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Abstract 

The bubble rising in viscous liquids is enough common in many industrial processes and an important 
fundamental problem in fluid dynamics. In the current work, we deal with the numerical modeling of 
a single gaseous bubble that rises in liquid. In particular, we are interested in benzene alkylation that 
is conducted by the chemical interaction of ethylene and benzene in the presence of the Lewis catalyst. 
Thus, the rate of absorption is the main focus of this work. 
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1. Introduction 

The reactants mixing modeling is needed in various processes of chemical engineering [1-4]. 

The understanding of the system flow dynamics is a great importance in engineering 

applications. Rising bubbles in liquid have been enough studied theoretically [5-6] and experi-

mentally [7-8]. In such systems slow and limited miscibility of gaseous species in liquids 

frequently limits reaction rates, so reactants are supplied in excessive quantities in order to 

obtain the desired amounts of the products. The mixing rate would strongly depend on the 

contact area of the phases, and, typically, to increase the contact between the phases, the 

gaseous phase is fed into a liquid-filled reactor at in the form of small bubbles.  

In particular we are interested in alkylation of benzene with ethylene for ethylbenzene 

production. This technology is the large-capacity commercial process in terms of benzene 

consumption and processing: 75% of produced in the world benzene is used in production of 

ethylbenzene and isopropylbenzene. Market of ethylbenzene is closely linked to the production 

of styrene.  

In the present work, the gas/liquid mixture is represented as a heterogeneous binary 

system with the mass transfer through phase boundaries. The evolution of the gas/liquid mixture 

using the phase field approach was examined.  

2. Experimental 

The interface separating gas/liquid mixture was represented as a transitional boundary of 

finite thickness. The concentration field C, defined as the mass fraction of one liquid in the 

mixture, is used to trace the evolution of the interfacial boundary. The specific free energy 

function is defined as a concentration function and gradient of concentration [9]  

f (C, ∇C) = f0(C) + 
ϵ

2
 (∇C )

2
                  (1) 

In this expression, the second term, proposed by Cahn and Hilliard, takes into account the 
surface tension effects. The capillary constant ϵ is assumed sufficiently small so to be able to 

neglect this term everywhere except at the places of large concentration gradients, where the 

interface is located. The double-well potential is frequently used for the classical part of the 
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free energy function, f0, especially, when the primary interest is tracing the evolution of the 

immiscible interface. 

The free energy function (1) can be used to re-derive the Navier-Stokes equations for the 

mixture. The so-obtained full Cahn-Hilliard-Navier-Stokes equations are however very complex 

for numerical treatment because of quasi-compressibility that forces to use the full continuity 

equation even for description of two incompressible liquids. The Boussinesq approximation [10] 

of the full equations was used to define the evolution of the gas bubble rising in benzene.  

The governing equations reflect the conservation of momentum, species, and mass: 

(1+ρ)
∂u⃗⃗ 

∂t
+(u⃗⃗ ·∇)u⃗⃗ =-∇Π+ 

1

Re
∇2u⃗⃗ -Ca∇2μ+2GrC,             (2)  

∂C 

∂t
+(u⃗⃗ ·∇)C=

1

Pe
∇2μ,                      (3)  

∇ · u⃗⃗  = 0,                          (4)  

μ=Gr(r ∙γ⃗⃗ )+2AC + 4C
2
 - Ca∇2C                 (5) 

Here, the common notations are used for the variables. These equations are applied to the 

whole multiphase system, including the interface. One sees that the Navier-Stokes equation 

contains an addition force that defines morphology of the interface. The diffusion is defined 

the generalised Ficks law, i.e. through the gradient of the chemical potential μ. The diffusion 

term includes in addition to the usual concentration diffusion, the barodiffusion terms. 

γ⃗  is the unit vector directed upward.  

The equations are written in non-dimensional form and include the following non-dimen-

sional parameters; 

the Grashof number:   Gr = φ
gL*

μ*
 ,               (6)   

the Reynolds number:  Re=
 ρ*μ*

1/2
L*

η*
 ,              (7)  

the Peclet number:   Pe=
 ρ*L*

αμ*
1/2  ,                (8)  

the capillary number:  Ca=
 ϵ

μ*L*
 ,                (9)   

where L* - typical size; ρ* - the density scale; μ* - the unit of the chemical potential; η1 - the 
viscosity scale; α - the mobility constant; and φ = (ρ2−ρ1)/ρ1 is the density contrast, with ρ2 

and ρ1 being the densities of the pure components of the binary mixture. 

The rise of an isolated single bubble was examined. The computational domain is repre-

sented by a vertical cylinder with circular cross section. The cylinders radius is taken as the 

length scale. The radial and axial coordinates are denoted by r and z, respectively. The cylinder 

is closed at the bottom and top ends. It is assumed that the size of the bubble is sufficiently 

less than 1 (the radius of the computational domain), so the influence of the boundary 

conditions imposed on the cylinder’s walls can be neglected. For the same reason, the initial 

position of the bubble is chosen at z = 0.5 (sufficiently far from the lower end), and the height 

of the cylinder, H = 6, is also chosen so large to observe a sufficiently long rise of the bubble 

before it reaches the upper end. The axisymmetric symmetry is assumed, and owing to the 

symmetry only a half of cylinder was considered.  

The governing equations are supplemented with the boundary conditions below. 

At the lower end:         z = 0 : ur = uz = 0, ∂C/ ∂z = 0, ∂μ/ ∂z = 0    (10)  

At the upper end:        z = H : ur = uz = 0, ∂C/ ∂z = 0, ∂μ/ ∂z = 0     (11)  

At the centreline:         r = 0 : ur = uz = 0, ∂C/ ∂r = 0, ∂μ/ ∂r = 0     (12) 

At the tube’s wall:        r = 1 : ur =0, ∂uz/ ∂r = 0 ∂C/ ∂r = 0, ∂μ/ ∂r = 0   (13) 

Thus, all walls are assumed to be impermeable. The no-slip boundary conditions are used 

for the velocity field. For the chemical potential, we impose the absence of the diffusive flux 

through the walls. The conditions for the concentration should reflect the wetting conditions. 

We however consider the simplest case when the molecules of the mixture components inte-

ract with the wall equally, so the contact angle is 900. In fact, we are interested in the evolution 

of the bubble far from the boundary conditions, so the wetting properties are not important 
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for the current study. The boundary conditions at the centerline are written to reflect the axial 

symmetry. 

The typical shapes of the rising bubbles for four different Reynolds numbers and for two 

different capillary numbers are shown in Fig. 1. The actual time moments and the actual sizes 

of the bubbles are shown as well. 

 

Figure 1. Bubbles at the middle of their rise for H = 6, r0 = 0.2, A = −0.5, Pe = 105, Gr = 0.1, (a-d) Ca 
= 8·10−4: (e-h) Ca = 2·10−4; (a,e) Re = 10, (b,f) Re = 25, (c,g) Re = 50, and (d,h) Re = 100 

Obviously, the interface becomes thinner if the capillary number is lower. Deformation of 

the bubble is stronger at lower capillary numbers, which is explained by smaller surface ten-

sion coefficient at such numbers. In this case, at sufficiently higher Reynolds numbers, the 

bubble can even break. The moment of the break up is depicted in Fig. 1d. At Ca = 2·10−4, 

the bubble breaks up at Re > 50. At Ca = 8·10−4, the bubble breaks up at Re > 100.  

 

Figure 2. (a) The droplet’s volume vs. time; (b) the vertical position vs. time; and (c) the size of the 
droplet in the radial and vertical directions vs. time. The curves are plotted for two Peclet number 
(Pe=107 – solid lines and Pe=105 – dashed lines) and for the other parameters as in Figure 1 

The speed of the bubble rising is high at high Reynolds number. All bubbles in Fig. 1 started 

to rise from the same point and are shown at the similar positions, but at the different time 

moments, as the rise time is smaller if the Reynolds number is increased. The dissolution of 
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the bubble is accompanied by the convective motion near the bubble. The intensity of this 

motion is also increased at higher Reynolds numbers.  

The results in Fig. 1 are shown for Pe = 105. At such Peclet numbers the diffusion through 

the interface is small, but it is different from zero. The actual sizes of the bubbles are indicated 

in Fig. 1. One sees that the diffusion is strongly intensified by convective flows, so that at 

higher Reynolds numbers the bubbles rise faster, but they decrease in size also much faster.  

Fig. 2 shows the time evolution of the bubble’s volume, position and shape. 

An unexpected result is an impact of the Peclet number on the speed of rise. For the cases 

with higher Peclet numbers (weaker diffusion) the time of the initial acceleration is much lower 

and the attached speed of rise is also lower. The agreement between the Stokes prediction 

and the numerical results are getting better at higher Peclet numbers, which is expectable. 

3. Conclusions 

Currently, we have investigated the evolution of the bubble in the case of weaker interfacial 

diffusion. We have compared the obtained results with the data available for immiscible 

systems, and found that all classical formulae earlier obtained on the bases of other theoretical 

and experimental approaches can be successfully reproduced with the help of the phase-field 

approach. In future work, we aim to focus on the effect of absorption, the rate of absorption 

of bubbles of different sizes, and the influence of the absorption on the speed of bubble rise 

and on the evolution of the bubble shape. 
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