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Abstract:Wedemonstrate the reconstructionof theWigner

function from marginal distributions of the motion of a

single trapped particle using homodyne detection. We

show that it is possible to generate quantum states of lev-

itated optomechanical systems even under the e�ect of

continuous measurement by the trapping laser light. We

describe the opto-mechanical coupling for the case of the

particle trapped by a free-space focused laser beam, ex-

plicitly for the case without an optical cavity. We use the

scheme to reconstruct the Wigner function of experimen-

tal data in perfect agreement with the expected Gaussian

distribution of a thermal state of motion. This opens a

route for quantum state preparation in levitated optome-

chanics.

Keywords: Wigner function, quantum state tomography,

levitated optomechanics, Gaussian state

1 Introduction
The realisation of quantum features in the motion of mas-

sive objects is at the heart of many e�orts in quantum

science and technology. In order to demonstrate that a

quantum state has indeed been prepared, sensitive mea-

surement techniques have to be employed. Those are typ-

ically based on noise-cancelling homodyne techniques or

sideband-resolved heterodynemethods [1].With such sen-

sitive measurement tools at hand it is not unreasonable

to even expect the observation of non-classical features in

domains where one would typically not expect any quan-

tummechanics to be atwork, such as at high temperatures

[2] or for highly excited states [3].
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Quantum state reconstruction (QSR) is a common tool

to analyse whether the state of a system is purely classi-

cal or comprises quantum features such as sub-Poissonian

population statistics or quadrature squeezing [4]. The key

ingredient for QSR is the ability to independently detect

conjugate variables of the dynamics such as position, x
and momentum, p of a continuous variable system such

as a mechanical harmonic oscillator. Some QSR use the

reconstruction of the so-called Wigner quasi-probability

function in phase space, which has the distinct feature to

shownegative values if the observed state is non-classical,

for instance a spatial superposition state.

The Wigner function was �rst reconstructed experi-

mentally for quantum states of light [5] and, thereafter,

heavily usedwithin quantumoptics in the study andappli-

cations of the quantum nature of light. Today, the Wigner

function has been also reconstructed formodes ofmolecu-

lar vibrations [6], themotionof trappedatomic ions [7], the

spatial superposition state of atoms [8] and very recently

for the thermal mechanical states of a harmonic oscillator

in pulsed optomechanics [9]. QSR has also been applied

to study both the e�ect of decoherence on a quantum sys-

tem [10] and the evolution of states relevant in quantum

information processing [11, 12].

The emerging research �eld of levitated optomechan-

ics aims to study and control themotion of particles which

are trapped in vacuum by light. Such levitated systems

are well isolated from their environment, which dramat-

ically reduces the e�ect of thermal noise on the centre-of-

mass (cm)motion of the trappedparticle, as those can only

weakly couple to its motion. In other words, extremely

high quality factors of the mechanical oscillation of the

particle in the trap can be achieved [13, 14]. As a conse-

quence, levitated systems are promising formanifold stud-

ies and applications such as macroscopic quantum super-

positions [13, 15, 16], force sensing [17, 18], and single parti-

cle thermodynamics [19–21]. Development in levitated op-

tomechanics experiments over the last �ve years or so, has

resulted in the successful demonstration of cooling [22–25]

to less than 100 phonons and squashing [26] the cm mo-

tion of the particle.
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Figure 1: Trapping & Detection Schematics: (a) The laser �eld is fo-
cussed by a parabolic mirror to a di�raction-limited spot, where a
nanoparticle is trapped: we label the light �eld that generates the
optical trap as Ed. Part of Ed is Rayleigh scattered by the trapped
particle, and approximately half is collected and collimated by the
mirror: we label this �eld as Es. Using polarisation optics the two
�elds, Es and Ed, are guided into the detection scheme: (b) the
continuous homodyne (CH) detection, where the interferomet-
ric �elds are incident upon a single fast-photodetector, whilst in
(c) the continuous balanced homodyne (CBH) detection, Ed
is spatially �ltered using a pinhole, and Es is directed through a
50:50 beamsplitter with a local oscillator, ELO, �eld into a balanced
photodetector. ELO is generated by splitting a small fraction of the
trapping laser light before it is incident upon the parabolic mirror.

While there aremanifold experimental and theoretical

e�orts on how to generate non-classical states of levitated

optomechanics, here, we are concerned with how to verify
the successful generation of such states. To that end, we

describe two homodyne detection methods for a levitated

particle in a laser dipole trap that enable measurement of

a particle’s position and momentum independently and

therefore to perform QSR. The methods are then used to

reconstruct theWigner function fromexperimental data in

agreement with the expected result for a Gaussian thermal

state. We leave the generation of truly quantum states to

later research.

2 Theoretical description
The experimental setup we consider is shown in Fig. 1(a).

A parabolic mirror is used to realise both the particle trap

and the e�cient collection of scattered light for the de-

tection of the motion of the trapped particle. Importantly,

the mirror enables an optical interferometric detection of

the cm motion of the trapped particle. That interference

is between two light �elds returning from the mirror: Es,
which is Rayleigh scattered by the trapped particle and,

Ed, which is not scattered but diverges.

In the following we describe theoretically the key el-

ements for the desired QSR. In more detail, we quantize

the electric �eld and the center of mass degree of freedom

of the nanonoparticle. We then consider, the coupling be-

tween a polarizable point particle and the electric �eld.

The light-matter coupling generates a trap, as well as an

outgoing electric �eld due to Rayleigh scattering, which is

used for quadrature measurement. We trace over the out-

going Rayleigh scattered light modes to obtain a Lindblad

master equation to investigate the decoherence e�ect of

continuous probing of the particle’s position by the trap-

ping laser. Speci�cally, we estimate the decoherence time

for di�erent superposition sizes, which we compare with

the other relevant time-scales of the system. We consider

two types of homodyne detection methods and under the

assumption of the unperturbed harmonic evolution of the

nanoparticle we construct the marginal distributions. We

reconstruct the Wigner function using the inverse Radon

transformation. In addition, we compare our free-space

system with a cavity system.

Quantization of the electromagnetic �eld
In order to describe the coupling between the particle and

the light, we consider a volume Vq centered at the focal

point of the parabolic mirror, where we quantize the elec-

tromagnetic �eld. Speci�cally, the focal point is in the cen-

ter of the coordinate system, the z axis is aligned with the

optical axis and pointing away from the mirror, while the

x an y axis are parallel to the transverse plane. We model

the laser �eld
ˆEd as a Gaussian �eld:

ˆEd(r) = iE0ϵd
(
u(r)â − u(r)*â†

)
, (1)

where

u(r) = w
0

w(z) e
−

x2+y2

w(z)2 eikz , (2)

E
0
is the amplitude at the center of the beam waist, ϵd is

a transverse polarisation vector, w(z) = w
0

√
1 + (

z
zR )

2

, w
0

is the beam waist, zR =

πw2

0

λ is the Rayleigh range, k = 2π
λ ,

λ is the wavelength of the laser light and â (â†) is the anni-

hilation (creation) operator. The free electromagnetic �eld

(the bath) is given by:

ˆEf (r) = i
∑
k,ν
ϵk,ν

√
~ωk
2Vqϵ0

(
vk(r)âk,ν − v*k(r)â

†

k,ν

)
, (3)

where

vk(r) = eik·r , (4)

ϵ
0
is the permittivity of free space, ϵk,ν is the polarisa-

tion vector, ν denotes the two independent polarisations,

ωk = ck, c is the speed of light and âk,ν (â†k,ν) are the an-

nihilation (creation) operators.

The optomechanical coupling
We also quantize the particle’s center-of-mass degree of

freedom: we denote the position operator as r̂ = (x̂, ŷ, ẑ)
and the corresponding momentum operator as p̂ =
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(p̂x , p̂x , p̂z). We assume the following coupling between

the dielectric particle and the electromagnetic �eld [15, 27,

28]

ˆH
diel

= −

1

2

∫
V(r̂)

dr̃ˆP(r̃) · ˆE(r̃), (5)

where V denotes the volume of the levitated particle,

ˆE =
ˆEd + ˆEf (6)

is the total electric �eld and
ˆP is the polarisation vector.

Speci�cally, we assume that [29]:

ˆP = ϵ
0
ϵc ˆE, (7)

where ϵc = 3

ϵr−1
ϵr+2 and ϵr denotes the dielectric function.

Using Eqs. (6), (7) in Eq. (5) we obtain three terms:

(i) the trap potential (∝ ˆE
2

d) ,(ii) the laser scattering term

(∝ ˆEf · ˆEd) and (iii) the self-scattering of the free light �eld

(∝ ˆE
2

f ). Among the two scattering terms we will only con-

sider the dominant laser scattering term (ii), while we will

neglect the self-scattering term (iii). For the present exper-

iment, we can assume that �eld
ˆEd is strong and coher-

ent, i.e. formally one can make the replacements
ˆEd →

Ed, â → α in Eq. (1), where Ed, α are c-numbers. How-

ever, we will continue to use the operator notation, as

the developed formalism could be also applied to other

experiments, where the quantum nature of the �eld
ˆEd

might be relevant. In addition, we assume that the �elds

ˆEd, ˆEf are approximately constant over the volume of the

particle and we make the formal replacement

∫
V(r̂) dr̃ →

V
∫
δ(3)(r̃ − r̂)dr̃ in Eq. (5).

Let us now �rst discuss the trap potential term (i):

ˆH
trap

= −

ϵ
0
ϵcV
2

ˆEd(r̂) · ˆEd(r̂), (8)

Using Eq. (1) in Eq. (8), making the rotating wave approxi-

mation and considering only terms up to order O(r̂2), one
obtains a harmonic trap:¹

U(r̂) = 2ϵ
0
ϵcVE20|α|2

(
x̂2

w2

0

+

ŷ2

w2

0

+

ẑ2

2z2R

)
. (9)

Combining Eq. (9) with the nanoparticle’s free evolution

term one then obtains the Hamiltonian:

ˆH =

p̂2

2m + U(r̂), (10)

where m is the mass of the nanoparticle.

1 We make the replacement
ˆEd → Ed and â → α in Eq. (1), where

Ed, α are c-numbers.

Relevant aspects of decoherence theory for treatment
of continuous measurement
Let us now discuss the laser scattering term (ii):

ˆH
Scatt.

= −ϵ
0
ϵcV ˆEd(r̂) · ˆEf (r̂), (11)

This term produces non-unitary dynamics for the center-

of-mass. Speci�cally, assuming that the scattered photons

have frequency ωL, applying the rotating wave approxi-

mation and tracing out the light degrees of freedom in

the Born-Markov approximation, one obtains the follow-

ing Lindblad term [30, 31]:

L[ρ̂t] = γ
(∫

d2nR(n)u(r̂)v*kn(r̂)ρvkn(r̂)u*(r̂)

−

1

2

{|u(r̂)|2, ρ̂}
)
,

(12)

where ρ̂t is the center-of-mass statistical operator, R(n) =
3 sin

2

(θ)
8π is the angular distribution of a radiating dipole, θ

is the polar angle, n is a unit vector and u, v are de�ned in

Eqs. (2), (4), respectively. The scattering rate is given by:

γ =

σ
πw2

0

P
~ωL

, (13)

where σ =

8π3ϵcV2

λ4 is the Rayleigh cross section, P is the

laser power and ωL = 2πc
λ is the laser light frequency.

Thus, combining the contribution from the terms (i)

and (ii), one obtains the following dynamics for the center-

of-mass of the nanoparticle:

dρ̂t
dt = −

i
~ [

ˆH, ρ̂t] + L[ρ̂t], (14)

where
ˆH and L are de�ned in Eqs. (10) and (12), respec-

tively. The classical gradient force and radiation pressure

force [32] can be re-obtained in this formalism as F
Grad.

=

−〈 ∂ ˆU∂r̂ 〉 and FScatt.
= 〈p̂L[ρ̂]〉, respectively [30]. The radia-

tion pressure force F
Scatt.

creates a small o�set of the equi-

libriumposition of the harmonic potential for themechan-

ical degree of freedom,whichwewill neglect in the discus-

sion.²

Output �elds, which are used for measurement of the
particle’s position
We have thus far discussed the dynamics of the nanopar-

ticle. We will now consider the scattered light �eld, which

after being re�ected by the mirror, travels towards the de-

tector: this �eld, as anticipated above, will be used to re-

construct the state of the nanoparticle.

To ease the following analysis, we consider only

the motion along the z-axis. In this case, the Hamilto-

nian in Eq. (10) reduces to
ˆH = ~ωsˆb†ˆb, where

ˆb =

2 The laser light travelling towards the mirror creates an analogous

radiation pressure force, which we will also neglect.
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Figure 2: Reconstructing the Wigner function from experimental data: (a) Position signal of single trapped particle from the CBH detection.
The vertical dashed-grey lines signify multiple 2π phases of the oscillator. (b) The marginal distribution generated from (a) for the levitated
particle and the associated (c) reconstructed Wigner function in phase space. (d) Power Spectral Density (PSD) from CH (red) and CBH (blue)
methods. Horizontal lines depict the respective noise floors in both detection schemes and show the slightly improved signal-to-noise ratio
(SNR) for the CBH scheme.

√
1

2m~ωs (mωs ẑ + ip̂z), ωs =
√

2ϵcP
ρcλz3R

and ρ is the particle

density (we have used ϵ
0
E2
0
|α|2 = P

cπw2

0

). Moreover, we as-

sume that the scattered electric �eld has the same polar-

isation and opposite wave-vector as the incoming electric

�eld. In this case, setting x̂ = 0 and ŷ = 0, the mode func-

tions in Eqs. (2) and (4) simplify to u = eikz and v = e−ikz,
respectively. To simplify the notation we denote the an-

nihilation operator associated to the latter mode function

as ĉ. Using then Eqs. (1), (3), (11), neglecting the fast ro-

tating terms, we obtain [? ]:
ˆH
Scatt.

= −C(e2ikẑαĉ† + H.c),

where C = ϵ
0
ϵcVE0

√
~ωL
2Vqϵ0 . We now suppose that the

scatteredmode is initially unpopulated (before the incom-

ing �eld is scattered) and that the evolution is given only

by the term
ˆH
Scatt.

. Moreover, we assume the mechanical

degree of freedom remains unchanged during the time of

the interaction. It is then straightforward to obtain ĉt+τ =
iCατ
~ e2ikẑt , where t is the initial time, τ is the interaction

time and we have explicitly written the time-dependence.

We now consider the electric �elds that are scattered

in other directions (but are still re�ected by themirror and

collimated towards the detector). Speci�cally, we suppose

that during the interaction with the nanoparticle such a

�eld acquires the same phase factor e2ikẑ. We note that

this �eld, once re�ected by the mirror, has approximately

the same polarisation as the �eld
ˆEd. We denote this re-

�ected �eld as
ˆEs (see Fig. 1(a)). To describe the �elds near

we detector we project on the polarisation vector ϵd, i.e.
ˆEd = ϵd · ˆEd and

ˆEs = ϵd · ˆEs. We decompose them in full

generality as [? ]:

ˆEd =Re
(
Aei(ϕd−ωL t)

)
(15)

ˆEs(ẑt) =Re
(
Bei(ϕs+2kẑt−ωL t)

)
, (16)

where Re denotes the real part and A, B, ϕd, ϕs are real

numbers.

Description of detection schemes
We have considered two di�erent detection schemes,

which are graphically depicted in Fig. 1 (b) and (c): we will

refer to them as continuous homodyne (CH) and continu-

ous balanced homodyne (CBH) detections, respectively. In

a nutshell, these two detection schemes rely on the sys-

tem’s unperturbed harmonic evolution to generate rota-

tions of the quadratures in phase space [33].
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Consider, �rst, theCHdetection scheme. The signal in-

tensity is given by:

ˆI(ẑt) = cϵ0E
[
(
ˆEd + ˆEs(ẑt))2

]
, (17)

whereEdenotes the temporal average over the interval

2π
ωL .

The number of photons hitting the detector in the time in-

terval [ti , ti + T) is given by [34]:

ˆN(ẑti ) =
σd
~ωL

ti+T∫
ti

ˆI(ẑt)dt, (18)

where T is the (constant) integration time and σd is the

area of the detector. As the notation already suggests, we

assume that themechanical evolution ismuch slower than

the duration of a single recording. Moreover, we assume

that the evolution of the mechanical degree of freedom is

given by

˙
ˆb = −iωSˆb, on the time-scale of data recording.

Thus, using Eqs. (17), (18) we obtain:

ˆN(ẑti ) =
cϵ

0
σdT

2~ωL
(A2 + B2 + 2AB cos(∆ϕ − 2kẑti )), (19)

where ∆ϕ = ϕd −ϕs. We now assume |∆ϕ − πn| � |2kẑti |,
with n ∈ Z, and Taylor expand to obtain a simpli�ed ex-

pression:

ˆN(ẑti ) = C1 + C2 + Dẑti , (20)

where C
1
=

cϵ
0
σdT

2~ωL (A
2

+ B2), C
2
=

cϵ
0
σdT

~ωL AB cos(∆ϕ) and
D =

cϵ
0
σdT

~ωL kAB sin(∆ϕ).
Let us now consider the CBH detection scheme. We

now have two signal intensities:

ˆI
1
(ẑt) = cϵ0E

[
(
ˆEd + ˆEs(ẑt))2

]
, (21)

ˆI
2
(ẑt) = cϵ0E

[
(
ˆEd − ˆEs(ẑt))2

]
. (22)

The two signals are integrated by the respective detectors

1, 2 in the time interval [ti , ti+T) and then subtracted [34]:

ˆN(ẑti ) =
σd
~ωL

ti+T∫
ti

(
ˆI
1
(ẑt) − ˆI2(ẑt)

)
dt, (23)

where T is the (constant) integration time and σd is the

area of each detector. Starting from Eq. (23), after a simi-

lar calculation as the one for the CH detection scheme, we

obtain in place of Eq. (19)

ˆN(ẑti ) =
cϵ

0
σdT

~ωL
2AB cos(∆ϕ − 2kẑti ) (24)

and in place of Eq. (20):

ˆN(ẑti ) = 2C
2
+ 2Dẑti , (25)

We can exploit Eqs. (20) or (25) to devise state re-

construction methods. Speci�cally, the method, which

we have investigated experimentally in this paper, is to

consider a single system and continuously measure the

quadrature ẑti at di�erent times ti. The free evolution of

a harmonic oscillator for a time ti corresponds to a rota-

tion in phase space of angle ωs ti. Thus, themeasurements

of ẑti can be used to construct the marginals µ(z; θs) [4],
where θs = ωs ti mod 2π. This method, where we con-

sider a single system and continuousmeasurements of the

quadrature, could be combined with the quantum-state

sampling method [35–37]: the reconstructed state is up-

dated, increasing the accuracy of the reconstruction, by

each new recorded value of the quadrature. However, in

this paper, we adopt the inverse Radon transformation to

reconstruct the Wigner function [38].

3 Experimental implementations
and results

We now apply the theory developed in the previous sec-

tion to reconstruct the Wigner function of a thermal state

of motion and discuss the decoherence e�ect of continu-

ous measurement from the trapping laser.

The motion of the particle in the trap is measured by

the detection of the intensity of light according to Eqs. (17)

and (21), (22) for CH and CBH, respectively. We realise the

setup in Fig. 1(a), by using 1550 nm laser light of 650mW,

incident upon the parabolic mirror made of aluminium,

with an aperture of 3 mm. At the di�raction limited focal

spot generated by themirror, we trap a silica particle of di-

ameter 34 nm, which oscillates with ωs = 2π × 70 kHz,

where ωs is the frequency of the z-motion. To realise both

the detection schemes in Fig. 1(b)(c), we use the same type

of photodetectors with a bandwidth of 4 MHz. For both

CH and CBH schemes we record the intensity at the detec-

tors for one second (see Eqs. (20) and (25), respectively).

In post-processing, this signal is �ltered for the z degree of

freedom of the particle and converted from time t to oscil-

lator phase, θs = ωt mod 2π, where ωs is the oscillator’s

frequency, as shown in Fig. 2(a).

This measured signal contains the information of the

evolution of the particle’s harmonic motion, and we in

e�ect sample each oscillation phase thousands of times

during a one second time trace measurement. We collect

the intensity value for each phase of the oscillating parti-

cle for many oscillation cycles, which gives the statistics

of the measurement. The resulting marginal distributions

µ(z, θs) are generated for phases 0 to 2π, as shown in Fig.
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2(b). We use the convention that when θs = 0 we acquire

the marginal distribution of position µ(z, 0) = µ(z), while

for µ(z, π/2) = µ(pz), we get the marginal for the momen-

tum pz. This is an important point as it allows for the ex-

traction of both quadratures independently in order to re-

construct the state and is at the heart of each homodyne

detection. By using all marginal distributions and apply-

ing the inverse Radon transformation [38] we obtain the

Wigner function of the thermal state of motion of the par-

ticle, as shown in Fig. 2(c). Both Fig. 2(b)(c) show the state

distribution is Gaussian and centred about the origin of

phase space. This distribution is the expected result for a

trapped particle in thermal equilibrium with the environ-

ment. Especially, we do not expect any negative value of

the Wigner function for a thermal state.

As a further result, Fig. 2(d), shows the power spec-

tral density (PSD) obtained from both the CH and the CBH

detection schemes at 1 × 10

−2

mbar and T = 300K for a

particle of radius 34 nm. The size of the particle has been

extracted from a Lorenzian �t to the PSD. Although, both

signal peaks are the same, the noise �oor has decreased by

a factor of two for the CBH scheme if compared to CH, im-

plying a better signal-to-noise ratio (SNR) for CBH, which

is promising for futurework on state preparation and cool-

ing. However, the CBH scheme, is very sensitive to any

phase changes in the LO arm and for the experiments re-

ported here, a laser pointing instability over time scales of

a few seconds causing variation in the detected light in-

tensity. This is the identi�ed technical limit on the SNR in

the present experiments, as it limits the detection integra-

tion time. This SNRhas tobe improveddown the shotnoise

limit in future experiments to detect non-classical states,

which has already been demonstrated in optomechanical

systems [39–41].

Invariably, the continuous probing from the laser �eld

yields a strong limit on the coherence times of non-

classical correlations. We treat the continuous probing as

a decoherence e�ect and derive a master equation from

Eq. (14), in the limit of small displacements. Setting x̂ = 0

and ŷ = 0 and expanding to quadratic order in ẑ, one ob-

tains a simpli�ed master equation:

dρ̂
dt = −

i
~ [

ˆHp , ρ̂t] − Γ[ẑ, [ẑ, ρ̂]], (26)

where Γ =

12π2γ
5λ2 . The quantities γ, de�ned in Eq. (13),

and Γ govern the short and long wavelength limits, re-

spectively. We can de�ne an e�ective decoherence time τ,
function of the superposition size ∆z, which joins the two

regimes (see Fig. 3) [42–44]:

τ(∆z) =
(
γ tanh(Γ∆z2/γ)

)
−1

. (27)

10- 14 10- 12 10- 10 10- 8 10- 6 10- 4
10- 19

10- 14

10- 9

10- 4

10

106

time /s

Figure 3: Decoherence times from continuous measurement by the
trapping laser for the example of a superposition state: The deco-
herence time due to laser light scattering (red line) is estimated us-
ing Eq. (27). We have plotted for comparison the decoherence time
due to emission and absorption of thermal photons (purple line),
where we have assumed that the internal and external temperatures
are the same, namely at 300 K, scattering of thermal photons (blue
line) and gas collisions (green line) at a background gas pressure of
10

−2mbar [42–44].

For a spatial superposition of size ∆z ∼ 0.1nm the result-

ing decoherence time is estimated to be on the order of 10

µs, as plotted in Fig. 3. This time corresponds to one full os-

cillation period of the present levitated system. More gen-

erally, assuming we would suppress all other sources of

decoherence and prepare a spatial superposition state of

size ∆z, that state would persist for a time τ(∆z).
This result sets the scale for any possible generation of

non-classical correlations, speci�cally, to observe negativ-

ity in the Wigner reconstruction. However, as can be seen

from Fig. 3, for the current experiment, the decoherence

due to other environmental sources becomes relevant at

these distances as well. Not surprisingly, decoherence due

to gas collisionswith background gas at the given pressure

of 10

−2

mbar is the dominating e�ect by some orders of

magnitude, but also the e�ect of emission and absorption

of thermal (black body) photons by the trapped particle at

300K showsa stronger decoherence e�ect compared to the

continuous trapping laser light scattering by the trapped

particle.

4 Discussion and Conclusion
The state reconstruction presented in this paper relies on

the assumption of the unperturbed harmonic evolution of

the trapped system. Any future manipulation scheme to

generate non-classical states in conjunction with our re-

constructionmethod, has to take this harmonicmotion as-
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sumption into account and therefore has to be on shorter

timescales compared to the oscillation. This assumption is

satis�ed on the time-scales of data recording if (i) the cou-

pling to the environment (background gas particles and

thermal photons) is small and (ii) the decoherence due

to scattering of photons from the trapping laser is su�-

ciently weak. While for a classical system these two as-

sumptions can be relaxed, they become of crucial impor-

tance in order to detect non-classicality. On the one hand,

decreasing the pressure and temperature of the environ-

ment, as well as lowering the internal temperature of the

trapped particle [45], will isolate the system well enough

to satisfy condition (i). However, the action of continuous

quadrature measurements, which are not of the quantum

non-demolition (QND) type, is ultimately constrained by

Heisenberg’s uncertainty principle [46].

A possible solution to satisfy both (i) and (ii) is to

consider an ensemble of identically prepared systems [15].

This could be achieved in the following way: We apply the

construction protocol C that constructs the desired state

from an arbitrary initial state. We then take quadrature

measurements, which we call protocol M, for only a time

βω−1S , where β is a positive number.We can now repeat the

protocols C and M, gradually constructing the marginal

distributions µθ(z; θ), where θ = ωs t(j) and 0 ≤ t(j) < βω−1S
denotes the time from the start of the j-th timewe apply the

protocol M. In this way we have to satisfy (i) and (ii) only

for the time βω−1S , which makes the method more experi-

mentally feasible. We leave amore rigorous analysis of the

limits of validity of the proposed detection schemes, for fu-

ture research.

The CH and CBH detection methods are to be com-

pared with the detection scheme, which is usually

adopted in cavity optomechanics. There, one creates

an ensemble of identically prepared systems for each

phase ϕ of the LO and measures the marginal distribu-

tions µϕ(δz;ϕ) corresponding to the rotated quadrature

exp(iδˆb†δˆbϕ)δẑ exp(−iδˆb†δˆbϕ), where δˆb and δẑ denote
the �uctuations around the the steady state values [47].

From the marginal distributions one can then, at the end

of data collection, reconstruct the state of the system [48].

This method has the drawback that the algorithm for state

reconstruction is applied at the very end of data collection,

a feature whichmakes it unappealing for state control and

manipulation. Moreover, one has to experimentally con-

trol the phase of the LO, which is non-trivial.

However, there is more natural relation between cav-

ity and free space systems. Consider �rst the free space sys-

tem: the strong coherent light �eld scatters o� the trapped

nanoparticle and then, without any further interaction, is

re�ected by the mirror towards the detector. A lossy cav-

ity system, where the cavity mode is initially unpopulated

and driven by an a strong coherent light �eld, behaves in

a similar way. Moreover, one can show that the CH and

CBH detection schemes can be used also for cavity sys-

tems. In addition, one obtains the following correspon-

dence

g
0

κ = 2π zzpfλ , where, on the left hand-side, g
0
and

κ are the opto-mechanical coupling and the optical decay

rate for a cavity system, and, on the right hand-side, z
zpf

and λ are the quantities for free space system discussed

here above (see Appendix A).

In conclusion, we have shown that the parabolic mir-

ror setup used in levitated optomechanics can be utilised

for carrying out homodyne detection. We present a theory

on how momentum and position of the mechanical oscil-

lator are extracted from photon counts at the detector. We

have also shown that by utilising the evolution of the par-

ticle in the harmonic trap we can track its phase, which

can be used to generate the marginal distributions. By ap-

plying an inverse Radon transform to the marginals, we

carry out Wigner reconstruction for a thermal state of a

levitated nanoparticle. Thus, we have demonstrated de-

tection techniques �t to prove non-classical features of

levitated optomechanics in parabolic mirror traps, future

workwill aim to complement this by thegenerationof such

non-classical motional states. For example, the state de-

tection andmanipulation could be implemented using the

Kalman �lter [49, 50].
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A Appendix: Detection schemes in
Cavity optomechanics

It is instructive to make a comparision between a free-

space and a cavity opto-mechanical setup [51]. In this

appendix, we show that the free-space system, consid-

ered in the main text, is analogous to a lossy cavity opto-

mechanical system. Speci�cally,we consider the following

Hamiltonian for a cavity opto-mechanical system [41, 47,

52, 53]:

ˆH =~ωSˆb†ˆb + ~ωL â†â − ~
g
0

z
zpf

â†âẑ

+ i~E(âeiωL t − â†e−iωL t),
(A.1)

where
ˆb (

ˆb†) denotes the mechanical annihilation (cre-

ation) operator, ωs is the mechanical frequency, â (â†)
denotes the cavity annihilation (creation) operator, g

0
=

−zzpf ∂ωcav

∂z |z=0 is the opto-mechanical coupling, ω
cav

(z) is
the cavity frequency, ẑ = zzpf (ˆb + ˆb†), zzpf =

√
~

2mωs , ωs
is the frequency of themechanical degree of freedom,m is

the mass of the mechanical degree of freedom, E =

√
2Pκ
~ωL ,
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P is the laser power, ωL = ωcav
(0) and κ is the cavity decay

rate. Note that this cavity system has zero laser detuning,

i.e. ∆ = ωL − ωcav
(0) = 0.

We write the corresponding (non-linear) Langevin

equations in the interaction picture with respect to

~ωL â†â:³

˙â = − κ
2

â + i g0z
zpf

ẑâ + E +
√
κâ

in
, (A.2)

˙
ˆb = −

(
iωS +

ξ
2

)
ˆb + ig

0
â†â +√γˆb

in
, (A.3)

where ξ is the mechanical decay rates and â
in
,
ˆb
in

are in-

put noise operators [54].

Relation between free space and cavity
Wenowwrite explicitly the time-dependence. The solution

to Eq. (A.2) is given by:

ât = e−
κ
2

t
ˆUt â0 + Ee−

κ
2

t
ˆUt

t∫
0

e
κ
2

s̃
ˆU†s̃ds̃, (A.4)

where

ˆUt = T

(
ei

g
0

z
zpf

∫ t
0

ẑsds
)
, (A.5)

T denotes the time-ordering operator and â
0
is the initial

value. The factor e−
κ
2

(t−s̃)
in Eq. (A.4) constrains the s̃ in-

tegration to the interval [t − 2

κ , t], where we assume that ẑ
does not evolve signi�cantly. Wemake the approximation:

s̃∫
0

ẑsds =
t∫

0

ẑsds − ẑt(t − s̃). (A.6)

Speci�cally, using this relation and Eq. (A.5), we have:

ˆU†s̃ = ˆU†t e
i g0z

zpf

ẑt(t−s̃)
(A.7)

Using then Eq.(A.7) in Eq. (A.4) we obtain:

ât = E
t∫

t− 2

κ

e−
κ
2

(t−s̃)ei
g
0

z
zpf

ẑt(t−s̃)ds̃, (A.8)

where we have also assumed that â
0
≈ 0, i.e. the cavity

mode is initially not populated.We�nally approximate the

integral in Eq. (A.8) by the mean value and obtain:

ât = 2e−
1

2

E
κ e

i g
0

κz
zpf

ẑt
(A.9)

ComparingEq. (A.9)with Eq. (16)we�nd the following

relation:

g
0

κ = 4π
z
zpf

λ , (A.10)

3 We �rst apply this transformation to the Schrödinger picture and

then switch to the Heisenberg picture.

where, on the left hand-side, we have cavity system quan-

tities, and, on the right hand-side, we have free space sys-

tem quantities. Speci�cally, inserting the values of the free

space system presented in the main text in Eq. (A.10) we

�nd g
0
/κ ≈ 10

−4

. This ratio is important for the discus-

sion of non-linear quantum opto-mechanics [41]. We leave

a more re�ned, fully quantum mechanical description of

free space systems, and the comparison with cavity sys-

tems, for future research.

Detection schemes
Comparing Eq. (A.9) with Eq. (16) also shows that we can

monitor the mechanical motion in real-time [55]. In par-

ticular, the CH, CBH detection schemes, discussed in the

main text, can be applied also a cavity opto-mechanical

experimental setup. Speci�cally, the analysis from Eq. (17)

to Eq. (25) remains valid.
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