Predictive haemodynamics of the human carotid artery
Predictive haemodynamics of the human carotid artery
This thesis employs parametrically defined geometry of the human carotid artery bifurcation to better understand the relationship between a range of parameters and the associated haemodynamics and to devise strategies to provide guidance for clinical interventions and to
assist in the design of stents and grafts. Initially, detailed statistical analysis is applied to a three dimensional parametric computer aided design (CAD) model of the human carotid bifurcation. A Bayesian surrogate modelling technique is proposed and discrete locations in the CAD model are taken as random parameters to form inputs for the surrogate model. A metric, maximal wall shear stress (MWSS) is used as an output for constructing the surrogate model and key geometric parameters which influence MWSS are identified by performing three dimensional steady state simulations on the candidate geometries. The ability of the surrogate model to predict arterial geometries which have minimum and maximum MWSS is also discussed. Using these
geometries, techniques are proposed for evaluating the degree of severity with respect to the metric MWSS for any patient. Subsequently, a new metric, the integral of negative mean shear stress (INMSS) is used as an output for constructing a new surrogate model and three dimensional pulsatile simulations are performed on the candidate geometries. An optimisation problem is solved to find out the arterial geometries which have minimum and maximum values of INMSS. Due to the computational expense of performing three dimensional pulsatile studies, further parametric analyses are applied to the design of stents and bypass grafts using a one dimensional
model capable of simulating fluid-wall interactions. Subsequently, a cost-effective diagnostic technique is proposed for identifying patients with carotid stenosis who could most benefit from angioplasty followed by stenting. For this purpose, pressure variation factor (PVF) and maximum pressure (pm) are used as metrics to rank the performance of each case. Finally, the Bayesian surrogate modelling technique is used to predict optimal bypass graft configurations which have minimal values of PVF.
Kolachalama, Vijaya B.
57020b04-e793-40f4-8d58-c08c4839af04
2006
Kolachalama, Vijaya B.
57020b04-e793-40f4-8d58-c08c4839af04
Bressloff, N.W.
4f531e64-dbb3-41e3-a5d3-e6a5a7a77c92
Kolachalama, Vijaya B.
(2006)
Predictive haemodynamics of the human carotid artery.
University of Southampton, School of Engineering Sciences, Doctoral Thesis, 129pp.
Record type:
Thesis
(Doctoral)
Abstract
This thesis employs parametrically defined geometry of the human carotid artery bifurcation to better understand the relationship between a range of parameters and the associated haemodynamics and to devise strategies to provide guidance for clinical interventions and to
assist in the design of stents and grafts. Initially, detailed statistical analysis is applied to a three dimensional parametric computer aided design (CAD) model of the human carotid bifurcation. A Bayesian surrogate modelling technique is proposed and discrete locations in the CAD model are taken as random parameters to form inputs for the surrogate model. A metric, maximal wall shear stress (MWSS) is used as an output for constructing the surrogate model and key geometric parameters which influence MWSS are identified by performing three dimensional steady state simulations on the candidate geometries. The ability of the surrogate model to predict arterial geometries which have minimum and maximum MWSS is also discussed. Using these
geometries, techniques are proposed for evaluating the degree of severity with respect to the metric MWSS for any patient. Subsequently, a new metric, the integral of negative mean shear stress (INMSS) is used as an output for constructing a new surrogate model and three dimensional pulsatile simulations are performed on the candidate geometries. An optimisation problem is solved to find out the arterial geometries which have minimum and maximum values of INMSS. Due to the computational expense of performing three dimensional pulsatile studies, further parametric analyses are applied to the design of stents and bypass grafts using a one dimensional
model capable of simulating fluid-wall interactions. Subsequently, a cost-effective diagnostic technique is proposed for identifying patients with carotid stenosis who could most benefit from angioplasty followed by stenting. For this purpose, pressure variation factor (PVF) and maximum pressure (pm) are used as metrics to rank the performance of each case. Finally, the Bayesian surrogate modelling technique is used to predict optimal bypass graft configurations which have minimal values of PVF.
This record has no associated files available for download.
More information
Published date: 2006
Organisations:
University of Southampton
Identifiers
Local EPrints ID: 41804
URI: http://eprints.soton.ac.uk/id/eprint/41804
PURE UUID: 61aa67ae-5357-4278-bdcc-5e75b3e9be91
Catalogue record
Date deposited: 05 Oct 2006
Last modified: 11 Dec 2021 15:59
Export record
Contributors
Author:
Vijaya B. Kolachalama
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics