common geometry optimisers operate [176].

This posed a significant obstacle, especially for the larger nanoparticles, and in order

to avoid it in future calculations, we have developed an alternative approach, which is

summarised in the equation below.

ERel
b = ERel

p+O − EFRel
p − 1

2
EO2 , (4.6)

Figure 4.4: Hirshfeld defect densities of O on the (111) facets of cuboctahedral Pt
nanoparticles from 13 to 147 atoms.

In this equation the superscript Rel denotes a partially relaxed nanoparticle+O system.

To obtain this system we cleave a fragment from the fully relaxed Pt nanoparticle. The

fragment is cleaved between the third and fourth layer of atoms below a (111) facet.

Then the the O atom is added on the (111) facet, and the fragment+O is relaxed, while

keeping the deepest layer of Pt atoms constrained to their original positions. After the

relaxation has converged, the two layers of Pt atoms closest to the surface (which are

the ones that were relaxed) replace the equivalent atoms of the full system, including
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the position of the O atom. Then a single-point energy calculation is performed in the

partially-relaxed nanoparticle+O system to obtain ERel
p+O. This idea is based on Hirshfeld

charge defect density calculations, which indicate that the effect of adding a molecule to

a (111) facet of a Pt nanoparticle extends to the third layer only (see figure 4.4).

Fully Relax Cleave 3 Layers

Add O

Relax O

Add O Add O

Fully Relax

Relax

(A) (B) (C)

Put Back

Figure 4.5: The three procedures which have been discussed are: A) To keep the
nanoparticle constrained to bulk coordinates, while relaxing only the oxygen atom, B)
To relax the nanoparticle atoms, before relaxing all of the atoms of the system of oxygen
plus nanoparticle, C) To cleave a three-layer piece of the fully relaxed, bare nanoparticle
and to relax the oxygen atom and the top two layers of nanoparticle atoms in this
fragment system, with the bottom layer constrained, before calculating the energy with
these relaxed atoms put back into the full system. Red indicates constrained atoms,
light blue indicates that the coordinates of these atoms are unchanged in both systems.

The different procedures for calculating binding energies are summarised in the flowchart

shown in Figure 4.5. We have not used the method in figure 4.5(c), but intend to use

this approach for calculating binding energies of monolayers of oxygen on single facets.
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In the slab calculation with CASTEP, the binding energies were computed by fully

relaxing the Pt atoms, except for the bottom (fifth) layer, with and without the O

ligand.

We have also performed calculations with higher than single atom coverage on nanoparti-

cles, with one oxygen atom on each (111) facet, for a total of 8 oxygen atoms in total; and

also half-monolayer coverage on a hemisphere of the nanoparticles. For these calculations

we have used the PAW approach and kept the Pt atoms fixed at bulk-like positions. The

oxygen atoms were then optimised on these constrained systems

E
8(O)
b = EORel

p+8(O) − E
Const
p − 1

2
EO2 , (4.7)

4.4 Results of Adsorption Calculations

Using this approach, we have attempted a study of how the binding energy of oxygen

scales with the size of platinum nanoparticle and how these results compare with surface

calculations performed in Castep. When comparing adsorption energies of the systems,

we solely use procedure (B) from Figure 4.5 and the corresponding binding energy ex-

pression from Equation 4.7.

When performing the structural relaxation of the nanoparticle-oxygen systems, the initial

position of the oxygen atom on the nanoparticles was chosen to be in the HCP hollow

site, 2Åabove the plane formed by the three nearest-neighbour Pt atoms. The particular

hollow site was chosen to be the most central one on the facet. On the nanoparticles

with a hollow site at the centroid of the triangular (111) facet, this was chosen, whereas

on those with a top-site at the centroid, a site with the top-site at the corner of the

hollow-site triangle was chosen.

We firstly performed all our calculations with the Rappe-Bennett norm-conserving pseu-

dopotentials. We used the rigid method (a) from figure 4.5 to give the dataset presented

in red in figure 4.6. This was obviously unsatisfactory, so we attempted to fully optimise

all of the atoms in the full set as in method (b) from figure 4.5. This gives the much more

satisfactory dataset shown in black in figure 4.6, which appears to converge towards the

Castep ultrasoft slab calculation, as we would expect for systems of increasing size.

At this stage, we also wanted to run PAW calculations on the same systems because

we were concerned about the transferability of the norm conserving pseudopotentials

we used in these calculations, i.e. a norm conserving pseudopotential optimised for

the bulk may not be transferrable to the facets and other low coordinated sites of the

nanoparticles. For this reason we opted to run the calcultions again, but to save on

computation resources and time we chose to run with the nanoparticle geometries we

had obtained for the norm conserving calculations and only optimise the oxygen atoms

on these. Unfortunately, this resulted in an energy shift of about 0.5 eV, due to strain
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Figure 4.6: The binding energies of a single oxygen atom on the HCP sites of (111)
facets on cuboctahedral, platinum nanoparticles of increasing size. We have computed
three sets. An electronically optimised set of norm-conserving results with nanopar-
ticles with Pt atoms in bulk lattice-like positions, where only the oxygen atom has
been geometry optimised (red). A fully (structurally and electronically) optimised,
norm-conserving set (black), where every atom has been optimised: it is clear that this
is necessary for reliable adsorption energies if we compare with the Castep slab limit
(green). Finally we have performed PAW calculations. Because of a lack of computer
resources, we have computed these with the norm conserving geometries and only op-
timised the oxygen atom. This appears to be inadequate. If we fully optimise every
atom, as we have done in the case of Pt309 (orange), we can see that PAW already
almost matches the ultrasoft pseudopotential, slab calculation in Castep even at 309
atoms. We intend to do the full set with PAW and full geometry optimisation as further

work.

on the nanoparticle as a result of the GBRV PAW and Rappe-Bennett pseudopotential

datasets having different platinum nearest neighbour distances.

The full set of norm conserving results is shown in table 4.4 and in table 4.5 for PAW,

which gives the binding energies of oxygen on cuboctahedral nano-particles of magic

numbers 13 to 561, and the binding energy trend is shown in figure 4.6.

We have performed the Pt309 calculation with PAW and full geometry optimisation,

so we can see that if we use the GBRV PAW dataset and optimise fully, this system

lies almost exactly on the Castep slab result (see figure 4.7. If we take the data for the

constrained PAW calculations and shift it so that the Pt309 result lies on the fully relaxed
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Table 4.4: Properties of the O-nanoparticle systems which we have studied. The
numbers include charges on atoms, as calculated using the DDEC/c3 method [1]. All
nanoparticle calculations were performed using EDFT in ONETEP using the param-
eters explained in the text. The slab calculations were performed using Castep and

equivalent parameters.

Property
Number of Atoms

13 55 147 309 561

Diameter (Å) 5.34 10.67 16.11 21.57 27.03

Relaxed

O Binding Energy (eV) -2.33 -1.48 -1.42 -0.92 -0.93

O-Pt nearest neighbour distance (Å) 2.01 2.10 2.10 2.06 2.05

Pt-Pt average distance on binding site (Å) 2.67 2.80 2.75 2.74 2.86

Nearest neighbour platinum average charge (e) 0.56 0.46 0.46 0.46 0.39

Charge on O Atom (e) -0.20 -0.26 -0.26 -0.19 -0.21

Constrained

O Binding Energy (eV) -2.35 -1.26 -1.38 -0.88 -1.28

O-Pt nearest neighbour distance (Å) 2.00 2.03 2.05 2.04 2.01

Pt-Pt average distance on binding site (Å) 2.80 2.80 2.80 2.80 2.80

Nearest neighbour platinum average charge (e) 0.49 0.44 0.45 0.50 0.42

Charge on O Atom (e) -0.18 -0.17 -0.18 -0.17 -0.16

Relaxed 5 layer, 4 site Slab

O Binding Energy (eV) -0.78

O-Pt nearest neighbour distance (Å) 2.04

Pt-Pt average distance on binding site (Å) 2.87

result, we can see a trend the we would expect, flattening out after Pt309 towards Pt561.

We think that the argument that these constrained PAW calculations are under lattice

strain is compelling and would like to run the full set with fully geometry optimised

atomic coordinates. Unfortunately, due to a lack of time and computational resource

constraints, we were unable to complete these calculations for the submission of this

thesis, but we intend to run these calculations.

As might be expected, as the size of the nanoparticle increases, several properties of

the nanoparticle-O systems begin to converge to the slab limit, including the oxygen

binding energy and geometric properties of the Pt-O system. This is similar to the result

reported by Li et al [141], but on the HCP rather than FCC site on the cuboctahedral

(111) facets. Li et al show that the FCC sites converge to the slab limit after 147 atoms,

whereas we find that for HCP sites this convergence does not happen until after 309

atoms. We chose to study the HCP rather than FCC site partly because of this pre-

existing study by the Nørskov group, but also because the HCP sites are closer to the
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Table 4.5: Properties of the O-nanoparticle systems which we have studied. The
numbers include charges on atoms, as calculated using the DDEC/c3 method [1]. All
calculations were performed using EDFT in ONETEP using the PAW approach on the

(111) facets.

Property
Number of Atoms

13 55 147 309 561

Diameter (Å) 5.34 10.67 16.11 21.57 27.03

Relaxed O

O Binding Energy (eV) -1.60 -0.76 -0.61 -0.22 -0.20

Relaxed 8(O)

O Binding Energy (eV) -1.73 -0.77 -0.64 -0.24 -0.47

Relaxed 5 layer, 4 site Slab 5x5 Super-cell

O Binding Energy (eV) -0.62

O-Pt nearest neighbour distance (Å) 2.04

Pt-Pt average distance on binding site (Å) 2.87

Table 4.6: Properties of the O-nanoparticle systems which we have studied. All
calculations were performed using EDFT in ONETEP using the PAW approach on the

(100) facets.

Property
Number of Atoms

55 147 309 561 923

Diameter (Å) 10.67 16.11 21.57 27.03

Relaxed O

O Binding Energy (eV) -1.15 -0.82 -0.91 -1.04 -1.13

catalytic optimum binding strength of -0.52 eV (which is discussed in chapter 5).

We have also followed the pDOS procedure which was outlined in chapter 3 has been

applied to the sequence of cuboctahedral, platinum nanoparticles. The results show that

the systems are dominated by the d-band with relatively little but significant s-band

character, but almost no p-band intensity, as one might except given the 9 5d electrons

and 1 6s electron in the platinum valence states.

The systems also lose the single peaks of isolated systems and the DOSs become more

and more band-like as the size of the nanoparticle increases (see figure 4.8). These

pDOSs have also been projected onto the local set of angular momentum states only on

the set of {111} facets, so that we can observe the trend in this (111) facet local -pDOS

with single oxygen binding strength. The way we will draw a correlation in adsorption

strength follows Nørskov et al closely [79], in that we calculate the d-band centre (energy

weighted average of the d projected DOS) to correlate with. This is also plotted in figure

4.8 and shows convergence towards the slab limit (which was calculated using Castep).
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Figure 4.7: In this figure, we show the effect of shifting the PAW, Oxygen adsorption
set shown in figure 4.6 so that the Pt309 result lies on the fully optimised Pt309 PAW

result.

Plotting the local pDOS results against the oxygen adsorption strength on the (111)

facets of the series of platinum cuboctahedral nanoparticles and examining the trend we

can see the clear linear trend in (PAW) binding energy with d-band centre as we would

expect (figure 4.9). This provides evidence (together with the literature) that d-band

centre can be used as a good desciptor for binding strength as we have shown in chapter

5.

4.5 Oxygen Coverage Results

It can be seen from the results in the PAW dataset 4.5 having one oxygen atom per facet

makes little difference to the binding energies with respect to having one oxygen atom

per nanoparticle. This dataset also shows a jump in energy on Pt561 with eight oxygens.

We also explored the effect of adding more than one oxygen atom per facet. For these

calculations we opted to constrain platinum atoms, as the extra computational resource

and time required to fully relax the degrees of freedom of tens of oxygen atoms together

with the platinums was unfortunately well beyond what we had available to us. Because

of this, we expect that an additive strain energy term will be present in our binding
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Figure 4.8: The angular momentum projected density of states on a (111) facet
of cuboctahedral Pt13 to Pt561, in the D-band shows that the states become more
continuous (‘band-like’) with increasing size and from the D-band centres, that the D-
band shifts away from the Fermi level. This corresponds to a increase in the filling of
the (d-σ)* state upon adsorption of a ligand and should result in weaker binding. In

these plots, the chemical potentials are at 0 eV.

energies similar to what we have already observed with the single oxygen atom adsorption

study results seen in figure 4.6.

We have also chosen to add oxygen atoms to only one hemisphere of the nanoparticles.

The justification for this is that in experimentally measured nanoparticle geometries,

the nanoparticle can be embedded in the support. When embedded in such a way, the

hemisphere of the nanoparticle which faces the support is not exposed and cannot take

part in catalytic reactions. The initial coverage that was chosen for these calculations

was a ∼ 1/2 monolayer, where we covered (111) hollow sites and (100) bridge sites, and

no other sites. We ran the calculations without spin polarisation, because we did not

expect any oxygen molecules to form and the simulation cell contained an even number

of electrons.

In practice, however, the calculations resulted in some of the oxygen atoms coming

together and forming oxygen molecules. Any molecules that form must be in a singlet

spin state because the calculations are not spin polarised. Despite this, we expect that

if the spin state was unconstrained, then the molecules would still form, as the triplet

state is lower in energy.
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Figure 4.9: It is clear that with increasing nanoparticle size, that the adsorption
strength of oxygen diminishes, and correlates well with the D-band centre, as expected
from figure 4.8. Oxygen adsorption strength was calculated with respect to isolated,
optimised, triplet O2 and the D-band centres are all with respect to the chemical

potential of the corresponding Pt nanoparticle system.
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Figure 4.10: Three views of the initial geometry of the Pt55 nanoparticle with half
monolayer, hemispherical oxygen coverage. Panel (a) shows the oxygen atoms on the
HCP sites of the top (111) facet. Panel (b) shows the oxygens on three of the four
bridge sites of the (100) facets and Panel (c) shows the top-like arragement of the other

(111) facets.

In the initial configuration, the Pt55 cuboctahedral nanoparticle with half monolayer,

hemispherical coverage has three oxygen atoms per facet. (111) facets have one oxygen

atom per HCP site, (100) facets have an oxygen atom on three of the four central bridge

sites. In figure 4.10(a), the top view shows that the oxygen atom separation distance is

2.33 Å. This is the same on each of the three other (111) facets, shown in figure 4.10(c).



Chapter 4. Calculations on Pt Nanoparticles 100

Figure4.10(b) shows that the bridge sites which lie on opposite sides of the central (100)

atom are spaced 2.62 Å apart, whereas, the bridge site which is furthest from the top

facet is only 1.82 Å away from each of these oxygen atoms. The blue square with a red

edge shows the face of the simulation cell which is parallel with, and furthest from the

top facet. The edge that is coloured red is the same in each panel of figure 4.10 as well

as those of figures 4.11 and 4.12.

3.11Å 3.13Å

3.04Å

2.93Å

4.15Å 3.06Å4.56Å

(111) Top
(111) Side A

(111) Side B

(a) (b) (c)

Figure 4.11: Three views of the relaxed geometry of the (111) facets of the Pt55

nanoparticle with half monolayer, hemispherical oxygen coverage. Panel (a) shows the
oxygen atoms on the HCP sites of the top (111) facet. Panel (b) shows the oxygens on
two of the other (111) facets, where two HCP oxygens have migrated onto edge bridge
sites. Panel (c) shows the final configuration where only one oxygen atom migrated.

After optimisation of the Pt55 cuboctahedral nanoparticle with half monolayer, hemi-

spherical coverage, the oxygen atoms on the top (111) facet have repelled slightly with

respect to the initial configuration (see figure 4.10(a)). The oxygens remain in the HCP

hollow sites, however, in a configuration just off hollow site centre, having moved approxi-

mately 0.7 Å away from the central atom of the facet towards the vertices (figure 4.11(a)).

The two of the remaining three (111) facets have configuration as in figure4.11(b), where

the atom closest to the top facet remains in the HCP hollow site. The remaining two

atoms have moved onto the edge (111)–(100) bridge sites furthest away from the top

facet and are separated from each other by 2.93 Å. None of the atoms on other facets

are closer than this to any of the atoms on these facets. Finally, the fourth (111) facet

also has two edge sites and one HCP hollow site, but instead, the remaining HCP hollow

site is one of those furthest from the top and the oxygen which was on the site closest

to the top has migrated onto the edge site.

In contrast with the (111) facets, the (100) facets show three distinct arrangements after

optimisation of the Pt55 cuboctahedral nanoparticle with half monolayer, hemispherical

coverage. Two facets (shown in figure 4.12 panels a and b) show two of the oxygen atoms

remaining on (100) bridge sites. These are the central bridge sites which are on a line

parallel with the top facet. These oxygens have moved slightly further apart than the

initial structure (from 2.62 Å to 2.88 Å) and one of the oxygens on the third configuration

remains in one of these sites. In figure 4.12(a), we see that the third atom has migrated
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Figure 4.12: Three views of the relaxed geometry of the (100) facets of the Pt55

nanoparticle with half monolayer, hemispherical oxygen coverage. Panel (a) shows the
case after relaxation where there are two occupied bridge sites and one edge-bridge site,
panel (b) shows the case where we get two bridge sites and an atop site and panel (c)
shows the case where there is one occuped bridge site and one singlet oxygen molecule

straddling two bridge sites.

onto the edge site furthest away from the top facet, whereas in figure 4.12(b), the oxygen

sits on the atop site of the bottom edge of the facet. Figure 4.12(c), on the other hand

show that the two remaining oxygen atoms have formed a molecule, which must be in a

singlet state because these calculations are not spin polarised. The molecule lies parallel

to the facet and each atom sits just off each of the initial bridge sites. The molecule has

a bond distance of 1.41 Å , which is slightly more than the 1.38Å we see with isolated

oxygen molecules in the triplet spin state with the same pseudopotentials and simulation

settings.

2.33Å
2.02Å

(111) Top (100)(111) Side

(a) (b) (c)

2.33Å

Figure 4.13: The initial geometry (before relaxation) of the Pt147 and hemispherical
oxygen coverage. Each alike facet has exactly the same initial arragement of oxygen
atoms, with 6 in the HCP hollow sites on the (111) facets shown in panels (a) and (b).

The (100) facets, shown in panel (c) have 8 oxygens on the bridge sites.

Our first attempt to do half-monolayer, hemispherical oxygen packing on Pt147 resulted

in 6 oxygen atoms per each of the four (111) facets, and 8 oxygen atoms per each of the

three (100) facets. The oxygens on the (111) facets are positioned in the HCP hollow sites

and the oxygens on the (100) facets are in the central bridge sites, avoiding bridge sites on

the edges. This coverage is more than 50% depending on the counting method. On the

(100) facets, there are 12 possible non-edge, bridge sites and we have occupied 8 of them.
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On the (111) facets, there are 9 possible hollow sites and we have occupied 6 of them.

This picture changes somewhat if edge bridge sites are included in the decision: this adds

another 12 sites to the (100) total. So, we either have (4×6+3×8)/(4×9+3×12) = 2/3

or we have (4× 6 + 3× 8)/(4× 9 + 3× 24) = 4/9, which bracket 1/2 and so this seemed

like a good starting point. We positioned the atoms at the centres of the HCP hollow

sites, 2Å along the outward facing normals to the planes intersecting the atomic centres

on the (111) facets, for oxygen neighbour-neighbour distances of 2.33Å on facet (figure

4.13 panels a and b). On the (100) facets, the oxygen atom nearest neighbour distance

was 2.02Å(see figure 4.13(c) ). The oxygens on the (100) facets were also configured to

be 2Å along the outward facing normals to the planes intersecting the platinum atomic

centres.

2.86Å
1.35Å

(111) Top (100)(111) Side

(a) (b) (c)
3.00Å

3.48Å
3.40Å 2.62Å

Figure 4.14: The relaxed oxygen geometry of the Pt147 and hemispherical oxygen
coverage. Three of the 6 oxygen atoms migrate off the HCP and onto the edge sites on
the (111) facets, see panels (a) and (b). Molecules form on the (100) facets (panel (c)),

which project roughly on the the initial positions of the oxygens.

Unfortunately, upon geometry optimisation with ONETEP, we found that the oxygen

atoms on the (100) facets formed molecules, with a bond length of 1.35 Å. The molecules

remained over the bridge-bridge endpoints of the starting geometry, but one of the oxygen

atoms of each molecule raised off the facet by 0.7Å, with the other remaining in its initial

position. The nearest separation distance of oxygen molecules on the (100) facets was

found to have become 2.62 Å, with the top-site energy barrier separating molecules (see

figure 4.14(c)). As in the Pt55 case, these molecules must be in the singlet spin state, as

we have not run spin-polarised calculations, due to our initial expectations. On the (111)

facets the picture was closer to our expectation: the picture in both the top and three

other (111) facets was almost identical, with the three oxygens closest to the nanoparticle

vertices remaining in the HCP hollow sites and those on the sites close to edges migrating

onto the edge (111)–(100) bridge sites. The separation between oxygen atoms on edge

sites to HCP sites was found to be between 3Å on the top facets (see figure 4.14(b)) and

2.86Å on the other (111) facets (see figure 4.14(a)). As for the edge to edge separation,
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these distances were approximately equal everywhere: 3.4Å on the top facet and 3.48Å

on the others.

O coverage on (100) facets only

O coverage on (111) facets only

3.03Å

(111) Top

(111) Top (100)

(111) Side

(a)i (a)ii

(b)i (b)ii

3.31Å

4.49Å

3.86Å

Figure 4.15: The two nanoparticles with coverage on only one type of facet. Shown
above in the (a) panels is the (111) case and below, in the (b) panels is the (100) case.
The initial oxygen positions were taken from the geometry in figure 4.14, with only
the four oxygen atoms closest to the nanoparticle kept on the (100) facets, and the

nanoparticles relaxed to give the structures shown here.

The challenge after noticing the over-packing on the (100) facets of the Pt147 nanoparticle

with hemispherical approximately half-monolayer oxygen packing was to salvage some-

thing of these extremely expensive calculations. To optimise to convergence took 2 weeks

on Archer. We decided to take the optimised geometry and separate the oxygen atoms

onto two separate nanoparticles. One with only (111) facets covered with oxygen (shown
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in figure 4.15(a)i and ii) and the other with only (100) facets covered with oxygen (shown

in figure 4.15(b)i and ii). The nanoparticle with (111) oxygen packing had initial oxygen

geometry and the same packing as the fully covered nanoparticle in figure 4.14 as no

molecules formed. After optimisation, some of these oxygen atoms did move off the ini-

tial sites, on the non-top (111) facets. Two of the oxygens initially on HCP sites furthest

from the top facet migrated onto edge sites, leaving only a single oxygen on the initial

HCP site closest to the top site. This atom ended up 3.86Å away from its cousin on the

top facet (figure 4.15(a)ii). On the (100) facets, we opted to keep the oxygen atoms that

remained on bridge sites after the relaxation shown in figure 4.14 and remove the atoms

at the other end of each molecule leaving a total of 4 atoms per (100) facet, which are

separated by 4.49Å (see figure 4.15(b)ii) after relaxation of this configuration. If we add

these two configurations together, then we either have (4×6+3×4)/(4×9+3×12) = 1/2

in the first possible counting scheme or (4 × 6 + 3 × 4)/(4 × 9 + 3 × 24) = 1/3, in the

other. Giving exactly one half monolayer coverage in the first counting scheme.

Once we had a set of approximately half-monolayer, hemispherical oxygen coverage Pt147

calculations between the (111)–only set and (100)–only set, we opted to combine them for

a further round of geometry relaxation. This did not result in the formation of molecules,

most likely because the separation between oxygens on adjacent (111) and (100) facets

remained large (2.78Å see figure 4.16(b)). The oxygen atoms on the (100) facets did not

move appreciably, perhaps owing to the isolation of the chemical environment of each

oxygen– leading to a good approximation to this combined system with the (100)-only

system. Likewise, the (111) facets changed only very little on geometry optimisation.

One more of the oxygen atoms on an HCP site on the top facet moved into an edge

bridge site, breaking the three-fold symmetry of the system (See figure 4.16(a)). The

only noticable effect of relaxation on the other (111) facets was for the oxygen-oxygen

nearest neighbour distane to decrease slighly from 3Å to 2.9Å on the bottom edge sites

of the facets.

At first glance, it may seem strange to have molecules of oxygen forming on platinum

nanoparticles which are used in industry as catalysts to reduce oxygen molecules. Firstly

we should frame these adsorption studies as models and outline the important approx-

imations that we have made. Real platinum nanoparticles for ORR are supported and

possibly solvated, we have fixed the coordinates of the platinum atoms in the struc-

tural relaxation of the oxygen atoms and we are studying these adsorption effects on a

nanoparticle which is smaller than the ∼2-10 nm size range used in real platinum cathode

catalysts.

These simplifications may all play a role in this phenomenon, but we can narrow down

what is likely to be the main contribution. We have run solvated calculations on Pt55

and Pt13 with single oxygen atom adsorption and saw negligible effect on the binding

energy in these test calculations, whereas with a hydroxyl adsorbate, we saw a large
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Figure 4.16: After combining the final, relaxed oxygen coordinates on the Pt147

nanoparticle from figure 4.15, the result was geometry optimised a further time to
give the relaxed structure shown in this figure. There is little significant movement,
apart from a symmetry breaking single HCP to edge bridge migration on the top (111)
facet, shown in panel (a). There is a sligh tightening in the oxygen-oxygen neighbour
distances on the other (111) facets (see panel (c)) and almost no change on the sparsely

populated (100) facets shown in panel (b).

effect. Therefore it is likely that solvation plays only a very minor role for adsorption

of ligands with zero or small dipole moment. A similar effect has been reported in the

literature, particularly in the study by Rossmeisel et al [58].

We have also performed studies of adsorption of oxygen on graphene supported nanoparticles[12]

and found that the electronic density difference between supported and non supported

nanoparticles penetrate to a significant degree (> 0.01 eÅ−3) to 3 or 4 layers. For Pt147

this is not deep enough to reach the point of adsorption of oxygen on these systems. Of

course, with a hemispherically embedded nanoparticle, the situation could be different,
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but we cannot speculate on that given that we have not yet done the calculations.

The smallness of the nanoparticle probably diminishes rather than enhances the chances

of forming oxygen, as we have shown that oxygen binds more strongly with decreasing

size. It is therefore less likely than with larger nanoparticles that the oxygen atoms will

have the mobility to form oxygen molecules.

This leaves two contenders, constrained platinum positions in the relaxation, as men-

tioned, but also related to this: that the oxygen atoms were placed by hand in positions

which may not be physical. To find the optimal (initial) packing of oxygen on the surface

is a combinatorial problem and well beyond the scope of this project, so we had to make

assumptions based on where single oxygen atoms would bind as to where fractions of

monolayers would bind. It is known from cyclic voltammetry experiments that at high

oxygen concentration oxygen tends to go subsurface in platinum [177]. Schnadt et al

show that this place exchange mechanism can produce a complicated set of subsurface

oxygen structures on silver [178] based on a combined experimental and DFT study.

Gu et al show a similar picture, with many possible structures on platinum slabs in a

purely DFT based study [179]. Because of this it is possible that by fixing the platinum

through the geometry relaxation and hence not allowing the oxygen to go subsurface,

that when we introduce unphysical concentrations at the surface that it is forced into

forming molecules.

Table 4.7: The binding strength of oxygen per atom on the Pt147 nanoparticle with
half monolayer hemispherical coverage.

Facets (100) (111) (111) + (100)

Number of oxygen atoms 12 24 36

EB (eV) -0.860 -0.948 -0.759

For multiple oxygen coverage on the Pt147 nanoparticle, the binding energy per oxygen

atom is stronger on the (111) facets than on the (100) facets. The combined (100)

and (111) coverage calculations result in oxygen atoms that are bound even more weakly

than this. We cannot directly compare these calculations to the fully relaxed Pt309 single-

oxygen binding calculations in chapter5 because these coverage calculations have been

performed with constrained, non-relaxed nanoparticle geometries, although the relative

binding strengths are likely to be similar We can, however, directly compare with the

results in tables 4.5 and 4.6, which show that single oxygen atoms on (100) bridge sites

are bound more strongly than single oxygens on (111) HCP hollow sites.

We can see that the per-oxygen binding strength of oxygens on (100) bridge sites is only

0.04 eV different from that of single oxygen binding stength on (100) bridge sites. This

is probably because the oxygen atoms are 4.49 Å apart (see figure 4.15) and so they

experience a similar local chemical environment to the single oxygen case. As for the
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half monolayer coverage on the (111) facets only, these oxygen atoms are separated by

only 3 Å and so they are more likely to interact as this separation is only slightly more

than double the O2 bond distance we calculate with ONETEP. The increase in binding

strength does not appear to be a result of this interaction, however, as the oxygen atoms

are repelled from each other on the (111) facets (see figure 4.15). Instead, because the

oxygen atoms move into edge-bridge sites, which have a much stronger relative binding

strength than HCP (111) sites or on-facet (100) bridge sites, this is likely to be the reason

for the 0.19 eV increase in per oxygen binding strength.

If we take this into account, although we do not have binding data of oxygen atoms on

the edge sites of the Pt147 nanoparticle, we can compute relative quantities from data

on Pt309 in table 5.2, to assess the plausability of this theory. On Pt309, the binding

strength of single oxygen on (100) bridge sites is -1.405 eV. On (111) HCP hollow sites

it is -0.729 eV and on edge sites it is -1.763 eV. Using the fact that we have 18 edge

sites occupied after relaxation of the oxygen positions and 6 remain in HCP hollow sites,

we can compute a weighted average to predict the average binding strength from Pt309

numbers : (18× (−1.763eV ) + 6× (−0.729eV ))/24 = −1.505eV .

This number is not compariable with our calculations on Pt147 with hemispherical, half

monolayer coverage, but ratios of energies on the same nanoparticle may be compar-

iable with ratios of energies on a different nanoparticle. Taking the ratio of (100)

bridge site binding with (111) HCP hollow binding, using numbers from Pt309, we get

(−1.405eV )/(−0.729eV ) = 1.93, for example. If instead we use the weighted average

binding, we get a relative binding of (−1.405eV )/(−1.505eV ) = 0.93, with numbers from

Pt309. Taking ratio of the average (100) bridge site binding on Pt147 with the calculated

binding strength of oxygen for the relaxed (111) HCP hollow system (where 18 oxy-

gens have migrated to edges sites) we get (−0.860eV )/(−0.948eV ) = 0.91. This implies

that the effect of site migration of oxygen atoms has a much stronger effect on binding

strength than interaction with other adsorbed oxygen atoms.

Interestingly, if we apply the same reasoning and analysis to the system with oxy-

gens on (100) and (111) facets, the picture is different. The average binding strength

based on Pt309 numbers comes out as (12 × (−1.405eV ) + 19 × (−1.763eV ) + 5 ×
(−0.729eV ))/36 = −1.500eV and the strength relative to (100) with Pt309 numbers

is (−1.405eV )/(−1.500eV ) = 0.94. The strength relative to (100) with numbers from

table 4.7, calculated on Pt147 is (−0.860eV )/(−0.759eV ) = 1.13.

It is likely that this effect is related to the effect of coverage, because the simple weighted

average does not give a similar ratio. Geometric evidence for this being the case can be

seen in figure 4.16(b). The separation between oxygen atoms on the (100) bridge sites

and on edge-bridge sites is only 2.78 Å, which is the closest we have witnessed after the

relaxation of the geometries. Furthermore, these sites are both bridge sites with one

common platinum atom on the (111)–(100) edge of the nanoparticle (see figure 4.17).
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Figure 4.17: A closeup of panel (b) from figure 4.16, showing the bridge sites off the
same edge atom occupied by the two oxygen atoms (highlighted with a yellow line),

with respect to the facets highlighted in green (100) and pink (111).

In the original high coverage Pt147 nanoparticle in figure 4.14(c), the oxygen atoms which

started out on bridge sites (albeit on facet bridge sites: see figure 4.13(c)) with similar

geometry formed oxygen molecules. In this slightly different configuration, where one

of these bridge sites is on the edge, with probably a higher oxygen adsorption strength

(see table 5.2), and where there is a lower oxygen packing density, there may be a

higher barrier to forming oxygen molecules. The oxygens, are however geometrically

close enough to each other that they will interact in the calculation.

4.6 Conclusions

We have explored the binding of atomic oxygen to platinum nanoparticles of up to ∼1000
atoms using DFT calculations in ONETEP. We firstly explored the effect of binding

single oxygen atoms per nanoparticle and increasing the size of the nanoparticle. This

study was performed using the cuboctahedral sequence on nanoparticles cleaved from

the platinum FCC lattice, so to increase in size we included another shell of platinum

atoms on the cuboctahedron, advancing to the next cuboctahedral magic number. The

binding strength vs cuboctahedral magic number was explored and we also investigated
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the effect of popular descriptors for catalytic activity, such as the d-band centre approach

(the implementation of this in ONETEP is described in chapter 3), which we correlate

against the adsorption strength. We subsequently went on to explore the effects of oxygen

coverage on the Pt55 and Pt147 cuboctahedral nanoparticles to attempt to advance further

towards realistic conditions in our simulations.

Our study of oxygen adsorption strength with nanoparticle size indicated that as ex-

pected, the binding strength of oxygen decreases with nanoparticle size, converging on

the limit of oxygen adsorption on the infinite platinum slab (as calculated with Castep in

periodic boundary conditions). Due to the work we did on angular momentum projected

density of states in ONETEP we were also able to correlate these adsorption strengths

with d-band centre and obtained a linear trend as we expected based on the trends

reported in the literature by Nørskov, et al [58, 79].

The investigation of oxygen coverage revealed that with the half monolayer, hemispherical

oxygen coverage that we eventually settled on, oxygen tends to gravitate towards the

edges and lower coordinated sites in the nanoparticle and away from the centres of

facets. This effect correlates precisely with the site specific, single oxygen adsorption

study on Pt309 and experimental platinum nanoparticles which has been documented in

chapter 5.

The difficulty we faced in trying to find an oxygen coverage regime on the Pt147 nanopar-

ticle without oxygen molecules forming turned out to give further insight into oxygen

coverage mechanics. The O2 molecules form due to the constraints we impose on the

platinum atoms during the geometry relaxation, disallowing subsurface migration of the

oxygen and too high an initial packing density of oxygen on the surface. The break-

ing up of the relaxation in two: firstly a nanoparticle with oxygen solely on the (111)

facets, then the (100) facets, before combining the resulting oxygen coordinates onto a

nanoparticle with half monolayer, hemispherical oxygen coverage allowed us to see the

energetic effect of various binding types in finer resolution than we would have been able

otherwise. The effect of oxygen site migration appears to have the greater effect on per

oxygen binding strengths, with respect to oxygen-oxygen interaction on a nanoparticle,

particularly on the (111) facets. The (100) coverage was found to be low enough that

very little change was observed in average oxygen binding strength vs binding strength

of single oxygens to (100) bridge sites.

As further work we intend to run single facet oxygen coverage calculations using the

method described in figure 4.5(C), perhaps up to the Pt561 nanoparticle. Before this,

however, we will repeat the calculations in the former part of the work and run the

single oxygen adsorption study with PAW, but with full oxygen and platinum geometry

relaxation.





Chapter 5

Predicting the oxygen binding

properties of platinum nanoparticle

ensembles by combining

high-precision electron microscopy

& DFT

This chapter describes DFT and analysis work we have done in collaboration with the

Nellist electron microscopy group from Oxford materials. All of the experimental work

presented in this chapter was performed principally by Lewys Jones and Aakash Varamb-

hia, of the Nellist group. This work was published in Nanoletters in 2017:

Jolyon Aarons, Lewys Jones, Aakash Varambhia, Katherine E MacArthur, Dogan Ozkaya,

Misbah Sarwar, Chris-Kriton Skylaris, and Peter D Nellist. Predicting the oxygen-

binding properties of platinum nanoparticle ensembles by combining high-precision elec-

tron microscopy and density functional theory. Nano Letters, 17(7):4003–4012, 2017[8].

Abstract

5.1 Background and Pre-existing Work

In order to make systematic improvements to the activity of catalysts and to predict

new, better catalysts, we need ways to characterise the function of existing catalysts.

By making changes to their composition and atomic arrangement, the new candidates

can be tested using the same methods and potentially better catalysts can be found.

Ideally, this would also be a high-throughput technique so that many candidate structures

111
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could be probed, to find a good option more quickly. We opted to combine atomic

resolution microscopy of heterogeneous, platinum fuel-cell catalysts with large-scale DFT

calculations. This allows us to probe chemical properties and reaction desciptors at

the DFT level of theory for real, experimentally observed nanoparticle structures and

relate how these structures affect the applicability of the nanoparticles for their intended

purpose of catalysing reactions such as the oxygen reduction reaction at the cathode of a

proton-exchange-membrane fuel cell. This combination is ideal because we want to run

DFT on more than just model nanoparticles and we want to get more properties and

predictions out of the electron microscopy than just structures.

Real-world heterogeneous catalysts exhibit a wide range of active morphologies. To

understand how activity is related to structure, we can aim to first characterise an

ensemble of real nanoparticles to explain how the activity of this subset is distributed.

In terms of taking experimental measurements, there are several possible options. X-Ray

Adsorption Fine Structure (EXAFS) measurements are one possiblity which has been

used in previous work to provide illumination of the chemical environments present in

catalytic materials[180]. Such techniques provide inherently collective measurements, so

while large temporally-resolved[181] and spatially-resolved[182] studies of platinum and

platinum-based alloy fuel-cell cathode catalysts exist, they do not provide insight into

how the morphology of individual nanoparticles affects catalytic activity.

To resolve the structures of individual nanoparticles in 3D, the Nellist group at Oxford

University Materials performed high-throughput electron-microscopy measurements as

the experimental part of our collaboration. Application of this technique provided an

ensemble of real nanoparticles, measured from the real world which can be fed into metals

DFT methods in ONETEP meant for large numbers of atoms, to calculate the electronic

structures of the nanoparticle ensembles. Based on these DFT calculations we were then

able to parameterise an accurate and widely applicable descriptor of oxygen binding-

energy which can be applied to the full ensemble of nanoparticles which were obtained

by experimental means. This means that oxygen binding energy can be predicted with

less computational cost than if full oxygen binding calculations were performed with

DFT on every new experimentally measured nanoparticle. With such large ensembles of

nanoparticles and binding energy trends, we are then able to make further predictions

of which morphologies of nanoparticle approaches the optimal binding strengths.

The particular type of electron microscopy which the Nellist group used as part of this

collaboration is high-resolution Annular Dark-Field Scanning Transmission Electron Mi-

croscopy (ADF-STEM). The idea behind STEM is that a thin, electron-transparent

sample is placed between the electron gun and the detector. In bright-field imaging, the

Electron Energy Loss Spectrum (EELS) is measured and allows the experimentalist to

map a picture of the sample as the electron beam is scanned over the material. In order

to improve on the Z-contrast of bright-field imaging, Annular Dark Field (ADF) imaging
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can be used, where the electrons are not Bragg scattered, so unaffected by abberations

in the focussing apparatus[183]. This allows sharper, atomically resolved pictures to be

formed from samples of the catalysts, as projections along crystalographic azamuths.

To resolve fully 3D structures using the electron microscope, or to do so called electron

tomography would require very high electron doses, which would likely melt or move the

metallic nanoparticles unless they are infeasibly well anchored to the support and/or sta-

ble under temperature[184–187]. What the Nellist group have done with ADF-STEM is

to avoid tomography by aligning a crystalographic azamuth of the nanoparticle samples

with the beam direction. The columns of atoms are then resolved giving a 2D projection

of each nanoparticle[188, 189]. As the nanoparticles contain only a single atomic species

(platinum) the intensities of the columns corresponds to the number of atoms contained

within[190], and hence the technique is effectively 2.5D, giving the exact positions of the

columns and the number of atoms within each[9]. The approach is robust to abberations

in the electron probe [190–192], and requires solely a model for placing the columns of

atoms with respect to each other in the reconstructed 3D coordinates.

To determine where each column lies with respect to each other, some assumptions are

first made: the nanoparticles are made to have atoms only on FCC Pt lattice sites and

hence to be perfect crystalline samples. Further to this end, the columns are assumed

to be contiguous, so that no internal FCC lattice sites are allowed to be empty. By

using these simplifications, the columns can be relaxed in a simple pair-potential model,

keeping the atoms of the columns rigidly fixed with respect to all atoms in the same

column. The Nellist group use a Lennard-Jones potential for this purpose [9]. The

accuracy of this model has been verified through a master weighing curve (see Figure

5.3). Doing this reconstruction in software gives a particular advantage in throughput,

in that compared with tomography and statistical parameterisation approaches[193–195]

there is no need for reorienting the sample for separate measurements along different

crystalographic azimuths. This reorientation is slow as it is labour intensive on the

experimentalist.

Throughput is also an issue with DFT calculations. Cubically scaling plane-wave cal-

culations have been used for many years to make accurate and successful predictions of

reactions on metallic catalyst surfaces [80, 196–199]. The main limitation in these calcu-

lations is size. When modelling nanoparticles with such techniques, models are required

to reduce the size of the simulation cells and number of atoms. For instance, facets may

be modelled using periodic slab models with similar surface symmetry to the facet under

consideration. Alternatively, if the nanoparticles are produced as models by cleaving

shells of regular polyhedra (such as cuboctahedra, icosohedra or truncated octahedra)

from the bulk lattice then very small (sub-)nanoparticles may be produced which might

be run in full with conventional DFT methods. These models do not however encom-

pass the wide range of surface geometries which we have witnessed in the ensembles of
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nanoparticles measured experimentally by the Nellist group. For this reason, cutting-

edge reduced scaling techniques for DFT such as those available in the ONETEP package

[40] become very appealing with the promise to allow calculations on full (experimentally

measured) nanoparticles in the important size range for heterogeneous catalysis of 2-10

nm for the first time.

What we want to be able to do is to perform reduced scaling DFT calculations on metallic

systems with thousands of atoms with the same high level of accuracy as conventional

cubically scaling plane-wave DFT. Unfortunately, such methods do not yet exist for

metals, although linear-scaling FOE methods are a promising area of current research

(see chapter 3 and [11]), they do not presently have the accuracy to give the chemical

precision which we require. Low prefactor metals methods are, however, available today

in ONETEP, enabling the calculation of properties on metallic nanoparticles of up to

thousands of atoms[7]. These methods still rely on a cubically scaling diagonalization,

but the cost is greatly reduced to the point that it does not feature significantly in relative

timings until the regime of thousands of atoms.

With such techniques we are able, for the first time to run full quantum mechanically

accurate calculations of not only experimentally measured nanoparticles, but also of large

idealised, polyhedral structures to compare and contrast how deviation from regular,

faceted nanoparticles affects catalytic activity and adsorbate adsorption strength. This

is important because while a wealth of previous work has focussed on idealised structures

[200–202], we know that experimental structures have significant surface disorder which

may contribute to the inaccuracy of predictions made with faceted nanoparticle models

in DFT.

In this collaboration between Southampton University and Oxford University, we have

chosen the ORR as a benchmark to compare results obtained with experimentally mea-

sured and idealised structures. The reason for this was partly that this project was

funded by Johnson-Matthey, who are particularly interested in improving the ORR for

application at the cathode of proton exchange membrane fuel cells. In starting the collab-

oration, we hoped to be able to address, to some extent the relative catalytic activities of

various platinum nanoparticle morphologies, and assess this through the binding energies

of ORR intermediates, such as atomic oxygen on sites on their surfaces.

Catalytic activity is affected through the Sabatier principle by the binding strength of

ORR intermediates[80]. To maximise activity, the catalyst should bind O2 sufficiently

strongly to facilitate its catalytic bond breaking, but also the intermediates should be

weakly bound enough that they can dissociate and not block sites after reacting. Shao

et al use the binding strength of oxygen as a descriptor for activity[201], and we have

chosen to take the same approach. Previous work based on extrapolations from platinum

slab DFT suggest that the optimal binding strength of oxygen for maximum catalytic
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activity should be between 0.2 eV [76, 80] and 0.25 eV [58] weaker than the binding

energy of oxygen in the hollow site of a (111) platinum slab.

5.2 Experimental Measurements at Oxford Materials

The experimental work in this collaboration was performed by the Nellist group at

Oxford University Materials using a JEOL 3000F STEM machine, fitted with a Fis-

chione 3000 ADF detector. The samples were commerically produced ORR catalysts

of platinum nanoparticles on carbon-black support, manufactured by Johnson-Matthey

for PEM fuel-cells. The Nellist group prepared the commercial platinum nanoparticle

sample by grinding, followed by sonication for 30min in 99.99% pure ethanol, before

dropping it onto a holey carbon support grid. The loaded grid was baked for 12 hours at

80°C using a heating element fitted to a Fischione model 1020 plasma cleaner, where the

unit was only used for heating, not plasma cleaning. The distribution of nanoparticle

sizes can be seen in figure 5.3 or at low magnification in figure 5.1.

Figure 5.1: Example of the low-magnification images used for the sizing analysis.
Reproduced from [8].

The resolution of the images in figure 5.1 is not sufficient to resolve individual atomic

columns but is sufficient for nanoparticle sizing. Several tens of images were recorded

and automated contrast thresholding was used to identify the nanoparticle sizes. A total

of 1342 nanoparticles were sized for the population analysis. In addition to the size

histogram, HR-STEM images were recorded over as wider size range as possible using a
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JEOL ARM200CF fitted with a probe-aberration corrector. Before recording the high-

resolution images, an efficiency scan was made of the ADF detector with fixed amplifier

gain and offset conditions, which is shown in figure 5.2.

Figure 5.2: Example of ADF detector efficiency scan. Reproduced from [8].

The Nellist group determined that the mean nanoparticle size in the sample was 3.46

nm. In addition to statistics on the size distribution, atomically resolved STEM images

were taken of the whole range of nanoparticles. Techniques pioneered by Lewys Jones

in 2016 to minimise the sources of experimental error[203] from misalignment in the

sample and detector were also employed by the group in taking the measurements for

this collaborative work. The experiment was also optimised with respect to electron

dose to find the minimum dose which could reliably achieve the atomic column counting

sensitivity[204]. This dose was found to be 1.38 × 104e−Å−2 per frame which, for a

typical series of 20 frames, becomes 2.76 × 105e−Å−2 after integration. A 12 cm long

camera was used and rapid, successive image capture with a 90° scan-rotation between

successive frames was employed to minimize scanning drift and distortion and sample

damage[205–207].

Five samples of averaged frames from the time-series acquisition are shown in figure

5.4. By comparing sequential sets of averaged frames in this way, the Nellist group were

able to determine when hopping events took place and average the maximum number

of frames will imperceptible beam-damage. This method allows the maximum signal

to noise ratio (SNR), stopping before introducing spurious artifacts into the averages.

Maximising the number of frames in the averages in this way allowed the Nellist group
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Figure 5.3: This histogram was produced using 1342 seperate nanoparticle measure-
ments (mean diameter 3.46nm, median: 3.25nm) representative STEM images are inset
with their number of atoms labelled. The overlaid scatter plot (blue points) shows the
measured number of atoms (right axis) as a function of nanoparticle diameter. The
nanoparticles with 353 and 522 atoms are shown and their relative positions in the

population histogram are highlighted. Reproduced from [8].

to get atomic resolution pictures with the nanoparticles aligned with the beam along a

crystalographic azamith down to 2 nm in diameter.

Figure 5.4: Integrated frame-sets through the series acquisition set to equal greyscales.
These averages over four frames allow the STEM operators to determine how many
frames to average in the production atom-counting images, since the averages should
not go over hopping events. The averages should be over unchanged nanoparticles to
minimise artifacts in the averages from the beam. At the same time, to maximise signal
to noise ratio, the number of frames in the average should be maximised. Reproduced

from [8].

In the later average frames shown in figure 5.4 a some nanoparticle tilt can just be

observed in the thicker centre of the nanoparticle, hopping events have also occured in

the bottom right of the average of frames 13-16 as well as on the top left of the sample

in the average of frames 17-20. The production average in this case can be taken up to
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about frame 12 without introducing many artifacts from beam damage or effects from

the sample tilt.

For this work, the Nellist group managed to capture images of 13 nanoparticles with

sufficient accuracy to allow accurate atom counts, for which the reconstructions are

shown in figure 5.5. Many more were captured with lower accuracy, but sufficient to

measure mean nanoparticle diameter, which can be seen in the histogram in figure 5.3

together with raw averaged pictures which went into build the reconstructions.

Figure 5.5: Montage of all the experimentally determined models. Nanoparticles
labeled with an asterisk contain twin planes indicated in pink.

Atom-counts from the high-resolution frames are also plotted in 5.3 as a function of

nanoparticle diameter, where the fit follows a cubic relation. The measured pre-factor

of 35.21 is within a 0.2% agreement with the value of 35.25 expected for a bulk-like

number density of Pt atoms[208]. This confirms that the overall ‘nano-weighing’ of each
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nanoparticle is accurate, giving a good amount of confidence in the accuracy of the atom-

count assignments for each atomic column in the HR-STEM images. The precision of

these assignments is dictated by other factors including sample-tilt, scan-distortion[207]

and Poisson noise[204], though every effort was made by the Nellist group to minimise

these.

5.3 Nanoparticle Reconstructions

After the Nellist group captured the images in the STEM machine, image alignment

was performed using Lewis Jones’ Smart Align algorithm[207]. The data were then nor-

malised using the ADF efficiency scan using the Absolute Integrator software[9] following

the electron flux weighted (EFW) workflow approach [209]. A correction was made for

the presence of the amorphous carbon support[204], and the calculated scattering cross-

sections[190] were compared with image simulations performed using the µSTEM soft-

ware. The ADF STEM image simulations were calculated using the quantum excitation

of phonons (QEP) method[210] provided through the µSTEM software developed at the

University of Melbourne. The software is optimized to provide fast parallel calculations

on a graphical processing unit (GPU). An 8x8 Pt unit cell (viewed down either the <110>

or <100> zone-axis) was sampled on a 2048x2048 reciprocal mesh, using microscopes

settings to match those used experimentally. The thermal mean-square displacement of

the atoms was calculated using the Gao and Peng parameterisation[211] and a tempera-

ture of 300K. An average was taken over 30 atomic configurations generated using these

thermal displacement values. The scattering cross section was then calculated from these

simulated images for different crystal thicknesses by integrating over an atomic column

to create the simulation library.

The coordinates of the nanoparticle columns and atom counts along these columns were

then used to reconstruct 3D coordinate model using the energy minimisation method de-

scribed in [9] and [209]. As an initial configuration, the columns of atoms were positioned

relative to each with their midpoints all on a plane. The positions of the columns relative

to each other were then relaxed in the z (beam) direction. This relaxation was performed

using a Lennard-Jones model parameterised for platinum. A genetic algorithm was used

to search as wide as possible energy landscape; this is based on the work of Yu et al, but

using the experimental atom-count data rather than computationally expensive full-field

image matching[212]. Atoms were not allowed to move from one projected column to

another, nor were the columns allowed to move in x or y, as both of these movements

would be in violation of the experimental observations.

We do not claim that the reconstructed 3D geometries are unique. Other models fit

the experimental data, such as the trivial case of the z-direction mirror image, and

energetically indistinguishable structures that could have been found (such as an adatom



Chapter 5. Predicting the oxygen binding properties of platinum nanoparticle ensembles
by combining high-precision electron microscopy & DFT 120

on an otherwise clean facet moving a short distance to an equivalent position, as seen

in the DFT structure optimisation of Pt522). Instead, these models provide us with

experimentally determined, highly probable 3D structure coordinates to work with.

Figure 5.6: HR-STEM images (a) and accompanying hard-sphere models (b) for
experimental nanoparticles observed with atom-counts near to magic-numbers; models
are coloured by atom coordination numbers[9] and rotated to show their dominant
facets. Magic number cuboctahedra are shown for comparison rotated to the same
orientations (c). Population histograms (d) show the coordination number fractions as
a function of nanoparticle atom-count for both magic (left) and experimentally observed
nanoparticles (right). The 7, 8, and 9 coordination atoms corresponding loosely to
both (110) facets and edges between facets, and (100) and (111) surfaces respectively
are labelled, as well as the ‘bulk-like’ atoms of ≥10 coordination. The dashed area
represents the fraction of low-coordination adatom, corner and step sites. Reproduced

from [8].

The coordination number information from Figure 5.6 reveals some important results.
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Firstly, as nanoparticle size increases the proportion of bulk-like coordinations (≥10 coor-
dination) increases; a classic surface area to volume effect. Secondly, all the experimental

nanoparticles observed showed some surface roughness with significantly more atoms of

lower coordination than cuboctahedral nanoparticles of equivalent size. The dashed area

in Figure 5.6 represents the low-coordination sites (6 and fewer) and this is 20% of the

total atoms in the 353 atom nanoparticle, rising to more than 46% if we consider these as

a proportion of the surface atoms. Of the nanoparticles observed experimentally, some

contain a number of atoms close to a cuboctahedral ‘magic numbers’ (Figure 5.6).

5.4 Modelling with DFT

The energy minimisations, which were performed by Lewys Jones of the Nellist group,

with Lennard-Jones and genetic algorithms provided a computationally efficient but

somewhat simplified approach to determining the optimum structure for each nanopar-

ticle; as a result, these were followed by a more computationally intensive and fully un-

constrained geometry relaxation performed using the Sutton-Chen[213] force field within

the DL_POLY4 software[214]. During this relaxation, a small relaxation of the atomic

separations was observed around the periphery of the nanoparticles (RMS differences

between the initial and final structure of 0.1 Å). The same 0.1 Å RMS difference was

observed in the larger Pt522 structure but with the exception that an adatom on the

surface migrates to its nearest neighbour site: this single platinum atom moves 2.6 Å in

this relaxation. Due to these relatively small changes, we believe the experimental 3D

models from the STEM experiments to be reliable.

ONETEP with the Coulomb cutoff approach was used in calculating all the electrostatic

interactions in the energy functional.[156] The Coulomb cutoff approach allows us to

apply a spherical truncation to the electrostatic potential and provided that the sphere

covers all of the electronic density of the nanoparticle, the calculations are effectively

isolated in space (rather than having periodic boundary conditions. Other more rapidly

diminishing terms such as exchange-correlation are taken care of more simply though the

use of a moderate 15 Å vacuum gap on each side of the simulation cell.

We converged rigorously with respect to the radius of the Coulomb cutoff sphere and

found that the radius of the sphere should be

R = max (rij ) + 2rNGWF + a (5.1)

that is that the sphere is chosen to enclose the maximum separation of atomic centers

rij , plus two NGWF radii rNGWF and an extra constant distance a (set to 10.0 a0) to

avoid ringing as the operator is applied in momentum space.
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The core electrons were described by the Projector Augmented Wave (PAW) approach

with a PAW potential that treated the 5p, 5d, 6s, 6p electrons as valence, with a core

charge of 16. The PAW data was taken from version 1.4 of the GBRV set[174]. Using

NGWFs, which are local in space, leads to efficiency gains as compared with using a

plane-wave basis. An in situ optimisation of the NGWFs ensures that far fewer functions

are required for accurate calculations than atomic orbital basis set calculations and that

near-complete basis set accuracy is achieved as a result of the psinc basis set, which

is equivalent to plane waves. In addition, since the NGWFs are expanded in terms of

basis functions that do not depend on atomic coordinates, ONETEP does not suffer from

basis-set superposition errors, and can be systematically converged to the complete basis

set limit with a single parameter (kinetic energy cut-of).

12 NGWFs were used per Pt atom. A psinc kinetic energy cut-off of 850 eV was used

which ensured that the geometries were fully converged with respect to the basis set.

The NGWFs exist within localisation spheres so that they have a fixed maximum extent

in real space, the calculations were also converged with respect to this parameter and a

radius of 9.0 a0 was found to be sufficient.

A Fermi-Dirac occupancy smearing around the Fermi level, of 0.1 eV, was used. Using a

smearing function for the occupancies of the electronic energy levels is a common tech-

nique in DFT calculations of metallic systems. This approach allows for smooth conver-

gence towards the ground state energy minimum while affecting the system minimally[81].

Full geometry optimisations of the nanoparticles’ atomic degrees of freedom were per-

formed with the BFGS algorithm and forces were converged to a tolerance of 0.03 eV/

Å. Calculations on Pt (111) slabs were also performed with the same protocol. In this

case the slab consisted of 5 layers of Pt atoms, with 180 atoms of Pt in total. The Pt

slab geometry was obtained from geometry optimization of the slab and had a lattice

parameter of 3.913 Å. The calculations were done at the gamma point with a periodic

supercell (6x6) in the slab plane and open boundary conditions in the vacuum direction.

Owing to the computational demands of DFT, only the two smallest experimental models

containing 353 and 522 atoms were used for DFT calculations, as well as the cubocta-

hedral nanoparticles with 309 and 561 atoms which are of similar size to these two

experimental nanoparticles. These required significant supercomputer resources, and so

nanoparticles larger than this (> 2.8 nm diameter) were not studied here with DFT.

Electronic calculations were performed with the ensemble-DFT method[7] for metallic

systems in the ONETEP linear-scaling DFT program[40]. The Revised Perdew-Burke-

Ernzerhof (RPBE) exchange correlation functional was used[20].

Although only two cuboctahedral, and two experimental structures were computed, our

aim was to obtain descriptive information from the DFT calculations which can be

used to predict chemical properties across the observed ensemble of nanoparticles. To

achieve this, we use the approach described in chapter 3.3.2, where we first map the
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local electronic-density calculated on an isosurface of the total electrostatic potential of

the nanoparticle (0.0 Eh has been used throughout this work). Figure 5.7 shows these

maps for the two smallest experimental nanoparticles and their closest cuboctahedral

analogues.

We also performed (111) slab calculations to validate the use of fixed metal atom positions

(relaxed oxygen positions) versus fully relaxed positions. These points are also shown on

Figure 5.10 and lie within the spread of the oxygen-relaxed data.

Table 5.1: Comparison of oxygen-relaxed and fully-relaxed binding energies on a
platinum slab model.

Site
Gen. Coord.

No.
Binding Energy

Oxygen
Relaxed
(eV)

Fully
Relaxed
(eV)

Atop (111) on slab 7.5 0.310 0.178
Hollow (111) on slab

FCC
6.95 -0.751 -0.982

Hollow (111) on slab
HCP

7.5 -0.472 -0.628

By comparing the electronic charge density maps between the experimentally measured

and cuboctahedral nanoparticles, it is immediately apparent that the experimental struc-

tures show a far greater number of sites of low electrondensity compared to their cuboc-

tahedral counterparts. Atoms with lower coordination numbers exhibit lower electron

density values on their surfaces (as sampled on the electrostatic isosurface) due to the

well-known Smoluchowski effect[215].

The Smoluchowski effect results in a dipole moment, with negative side closer to the

surface which has the effect of reducing the workfunction on the low-coordinated atoms.

The dipole moment is caused by differences in bonding between the adatom and the

surface atoms; the lowest energy state is reached by forming bonds with states close to

the Fermi level and the substrate has more of these states than an adatom, through

containing more atoms. Because of this, valence charge density flows from the adatom

towards the substrate, causing a smeared, spread out electronic charge density profile

above the adatom and a net dipole moment. This effect describes the observed[216–218]

spreading out of electronic charge density at sharp, surface corrugations and defects re-

sulting in loss of electron density above low coordinated sites (see Figure 5.13). This

is particularly visible when contrasting the relatively high electronic charge density on

facets of the cuboctahedral nanoparticles with the lower density values on the edges and
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Figure 5.7: Coordination number and DFT analyses for the smaller (left) and larger
(right) nanoparticles studied. Hard-sphere structural models were calculated from the
ADF data and are coloured according to their coordination number; these are shown
rotated to various viewing directions to highlight their morphology. Alongside the struc-
tural models, the DFT results showing isovalue surfaces of total electrostatic potential
at 0.0 Eh colourised by the local electronic-density. Size analogue cuboctahedra DFT

results are shown for comparison.
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even more electron deficient vertices. Also, when examining the experimental nanopar-

ticles, very high-density sites are visible under vacancy defects[219], where the atomic

centre has high coordination number, and very electron deficient isosurface sites can be

seen on adatoms with low coordination number.

The reduced work function for the low coordination atoms that results from the Smolu-

chowski effect can be considered together with the computed total charges of these atoms,

which, rather paradoxically, show that the actual electronic charge that can be appor-

tioned to the low-coordinated atoms is larger than the high-coordination atoms. Thus,

the low-coordinated atoms are overall electron-rich with a lower work function, so they

are stronger binding sites for electronegative ligands such as O. This can be verified from

the results of Figure 5.10(a) where it can be seen that as the value of the electron density

on the isosurface decreases in magnitude as the computed binding energy of O atoms on

these sites increases.

The results from the electronic charge map descriptor are compared with the other

descriptors we have investigated, namely oxygen binding-energies at various sites (which

can be directly related to catalytic activity), the d-band centres[220] (see figure 5.8), and

partitioning of electronic charge on atoms.

5.4.1 Calculated d-band Plots

The electronic density isosurfaces also highlight a great diversity of surface sites between

the cuboctahedral and experimental models. To evaluate this systematically an algo-

rithm was developed to identify all the possible atop, bridge, and hollow sites across the

surface of the nanoparticles, described in chapter 3, and implemented as a stand-alone

program (this will be deposited in the ‘Utilities’ section of www.onetep.org). The results

of this are illustrated for the Pt309 model in figure 5.11. Using this code, the generalised

coordination number (gCN) of every possible site for an oxygen adsorbate was calculated

(using the formula from Calle-Vallejo et al.[10]) for every one of the experimental and

magic-number atomistic models. The results for the three smallest nanoparticles are

shown in Figure 5.9.

The histograms in Figure 5.9 reveal several insights. Firstly as expected, the Pt309 cuboc-

tahedral model nanoparticle exhibits only a small number of unique gCN oxygen binding

sites; a total of 25 unique-sites describe every possible symmetry-related adsorption site,

and a systematic DFT study is relatively tractable. For the experimental Pt353 of similar

size, the surface roughness leads to a far greater number of unique site geometries, 273

unique sites in total. The largest of the experimental models in this work exhibits ≈8,300
surface adsorption sites with 539 unique geometries.

Depending on future investigation that will be performed, many useful quantities can

be extracted from these histograms. It is easy to extract, for instance, ‘the fraction of
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Figure 5.8: The angular momentum projected density of states (d-channel) for the
experimental and cuboctahedral nanoparticles. The lines correspond to increasingly
coordinated atoms being included in the LP-DOS sum, up to all atoms in the system
(coloured as in Figure 5.7). The plots converge with increasing coordination contri-
bution towards the surface, then when considering the 12-coordinated internal atoms,

there is a jump towards a bulk-like density of states.

hollow-sites out of all sites’ or ‘the number of total oxygen-binding sites with a gCN

greater than 8’ against nanoparticle size. In this work, having access to a large collection

of experimental nanoparticle models of increasing size and of adsorption site diversity,

we do not seek to study each of the many thousand unique adsorption sites, but rather

to extract some single parameter to compare nanoparticles across the ensemble.

While the colour coded isosurface representations provide a visual qualitative descriptor

of the strength of O binding, quantitative values can also be extracted across the ensem-

ble of nanoparticles measured, using the approach described in chapter 3. Figure 5.10

shows the oxygen binding-energies across a variety of sites from a Pt309 cuboctahedral

nanoparticle and also platinum slab models (as computed with DFT calculations) both

as a function of the electron density value on the potential isosurface, and as a function of

their generalised coordination number[221]. Further models for the adatom variants used

for the calculations leading to Figure 5.10 are shown in figure 5.13). Electronic-density

values, for each binding site (whether atop, bridge, or hollow) are used as descriptors of
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Figure 5.9: Histograms of the generalised coordination numbers of all possible surface
atop, bridge and hollow oxygen binding sites, for the cuboctahedral Pt309 and the
experimental Pt353 and Pt522 nanoparticles. For all plots, the number of total sites are

indicated and the number of unique sites.

O binding strength, providing linear relationships for each binding-energy as a function

of electron density value. Information about how these values are extracted, for each

type of site (atop, bridge or hollow). One advantage of such electronic descriptors is that

they are expected to apply also to alloyed nanoparticles, or particles with built in surface

strains, which we intend to explore in future work.

The DFT O adsorption energies were computed according to the following equation

Ebind = ENP+O − ENP −
1

2
EO2 , (5.2)

where ENP is the total energy of the bare, adsorbate-free nanoparticle in vacuum fully

relaxed with DFT. ENP+O is the total energy of the nanoparticle with a single oxygen

atom adsorbed onto the site being probed, and EO2 is the total energy of an oxygen

molecule in isolation fully relaxed with DFT. To maximise the throughput of unique

sites evaluated in a reasonable computation time, the Pt positions in the nanoparticle

are kept fixed in their vacuum optimised geometries while each O atom is fully relaxed.
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Figure 5.10: Calculated oxygen binding-energies for various oxygen-relaxed atop,
bridge and hollow sites from both a cuboctahedral Pt309 nanoparticle, and from slab
calculations, as a function of electron density (a) and gCN (b). The gCN values are
calculated using the formula from Calle-Vallejo et al.[10]. Black diamonds represent

the results of fully-relaxed (oxygen and platinum) calculations.

To validate this approximation, results were compared with slabs using full relaxation.

In these calculations, the degrees of freedom of all atoms in the three surface layers

were free to relax due to the presence of the oxygen, along with the oxygen degrees of

freedom. The bottom two layers remained constrained to be bulk-like. The change in

oxygen binding strength, observed when allowing the platinum atoms to relax due to

the presence of the oxygen (Figure 5.10, black diamonds), is small relative to the energy

difference between sites of differing character and well within the scatter of the data.

Using the fixed platinum constraint is therefore justified and allows us to probe a far

greater number of sites in a reasonable computational time frame. Results from the

cuboctahedra and the slab calculations are shown together in Figure 5.10.

Binding-energy calculations for oxygen at various sites (Figure 5.10a) shows that oxygen

binds most strongly to sites predicted to have low electron densities. Similarly, surface

atom d-projected DOS, resolved according to the coordination number of surface atoms

shows that reducing the coordination number shifts the d-band centre to higher (more

positive) values. This is in accordance with the d-band model of Nørskov[197] which

suggests enhancements of binding strength as the d-band centre becomes more positive.

From our calculations the Pt(111) binding-energy (at a hollow FCC site on a slab) was
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Table 5.2: Tabulated DFT Site Data.

Site
Type

Short
Code Location gCN e- Density

(e/Å3)
Binding

Energy (eV)
Atop A1 (111) on slab 7.50 0.0430 0.310

A2 (111) mid facet Pt309 6.83 0.0312 -0.590

A3 (100) mid facet Pt309 6.67 0.0325 -0.521

A4 Edge site Pt309 5.33 0.0200 -1.065

A5 Vertex site Pt309 3.33 0.0056 -1.704

A6 Adatom on (100) Pt309 3.00 0.0050 -1.725

A7 Adatom on (111) Pt309 2.50 0.0024 -1.638

A8 (100) facet Pt309 6.58 0.0320 -0.723

A9 Edge site Pt309 5.00 0.0180 -0.964

Bridge B1 (100) mid facet Pt309 6.61 0.0590 -1.405

B2 (111) mid facet Pt309 5.56 0.0600 -0.913

B3 (111) on slab 6.94 0.0920 -0.411

B4 (100)-(111) Edge site
Pt309

4.94 0.0510 -1.763

B5 (111) facet Pt309 4.44 0.0500 -1.124

B6 Edge site Pt309 3.83 0.0350 -1.620

Hollow H1 (100) Pt309 6.46 0.0960 -0.881

H2 (111) HCP Pt309 6.68 0.0830 -0.729

H3 (111) FCC Pt309 5.41 0.0740 -1.213

H4 (111) FCC on slab 6.95 0.1100 -0.751

H5 (111) HCP on slab 7.50 0.1130 -0.472

H6 (111) HCP edge Pt309 5.45 0.0780 -1.329

H7 (111) HCP vertex Pt309 4.05 0.0630 -1.471

found to be -0.739eV; taking this, and the weaker binding predicted to be desirable from

the literature[58, 76, 80], yields an optimum chemical activity with an oxygen binding

energy of -0.52eV.

Oxygens are only found to bind strongly (more negative binding energy) to atop sites for

gCNs lower than ≈3.5. At higher coordination, we predict that the bridge and hollow

sites do have some strong binding sites. Unlike the simple geometric coordination num-

bers of the metal atoms shown in Figure 5.6 & Figure 5.7, the generalised coordination

number of the oxygen-adsorbate sites (Figure 5.9 & Figure 5.10) capture a more subtle

weighted average of the neighbouring atoms. The quality of the generalised coordination

number as a descriptor of oxygen binding-energy has been shown to offer a powerful
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tool for catalyst evaluation[10, 200, 219, 221], and has been exploited in the engineer-

ing of defective extended surfaces, but not so far for nanoparticles[219]. The approach

has also already been reported to yield reliable results across different sizes of metallic

nanoparticles[10, 219].

From the data in Figure 5.10b) we fit a linear trend which allows us to extrapolate

from the individual, and computationally expensive, DFT calculations and onto the

many thousand unique sites across the experimental observations, and predict a binding-

energy for every surface site see section 3.4 of chapter 3 for more details. So-called

“volcano plots” (see chapter 1 for more details) that follow from the Sabatier principle of

catalyst activity, whether from different materials[80, 222] or for platinum surface sites

of different coordinations[219], show that pure platinum surfaces always bind oxygen

slightly too strongly (desorption limited). At present is it not possible for us to calculate

computationally the chemical-activity of every site across the particle surface due to the

sheer number of sites and a lack of computer resources. Here, as a useful metric of

overall particle catalytic activity, we consider the fraction of surface sites within 0.2 eV

of the optimum binding strength of -0.52 eV, and this fraction can be rapidly calculated

using the linear fit in Figure 5.10b). While this may not explicitly yield a quantitative

relationship to chemical-activity, it does offer a rapidly calculated metric for comparing

any given particle with reference to the rest of the ensemble. This ‘fraction of sites within

0.2eV’ (F∆<0.2eV) metric is more subtle than simply counting the fraction of {111} sites,

is sensitive to particle-size, shape and roughness, and so can be used to evaluate the

comparative catalytic performance of nanoparticles from a real catalyst sample.

To summarise; from high-quality ADF images and computationally efficient relaxations,

we have the 3D locations of the metal atoms, the locations of all possible oxygen binding

sites, and the generalised coordination numbers of all those sites. Combining this with

the DFT master-trend from Figure 5.10(b), we are able to calculate a F∆<0.2eV for each

observed particle. This site-identification and master-trend scaling is rapidly calculated,

even for very large particles, and is shown in Figure 5.14 for both the experimental

particles and for thermodynamically predicted Wulff shapes (truncated cuboctahedra),

for cuboctahedra and quasi-spherical comparators.

Using the α-hull code described in Chapter 3 the positions and natures (atop, bridge or

hollow) of all possible oxygen binding sites were identified.

From these data the generalised coordination numbers of all sites were calculated as

shown in the histograms, see figure 5.9

Once the α-hull has been found, we can use it to find the values of electronic density on

the electrostatic potential isosurface as described previously (after expressing all potential

isosurfaces with respect to the same reference potential value) at the binding sites. This

is done by taking the pre-computed position of the adsorbate binding site and finding

the vector perpendicular to the α-hull which passes through this point. The intersection
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Figure 5.11: Illustrations of all possible atop, bridge and hollow oxygen binding sites.

point of this vector with the isosurface of the electrostatic potential at the chosen isovalue

is then used to find the value of electronic density at this point on the electrostatic

potential isosurface. This value of electronic density is the electronic descriptor value at

this binding site.

0 0.02 0.04 0.06 0.08 0.1 0.12
Electron Density (e/Å3)

2

3

4

5

6

7

8

G
en

er
al

is
ed

 C
oo

rd
in

at
io

n 
N

um
be

r

atop

bridge
hollow

Figure 5.12: Plot of generalised coordination number as a function of electronic
density for the atop, bridge and hollow sites.



Chapter 5. Predicting the oxygen binding properties of platinum nanoparticle ensembles
by combining high-precision electron microscopy & DFT 132

0.00 0.05
Electronic Density (e/Å3)

Adatom on
(111)

Adatom on
(100)

Generalised Coordination number

Electronic Descriptor

Figure 5.13: Structural ball model (left), the generalised coordination numbers (mid-
dle), and isovalue surfaces of total electrostatic potential colored by electronic density

(right).

5.5 Results

For the Wulff-like truncated octahedral nanoparticles we see a monotonic curve domi-

nated by simple size effects. Even though, by definition, all the models with truncated

octahedral symmetry have similar {111}/{100} face area ratios, at small diameters the

excess of low coordinated edges and vertices results in a smaller F∆<0.2eV. This F∆<0.2eV

falls to zero for truncated octahedra below 1.5 nm and is consistent with the data re-

ported by Shao et al. for their nanoparticles smaller than 2 nm[201].

The Nellist group was unable to observe experimentally, nanoparticles smaller than 2 nm

on-axis in the HR-STEM; in addition to these being only a small fraction of all present,

even when found these are easily damaged under the electron beam. A similar trend is

observed in the cuboctahedral series, though with the sharper tips of such models yielding

very low-coordinated sites, the F∆<0.2eV falls to zero for all models below 2.0 nm.

The F∆<0.2eV for the experimentally observed nanoparticles was found to always be lower

than for the truncted octahedral nanoparticles but higher than the cuboctahedra. That

is to say that the experimental results are all bounded by one of these two geometric
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Figure 5.14: Fraction of surface sites within 0.2eV of optimal binding (F∆<0.2eV) for
the 13 experimentally observed particles, and truncated-octahedra, cuboctahedra and

quasi-spherical reference particles. Reproduced from [8].

models. From this we might conclude, that while it is generally valid to use perfect-

model geometric-series for simplified surface studies, the true experimental surface will

always reveal more subtle details. From the structural models (Figure 5.6), and the

gCN histogram analysis (Figure 5.9) we observe both an increase in roughness compared

with Wulff shapes, and also a general lowering of the surface gCN. Because the lowest

coordination sites are so strongly over-bound, rough adatom sites effectively poison the

surface locally blocking otherwise high-coordination sites below. The downward shift of

the experimental curve from the Wulff trend for the largest and smallest nanoparticles

encompass the various topographic-effects, reducing the F∆<0.2eV for these models. In

contrary, relative to the cuboctahedral models, we see the opposite effect where F∆<0.2eV

is now improved in comparison to the perfect models (consistent with the increased

fraction of {111} facets observed). Both these relative results indicate that caution must

be exercised when comparing experimental chemical activity measurements to geometric

simulations, something we hope to study in a future work.

As a further comparison, a series of 1600 randomly generated single-crystal quasi-spherical

models were also generated and the F∆<0.2eV evaluated. These models were cleaved from

a FCC platinum bulk lattice with only atoms within a radius threshold from the origin

kept. This radius was made larger to create models with larger diameter and to form the
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series. Because of the discrete atomic nature of the spherical models, the surfaces are

not perfectly smooth but rather a mixture of small facets and rougher high-index sites.

The F∆<0.2eV reaches most closely the truncated octahedral (Wulff) trend for nanopar-

ticles in the size range of 2.7-3.5nm; with these models (with their increase fraction of

{111} facets) sitting higher than the quasi-spherical trend but still falling short of the

Wulff models. The location of this optimum is consistent with the industrially optimised

synthesis process (determined from trial and improvement), and the specific-activity

observations previously reported[201]. For the very largest experimentally determined

nanoparticle structures, these appear more spherical, suggesting that they are further

from their thermodynamic optimum shape and their shape is more kinetically limited,

and indeed the F∆<0.2eV approaches the quasi-spherical trend. From inspection of Figure

5.5, it can be seen that the larger nanoparticles do not show a commensurate increase in

{111} facet area and have become more spherical.

Two twinned nanoparticles were measured experimentally at 3.7 nm (1811 atoms) and

at 3.8 nm (1969 atoms). While one of these was well below the wider trend, as only

two of the thirteen nanoparticles in this study contained twins, a wider study of twinned

nanoparticles would be required before making any specific conclusions about these.

Finally, the cuboctahedral series of nanoparticles show the lowest F∆<0.2eV of any se-

ries, and underestimate the F∆<0.2eV at 3.5 nm compared to the experimental result by

the same amount that Wullf-shapes overestimate this. Figure 5.14 then highlights two

important points; firstly presumptive model geometries alone should not be relied upon

when studying expected chemical behaviours, and secondly, that if they are then catalyst

synthesis optimisation can be misinformed.

5.6 Conclusion

TIn conclusion, the three-dimensional structural models presented here, with up to 5000

atoms each, can each be calculated from experimental data in only a few hours on

a standard desktop computer[9]. These structural models can be used as inputs to

reduced-scaling DFT calculations to yield the electronic structure of the experimental

nanoparticles. It is observed that increased roughness, compared to the equilibriumWulff

structures, lead to more sites with lower electron density and therefore higher O-binding

reducing activity. Using a DFT-generated binding-energy master-trend calibration plot,

an estimate for the ‘fraction of sites within 0.2eV’ (F∆<0.2eV) can be calculated in only

a few seconds for an ensemble of experimentally determined structures. This would be

computationally unfeasible to do by DFT calculation of individual adsorption energies

for each of the sites of each nanoparticle. By leveraging the accuracy of large-scale DFT

calculations on small models, via the generalised coordination calibration relation, we can

gain insight into a far wider ensemble of atomic models than would otherwise be possible.
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This high-throughput approach agrees well with other reported experimental[201, 222]

and simulated[221] findings for this system and offers the potential to accelerate the

development of better tuned catalysts for the ORR. Similar calibrations for other species

have been reported and may lead to the optimisation of other systems[223]. In this work,

the generalised coordination descriptors were evaluated for pure metal nanoparticles.

While these may not be expected to be simply transferable to doped or alloyed cases,

the electronic descriptors can be; these come at an increased computational cost with

a single point energy calculation needed for each nanoparticle structure that needs to

be studied but are nevertheless dramatically less demanding than having to do a DFT

calculation of adsorption energy for each distinct site. In the future, the F∆<0.2eV metric

seems well suited to future extension from gCN to electronic-density, exploiting other

experimental inputs, such as changes in binding-energy arising from composition[80] or

atomic displacement (strains)[220]. The current rapid pace of progress in experimentally

mapping composition and strain in the STEM merits revisiting this concept in the near

future.
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Table 5.3: Additional surface sites probed by DFT. Short-codes correspond to those
in Table 5.2 below.

B1 – Bridge on {100} facet B2 – Bridge on {111} facet

B4 – Bridge on {100}-{111} edge B5 – (111) Edge:Edge

B6 – (111) Edge:Vertex

H1 –
Hollow
on {100}
facet

H2 – Hollow on {111} HCP site H3 – Hollow on {111} FCC site

H6 – {111} Hollow near Edge H7 – {111} Hollow near vertex



Chapter 6

Electronic annealing Fermi Operator

Expansion for DFT calculations on

metallic systems

The work presented in this chapter, specifically the “AQuA-FOE” method has been

described in a manuscript which we have submitted to JCP, which may be published at

some point either before or after the examination of this thesis :

Jolyon Aarons and Chris-Kriton Skylaris. Electronic annealing fermi operator expansion

for dft calculations on metallic systems. The Journal of Chemical Physics, Submitted

23-Aug-2017[224].

Abstract

Density Functional Theory (DFT) calculations with computational effort which increases

linearly with the number of atoms (linear-scaling DFT) have been successfully developed

for insulators, taking advantage of the exponential decay of the one-particle density

matrix. For metallic systems, the density matrix is also expected to decay exponentially

at finite electronic temperature and linear-scaling DFT methods should be possible by

taking advantage of this decay. Here we present a method for DFT calculations at finite

electronic temperature for metallic systems which is effectively linear-scaling (O(N)).

Our method generates the elements of the one-particle density matrix and also finds the

required chemical potential and electronic entropy using polynomial expansions. A fixed

expansion length is always employed to generate the density matrix, without any loss in

accuracy by the application of a high electronic temperature followed by successive steps

of temperature reduction until the desired (low) temperature density matrix is obtained.

We have implemented this method in the ONETEP linear-scaling (for insulators) DFT

code which employs local orbitals that are optimised in situ. By making use of the

137
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sparse matrix machinery of ONETEP, our method exploits the sparsity of Hamiltonian

and density matrices to perform calculations on metallic systems with computational

cost that increases asymptotically linearly with the number of atoms. We demonstrate

the linear-scaling computational cost of our method with calculation times on Palladium

nanoparticles with up to ∼13,000 atoms.

6.1 Introduction

To compute a density matrix in Density Functional Theory (DFT) calculations, an oc-

cupancy function is applied to the Hamiltonian matrix. In DFT calculations for metallic

systems, the Mermin finite electronic temperature formulation of Kohn-Sham DFT is

employed. In this formalism the density matrix can be obtained by diagonalizing the

Hamiltonian matrix, applying a sigmoidal function, such as the Fermi-Dirac function

to the energy eigenvalues and then using the Hamiltonian eigenvectors to transform

these occupancy eigenvalues back into the original space of the Hamiltonian. This direct

approach is, however, dependent on a cubically scaling diagonalization, so it becomes

rapidly intractable as the number of basis states increases.

In the case where the Hamiltonian matrix is very large and sparse, many operations,

including matrix products and even inversions may be performed in a much reduced

computational complexity [40]. In such cases, it could be beneficial to avoid the eigende-

composition completely by forming a matrix function analogue of the scalar occupation

function which constructs a density matrix, given a Hamiltonian matrix argument. The

sigmoidal function is likely to be non-linear, so an approximation to it can be made based

on linear operations (matrix products, for instance) which operates on a pre-defined do-

main. Such methods are often known as Fermi operator expansions (FOE) [128], when

the Fermi-Dirac function is used as the occupancy function, though they are generaliz-

able to any occupancy smearing function[92]. The functional form of the expansion is

also flexible, with options including Taylor expansions, among various improved alterna-

tives. Such methods[92, 119, 127–129, 225, 226], have been developed with the aim that

the pre-factors involved in computing the resultant matrices are lower. The prefactors

are still, however, large enough to make FOE methods impractical for systems involving

fewer than tens of thousands of electronic states (bands or molecular orbitals) to solve

for.

In this work we present a new method for DFT calculations on metallic systems where

a fixed expansion length of the FOE is always employed, without any loss in accuracy.

This is achieved by the application of a high electronic temperature followed by succes-

sive steps of temperature halving until the desired (low) temperature density matrix is

obtained via a quenching approach. We call this method the Annealing and QUenching
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Algorithm FOE or AQuA-FOE and we have implemented it in the ONETEP [40] linear-

scaling (for insulators) DFT code which employs local orbitals that are optimised in situ

(Non-orthogonal Generalised Wannier Functions, NGWFs) and provide large basis set

accuracy in the calculations. Making use of the sparse matrix machinery of ONETEP

[227–229], our method exploits the sparsity of Hamiltonian and density matrices (which

is expected to decay exponentially for metallic systems at high temperatures [46]) to

perform calculations on metallic systems with reduced computational cost. Our method

is expected to be linear-scaling with the number of atoms, for large enough systems, and

we attempt to reach this limit in this work, with timings for self-consistent iterations

on metallic nanoparticles with up to ~13,000 atoms. An integral part of our method

is a sparse matrix algorithm for finding the chemical potential and for calculating the

electronic entropy, as these are also essential to finite temperature DFT.

In sections II-IV we describe the general theory behind our new method without the com-

plexities of non-orthogonal bases and sparse matrices. These are introduced in sections

VI and VII. In section VII we provide numerical validation by comparing calculations

against the standard diagonalisation-based EDFT approach of ONETEP on metallic

nanoparticles and then explore the timings of AQUA-FOE on Pd nanoparticles ranging

from ~2,400 to ~13,000 atoms. We finish with some conclusions and thoughts for future

applications of this method.

6.2 Kohn-Sham DFT in the Mermin Finite Temperature

Formulation

For calculations of metallic systems, we must work with electrons with fractional occu-

pancy distribution. This can be achieved by using the finite temperature Kohn-Sham

equations [230] inspired by the Mermin formulation of DFT[81]. In this prescription,

we minimize the Helmholtz free energy of the interacting electronic system, which is

expressed as:

A[T, {εi}, {ψi}] =
∑
i

fi 〈ψi| T̂ |ψi〉+

∫
υext(r)n(r)dr

+ EH [n] + Exc[n]− TS[{fi}],
(6.1)

this consists of the kinetic energy of the non-interacting electrons, expressions for the

external potential energy and Hartree energy of the electrons and the unknown exchange-

correlation energy expression. The entropic contribution to the electronic free energy

−TS[{fi}] is included.
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To calculate the occupancies of the electronic states with finite temperature, the Fermi-

Dirac (F-D) distribution can be used

f(ε, µ, β) =
1

1 + e(ε−µ)β
. (6.2)

Comparing this with the logistic function;

l(x) =
1

1 + ex
, (6.3)

it can be seen that the F-D function can be written in terms of the logistic function

where x→ (ε− µ)β. This is useful because the logistic function can, in turn, be written

in terms of the hyperbolic tangent. This representation allows the use of trigonometric

identities to simplify computations, as we will see later.

l(x) =
1

2

(
1 + tanh

(x
2

))
. (6.4)

The finite temperature formulation of Kohn-Sham density functional theory results in

occupancies of states which follow the F-D distribution. The energies of the orbitals are

the eigenvalues of the Hamiltonian matrix which is often non-diagonal. Their occupan-

cies, which follow the F-D distribution are the eigenvalues of the density matrix, which

is also non-diagonal and it is essentially the matrix F-D function of the Hamiltonian.

If we have a Hamiltonian H, then its eigenvalue expansion is:

H = QΛQ†, (6.5)

where Q is a unitary matrix of eigenvectors, and Λ is a diagonal matrix of eigenvalues.

If we know the largest absolute eigenvalue (|ε|max = α), we can say that the eigenspec-

trum of H lies in the interval [−α, α]. As the occupancy function will be applied to

all eigenvalues, any approximation to it must be accurate to some tolerance within this

interval.

In this work, we show that in order to compute efficiently an FOE-type expansion, the

range of energy eigenvalues can be scaled to reduce its spectral radius and then the result-

ing density matrix can be quenched to have the occupancy eigenvalues corresponding to

the original energy eigenvalues. This is effectively an annealing and quenching procedure

on the electronic temperature of the system and is done using solely matrix multipli-

cation and without need for any matrix diagonalisation or inversion. So this approach,

which we have named the Annealing and Quenching Algorithm for FOE, or AQuA-FOE

could result in linear-scaling computational effort if the matrices involved have sufficient

sparsity and sparse matrix storage and multiplication algorithms are employed.
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Before getting to this we will describe another approach to compute an FOE-type ex-

pansion in an efficient way, where the range of energy eigenvalues can be partitioned into

three intervals. These intervals will map into occupancies of 0, 1, and values between 0

and 1, which is where the FOE expansion will take place. We will then describe why this

method which we call the Padé approximant and Partitioning FOE, or PaPa-FOE was

put on hold for further work, and we have prioritised the advancement of the AQuA-FOE

method instead.

Whichever FOE method is used to generate density matrices from Hamiltonian matrices,

the expansion is valid only within a given energy eigenvalue interval. For accurate results,

a large number of terms in the expansion must be used, such that the expansion is valid

over the full range of energy eigenvalues of the system.

6.3 Eigenvalue subspace partitioning

One observation we can make of the eigenvalue spectrum of density kernels with Fermi-

Dirac state occupancies is that after ∼ ±15 smearing units in the argument of the

distribution function, that the eigenvalues are less than 10−16 away from 1 and 0. This

means that we only need an FOE which represents well the distribution between -15 and

15, outside of this range, we could find the matrices which have these eigenvalues using a

conventional technqiue leading to idempotency such as purification or other linear scaling

methods for insulators discussed in chapter 1.

To do this we would need to partition the eigenspectrum of Hamiltonian matrices without

diagonalising. This can be achieved through the use of projection matrices, projecting

out eigenvalues above and below threshold. The projection matrix can be created using

a purification technique and then applied by multiplying by the Hamiltonian matrix

to partition the Hamiltonian eigenvalue spectrum. The full method we have devised is

presented in the following section.

6.3.1 Eigenvalue Subspace Partitioning with reduced prefactor

The Hamiltonian matrix is firstly shifted so that the trial chemical potential is at zero

and scaled into units of smearing widths,

H′ = (H− µI)β, (6.6)

(see fig 6.1.a). The next step is to perform a step function of H′

Pµ = θ(−H′), (6.7)
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(see fig 6.1.b) which can be computed using a recursive matrix multiplication based ap-

proach such as the stable Newton-Schulz sign function iteration of Chen and Chow[231].

The resulting Pµ matrix is idempotent and has the correct eigenvalues (occupancies) of

the zero temperature density matrix. The matrix Pµ does not, in general, follow the

F-D distribution around µ, as it is idempotent. However, this matrix has the correct

eigenvalues of the finite temperature density matrix beyond the interval [−c, c] of eigen-
values of H′ for a certain cutoff threshold c. This is because outside this interval, the

F-D function converges to 1 and 0 to machine precision.

The Pµ matrix can be scaled and shifted to produce the signum matrix Gµ with eigen-

values gj ,

Gµ = sgn(H′) = I− 2Pµ, (6.8)

(see fig 6.1.c) which allows for the calculation of the absolute Hamiltonian (the matrix

with eigenvalues as the absolute values of those of the Hamiltonian). This operation

is achieved by multiplying the Hamiltonian from the left by the signum matrix (see fig

6.1.d)

Habs = GµH
′. (6.9)

A projector into the eigenvalue domain below µ+ c is produced by performing a second

purification on the absolute Hamiltonian at µ+ c (see fig 6.1.e),

Pµ+c = θ(c β I−Habs), (6.10)

likewise, the projector into the eigenvalue domain above the µ + c threshold can be

constructed trivially (see fig 6.1.f) as

Rµ+c = I−Pµ+c (6.11)

A matrix with eigenvalues equal to those of the absolute Hamiltonian matrix for those

of its eigenvalues below the µ+ c threshold and equal to zero for eigenvalues above this

threshold can be calculated by multiplying by the former projector,

H|ε|<c = HabsPµ+c, (6.12)

(see fig 6.1.f). A series expansion of the electronic smearing distribution of any type

(for instance Chebyshev, contour integral, recursive, etc.) is then applied to H|ε|<c ,

which effectively applies the function to the matrix with absolute eigenvalues of H′ in

an interval of 2c about µ.

K|ε|<c = tanh(H|ε|<c), (6.13)

(see fig 6.1.g). By applying this procedure, the expansion of the smearing function need
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only be computed in the positive argument domain. At this point, the matrix (6.13) has

the absolute eigenvalues of the density matrix in the [−c, c] energy range. To correct

the sign of the eigenvalues within this interval, a multiplication by the signum matrix is

performed (fig 1.h)

K−c<ε<c = (I + K|ε|<cGµ)/2. (6.14)

The contribution from the outer domains (those eigenvalues corresponding to energy

eigenvalues outside of the interval [µ− c, µ+ c]) can be included by forming

K = K−c<ε<c + (Rµ+cGµ + I)/2. (6.15)

(See fig 1.i) The advantages of this approach are that: (1) fewer terms are required in the

series expansion of the smearing function because we are only considering the positive

domain, and (2) there is a fixed upper bound on the number of terms at a given machine

precision as determined by the chosen interval [−c, c].

6.4 A Padé approximant based Fermi operator expansion

A Padé approximant is a rational approximation to a function F (x) where the numerator

and denominator are power series expansions truncated after m and n terms, respectively:

F (x) ≈ [m/n]F (x) =
q(m)(x)

r(n)(x)
, (6.16)

in common notation. Padé approximants are desirable because they converge much

more rapidly with additional expansion terms than other power series expansions [232].

In this work, we will be forming the Padé approximant of the Fermi operator as a matrix

function.

Our Padé expansion of the Fermi function (which is equivalent to a tanh function) is

centred at the chemical potential. We can find the numeric range away from the chemical

potential that a matrix Padé approximant with certain m and n values can accurately

represent tanh(x) on a particular computer system, by computing the error for the scalar

functions as below:

‖[m/n]tanh(α)− tanh(α)‖ = ε[m/n](α), (6.17)

and noting that in 64bit (Intel x86_64) double precision floating point arithmetic, the

coefficient (denoted c[m/n]
i ) of the highest term that is representable exactly is the 13th,

then

ᾱ→ max(α) ∈ R | ε[13/13](α) < t. (6.18)

where t is some threshold, typically set to the square root of machine ε [233].
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Figure 6.1: The effect on the eigenvalues of the Hamiltonian matrix of applying the
steps of section 6.3.1. The sorted eigenvalue profile of a typical Hamiltonian matrix are
shown in (a), with energy on the y axis and the chemical potential µ highlighted at
the dotted line. In (b), the eigenspectrum of a projection matrix (in the same basis as
the Hamiltonian matrix) with eigenvalues of 1 corresponding to those eigenvalues in the
Hamiltonian matrix beneath the chemical potential. A signum matrix is produced from
(b) by subtracting I/2 and multiplying by −2; its eigenspectrum is shown in (c). This
matrix can then be multiplyed by H to give the absolute Hamiltonian matrix, which is
a matrix in the basis of the Hamiltonian, but with absolute values of the Hamiltonian
matrix’ eigenvalues (d). Another projection matrix is calculated from the Hamiltonian
matrix, but this time at µ + c (e). This matrix is then used to send eigenvalues of
the absolute Hamiltonian matrix to zero (project them out) if they are above µ + c
in energy, shown in (g). A Fermi-Dirac distribution up to at least µ + c can then be
applied to this matrix using the series expansion, giving the result in (h). Finally the
resultant matrix can be summed with the additive inverse of the projection matrix in
(e), which is shown in (f) and then multiplied by the signum matrix (c) to assign the

correct sign to the eigenvalues.

In the case where |α| > ᾱ([m/n]), we need to scale the eigenspectrum of H by some factor,

chosen to be a power of 2, so that we can recover the desired result with the hyperbolic

double angle formula; the minimum scaling is given by:

ceil

(
|α|
ᾱ(d)

)
= n. (6.19)

At this point, we have

(I + e−H
′/2n−1

)−1 =
1

2

(
I + tanh

(
H′

2n

))
. (6.20)

To recover the desired result, we need to apply the hyperbolic double angle formula,

tanh(2H′) =
2tanh(H′)

tanh2(H′) + I
, (6.21)
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n − 1 times. This does not, however, involve computing multiple inverses, as multiple

angle formulae can be constructed, for example, for 4H :

tanh(4H′) =
4tanh3(H′) + 4tanh(H′)

tanh4(H′) + 6tanh2(H′) + I
. (6.22)

Obviously, when we have computed X = tanh((H − µI)β/2n) using the Padé approxi-

mant, it would be greatly advantageous to minimise the number of further applications

of the Padé approximant, inverses and matrix products, in this order. The Padé approxi-

mant, at the 13th order expansion, requires 12 matrix multiplications and one inverse and

is thankfully only needed once per evaluation. The iterative inverse algorithm (Newton-

Schulz-Hotelling) can be easily initialised with the result from the previous step, resulting

in a great reduction in the number of matrix multiplications required.

For example, if n = 8 was required to keep the eigenspectrum of the Hamiltonian within

the range that the Padé approximant can reproduce, the procedure would be as follows:

Calculate Padé approximant of scaled matrix,

X = Padé
[13/13]
tanh ((H− µI)β/28), (6.23)

use the n = 8 multiple angle formula to get the solution to the non-scaled problem

(tanh(H− µI)),

tanh(H− µI) =
8X7 + 56X5 + 56X3 + 8X

X8 + 28X6 + 70X4 + 28X2 + I
, (6.24)

and finally map back on to the logistic function (eqn.6.4).

6.4.1 Combining eigenvalue partitioning with Padé Fermi operator ex-
pansion

In practice, when calculating the finite-temperature density matrix, we use a combination

of the Padé and the eigenvalue partitioning approaches. While the eigenvalue partitioning

technique admits any expansion for the central eigenvalue domain, we find the Padé

scheme to be efficient and comparable in terms of matrix multiplications to the Chebyshev

expansion with divide and conquer [92].

When combining the Padé and eigenvalue partitioning in such a way, there is no need use

a hyperbolic multiple angle formula except if one requires machine precision. In the case

of 64bit precision, a 13 term Padé approximant combined with a triple angle formula are

enough to give accurate eigenvalues up to the point of maximal and minimal occupancy

in the interval with fractional occupancies. Outside of this interval, the (trivial) fully

occupied and unoccupied eigenvalue intervals are handled separately, as they are created

by the eigenvalue partitioning technique.
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6.5 Issues with the Eigenvalue Partitioning approach and

Electronic quenching

What we have found in practice, when applying our implementation of the PaPa-FOE

technique described above is that our projection matrices are not sufficiently accurate to

get good accuracy. When we multiply the Hamiltonian matrix by a projection matrix

P, and multiply the Hamiltonian matrix by (I − P), we would expect that the sum

of the two resultant matrices has the eigenvalues of the original Hamiltonian matrix.

Instead, we find that the eigenvalues are perturbed, particularly around the partition.

This problem is excentuated when we apply functions to the eigenspectrum partitions.

Since we are dealing with non-linear functions, when we apply the FOE to the central

partition Hamiltonian matrix and sum this density matrix of the central partition with

the density matrix for the partition with full occupancy, some eigenvalues go above one.

The situation on the zero occupancy can be worse, leading to some eigenvalues going

negative! For this reason we opted to create another scheme, which is similar in spirit,

but does not suffer from the same issues with accuracy.

6.5.1 Electronic quenching

We propose that rather than increasing the number of terms for systems of increas-

ing eigenvalue spectrum width (which is exacerbated in low electronic temperature), a

fixed-length FOE is used which is valid on a preordained interval, but the electronic

temperature is increased by a sufficient multiple of the target temperature so that the

full spectrum of the hot-electron Hamiltonian lies within the interval of validity of the

FOE. Then, the low (target) temperature density matrix can be recovered, as we will

show in this section.

The Hamiltonian matrix is firstly shifted so that the trial chemical potential is at zero

and scaled into units of smearing widths,

H′ = (H− µI)β . (6.25)

The scaled and shifted Hamiltonian matrix is then annealed by dividing by a sufficiently

large power of 2:

Hhot = H′/2n, (6.26)

so that its spectrum lies on the desired interval as the temperature of this “hot" Hamil-

tonian goes from β = 1/T to βhot = 1/(2nT ). The exponent, n can be determined

as

n = ceiling (log2(ρH′/c)) , (6.27)
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where ρH′ is the spectral radius (largest absolute eigenvalue) of H′ and c is the domain of

energy eigenvalues within which the FOE is valid. ρH′ can be determined either by using

the Gershgorin circle theorem or using a power series iteration, as we do in this work.

The chosen FOE is then applied to Hhot to obtain Khot. Then Khot is annealed n times

to obtain the density matrix corresponding to the low (target) temperature Hamiltonian

matrix at β. To do this, the density matrix is firstly transformed to have eigenvalues of

the hyperbolic tangent function:

Rhot = 2Khot − I , (6.28)

or in other words the range of the eigenvalues of the density matrix is scaled from [0,1]

to [-1,1]. To this, the matrix analogue of the hyperbolic double angle formula can be

applied:

Rnew =
2Rold

(I + R2
old)

. (6.29)

This formula is first applied with Rold = Rhot and repeated n times to give the desired

density matrix. With each iteration of the above formula the temperature of the density

matrix is halved. The target temperature density matrix can then be recovered as

K = (R + I)/2. (6.30)

It is worth noting that to apply equation 6.29 requires an inversion or to compute the

solution to a linear equation. To avoid this, we take a Chebyshev expansion of equa-

tion 6.29 which requires 37 terms to reach machine precision, although accuracy of 10−9

can be obtained with only 25 terms and this can be evaluated with as few as 12 ma-

trix multiplications using the divide and conquer approach of Head-Gordon [92]. We

should note here that the Chebyshev expansion of the hyperbolic double angle formula

that we discuss here is different from the Chebyshev expansion of the Fermi-Dirac dis-

tribution which can be used to compute Khot. It is interesting to note that here we

use a recursion in the temperature scaling of the FOE, which is itself computed using

a Chebyshev expansion, while Niklasson et al proposed a recursion method directly for

the FOE[226, 234]. Niklasson’s recursion method could be used instead to compute the

high temperature FOE.

For a given chemical potential, the scaling in terms of number of matrix products to

apply this algorithm is given by:

NMP = NFOE(c) + nNHI, (6.31)

where NFOE is the number of matrix products required to compute the FOE, NHI is the

number of matrix products required to compute an application of the hyperbolic double
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angle formula as a Chebyshev expansion. The number of matrix products required to

apply the FOE depends on c, but in practice this is constant and we always use a value of

15 smearing widths (βhot) as there is no need to change this aside from optimization of the

total number of matrix multiplications. This is a compromise between the FOE length

and number of hyperbolic double angle formula evaluations. The hyperbolic double angle

formula is always evaluated with a fixed number of terms in the Chebyshev expansion

and hence, a fixed number of matrix multiplications. So, the only variable in the total

number of matrix products is the spectral width of the Hamiltonian matrix, ρH′ .

As the number of atoms increases, if the material is homogeneous, we do not expect

the spectral width of the Hamiltonian matrix to increase as it asymptotically reaches

the bulk value. However, as an extreme upper bound, if the spectral width were to

increase linearly with system size, then the amount of matrix multiplications required to

apply this algorithm would only increase logarithmicaly, according to equation 6.27. In

practice, this increase will be somewhere between zero and logarithmic. So, with a non-

increasing, or logarithmically increasing number of matrix multiplications for an increase

in system size (number of atoms), if the matrix multiplication can be made to be linear-

scaling with dimension, as is the case for sparse matrices in the ONETEP linear-scaling

DFT program for sufficient sparsity, then the whole algorithm may be viewed as having

linear-scaling computational cost with system size.

6.6 Combining Hamiltonian Annealing and Quenching with

a Chebyshev Fermi Operator Expansion

The Chebyshev FOE, as described originally by Goedecker and Teter [115] is achieved

by taking a Chebyshev expansion of the 1D Fermi-Dirac function:

{ai} = DCT

(
1

1 + ecos(xi)

)
, (6.32)

where xi = 2(((ei−µ)β)−e0)/(eP−e0)−1 so that the range of equispaced ei covers at least

the interval of the negative to positive spectral radius of the Hamiltonian matrix (e0:eP ).

The interval is scaled and shifted to cover the useful interpolative range of Chebyshev

polynomials (−1 : 1). DCT() refers to the Discrete Cosine Transform operation. {ai} are
the Chebyshev expansion coefficients. The density matrix is formed by taking Chebyshev

polynomials of the Hamiltonian matrix and summing using the weights, ai:

K(H′) =
P∑
i=0

aiTi(H
′), (6.33)
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where {Ti} are the Chebyshev matrices of the first kind, of degree i. The Chebyshev

matrices are in the standard form:

T0(H′) = I

T1(H′) = H′ (6.34)

Tn+1(H′) = 2H′Tn(H′)−Tn−1(H′).

This assumes that either H′ is in an orthogonal basis or it has been orthogonalised

prior to application. If non-orthogonal basis functions are used, then H′αβ is a covariant

quantity and Kαβ should be contravariant. This can be achieved by raising one index

of the Hamiltonian matrix, H′αβ either by multiplying by the inverse overlap matrix

or solving SγαH′αβ = H′γβ , to make it contra-covariant. In so doing, the Chebyshev

products are all well defined and the resultant Kα
β matrix is also contra-covariant. To

make the density matrix fully contravariant in the form necessary for computing the

electronic density, the column index can be raised by, for instance multiplying by the

inverse overlap matrix on the right, or solving another linear matrix equation – this is

explored in more detail in section 6.8.

This way of performing the expansion requires approximately P terms for a given accu-

racy, where P is a function of the smearing width, β, the required accuracy 10−D and

the Hamiltonian spectral width, ρ. We use the improvement to the original Chebyshev

series of Goedecker, proposed by Liang and Head-Gordon in 2003; this uses a divide and

conquer approach to re-sum the terms of a truncated Chebyshev series[92]. Using this

scheme reduces the cost of a Chebyshev representation of the Fermi operator to O(
√
P )

number of matrix multiplications. In the best case scenario of a local orbital method

where sufficient matrix sparsity leads to a cost of matrix multiplication being O(N) this

would lead to a cost per SCF iteration proportional to O(N3/2).

In order to reduce this cost from O(N3/2) to O(N) we limit the width of the FOE to

the constant interval [−c, c] as we mention in section 6.5. We apply this FOE to a high

temperature Hamiltonian, with a spectral radius less than c. In effect this means that

we keep on raising the temperature with Hamiltonian spectral radius while keeping the

FOE expansion length small and independent of ρH′ . Then the quenching formula of

equation equation 6.29 is applied n times which is proportional to spectral width of the

system by equation 6.27 so the overall scaling per SCF iteration is O(N log2(ρH′/c)).

To avoid the inversion in equation 6.29, we also evaluate it using a Chebyshev expansion

of equation 6.29, however this always has a constant number of terms (fixed length) for

a given accuracy because the eigenvalues of tanh are already in the interval [-1:1].
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6.7 Electronic Entropy

Since we have a finite electronic temperature, the energy which is minimised to find the

ground state of a system is the Helmholtz free energy. Therefore, an electronic entropy

term must be calculated.

The entropic contribution of the ith state is well known, as we are dealing with non-

interacting, finite temperature Fermions:

si = filn(fi) + [1− fi]ln(1− fi), (6.35)

on a state-by-state basis where fi is the occupancy of the ith state. So, if the eigenvalues

of the Hamiltonian matrix and hence the occupancies were easily accessible, then calcu-

lating the entropy would be simply a matter of using (6.35) for every occupancy, fi and

then summing them to get the contribution to the entropy:

S =
∑
i

si . (6.36)

In the case where we are performing a Fermi-operator-expansion and eigenvalues are not

available, another approach must be taken. In this case we aim to calculate an entropy

matrix, in the same basis as the density matrix, with eigenvalues si.

This can be achieved in a number of ways but conceptually, using a matrix logarithm is

the simplest method. Analogously to (6.35), the entropy matrix can be calculated as:

S = tr[K ln(K) + [I−K] ln(I−K)] , (6.37)

which concentrates all of the computation to the matrix logarithm function and the

entropic contribution to the free energy can be written as

− T
∑
i

si = −TS. (6.38)

The difficulty arises when attempting to compute the matrix logarithm, two of which

must be performed to evaluate (6.37). Firstly, in order to calculate a matrix logarithm,

the matrix argument must be positive definite, but K necessarily has eigenvalues close

to zero by construction, which may be indistinguishable from zero on a finite precision

computer.

In order to overcome this limitation, those eigenvalues closer to zero than some pre-

defined threshold can be projected out, with the justification that the corresponding

eigenvalue from the pre-multiplicative matrix, K or I −K, would have zeroed out this

very large negative number.
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Performing this operation adds a good deal of computation onto an already expensive

calculation, as two extra step function projection operations must be performed for every

electronic entropy calculation.

Computing the matrix logarithm is a very computationally demanding operation in itself.

One way to calculate a matrix logarithm is by using the Mercator series

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · , (6.39)

which can be applied to a general matrix A by linearity:

ln(A) = ln(I + X) = X− X2

2
· · · (6.40)

Doing this in practice is ill-advised due to the poor convergence properties of the series.

An alternative proposed by Kenney and Laub[235], which has been rigorously explored

and revised in [236] is to use an inverse scaling and squaring approach. This is roughly the

scaling and squaring algorithm for calculating matrix exponentials with the operations

in reverse order.

The steps in the inverse scaling and squaring algorithm are firstly to calculate B =

A1/(2m), where m is sufficiently large that the result B is arbitrarily close to an identity

matrix. ln(B) can then be approximated by an nth order Padé approximant to ln(1 +x)

as

ln(B) ≈ pa[m/m](B− I), (6.41)

so that the final result may be calculated as:

ln(A) = 2mln(B). (6.42)

Applying this algorithm, presented by Higham[237] costs (12 + 2m − 2/3) matrix mul-

tiplications, which may be a huge expense, depending on the cost of matrix products.

An alternative to this approach is given in Hale, et al [238] which computes the loga-

rithm in terms of inversions, via a contour integral. This approach may be less expensive

depending on the cost of inversion.

An alternative to the direct approach of calculating (6.37) with matrix logarithms is to

find a function which approximates (6.37) with reduced computational overhead.

One possible form, which we propose here, is:

s(x) ' ax2 +
b

c+ dx− dx2
− e− ax = y(x), (6.43)

where a = 1.96056, b = 0.0286723, c = 0.114753, d = 1.98880 and e = 0.249860.

This is an inverse quadratic with a quadratic fit to the error subtracted from it. This
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Figure 6.2: The two entropy approximations suggested in this work are overlayed in
(a) and the relative errors shown in (b)

form approximates the entropy expression, and it has a mean squared error of 1.0×10−6

for each si approximated. A further refinement can be made to this by fitting to the

error of this expression with another Padé approximant, such as

s(x) ' y +
a′y + y4 + b′y3 + c′y2 − d′

e′ − h′y − b′y2 − k′y3
= z(y), (6.44)

where a′ = 0.01548792, b′ = 1.1542349, c′ = 0.3418894, d′ = 4.964447 × 10−6, e′ =

0.04446540, h′ = 1.806607, k′ = 5.0611405 and where y are values calculated with

(6.43). This form approximates the entropy expression, and it has a mean squared error

of 1.0× 10−8 for each si approximated.
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6.8 Implementation in Terms of Non-Orthogonal Local Or-

bitals in the ONETEP code

A major problem in applying the techniques described in the previous sections is that the

orthogonalization of the Hamiltonian matrix prior to application of the expansion method

is costly and severely limits the sparsity of the orthogonalized Hamiltonian matrix. This

has the knock-on effect that each of the matrix products in the expansion method is

more expensive than using non-orthogonal matrices and the feasibility of the method is

limited to systems where the full or almost full N2 Hamiltonian matrix may be stored

in memory.

We aim to implement our approach within the framework of the ONETEP [40] linear-

scaling (up to now for insulators) DFT code which is based on a representation of the

molecular orbitals in terms of a set of non-orthogonal strictly localised orbitals {φα}
which are optimised in situ [172]. These localised orbitals are called Non-orthogonal Gen-

eralised Wannier Functions (NGWFs) and are expressed in a basis set of psinc functions

[239] which are equivalent to a plane wave basis set. In the conventional diagonalisation-

based EDFT method implemented in ONETEP [7] the covariant Hamiltonian matrix

Hαβ in the representation of the NGWFs is optimised in the inner loop (the EDFT loop)

of a two nested loop procedure, while the NGWFs are optimised in the outer loop using a

conjugate gradients approach. ONETEP constructs the density matrix as an expansion

in the NGWFs as:

ρ(r, r′) =
∑
αβ

φα(r)Kαβφ∗β(r′), (6.45)

whereKαβ is the generalized occupancy of the NGWFs, i.e. its eigenvalues are {fi} and is

known as the density kernel. In ONETEP EDFT, the free energy functional is optimized

firstly with respect to the Hamiltonian matrix, {Hαβ} while keeping the NGWFs {φα}
fixed. The orbital contribution to the free energy can then be minimized by optimising

a projected Helmholtz functional,

A′[T; {φα}] = min
{Hαβ}

A[T; {Hαβ}; {φα}] (6.46)

with respect to {φα}. In conventional EDFT the density kernel can be generated explic-

itly as a function of the eigenvalues εi (obtained by diagonalisation) of the Hamiltonian

as:

Kαβ =
N∑
i

Mα
if(εi)M

†β
i , (6.47)

where the eigenvalues (band occupancies) of the finite-temperature density kernel, Kαβ

are given in terms of the F-D smearing function and the matrix M contains the eigen-

vectors of the Hamiltonian eigenproblem:
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HαβM
β
i = SαβM

β
i εi. (6.48)

Such eigenvalue based approaches will always scale as O(N3) as they employ matrix

diagonalization algorithms.

The aim of this work is to replace the diagonalisation, the building of the density kernel,

the chemical potential search and the computation of the entropy in EDFT with our new

AQuA-FOE method. Up to now ONETEP has used internally fully covariant and fully

contravariant tensors but for our work here we will follow the contra-covariant approach

suggested by Gibson, Haydock and LaFemina [240]. This involves working directly with

the Hamiltonian in the natural representation, which is the contra-covariant Hamiltonian

matrix, or Hα
β .

Hα
β can be used in place of the H in any of the matrix products described and the result

is tensorially correct, and as both matrices have the same eigenvalues, the resulting

contra-covariant density matrix has the correct eigenvalues. The standard contravariant

density matrix can then be formed by either multiplying on the right by the inverse

overlap matrix to raise the index, or by solving

Kα
β = KαγSγβ, (6.49)

for Kαγ .

The method of Gibson, et al works by assuming that the Hamiltonian is a local operator,

and that when applied to a state, the value of the result at position r depends only upon

the value in a small localization region surrounding the state at position r. This must

be the case because when applying the Hamiltonian operator, the contra-covariant form

is the correct matrix represntation of the operator and this preserves the locality of the

states. Hence, Hα
β is a sparse matrix, if Hαβ is sparse even if Sαβ is not. Using this

logic, the authors suggest solving the matrix equation

SγαH
α
β = Hγβ, (6.50)

for Hα
β , without constructing the inverse overlap matrix, Sγα. This can be done in

practice approximately using the same locality arguments as above by taking the sparsity

pattern of the resultant contra-covariant Hamiltonian matrix as the subspace of local

interactions: that is to construct small matrices for each column of the resulting matrix

from the non-zero elements of Hγβ on the mask:

Mi = viv
T
i , (6.51)

where vi is the column vector of nonzero elements from the ith column of Hαβ . This
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“nonzero elements of the ith column squared matrix problem" can be solved to give the

ith column of the resultant matrix:

(i)S (i)
γα Hα

β = (i)Hγβ, (6.52)

and then the elements are put back into the sparsity pattern to produce the approximate

H
(A)α

β .

The accuracy of the approximation can be checked trivially by using

∆ = SγαH
(A)α

β −Hγβ. (6.53)

and the norm of ∆ gives an estimate for the error. This can be minimized by increasing

the size of the localization regions of the local functions.

In practice, we use the same sparsity pattern for Hα
β as we do for Hαβ , as was suggested

in Gibson et al. In the calculations we have performed so far, this has proved adequate

based on the error estimate given by taking ||∆||F , but if this error ever proved too large,

we have the option to reduce the sparsity of Hα
β by multiplying the radii of the spherical

localization regions by a value > 1.0 and constructing a more accurate sparsity pattern

from these more delocalized regions.

The sparsity pattern of the contra-covariant Hamiltonian matrix is only one of the con-

siderations for sparsity, however. We must also pay close attention to the sparsity pattern

of the density matrices. In most linear-scaling DFT packages, the single particle density

matrices are kept sparse through either a geometric cutoff between atomic centres, or a

truncation by estimating the absolute magnitude of matrix elements and setting to zero,

those elements which are smaller than the threshold.

In this work, we have opted to use an alternative method based on the nature of the FOE-

type approaches. Since we perform a power series expansion, we opt to limit the sparsity

of the contra-covariant density matrix to be no more dense than the Hα
βH

β
γ term. In so

doing, we limit the accuracy of small systems, but calculations on these systems are likely

to be possible with conventional methods, or with dense matrices so the compromise is

worth it. In large systems, where resulting sparsity may be adequate for linear or near-

linear scaling, care must be taken to ensure that an appropriate electronic smearing

is used, as the error induced by the sparsity is reduced when raising the electronic

temperature.

We find that for a truncated octahedral Al2406 nanoparticle that electronic temperature

has a large effect on the achievable accuracy (fig. 6.3). At 2.5 eV smearing, we reach

a maximum error of about 10−4 in the elements of the density kernel , whereas if we

increase to 25 eV or 250 eV, we get maximum errors of 10−6 and 10−8, respectively.
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Figure 6.3: A comparison showing the sparsity pattern of the Hα
βH

β
γ matrix (above)

and the sparsity pattern resulting from a 2.5 eV smeared density kernel calculated with-
out truncation and then having a truncation applied to its elements which are smaller
than a threshold of 10−4 (below). These are calculations on a truncated octahedral
Al nanoparticle with 2406 atoms (4 NGWFs per atom). The axes labels in this figure
represent matrix row and column indices and the number beneath each of them shows

the number of non-zero elements in each.

6.9 Chemical potential search

When applying the Fermi-Dirac distribution at a particular electronic temperature to

the eigenvalues of a Hamiltonian matrix, the chemical potential µ is found trivially by

applying the Fermi function to all of the eigenvalues with a trial value of chemical po-

tential µ0, summing all of the results of these applications. The resulting scalar (number

of electrons) is compared with the desired number of electrons. This process is repeated

with a modification to the chemical potential until the difference between calculated and

desired number of electrons is below some arbitrary threshold.

This approach is equivalent to using a root finding method on the following equation,

with the chemical potential µ as the independent variable:

∆Ne = Ne −
N∑
i=1

1

1 + e(εi−µ)β
, (6.54)

where Ne is the target number of electrons, N is the size of the eigenspace, εi are the

eigenvalues of the Hamiltonian matrix, µ is the chemical potential and β is thermody-

namic temperature β = 1/kT .

This direct approach is efficient if the eigenvalues are known. However, when performing

a Fermi-operator-expansion (FOE) in the non-diagonal space, the eigenvalues are not

known, but the number of particles can still be calculated as the trace of the density
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matrix. A similar approach could then be used:

∆Ne = Ne − trace

(
I

I + e(H−µI)β

)
, (6.55)

where H is the Hamiltonian matrix (which is assumed to be orthogonal or be contra-

covariant as described in section 6.8) and I is the identity matrix of dimension N . The

problem with this approach is that each evaluation of the density matrix is a relatively

expensive operation, which one would not want to perform many times per SCF iteration.

A solution can be found by noticing that a density matrix calculated at a particular

chemical potential can be modified to be at a different chemical potential at a lower

cost than recalculation. This is possible because of the correspondence between the

Fermi-Dirac function and the hyperbolic tangent function:

I

I + e(H−µI)β =
1

2

(
I + tanh

(
(H− µI)β

2

))
. (6.56)

With this in mind, hyperbolic, trigonometric identities may be employed to compute

useful quantities; for instance,

tanh(x± y) =
tanh(x)± tanh(y)

1± tanh(x)tanh(y)
, (6.57)

or for matrices, where ρH,µ,β is the density matrix calculated for a Hamiltonian, H, at a

chemical potential µ, then

tanh

(
((H− µI)β)

2
± β∆µI

2

)
=
ρH,µ,β ± tanh(β∆µ

2 )I

I± tanh(β∆µ
2 )ρH,µ,β

. (6.58)

Provided that I±tanh(β∆µ
2 )ρH,µ,β can be inverted efficiently, this method should involve

far less computation than recalculation of the density matrix.

If the matrix is inverted with a Newton-Shulz-Hotelling algorithm, then each time the

root-finding algorithm calls for a new trial chemical potential, then the inverse can be

initialised with the inverse from the previous trial point saving significant calculation

effort.

What we do in practice is to actually to use a further Chebyshev expansion of equation

6.58. The coefficients for this expansion have to be computed every time a new ∆µ is

used, but this is a relatively inexpensive operation. When computing the expansion we

take the scalar form of equation 6.58 as:

q(x) =
x+ c

1 + xc
, (6.59)

on the domain [-1,1], where c is β∆µ/2. We then evaluate the Chebyshev expansion of

ρH,µ,β using these coefficients, again using the divide and conquer algorithm of Liang
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and Head-Gordon, et al. to provide us with the density matrix at the updated chemical

potential, ρH,µ+∆µ,β .

We can go further than this, however, and use derivatives with respect to the chemical

potential to speed up the root search. The first derivative of the density matrix with

respect to chemical potential, is:

∂ρ

∂µ
= −β

4

(
I− ρ2

)
, (6.60)

because
d(tanh(x))

dx
= sech2(x) = 1− tanh2(x). (6.61)

Furthermore, because the trace operator commutes with the differential operator, we can

write:
∂Ne

∂µ
= −β

4

(
1− trace(ρ2)

)
. (6.62)

As Ne(µ) is a monotonic function (when using the Fermi-Dirac distribution), the root

finding ought to be simple with Newton’s method. It is complicated slightly, however,

because Ne(µ) has multiple stationary points which increase in breadth with Hamiltonian

eigenvalue-spacing and decreasing temperature.

Using Newton’s method at one of these points would send the next trial point off to

±infinity, so a safe-guarded version is used in practice, where a trust-region is defined

and if Newton’s method is going to send the next point outside of these bounds, then a

bisection step is performed.

6.10 Validation tests

In ONETEP, we have implemented the Annealing and QUenching Algorithm - FOE

(AQuA-FOE) approach that we present in this paper for calculating the density matrix

from a given Hamiltonian matrix and also to calculate an electronic entropy matrix. This

type of FOE is applied at every step of the ensemble-DFT (EDFT) approach, which is

used as the electronic energy minimization technique.

To test the AQuA-FOE method we have carried out numerical comparisons against

the conventional diagonalisation-based EDFT method which is available in ONETEP

[7]. For this we use small cuboctahedral platinum nanoparticles. We performed all of

these calculations in ONETEP with EDFT, at 500 eV kinetic energy cut-off, 9.0 Bohr

radius localization spheres for the NGWFs, and with PAW[28], using the data from the

GBRV pseudopotential dataset [174]. The platinum-platinum distance was set to the

bulk value of 2.8 Å. We ran the AQuA-FOE scheme where the chemical potential search

was configured to halt once the chemical potential had been found to within 10−6EH -

10−8EH . We also used the refined approximation to the entropy which was described
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in section 6.7 and an electronic smearing width of 0.1 eV. With this prescription for a

cuboctahedral platinum nanoparticle with 55 atoms, the convergence in energy of the

AQuA-FOE scheme with chemical potential search stopping criterion can be seen in Table

6.1. We observe rapid convergence of the energy to a value of -4914.74445 EH while the

Table 6.1: The convergence in total energy of AQuA-FOE for cuboctahedral, platinum
nanoparticles with respect to chemical potential search

EH Pt55 Pt147

10−6 -4914.74211 -13137.32070

10−7 -4914.74475 -13137.33179

10−8 -4914.74445 -13137.33169

the same converged total energy with diagonalization is -4914.74442 EH . With a 147-

atom Pt nanoparticle we calculated an energy of -13137.33174 EH with a diagonalization

based technique and the converged AQuA-FOE value is -13137.33169 EH . There was

also no difference in the number of iterations (either optimization of the Hamiltonian

in the inner loop or optimization of the NGWFs in the outer loop) between the all the

AQuA-FOE and the diagonalisation calculations.

Next we examined the scaling of the AQuA-FOEmethod with system size using truncated

octahedral Pd nanoparticles with 2406, 4033, 6266, 9201, 12934 atoms. We chose these

as truly 3-dimensional examples as they are a much more stringent test of density matrix

decay as compared to 1- and 2-dimensional systems which can be more straightforward

to demonstrate reduced or linear-scaling performance with the number of atoms due to a

lower crossover point with cubic-scaling methods. We chose to run with the Hamiltonian

matrix squared sparsity for the 1-particle density matrix, as described in section 6.8 and

an electronic smearing of 0.5 eV. We also used the refined approximation to the entropy

which was described in section 6.7. A psinc basis set kinetic energy cut-off of 500 eV was

used and 9 NGWFs per Pd atom were employed, with NGWF radii of 6.0 a0.

We ran all of these calculations on Archer, the UK’s national supercomputer using 2400

MPI processes with 2 OpenMP threads per process. The calculations were compared

against the timings of ONETEPs diagonalization based EDFT method for each system

with the same number of processes and threads. The eigendecomposition was performed

by the Scalapack implementation in the Intel MKL library and all of the sparse matrix

operations in the AQuA-FOE calculations were performed using the SPAM3 sparse ma-

trix algebra library which is an integral part of the ONETEP code. We did not have

sufficient computing resources to perform all of the calculations to convergence, running

instead a fixed number of four inner and four outer loop iterations to assess average time

per iteration. From previous experience with the EDFT approach, we expect a small

increase in the number of outer loop iterations with system size [7].
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Figure 6.4: A comparison of EDFT in ONETEP using both Diagonalization with
Scalapack (deep purple) and AQuA-FOE (light blue). We have performed calcula-
tions with 4 inner and 4 outer loop (EDFT) iterations for regular truncated octahedral
nanoparticles of Palladium with 2406, 4033, 6266, 9201 and 12934 atoms. The run-times
are presented on the y-axis, a cubic fit is shown through the diagonalization timings
(deep green) and a linear fit is shown though the AQuA-FOE timings (orange). The

geometries of the Pd2406 and Pd12934 nanoparticles are inset.

With ONETEP, the current implementation of EDFT with AQuA-FOE and Hamil-

tonian matrix squared sparsity has crossover point with ONETEPs highly optimized

dense-matrix, diagonalization based EDFT scheme at ∼3000 atoms (see figure 6.4). The

observed linear-scaling (O(N), to be precise) of the AQuA-FOE method shows that is

it 5 times quicker when we reach Pd9201 (4 hours per EDFT inner loop iteration) than

the cubically scaling diagonalization technique (20 hours per EDFT inner loop itera-

tion). The 12934 atom system with diagonalization was excessively demanding in terms

of computational expense and so we were not able to run it for comparison.

We expect that with the ever increasing performance of computational resources, and

after further optimization of the AQuA-FOE method and code (perhaps through the use

of the SelInv[103] algorithm rather than Chebyshev expansion to perform the quenches),

that this method will become increasingly useful for calculations of industrially impor-

tant large, metallic systems in technological applications in fields such as heterogeneous

catalysis and biosensing.
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6.11 Conclusions

We have presented the AQuA-FOE method for running DFT calculations on large metal-

lic systems with a computational cost which increases effectively linearly with the num-

ber of atoms. The ONETEP code, which has already supported linear-scaling DFT

calculations on insulators for many years provided the framework for developing our

new method. Most of the machinery of ONETEP such as non-orthognal local orbitals

optimised in situ (strictly localized orbitals, which we call NGWFs ), and sparse, CPU-

distributed matrices was used within our method. As in linear-scaling calculations on

insulators, the exponential decay in the one-particle density matrix, which is also exhib-

ited in finite temperature metallic systems was exploited to achieve reduced scaling.

The AQuA-FOE method works by running a Fermi Operator Expansion (FOE) on a

Hamiltonian at several times the desired temperature. The resultant “hot" density matrix

is then quenched repeatedly until the desired (lower) temperature is reached. This means

that only a fixed, constant number of matrix multiplications is required to perform the

FOE. Since each temperature-halving quenching operation also has a fixed cost, increase

in the number of matrix products for different systems can only come from increase in the

required number of quenches. However, for a given material, the Hamiltonian spectral

width is asymptotically constant with increasing number of atoms. Hence, the number

of quenching operations will also remain constant with the number of atoms and the full

method is effectively linear-scaling with system size as the cost of each matrix product is

linear-scaling with system size in the limit of sufficient matrix sparsity for large systems.

Our method finds the elements of the one-particle density matrix along with the elec-

tron number conserving chemical potential, and also electronic entropy using polynomial

expansions which also have a constant number of terms with system size. We have

shown validation calculations of AQuA-FOE inside the EDFT procedure by comparing

numerically with the diagonalisation based EDFT that is already in ONETEP showing

agreement in the energies to better than 10−5 EH per atom. We have also demonstrated

the effectively linear-scaling computational cost of our method with calculation times on

Palladium nanoparticles ranging from 2406 to 12,934 atoms.

We expect that this method will become increasingly useful as supercomputing power

becomes greater and more available. Complex metallic materials are possible to study

with this approach, including large metallic nanoparticles which have a growing num-

ber of applications in important technological areas such as catalysis and biomolecular

markers.

We have also shown our PaPa-FOE method which works by dividing the Hamiltonian

eigenvalue spectrum into three. A partition which has full occupancy, a partition which

has zero occupancy and a partition with intermediate, fractional occupancy. These

partitions are Hamiltonian matrices where the other eigenvalues outside of the partition
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are projected to zero. In so doing, we can apply the FOE to the central partition, only,

with a fixed cost in terms of matrix products as its width is determined by the smearing

function rather than the material. The outer partitions are given by the projection

matrices themselves. The method currently has issues with accuracy on account of the

projection matrices having limited accuracy or the sparsity patterns of the projection

matrix – Hamiltonian matrix products being insufficient. As further work, it would be

useful to make this method work accurately, because at least in theory it involves less

computational effort (the prefactor is lower) than our AQuA-FOE scheme.



Chapter 7

Conclusions

The work presented in this thesis has focussed on DFT for calculations on large metallic

nanoparticles. We have developed new algorithms for reduced scaling DFT methods for

metals; we have tested, verified and devised new descriptors for predicting the catalytic

activity of metallic nanoparticles; we have applied large-scale DFT calculations to model

nanoparticle sequences to show size and oxygen adsorption packing trends, and finally

we have applied these techniques and knowledge to perform a study of oxygen adsorption

on real-world, experimentally determined platinum nanoparticles in collaboration with

the Nellist group at Oxford materials.

We have explored the binding of atomic oxygen to platinum nanoparticles of up to ∼1000
atoms using DFT calculations in ONETEP. We firstly explored the effect of binding

single oxygen atoms per nanoparticle and increasing the size of the nanoparticle. This

study was performed using the cuboctahedral sequence of nanoparticles cleaved from

the platinum FCC lattice. We investigated the binding strength vs cuboctahedral magic

number, as well as the effect of popular descriptors for catalytic activity, such as the

d-band centre approach (the implementation of this in ONETEP is described in chapter

3), which we correlate against the adsorption strength.

Our study of oxygen adsorption strength with nanoparticle size indicated that the binding

strength of oxygen decreases with nanoparticle size, converging on the limit of oxygen

adsorption on the infinite platinum slab (as calculated with Castep in periodic boundary

conditions). Due to the work we did on angular momentum projected density of states

in ONETEP we were also able to correlate these adsorption strengths with the d-band

centre and obtained a linear trend, which is a new result for nanoparticles but in line

with what has been reported in the literature by Nørskov, et al [197] for platinum slabs.

We subsequently went on to explore the effects of oxygen coverage on the Pt55 and Pt147

cuboctahedral nanoparticles to attempt to advance further towards realistic conditions

in our simulations. This part of the investigation revealed that with the half monolayer,

hemispherical oxygen coverage that we eventually settled on, oxygen tends to gravitate

163
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towards the edges and lower coordinated sites in the nanoparticle and away from the

centres of facets. This effect correlates with the site specific, single oxygen adsorption

energies on Pt309 and experimental platinum nanoparticles which has been documented

in chapter 5. The breaking up of the relaxation in two: firstly a nanoparticle with oxygen

solely on the (111) facets, then the (100) facets, before combining the resulting oxygen

coordinates onto a nanoparticle with half monolayer, hemispherical oxygen coverage al-

lowed us to see the energetic effect of various binding types in finer resolution than we

would have been able otherwise. The effect of oxygen site migration appears to have the

greater effect on per oxygen binding strengths, with respect to oxygen-oxygen interaction

on a nanoparticle, particularly on the (111) facets. The (100) coverage was found to be

low enough that very little change was observed in average oxygen binding strength vs

binding strength of single oxygens to (100) bridge sites.

We then went on to perform large scale DFT calculations on real platinum nanoparti-

cles, which were measured by the Nellist group at Oxford materials using ADF STEM.

These DFT calculations gave us the electronic structure of the experimental nanoparti-

cles which allowed us to apply electron density based catalytic activity descriptors to the

nanoparticles, such as the d-band centre approach, or our own electronic density based

descriptor described in chapter 3. We found that surface roughness of the experimen-

tal nanoparticles contributes to more potential oxygen binding sites with low electron

density, which correlatates with stronger oxygen adsorption strength in our model, when

compared with the relative smoothness of cuboctahedral and truncated octahedral facets.

Using regression through our DFT data, we were able to generate calibration curves that

we have used to predict the binding strength of sites which we have not directly run DFT

calculations on, and furthermore, to predict the proportion of sites which lie with 0.2

eV of the oxygen binding strength required for optimum catalytic activity. This process

takes a tiny fraction of the time required to do geometry relaxed DFT calculations on new

experimental nanoparticles, and so we claim that this is a high-throughput computational

technique to compliment new high-throughput experimental techniques, such as those

performed by the experimental team during this project.

Because we have a highly sensitive electronic density based descriptor, we would also

expect that this technique is applicable to multi-species nanoparticles in the future, in

contrast to geometric descriptors.

Looking to the future of large scale DFT calculations on metallic systems and the future

of this work to be undertaken by the group, we have presented the AQuA-FOE method

for running DFT calculations on large metallic systems with a computational cost which

increases asymptotically with the number of atoms. The AQuA-FOE method works by

running a Fermi Operator Expansion (FOE) on a Hamiltonian at several times the target

temperature. The resultant “hot” density matrix is then quenched repeatedly until the
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target (lower) temperature is reached. This means that only a fixed, constant number of

matrix multiplications is required to perform the FOE.

Our AQuA-FOE method finds the elements of the one-particle density matrix along

with the electron number conserving chemical potential. We also devised a method for

calculating electronic entropy using polynomial expansions with a constant number of

terms. We have shown validation calculations of AQuA-FOE inside the EDFT proce-

dure by numerical comparison with the diagonalisation based EDFT that is already in

ONETEP showing agreement in the energies to better than 10−5 EH per atom. We have

also demonstrated the effectively linear-scaling computational cost of our method with

calculation times on regular truncated octahedral Palladium nanoparticles ranging from

2,406 to 12,934 atoms. We expect that this method will become increasingly useful as

supercomputing power becomes greater and more available. Complex metallic materials

are possible to study with this approach, including large metallic nanoparticles which

have a growing number of applications in important technological areas such as catalysis

and biomolecular markers.

7.1 Further work

Further work on this project has already begun with the set of single oxygen adsorption

calculations on cuboctahedral nanoparticles with fully geometry relaxed structure and

PAW. This together with coverage calculations on Pt309 will complete our study of oxygen

adsorption on platinum against nanoparticle size and coverage density of oxygen.

Other members of the group continue to advance these calculations to ever greater sizes

and to more accurate conditions, including the effects of graphene and oxide supports,

and solvation. These state of the art calculations promise to give great insight into the

computational study of catalysis, which is hugely important in industry. I look forward,

with great anticipation, to seeing the results of these projects.

Another aspect of this work which merits further study is the FOE techniques that we

have pioneered during this project. There is great scope for improving the performance,

functionality and applicability of these techniques, which will be an exciting area of

research for years to come. One area which is already being developed for EDFT in

ONETEP by a member of the ONETEP developers group is spin relaxation which it

may be possible to combine with FOE techniques. Linear scaling methods for metals

will be the future of this work.





Appendix A

Matlab Implementation of the new

EDFT/FOE Ideas in Chapter 6

Although the ideas in chapter 6 have been successfully implemented in ONETEP in

parallel with zero matrix diagonalisations or extremal eigenvalue evaluations, a (very

much simplified) version implemented in Matlab is included here in case it might aid

understanding of the technique.

A.1 Projection Operator based FOE

% An implementation of our projection based FOE method with the rational

% eigenvalue interval represented as a Chebyshev polynomial expansion.

function [T,bde,matmuls,mmvec] = jolyfoe4(Ain,M,mu,smear)

matmuls=0;

mmvec=0;

Mlow=M^(-1/2);

Horth=(Mlow’*Ain*Mlow);

N=size(Ain,1);

trace(Horth)

A=-((Horth-eye(N)*mu)/smear);

fprintf(’\n ==>\n’);

trace(A)

bde=max(abs(eig(A)))-min(abs(eig(A)));

A=A/2;

cutoff=15;

min(abs(eig(A)));

min(eig(A));

max(eig(A));
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norm(A,’fro’);

norm(A-eye(size(A,1))*cutoff,’fro’);

medium_T=zeros(N);

if(min(abs(eig(A)))>cutoff)

[medium_T,mmsi]=signnsh(A,1e-13); %#ok<ASGLU>

matmuls=matmuls+mmsi;

low_T=zeros(N);

high_T=zeros(N);

else

if(max(eig(A))>cutoff)

[sign_cutoff,mmsi]=signnsh((A-eye(size(A,1))*cutoff),1e-13);

min(abs(eig(A)));

high_T=(sign_cutoff+eye(size(sign_cutoff,1)))/2;

matmuls=matmuls+mmsi;

tmp_A=A*sign_cutoff;

matmuls=matmuls+1;

low_A=(A-tmp_A)/2;

mmvec(1)=mmsi;

else

high_T=zeros(N);

low_A=A;

mmsi=0;

end

if(min(eig(A))<-cutoff)

[sign_cutoff,mmsi]=signnsh((low_A+eye(size(A,1))*cutoff),1e-13);

matmuls=matmuls+mmsi;

mmvec(2)=mmsi;

tmp_A=low_A*sign_cutoff;

matmuls=matmuls+1;

medium_A=(low_A+tmp_A)/2;

low_T=(sign_cutoff-eye(size(sign_cutoff,1)))/2;

max(abs(real(eig(medium_A))));

else

low_T=zeros(N);

medium_A=low_A;

end

end
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if(min(abs(eig(A)))<cutoff)

medium_A=medium_A/15;

[medium_T,matmuls_cheby]=fastchebyfun(medium_A);

matmuls=matmuls+matmuls_cheby;

end

T=low_T+medium_T+high_T;

T=(T+T’)/2;

trace(T)

T= (eye(size(T,1))+T)/2;

end

A.2 Chemical Potential Search and Density Kernel Update

Algorithm

% An implementation of our Chemical potential search method with

% hyperbolic gradients and density kernel update. This version applies

% a safeguarded Newton-Raphson root finder.

function [mu,total_matmuls,rho_out]=findfermi3(Ne,smearing,t,ham,overlap,lowb,highb)

N=size(ham,1);

machep = 2^-53;

sa = lowb;

sb = highb;

total_matmuls=0;

[rho,bde,matmuls]=jolyfoe4(ham,overlap,sa,smearing);

total_matmuls=total_matmuls+matmuls;

T=2*rho-eye(N);

fa = trace(rho);

Dmu=sb-sa;

invdenom=false;

[lowmu,T,matmuls,invdenomout]=changemu(T,sa,Dmu,smearing,ham,overlap);

if(invdenomout~=false)

invdenom=invdenomout;

end

total_matmuls=total_matmuls+matmuls;

rho=0.5*((eye(N)+T));

fb = trace(rho);

c = sa;
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fc = fa;

e = sb - sa;

d = e;

sold=sb;

while(true)

if(abs(fc)<abs(fb))

sa = sb;

sb = c;

c = sa;

fa = fb;

fb = fc;

fc = fa;

end

tol = 2.0 * machep * abs ( sb ) + t;

m = 0.5 * ( c - sb );

if(abs(m)< tol || fb == 0.0)

break

end

if(abs(e) < tol || abs(fa) <= abs(fb))

e = m;

d = e;

else

s = fb / fa;

if(sa==c)

p = 2.0 * m * s;

q = 1.0 - s;

else

q = fa/fc;

r = fb/fc;

p = s*(2.0*m*q*(q-r)-(sb-sa)*(r-1.0));

q = (q-1.0)*(r-1.0)*(s-1.0);

end

if(0.0<p)

q = -q;

else

p = -p;

end

s = e;

e = d;

if(2.0*p < 3.0*m*q-abs(tol*q) && p<abs(0.5*s*q))

d = p/q;

else
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e = m;

d = e;

end

end

sa = sb;

fa = fb;

if(tol<abs(d))

sb = sb+d;

elseif(0.0<m)

sb = sb+tol;

else

sb = sb-tol;

end

Dmu=sb-sold;

if(invdenom~=false)

[newmu,T,matmuls,invdenomout]=changemu(T,sold,Dmu,smearing,ham,overlap,invdenom);

if(invdenomout~=false)

invdenom=invdenomout;

end

else

[newmu,T,matmuls,invdenomout]=changemu(T,sold,Dmu,smearing,ham,overlap);

if(invdenomout~=false)

invdenom=invdenomout;

end

end

total_matmuls=total_matmuls+matmuls;

fb=0.5*(trace(eye(N)+T))-Ne;

sold=sb;

if((0.0<fb && 0.0<fc) || (fb<=0.0 && fc<=0.0))

c = sa;

fc = fa;

e = sb-sa;

d = e;

end

end

mu = sb;

rho_out=0.5*((eye(N)+T));

return

end

% Chemical potential derivative of the Tanh matrix
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function df=deriv(T,smearing)

T2=T^2;

deriv1=-(1/(4))*(1-trace(T2));

df=deriv1;

end

% Change the chemical potential of a density kernel without reconstructing

% it (provided that the condition number is low enough that this is more

% efficient.

function [newmu,newT,matmuls,newinvinit]=changemu(Tinit,mu,Dmu,smearing,ham,overlap,invinit)

N=size(Tinit,1);

condi=cond(Tinit*tanh(Dmu/(2*smearing))+eye(N));

tanh(Dmu/(2*smearing))

matmuls_reinit=0;

matmuls_inv=0;

newmu=(Dmu) + mu;

if((abs(condi)>1e4)||(abs(Dmu/(2*smearing))>15))

fprintf(’reinit’);

[newrho,bde,matmuls]=jolyfoe4(ham,overlap,newmu,smearing); %fprintf(’--> %d, %d\n’,trace(newrho),newmu);

matmuls_reinit=matmuls_reinit+matmuls;

newT=2*newrho-eye(N);

newinvinit=false;

else

denom=(Tinit*tanh(Dmu/(2*smearing))+eye(N));

if (~exist(’invinit’, ’var’))

invdenom=denom’*(1.0/(norm(denom,1)*norm(denom,inf)));

fprintf(’here’);

else

invdenom=invinit;

end

D=9;

[invdenom,matmuls] = nsh_inverse(denom,invdenom,D);

newinvinit=invdenom;

fprintf(’set to:’)

newT=(Tinit+eye(N)*tanh(Dmu/(2*smearing)))*invdenom;

matmuls_inv=matmuls_inv+matmuls+1;

end

matmuls_reinit

matmuls_inv

matmuls=matmuls_inv+matmuls_reinit;

end
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A.3 Important Implementations of Algorithms from Liter-

ature used in the Above Methods

% An iterative implementation of the Lowdin decomposition as described in

% Jansik and Olsen.

function [Zk,Yk] = lowdin(overlap)

cond(overlap)

N=size(overlap,1);

Zk=eye(N);

Yk=overlap;

Seigs=eig(overlap);

epsmin=min(Seigs);

epsmax=max(Seigs);

lambda=2.0/(epsmax+epsmin);

finishearly=false;

i=0;

while not(finishearly)

i=i+1;

Xk=lambda*Yk*Zk;

if(norm(Xk-eye(N))<10e-10)

finishearly=true;

end

T2=0.5*(3*eye(N)-Xk);

Zk=Zk*T2;

Yk=T2*Yk;

if(finishearly)

break

end

end

lambda

Zk=sqrt(lambda)*Zk;

Yk=sqrt(lambda)*Yk;

end

% An iterative implementation of the Matrix sign function as described in

% Chen and Chow.

function [X,matmuls,iter] = signnsh(A,tol)

conv=0;

matmuls=0;
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evs=abs(eig(A));

%norm(A,’fro’)

emin=min(evs);

emax=max(evs);

%X0=A/emax;

X0=A/norm(A,’inf’);

X2=X0^2;

matmuls=matmuls+1;

y=emin/emax

y=1

i=0;

!iter=0;

while true

i=i+1;

alpha=sqrt(3/(1+y+y^2));

X0=0.5*alpha*X0*(3*eye(size(A,1))-(alpha^2)*X2);

matmuls=matmuls+1;

y=0.5*alpha*y*(3-(alpha^2)*y^2);

X2=X0^2;

matmuls=matmuls+1;

iter(i)=norm(X2-eye(size(A,1)),’fro’);

if(i>1)

conv(i)=abs(iter(i))/(abs(iter(i-1))^2);

end

if(iter(i)<tol)

X=X0;

%i

break;

end

end

matmuls

end

% An implementation of Liang & Head-Gordon divide and conquer Chebyshev

% polynomial resumming.

function [T,matmuls] = fastchebyfun(X)

%lbar=9 % round(P/10) %12%round(P/4)

ml=336;%round(((1.0/2.0)+(((max(eigs))*D*log(10.0))/(pi*(2*lbar-1)))));

%ml=150;

syms x

s = ’tanh(x*15)’;

N=size(X,1);
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tanhcheb=chebfun(s,ml+1);

dccoeffs = cell(1,1);

c=tanhcheb.funs.coeffs(ml+1:-1:1);

%c=tanhcheb.funs.coeffs;

c(1:2:ml+1)=0;

%c=tanhcheb.funs.coeffs;

% Construct binary tree

layers=floor(log2(ml))-3;

jh=0;

jl=0;

jlold=1;

jhold=1;

num=0;

num(1:2^(layers+1)-1)=0;

num(1)=(ml+1)*2;

parent=0;

parent(1:2^(layers+1)-1)=0;

start=0;

start(1:2^(layers+1)-1)=0;

start(1)=1;

for i=0:layers

jl=jl+2^(max(0,i-1));

jh=jh+2^(i);

for j=jl:jh

parent(j)=jlold+(floor((j-jl+2)/2)-1);

if(mod(j,2)==0)

num(j)=floor(num(parent(j))/2);

else

num(j)=floor((num(parent(j))-1)/2);

end

end

jlold=jl;

jhold=jh;

end

for i=2:numel(num)

start(i)=start(i-1)+num(i-1)+1;

end

coeffs=0;

coeffs(1:(ml+1))=0;

coeffs(1:ml+1)=c;

jl=0;

jh=0;

jlold=1;

jhold=ml+1;
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for i=2:numel(num)

jl=jhold+1;

jh=jl+num(i);

if(mod(i,2)==0)

for j=jh:-1:jl

k=j-jl;

coeffs(j)=coeffs(2*k+start(parent(i)));

end

else

coeffs(jh)=2*coeffs(2*num(i)+1+start(parent(i)));

for j=jh-1:-1:jl+1

k=j-jl;

coeffs(j)=2*coeffs(2*k+1+start(parent(i)))-coeffs(k+1+jl);

end

coeffs(jl)=coeffs(start(parent(i))+1)-(coeffs(jl+1)/2);

end

jlold=jl;

jhold=jh;

end

dccoeffs{1} = coeffs(start(numel(num)-2^layers+1):numel(coeffs));

dccoeffs{1}*dccoeffs{1}’;

%end

calclayerstart=start(numel(num)-2^layers+1);

exes = cell(1,layers+1);

for i = 1:layers+1

exes{i} = zeros(N);

end

matmuls_divconq=0;

exes{1}=X;

for i=2:layers+1

matmuls_divconq=matmuls_divconq+1;

exes{i}=(2*exes{i-1}*exes{i-1})-eye(N);

end

accumat = cell(1,2^layers);

for i=1:2^layers

accumat{i} = zeros(N);

end

NLcheb_acc=cell(1,2^layers);

for i=1:2^layers

NLcheb_acc{i}=zeros(N);

end

for i=0:max(num(numel(num)-2^layers+1:numel(num)))

if(i==0)

T0=eye(N);
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T=T0;

elseif(i==1)

T1=exes{layers+1};

T=T1;

else

T=2*exes{layers+1}*T1 - T0;

matmuls_divconq=matmuls_divconq+1;

T0=T1;

T1=T;

end

for j=(2^(layers-1))+1:2^(layers)

if(i<=num(numel(num)-2^layers+j))

accumat{j}=accumat{j}+(dccoeffs{1}(start(numel(num)-2^layers+j)-start(numel(num)-2^layers+1)+1+i)*T);

end

end

end

k=0;

for i=1:layers-1

nmats=2^i;

% for j=1:2^(layers-i)

for j=(2^(layers-i-1))+1:2^(layers-i)

%accumat{nmats*(j-1)+1} = accumat{nmats*(j-1)+1} + exes{layers-i+1}*accumat{nmats*(j-1)+1+i};

k=k+1;

norm(accumat{nmats*(j-1)+1+(2^(i-1))},’fro’);

%matmuls_divconq=matmuls_divconq+1;

accumat{nmats*(j-1)+1} = accumat{nmats*(j-1)+1} + exes{layers-i+1}*accumat{nmats*(j-1)+1+(2^(i-1))};

matmuls_divconq=matmuls_divconq+1;

end

end

accumat{1} = accumat{1} + exes{1}*accumat{1+(2^(layers-1))};

norm(accumat{1},’fro’);

matmuls_divconq=matmuls_divconq+1;

matmuls=matmuls_divconq;

%compcheb=accumat{round((2^layers)/2)+1};

T=accumat{1};

end
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Other adsorbate calculations on Pt

cuboctahedra

B.1 Hydroxide and Hydroxyl Radical

While both ORRmechanisms have a step involving a bound hydroxyl radical, the decision

was made to perform calculations on bound hydroxide initially. This is based on the

observation from the twisted 55 atom cubooctahedron that the convergence speed of

hydroxide is much improved with respect to the hydroxyl radical system, partly perhaps

because the hydroxyl radical system has an odd number of electrons and hence must be

modelled spin-polarised. This at least doubles the cost of the calculation, but it was also

observed in the twisted system that the number of iterations was also much increased.

The adsorption energies of both systems are similar, but importantly the final geometries

of the systems are very similar, so it made sense to run the hydroxide geometry optimi-

sation first, as it is fast, and subsequently initialise the hydroxyl radical calculation with

the initial configuration from the converged hydroxide system. This has the advantage

that it gives more results for potentially less expense.

Natoms 13 55 147

Eads -3.5512 -3.8423 -3.5502

Table B.1: The change in energy of adsorption of OH as the size of the nanoparticle
is increased (in eV).

Examining the trend in energy of adsorption with increasing nanoparticle size for the

hydroxyl ligand shows that the Pt13 and Pt147 systems have approximately the same

binding strength of -3.55eV, while Pt55 appears to be more strongly bound. This was

an unexpected result but it is made stranger by the comparison with the slab model in

Castep, which shows significantly weaker adsorption strength.

179
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Figure B.1: The trend in adsorption strength of OH versus the size of cubooctahe-
dral nanoparticle on a (111) site against the a slab model in Castep (25% packing) is
inconclusive at present. It is clear that Pt55 appears to be more strongly bound than

Pt13 and Pt147 and that the slab is 0.3eV more weakly bound than both.

Figure B.2: The lowest energy configurations of OH on Pt13, Pt55 and Pt147.

As for the discrepancy between the Castep slab results and the ONETEP nanoparticle

results, it would be very interesting to try the Pt309 to determine whether it moves closer

in energy to the slab. These calculations are in progress. Another possibility is that the

25% packing of ligands onto the (111) surface in the Castep calculation is affecting the

agreement with the single ligand nanoparticle calculations. This would seem fairly likely,

given the excellent agreement between identical Pt55 systems in Castep and ONETEP.

The quicker option to test this would be to recompute the slabs in Castep with lower

packing, but it would also be interesting to try more packing on the nanoparticle systems

in the future, as well.
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B.2 Carbon Monoxide

The final set of calculations that were performed were not on reactants or intermediates

from the ORR, but on carbon monoxide, an important poison of the platinum anode

which slows the hydrogen oxidation reaction by preferentially adsorbing onto active cat-

alytic sites and blocking these for hydrogen oxidation.

Carbon monoxide presents a difficulty as far as DFT with a PBE based XC functional

is concerned, as it has been shown [241] many times to adsorb preferentially to the FCC

hollow site over the atop site as measured experimentally. This problem has been studied

in great depth by Nørskov [242] and Kresse [243], but no truly satisfactory resolution

is reached other than that most conventional XC functionals are inadequate and that

the PBE based functionals represent a trade-off between accurate binding energies and

accurate bulk and surface physics (lattice constants, bulk moduli, etc.). So, an alternative

GGA XC functional such as BLYP can be used to improve the adsorption energies to

the point that the atop site is preferred over the FCC hollow, but with 10% error in the

lattice constant and poor experimental agreement for most other observables.

It was decided that for this study, rPBE would be used for every calculation including

CO, for consistency and the binding site order discrepancy put down to a limitation of

the XC functional.

Figure B.3: The progression of a geometry optimisation of CO on a Pt147 nanopar-
ticle, showing a failure mode for a pathological starting configuration.

The carbon monoxide geometry optimisation calculations presented several difficulties

as far as convergence was concerned; the initial configuration that was chosen for the

Pt147 system to begin with lead to a geometry optimised configuration where the carbon

atom appeared to absorbed by the nanoparticle. Since the configuration had not been

encountered in literature and the energetics appeared at odds with the results for the

adsorption on the other sized nanoparticles ( 1eV energy of adsorption (absorption?) as

opposed to 2eV), the calculation was restarted with different starting geometry.
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The second attempt on Pt147 was much more successful and appeared to fall into an

FCC 3-fold hollow site with the oxygen atom 30◦ degrees off the facet plane - carbon

perpendicular, almost in a bridge site. The Pt55 system exhibits a similar configuration,

whereas the Pt13 system has a perpendicular molecule bond, through the nanoparticle.

Figure B.4: The final configuration of a geometry optimisation calculation of CO on
a Pt147 nanoparticle exhibits a µ3 − η2 configuration.

The second issue which presented itself during the optimisation of the Pt147−CO systems

remains unexplained; as the electronic minimisation progressed, at some configurations,

the energy gradient would increase without bound, while the electronic energy was still

reduced with each step. This is almost certainly a but in the code, probably in the EDFT

line search and will be investigated further. The issue did not present a problem as far as

running the calculation is concerned, only in that itsignificantly slowed the calculations

down, as the maximum number of inner and outer loop iterations would be performed

for these configurations. Such pathological behaviour has been seen only for CO.
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Figure B.5: The geometry optimised configuration of CO on Pt13 shows an almost
perpendicular bond with the surface

Natoms 13 55 147

Eads -2.1900 -1.9170 -1.8047

Table B.2: The change in energy of adsorption of CO as the size of the nanoparticle
is increased (in eV).

B.3 Oxygen

Both molecular oxygen and atomic oxygen adsorbates were chosen for study. Molecular

oxygen for the adsorption of oxygen onto the catalyst at the start of the reaction and

atomic oxygen because it features in both the associative 2-electron and the dissociative

4-electron pathways. It is true that atomic oxygen is not be adsorbed onto the surface

in the manner we are simulating during the reaction in reality, but the ground-state

energy and coordinates of the atom on the facet will be in agreement with a point on

the transition state path.

Molecular oxygen was modelled in a triplet state as it is found in its ground state in

nature. This was achieved by performing a spin polarised calculation with a total spin

of 2 in ONETEP, which corresponds to an overall spin of 1 in natural units. The atomic

oxygen system, on the other hand, has an even electron number and was not expected
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Figure B.6: The trend in adsorption strength of carbon monoxide versus the size of
cubooctahedral nanoparticle on a (111) site against the a slab model in Castep (25%

packing) shows that binding strength increases with decreasing nanoparticle size.

to be spin polarised, so was performed with spin of 0, with a single spin-channel.

The adsorption energy of atomic oxygen was calculated as:

Eads = Eopt
O on particle − E

opt
particle −

1

2
Eopt
O2
, (B.1)

whereas molecular oxygen was calculated as:

Eads = Eopt
O on particle − E

opt
particle − E

opt
O2
. (B.2)

Across the three sizes of cubooctahedra, the molecular oxygen was found to bind in a

similar minimum energy configuration. This is independent of whether solely the molec-

ular coordinates were relaxed on a constrained nanoparticle, or all atomic coordinates

were allowed to relax. The observed configuration is a µ3 − η2 bridge configuration.

Natoms 13 55 147

EOOads -1.4795 -0.7334 -0.2984

EOads -2.2908 -1.4451 -0.7292

Table B.3: The change in energy of adsorption of molecular and atomic oxygen as
the size of the nanoparticle is increased (in eV).

The fully geometry optimised calculations show that as the dimension of the nanoparticle

is decreased, the strength of adsorption of oxygen is increased, both for the atomic and

molecular oxygen.
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Figure B.7: The trend in adsorption strength of molecular oxygen versus the size of
cubooctahedral nanoparticle on a (111) site against the a slab model in Castep (25%
packing) increases with decreasing nanoparticle size, but that the slab model (at least

at this packing) does not appear to be asymptotic with the nanoparticle model.

Figure B.8: The trend in adsorption strength of atomic oxygen versus the size of
cubooctahedral nanoparticle on a (111) site against the a slab model in Castep (25%

packing) shows much the same trend as for molecular oxygen.
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B.4 Comparison of Adsorption Energies on Fully Relaxed

and Constrained Nanoparticles

The calculations presented so far have been performed by geometry optimising the

nanoparticle and ligand in isolation, before moving the ligand close the the surface of the

nanoparticle and geometry optimising the full system. We believe that this is the most

rigorous way to ensure the obtained relative energies are accurate and reliable, though

it seems from prior studies in the literature [76] that the second step may be performed

with the metal, nanoparticle atoms constrained and only the ligand atoms free to relax.

The latter approach is likely to be faster than the former, as the geometry optimisation

algorithm has to deal with fewer degrees of freedom. It was hypothesised, however,

that the approach misses several important degrees of freedom (surface relaxations are

impossible, for instance) which would lead to lower total energies. On the other hand, if

this simplified approach could be used, a great deal of computer time could be saved.

In order to test the hypothesis, the calculations which were carried out using a full

geometry optimisation were repeated with constrained metal atoms. The results are quite

remarkable in places. For some nanoparticle-ligand combinations, very little difference

is noted when comparing the two approaches, however, in most cases the full geometry

optimisation gives lower total and adsorption energies than that with constrained metal

atoms. In the case of molecular oxygen, the adsorption energy changes sign when the

full geometry optimisation is performed, for the starting geometry we have used, only

becoming stable with the full geometry optimisation.

Table B.4: On the 55 atom cubooctahedron, the adsorption energies of the ligands
can vary by more than 1eV with and without full geometry optimisation. At least
for the starting geometry used for this test, the molecular oxygen test was not stable

without full optimisation

(eV) Rigid Relaxed

Pt55 (111) CO -0.959 -1.917

Pt55 (111) OH- -1.883 -3.843

Pt55 (111) O -0.159 -1.445

Pt55 (111) OO 0.490 -0.733

Pt55 (111) OHrad -5.083 -2.612

B.5 Classical Molecular Dynamics

The first work that was performed was to run the coordinates through a molecular dy-

namics (MD) geometry optimiser. While the (z) coordinates have already been optimised



Appendix B. Other Adsorbates 187

Table B.5: On the 55 atom cubooctahedron, the adsorption energies of the ligands
can vary by more than 1eV with and without full geometry optimisation. At least
for the starting geometry used for this test, the molecular oxygen test was not stable

without full optimisation

(eV) Rigid Relaxed

Pt147 (111) CO -1.030 -1.805

Pt147 (111) OH- -4.504 -3.550

Pt147 (111) O -0.690 -0.729

Pt147 (111) OO 0.154 -0.298

Pt147 (111) Ohrad -3.049 -3.127

to some extent, it was deemed important to perform an unconstrained geometry optimi-

sation prior to any calculations and as reliable interatomic potential models for platinum

are available in the DL POLY4 MD package, this would be a quick and simple test of

the data received from Oxford.

Initially a Sutton-Chen potential was chosen with parameters from [244] as this had been

used successfully in the group for gold nanoparticles. A damped MD geometry optimisa-

tion (known as a ’zero temperature’ MD in the DL POLY vernacular) was performed on

the system resulting in very slight atomic movement to the extent that no atom moved

out of a lattice site.

As a further test of the reliability of the calculation, as the change to the coordinates

had been so slight, a short MD run was performed on the system at a temperature of

300K, with a timestep of 0.25fs, for 1000ns. This yielded troubling results, in that the

nanoparticle did not hold structural integrity for even the length of the calculation and

instead flew apart. In order to address the issue, potential parameters were checked for

dimensional equivalence and the time-step was reduced several times to no avail.

The situation was solved by using a different potential. The paper [244] also gives pa-

rameters for a modification to the Sutton-Chen potential known as the Gupta potential.

Using a Gupta potential set up in the same way, the particle geometry relaxed slightly

in the geometry optimisation, particularly in one dimension, as might be expected, but

crucially the nanoparticle held structural integrity for the duration of the MD test irre-

spective of the time-step.

An interesting finding from the room temperature MD calculation is that the surface

atoms are effectively in flux. This is in line with the findings of the Nellist group when

imaging snapshots of the same particle in quick succession, though the temperature

of the particle in the experimental setup is not known precisely because the beam is

thought to impart a large quantity of energy on the nanoparticles. This result shows
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Figure B.9: The results of the damped MD optimisation of the experimental particle
with a Gupta potential (blue) vs a Sutton-Chen potential (red). The Gupta coordinates

move only slightly from the experimentally measured coordinates.

that although the third coordinates of the atoms in the nanoparticle under considera-

tion are not directly experimentally accessible, the high mobility of atoms suggests that

the exact nuclear coordinates of a snapshot are less important than having a generally

representative coordination and level of disorder.
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This data was then fed into ONETEP for DFT electronic minimisation. As the nanopar-

ticle consists of 943 atoms, it was considered too large to perform a full DFT geometry

optimisation on, particularly given that this was only to be a test system. There is

nothing to preclude such calculations on similarly large nanoparticles in the future using

L-BFGS in ONETEP except computational resource availability and time.

The calculation was run with parameters inspired by those from the cuboctahedral system

calculations, in particular, the same pseudo-potentials and cut-off energies were used,

with a Coulomb cut-off radius of 45 Åand a cubic cell of edge length 70 Å. The maximum

atom-atom distance in the nanoparticle is 2.7 Å.

Convergence of the calculation was in line with prior expectation, taking 60 wave-

function optimisation iterations to converge to the agreed upon convergence criteria.

So, the number of requisite iterations did increase with the jump in atom count, but it

was still possible to run the single-point energy calculation on 1000 cores of the national

supercomputer in less than one week including job queue time. As part of the calculation,

electrostatic potential and electron density were saved to disk for analysis.

Figure B.10: A plot of the electrostatic potential at an isosurface of -2eV coloured by
the electron density, showing areas of high to low electron density in red through green
to blue. The left plot shows the particle from the top, looking toward the support, the

right plot shows a profile view in the same orientation as that in fig. ??.

Viewing the electrostatic density on an isosurface of -2eV coloured by the electron density

shows which regions on the surface of the nanoparticle are relatively rich and poor in

electron density (fig ??). It was hypothesised that this information could be a useful

indicator of potential adsorption sites and their relative strength, given prior knowledge

of the electrophilic/phobic nature of the particular ligand of interest. In order to test

the hypothesis, atomic oxygen was chosen as the ligand, as it has the lowest degrees of
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freedom of the ligands which were tested on cuboctahedra, need not be performed spin

polarised (calculation will be somewhat faster) and because it is known to be electrophilic.



Appendix C

A Hierarchical Matrix Inversion

Method

Matrix inversion is often considered very bad practice[245] and methods to solve linear

equations such as

Ax = b, (C.1)

by factorising A rather than inverting it are well known, widely used and understood.

Unfortunately, there are important cases in density matrix DFT where inverting the

matrix is necessary. Such an example is if we want the elements of a density kernel

through a rational representation of the matrix analogue of the Fermi-Dirac function.

In other cases, such as for switching from a covariant representation of a quantity to a

contravariant representation by multiplication by the inverse overlap matrix, are perfectly

possible with a linear equation solver as we describe in chapter 6.

In this appendix, a method to invert a parallel sparse matrix is discussed in use the event

that inversion is unavoidable. The method is based on the hierarchical application of the

equationsA B

C D


−1

=

A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

 ,
(C.2)A B

C D


−1

=

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

 ,
(C.3)

191
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and the observation that the block columns of these two equivalent representations are

independent of one another, such thatA B

C D


−1

=

A−1 + A−1B(D−CA−1B)−1CA−1 −(A−BD−1C)−1BD−1

−(D−CA−1B)−1CA−1 D−1 + D−1C(A−BD−1C)−1BD−1

 ,
(C.4)A B

C D


−1

=

 (A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1

 , (C.5)

are also correct. This is useful, because in a parallel computation, where the matrix

is distributed over processors by column, the form in equation C.2 requires that the

processors which have the latter block columns complete their operations, i.e. (D −
CA−1B)−1 before the processors with the left block columns could start operations.

This problem would be compounded with every step in the hierarchy, if the algorithm

was made heirarchical.

The form in equation C.4 looks on first glance like it should be more costly to compute,

but on a parallel, column distributed matrix, it offers better parallelisation oportunity.

An algorithm will now be presented for heirarchically inverting a matrix using this form

with only systolic (nearest-neighbour) explicit communications and matrix multiplica-

tions. The algorithm also requires processor local inversions of small matrix blocks at

the lowest level of the heirarchy.

The first step is to define the form of the parallel, sparse matrices. They are column

distributed over processors and as we decend the heirarchy they become more and more

block diagonal,

A B

C D

→
A 0

0 D

→


A′1 0 0 0

0 D′1 0 0

0 0 A′2 0

0 0 0 D′2


(C.6)

where the primed blocks in C.6 are half the dimension of the non-primed blocks, and share

the sparsity pattern with their equivalent non-primed elements, but where off-diagonal

non-zero elements become zero elements.
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The first step in the algorithm is to set up four primitive matrices, which are block

diagonal representations of the matrix at the next level up in the hierarchy

α =

A 0

0 D

 , (C.7)

β =

B 0

0 C

 , (C.8)

γ =

C 0

0 B

 , (C.9)

δ =

D 0

0 A

 , (C.10)

this is the picture at the first level of the hierarchy, at subsequent levels, matrix α is set

up like in equation C.6, and the others transform in the same way with hierarchy level.

α is generated trivially, by creating a sparsity pattern from the matrix at the previous

level with zeroed B and C blocks and copying the (local) data into it. This is the same

idea for γ, as the matrix is distributed by column, this requires no communications to

set up.

The matrices β and δ do require communications to form them. Firstly, in the case of β

the processors holding the sparsity pattern of the columns which make up B must send

it to those processors which hold the sparsity pattern for C and vice versa. The sparsity

pattern for the distributed matrix, β is then created and the matrix allocated. The data

must then be sent and received in the same way as the sparsity patterns, into the newly

allocated memory.

At this point, the α matrix must be inverted. This means that either the algorithm

descends to the next level, or if the blocks are of sufficiently low dimension that they

are local to processors and either dense or zero blocks (this shouldn’t happen in theory,

as it implies a singular matrix), then we use a standard Cholesky decomposition based

inversion algorithm on them, or ignore them, respectively. This inversion is performed

out of place into a matrix with the same sparsity pattern as the α matrix at this level,

this matrix will be called

i→ α−1. (C.11)

At this stage there is no further use for the α matrix and it can be deallocated.

Now a matrix is created which we will call ib, which is created with a sparsity pattern

which is created as the product of the α−1 and β sparsity patterns. The product of α−1
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and β is then put into its elements

ib→ α−1β =

A−1B 0

0 D−1C

 . (C.12)

This matrix has row dimension of the α matrix and column dimension of the β matrix.

At this stage we no longer require the β matrix and it can be deallocated.

The next step is to create a matrix which we will call ci, which is created with a sparsity

pattern which is created as the product of the γ and α−1 sparsity patterns. The product

of γ and α−1 is then put into its elements

ci→ γα−1 =

CA−1 0

0 BD−1

 . (C.13)

This matrix has row dimension of the γ matrix and column dimension of the α matrix.

Now we create a matrix which we will call cib, which is created with a sparsity pattern

which is produced as the product of the ci and β sparsity patterns in union with the δ

sparsity pattern (for the next step). The product of ci and β is then put into its elements

cib→ γα−1β =

CA−1B 0

0 BD−1C

 . (C.14)

This matrix has row dimension of the ci matrix and column dimension of the β matrix.

At this stage we have the peak number of block matrices allocated per level (6), which

puts a hard limit on the memory usage of the algorithm. At this stage, the γ matrix is

no longer required and may be deallocated.

The next step is to negate the matrix in cib and add γ to it, so that

dcib→ δ − γα−1β, (C.15)

where the cib matrix is merely renamed dcib and all operations take place in place in its

memory and sparsity pattern. After this δ can be deallocated.

At this point, the dcib matrix must be inverted. This means that either the algorithm

descends to the next level again, or if the blocks are of sufficiently low dimension that they

are local to processors and either dense or zero blocks (this shouldn’t happen in theory,

as it implies a singular matrix), then we use a standard Cholesky decomposition based

inversion algorithm on them, or ignore them, respectively. This inversion is performed

out of place into a matrix with the same sparsity pattern as the dcib matrix at this level,
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this matrix will be called s (for Schur compliment):

s→ (δ − γα−1β)−1. (C.16)

At this stage there is no further use for the dcib matrix and it can be deallocated.

Now a matrix is created which we will call sci, which is created with a sparsity pattern

which is created as the product of the s and ci sparsity patterns. The product of s and

ci is then put into its elements

sci→ (δ − γα−1β)−1γα−1 =

(D−CA−1B)−1CA−1 0

0 (A−BD−1C)−1BD−1

 .
(C.17)

This matrix has row dimension of the smatrix and column dimension of the cimatrix. At

this stage we no longer require the s matrix or the ci matrix and then can be deallocated.

After this step we need to create a matrix which we will call ibsci, which is created with

a sparsity pattern which is created as the product of the ib and sci sparsity patterns.

The product of ib and sci is then put into its elements

ibsci→ α−1β(δ−γα−1β)−1γα−1 =

A−1B(D−CA−1B)−1CA−1 0

0 D−1C(A−BD−1C)−1BD−1

 .
(C.18)

At this stage there is no further use for the ib matrix and it can be deallocated.

Next a block diagonal matrix is formed from the sci matrix, in a similar way to α

µ =

 0 Bsci

Csci 0

 , (C.19)

it is generated trivially, by creating a sparsity pattern from the sci matrix with zeroed

Asci and Dsci blocks and copying the (local) data into it. At this stage there is no further

use for the sci matrix and it can be deallocated.

In the next step, the ibsci matrix is renamed as the iibsci matrix as the i matrix is added

into it, in place

iibsci→ α−1β(δ − γα−1β)−1γα−1 + α−1, (C.20)

and at this stage there is no further use for the i matrix and it can be deallocated.

Finally, the inverse matrix is produced as the sum of the iibsci matrix and the µ matrix

in a iibsci sparsity pattern and passed up the hierarchy. The remaining iibsci and µ

are deallocated. This level returns control to the level above and this continues until we

return back to the top of the hierarchy.
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A simple serial implmentation of this idea was prepared in Fortran 2003 and it was

found to work, but for large matrices, the errors introduced grew with the number of

levels in the hierarchy. This could be solved simply by performing a single iteration of

Newton-Schulz-Hotelling at each level, but this adds to the cost. This could be explored

in greater depth, and/or implemented for true distributed, sparse matrices if someone

had a need for it. An advantage is that this method can be run without any operations

performed, as a dry run, only to determine a sparsity pattern of the inverse sparse matrix,

and therein may lie the algorithms true value.
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