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Abstract Deciphering the evolution of Southern Ocean circulation during the Eocene and Oligocene has
important implications for understanding the development of the Antarctic Circumpolar Current and
transition to Earth’s “icehouse” climate. To better understand ocean circulation patterns in the Indian Ocean
sector of the Southern Ocean, we generated a new fossil fish tooth neodymium isotope record (eng) from the
upper Eocene to upper Oligocene sections (36-23 Ma) of Ocean Drilling Program Sites 744 and 748
(Kerguelen Plateau, Indian Ocean). Reconstructed seawater eyg values from fossil fish teeth are used to trace
changes in water masses across ocean basins. The records from Site 748 and Site 744 reveal a gradual shift
from eng values around —6.5 to —7.5 in the late Eocene to eng values between —7.5 and —8.3 by the late
Oligocene, consistent with a Circumpolar Deep Water (CDW) influence at the Kerguelen Plateau throughout
the Oligocene. We interpret the shift to less radiogenic values to reflect the increased export of Northern
Component Water to the Southern Ocean, likely into the proto-CDW. However, the records show no major
change in water mass composition around the Kerguelen Plateau that would accompany an increase in
Pacific throughflow related to the opening of Drake Passage and imply that Pacific throughflow via the Drake
Passage occurred by the late Eocene. High-frequency variability in eyg values at Site 744 is interpreted as an
imprint of Oligocene glacial activity, with a particularly pronounced excursion at 32.6 Ma roughly coinciding
with other glacial weathering indicators around Antarctica.

1. Introduction

The evolution of ocean circulation patterns in the Southern Ocean during the Cenozoic is not fully under-
stood, especially during critical climatic events such as the onset of significant Antarctic glaciation at the
Eocene-Oligocene transition (EOT; ~34 Ma; e.g., Miller et al.,, 1987; Zachos et al., 1996, 2001). Ocean circulation
is responsible for heat transport, and it has been proposed that the tectonic opening of Southern Ocean gate-
ways (i.e., the Tasman Gateway and Drake Passage) allowed for a reorganization in ocean circulation, includ-
ing the onset of the Antarctic Circumpolar Current (ACC), ultimately resulting in the thermal isolation of
Antarctica and significant glaciation across the EOT (e.g., Kennett, 1977). Neodymium (Nd) isotope ratios
can be employed as a proxy for reconstructing ocean circulation patterns and have been used to identify
the inception of the ACC at around 30 Ma, linking the onset of the ACC to the opening and migration of
the Tasman gateway into the westerly wind band (Scher et al., 2015). However, the role of the Drake
Passage in the development of the ACC is unclear due to uncertainties in the timing of deep gateway open-
ing and the paleobathymetric evolution of the Scotia Sea. Neodymium isotope ratios from the Atlantic sector
of the Southern Ocean suggest an influx of Pacific seawater through the Drake Passage as early as 41 Ma
(Scher & Martin, 2006). This age predates the earlier estimates of deep Scotia Sea gateway opening (e.g.,
23 Ma; Barker & Burrell, 1977); however, recent studies suggest the establishment of a deep water connection
through the Drake Passage from 34-30 Ma (Eagles & Jokat, 2014; Livermore et al., 2005, 2007) to ~12 Ma
(Dalziel et al., 2013).

While previous work on reconstructing ocean circulation patterns around the Eocene-Oligocene boundary
has largely focused on the South Atlantic (e.g., Scher & Martin, 2004, 2006, 2008; Via & Thomas, 2006) and
the Tasman Gateway (Scher et al., 2015), comparatively little work has been published on pathways through
the Indian Ocean. This has presented a challenge for explaining similarities in isotope records between Maud
Rise (Atlantic sector), East Tasman Plateau (Tasman Sea sector), and Hikurangi Plateau (Pacific sector)—which
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suggest water mass communication between these regions. An additional motivation for constructing long
Nd isotope records on Kerguelen Plateau is to explore the influence that this large topographic barrier has on
the flow of the modern ACC. The Kerguelen Plateau, a shallow submarine plateau in the Indian sector of the
Southern Ocean, forms a critical obstacle for the ACC and diverts most ACC transport to the north of the bar-
rier (Park et al., 1993). Such bathymetric highs likely influenced the pathway of the ACC during the Cenozoic
(e.g., Munday et al., 2015).

Here we fill the gap in the Indian Ocean using Nd isotope ratios extracted from fossil fish teeth to reconstruct
the composition of ancient seawater in the high latitude Indian Ocean. We present Nd isotope records from
the upper Eocene to upper Oligocene sections of Ocean Drilling Program (ODP) Sites 744 (Leg 119) and 748
(Leg 120) located on the Kerguelen Plateau (Figure 1). The Kerguelen Plateau is immediately downstream
from the Weddell Sea, and proximal to Cape Darnley in Prydz Bay, which are both sources of bottom water
today. We explore the origins of Nd isotope variability in our new records by comparison to existing Nd iso-
tope data sets from the Indian, Atlantic, and Pacific sectors of the Southern Ocean (Figure 1a). We then use
our record to explore the evolution of Southern Ocean circulation during the Eocene and Oligocene and
assess these results in terms of Cenozoic climate and Antarctic glaciation patterns.

1.1. The Use of Neodymium Isotopes as a Tracer for Circulation Patterns

The Nd isotopic composition of fossil fish teeth from pelagic marine environments can be used as a proxy for
reconstructing water mass circulation patterns. The eng value of fossil fish teeth (where eng = [("**Nd/'**Nd)
measured/ (PN Nd)cqur]l — 1 % 10% where CHUR is the Chronditic Uniform Reservoir with
3Nd/"*Nd = 0.512638 (Jacobsen & Wasserburg, 1980)) reflects the Nd isotopic composition of seawater
in contact with the seafloor at the time of deposition, remineralization, and burial of fish teeth (Staudigel
etal., 1985). The eng value of fossil fish teeth from deep-sea sediment cores is resistant to postburial alteration
(Martin & Haley, 2000; Scher et al., 2011), making fossil fish teeth a faithful archive for bottom water eyg values
at the time of deposition. Due to short residence time of Nd in the ocean (~300-1,000 years) (Arsouze et al.,
2009; Rempfer et al., 2011; Tachikawa et al., 2003), eng records from fossil fish teeth can be used to reconstruct
past ocean circulation patterns.

Neodymium is introduced into the ocean through the erosion of continental sources, such as dissolved riv-
erine input, dust transport, and by exchange with sediments on continental margins known as boundary
exchange (Allégre et al., 2010; Frank, 2002; Lacan & Jeandel, 2005a, 2005b; Piepgras & Wasserburg, 1980).
The Nd isotopic composition of continental crust largely reflects its age and type. During melt extraction from
the mantle, samarium (Sm) has a greater compatibility than Nd, resulting in higher Sm/Nd in the mantle rela-
tive to the crust (Jacobsen & Wasserburg, 1980). Due to the decay of radioactive '*’Sm to "**Nd over time,
older granitic cratons develop extremely negative gyg values, whereas young volcanic outcrops are more
positive (Goldstein & Hemming, 2003; Jeandel et al., 2007). Thus, water masses originating from regions
where young volcanogenic derived material is weathered have more positive (radiogenic) eng values (e.g.,
Pacific Ocean; eng = 0 to —5; Goldstein & Hemming, 2003), while contributions from ancient continental rocks
result in more negative (unradiogenic) values, in basins such as the North Atlantic (e.g., North Atlantic Deep
Water, NADW; eng = —13.6 £ 0.5; Lambelet et al., 2016). Neodymium isotope ratios are not influenced by bio-
logical fractionation, weathering, or transport processes (Goldstein & Hemming, 2003; Lacan & Jeandel, 2001);
therefore, variations in the eyg value of a water mass reflect mixing with other water bodies and/or contact
and exchange with continental inputs.

2, Regional Setting and Hydrography
2.1. Geologic Setting of the Kerguelen Plateau

ODP Site 744, Hole 744A (61.579°S, 80.595°E; water depth: 2307.3 m) and Site 748, Hole 748B (58.441°S,
78.9981°E; water depth: 1290.9 m) are positioned on the southern domain of the Kerguelen Plateau
(Figure 1), a large igneous province (LIP) presently located on the Antarctic plate. It is bound by the
Enderby Basin to its southwest, the Crozet Basin to its northwest, and the Australian-Antarctic Basin to its
northeast and is separated from the Antarctic continent by the Princess Elizabeth Trough. The Kerguelen
Plateau can be divided into distinct domains, including the southern Kerguelen Plateau, central Kerguelen
Plateau, northern Kerguelen Plateau, Elan Bank, and the Labuan Basin (Figure 1b).
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Figure 1. (a) Overview of the present-day Southern Ocean and study sites (ODP Sites 744 and 748) (circles) and ODP sites (diamonds) considered in this study.
(b) Map of the Kerguelen Plateau and study sites. Bathymetry (ETOPO1; Amante & Eakins, 2009), present-day coastlines (light gray), and the Kerguelen Plateau
(thin gray outline; from Whittaker et al., 2015) are shown. Fronts and currents shown include Antarctic slope current (ASC; based on McCartney & Donohue, 2007, and
Roquet et al., 2009), Deep Western Boundary Current (DWBC; based on Park et al., 2008, and Roquet et al., 2009); Polar Front (PF; from Orsi et al.,, 1995, modified
around Kerguelen Plateau based on Park et al., 2008, and Roquet et al., 2009); Pyrdz Bay Gyre (modified from Borchers et al., 2011); Southern Antarctic Circumpolar
Current Front (SACCF; from Orsi et al., 1995). ODP Leg 183, Site 1139 (Skiff Bank) is shown for its location only. Abbreviations are Aus-Ant Basin, Australian-Antarctica
Basin; EB, Elan Bank; FT, Fawn Trough; PET, Princess Elizabeth Trough; SEIR, Southeast Indian Ridge.

The Kerguelen Plateau formed from volcanic activity associated with the Kerguelen plume, with emplace-
ment of the Kerguelen Plateau occurring since the Cretaceous. Eruption ages decrease northward across
the Kerguelen Plateau: ages from southern Kerguelen Plateau basalts are 118-110 Ma (Coffin et al., 2002;
Duncan, 2002), central Kerguelen Plateau basalts are 100-95 Ma (Duncan, 2002), and northern Kerguelen
Plateau ages are 40-35 Ma (Duncan, 2002). While the central and northern Kerguelen Plateaus are composed
of volcanic material related to ridge-plume interactions, continental fragments found within the crust of the
southern Kerguelen Plateau suggest that this plateau is at least partially underlain by stretched continental
crust (Bénard et al,, 2010). The uppermost crust of the Kerguelen Plateau was largely emplaced subaerially,
based on vesicularity and oxidative alteration of basalts recovered from ODP cores (Coffin et al., 2002;
Duncan, 2002; Frey et al., 2000).

Volcanic activity associated with southern Kerguelen Plateau eruption predates our study period; however,
emplacement of the northern Kerguelen Plateau coincides with the timing of our Nd isotope record. The
northern Kerguelen Plateau formed from ~40 Ma, based on basalts recovered from Leg 183, Site 1140
(Duncan, 2002), although a date of ~68 Ma has been obtained from ODP Leg 183, Site 1139 (Skiff Bank)
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(Duncan, 2002), where Skiff Bank constitutes ~10% of northern Kerguelen Plateau (Coffin et al., 2002). Basalts
from Skiff Bank are similar to those from the northern Kerguelen Plateau (Frey et al., 2003), and its older age
may be due to overprinting at Site 1139 (Duncan, 2002) or may reflect an earlier emplacement age for por-
tions of the northern Kerguelen Plateau (Duncan, 2002). After emplacement at 40 Ma, volcanic activity moved
progressively southward and possibly represents the hot spot track of the Kerguelen plume (Weis et al., 2002),
with activity at the presently subaerial Kerguelen archipelago around 30-24 Ma (Nicolaysen et al., 2000), to
recent volcanic activity on Heard Island (Weis et al., 2002). Subaerial emplacement is inferred from Skiff
Bank (Site 1139) (Frey et al., 2000); however, basaltic pillow lavas recovered from Site 1140 suggest submarine
emplacement corresponding with major northern Kerguelen Plateau emplacement, with an 870 m paleo-
depth estimate (Wallace, 2002).

2.2. Southern Ocean Circulation

2.2.1. Present Day

The present-day Kerguelen Plateau has a major influence on both regional circulation and the fronts of the
ACC, where it forms the largest topographic obstacle to circumpolar flow (Sokolov & Rintoul, 2009). The
southern Kerguelen Plateau is largely under the influence of Circumpolar Deep Water (CDW), which is the
most voluminous Southern Ocean water mass and encompasses most of the deep ocean between the north-
erly polar front (PF) and Southern Antarctic Circumpolar Current Front (SACCF) (Figure 1) (Orsi et al., 1995).
The PF passes by the north of northern Kerguelen Plateau (e.g., Belkin & Gordon, 1996; Orsi et al., 1995), while
the SACCF passes through the Princess Elizabeth Trough, located immediately south of southern Kerguelen
Plateau (McCartney & Donohue, 2007; Orsi et al., 1995; Roquet et al., 2009) (Figure 1). Detailed regional studies
have debated the precise pathway of these fronts around Kerguelen Plateau (e.g., Park et al., 1998, 2008,
2009; Roquet et al.,, 2009); however, southern Kerguelen Plateau is dominated by CDW regardless of the slight
variations in PF and SACCF locations.

After the SACCF passes through the Princess Elizabeth Trough, it bends steeply northwestward to form part
of the deep western boundary current (DWBC) along the eastern flank of southern Kerguelen Plateau
(McCartney & Donohue, 2007; Roquet et al., 2009). The Kerguelen DWBC (Figure 1) is a strong geostrophic
current and the main source of water to the Southern Kerguelen Plateau, transporting cold deep water
(including Antarctic Bottom Water; AABW) and suspended sediment away from the Antarctic margin
(Donohue et al., 1999; Fukamachi et al., 2010). This current forms the western limb of a cyclonic gyre in the
Australian-Antarctic basin (McCartney & Donohue, 2007; Park et al., 2009). Sources for the Kerguelen DWBC
include (1) the westward flow of the Antarctic Slope Current (or Front; ASC), which transports AABW from
the Adélie Coast/Wilkes Land Basin (Donohue et al,, 1999; Fukamachi et al, 2010), and the Ross Sea
(Fukamachi et al., 2010) to the DWBC (McCartney & Donohue, 2007); and (2) the eastward flow of AABW from
the Weddell-Enderby Basin, which is entrained within the ACC (Donohue et al., 1999; Heywood et al., 1999;
McCartney & Donohue, 2007) and passes the continental shelf adjacent to Prydz Bay to also bring terrigenous
material from Prydz Bay through the Princess Elizabeth Trough to the DWBC (Borchers et al.,, 2011). Recent
work has also suggested that dense shelf water produced in Cape Darnley, located on the western side of
Prydz Bay, contributes to AABW (Ohshima et al., 2013; Williams et al.,, 2016; Yabuki et al., 2006). South of
the Kerguelen Plateau, the cyclonic Prydz Bay Gyre (Figure 1) mixes and recirculates waters from the ASC
and AABW with CDW (Heywood et al., 1999; Nunes Vaz & Lennon, 1996; Smith et al., 1984), along with terri-
genous material from Prydz Bay (Borchers et al., 2011).

Circumpolar Deep Water is predominately influenced by NADW, where 70-75% of the CDW Nd budget is
contributed by NADW (Stichel et al.,, 2012). The average modern &eyg value for CDW is —8.5 (Stichel et al.,
2012) and is more radiogenic than modified NADW (gyg = —10 to —11; Stichel et al.,, 2012) and “true”
NADW (eng = —13.6; Lambelet et al., 2016). Average eng for modern AABW varies depending on its source;
AABW derived from the Ross Sea is eng = —7 (Rickli et al.,, 2014), from the Weddell Sea is enyg = —8.9
(Stichel et al., 2012), and is inferred from ferromanganese crust measurements for the Adélie Coast/Wilkes
Land Basin to be around eyg = —10 (van de Flierdt et al., 2006).

2.2.2. Eocene and Oligocene

The Paleogene Southern Ocean had many differences compared to its modern expression. During the
Paleocene-early Eocene, the Southern Ocean was likely dominated by deep waters forming in locations simi-
lar to the modern day (e.g., Huck et al.,, 2017; Thomas et al., 2003), with limited contribution of deep water
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from the North Atlantic. Export of an early expression of Northern Component Water (NCW), the ancient pre-
cursor to NADW, to the midlatitude North Atlantic basin from 38.5 Ma has been proposed by Borrelli et al.
(2014) based on benthic foraminiferal stable isotopes. A later onset of NCW export has been linked to the
deepening of the Greenland-Scotland Ridge by the early Oligocene (Abelson et al., 2008; Davies et al.,
2001; Via & Thomas, 2006). However, it is not clear if these waters contributed to proto-CDW in the
Southern Ocean during the late Eocene. More recognizable features of Southern Ocean circulation and mod-
ern climate evolved around the EOT. Major stepwise cooling has been inferred from magnesium/calcium
(Mg/Ca) records from planktonic foraminifera from ODP Sites 738, 744, and 748 (southern Kerguelen
Plateau) (Bohaty et al, 2012). Other major changes across the EOT include higher ocean productivity
(Diester-Haass & Zahn, 2001), high-latitude cooling of ocean surface waters (Liu et al.,, 2009), and the large-
scale growth of permanent ice sheets on Antarctica (Lear et al., 2000; Miller et al., 1987). These changes were
likely precipitated from the organization of the Southern Ocean frontal zones. The formation of a proto-PF
and protosubtropical fronts may have occurred by the middle to late Eocene (~42 Ma), based on the presence
of bolboforms (an extinct group of microplankton), variations of planktonic foraminiferal diversity, and the
presence of ice rafted debris (IRD) in Site 748 (Cooke et al., 2002). These proto oceanic fronts formed poleward
(proto-PF: <~70-60°S; proto-STF: 65-50°S) of their present-day positions (PF: ~60-50°S; STF: 30-40°S) and
progressed equatorward during the Oligocene and Miocene (Cooke et al., 2002). Fully coupled climate mod-
els for the Eocene indicate subtropical and subpolar gyres, including a clockwise subpolar gyre passing north
of Kerguelen Plateau and with westward flow through Princess Elizabeth Trough (Huber et al., 2004).

Despite the uncertainties and differences in ocean circulation between our study period (36-23 Ma; late
Eocene to Oligocene) and the modern day, water masses and transport pathways around the southern
Kerguelen Plateau are thought to have been similar to present day (e.g., Kerguelen DWBGC; Scher et al.,
2014), which are predominantly driven by the pressure gradient force exerted on the Kerguelen Plateau by
the Earth’s rotation. The Kerguelen DWBC was likely responsible for transport between Prydz Bay and the
Kerguelen Plateau during the Eocene (Scher et al., 2014) and would have allowed transportation of
Southern Ocean-derived bottom waters and Antarctic-sourced terrigenous sediment around our study sites.
Neodymium signatures representing proto-CDW have also been reconstructed for the late Eocene using fos-
sil fish teeth from the Southern Kerguelen Plateau (ODP Site 738) (Scher et al., 2014). Proto-AABW is thought
to have existed by the early Eocene, based on the distribution of hiatuses in the Indian Ocean (Ramsay et al.,
1994) and unradiogenic Nd compositions reconstructed at Kerguelen Plateau and the Indian Ocean basin
(eng = —9.3 £ 1.5; Huck et al., 2017).

2.3. Age Model

The original magnetic reversal stratigraphy for the upper Eocene to lower Oligocene sections of ODP Sites
744 and 748 (Inokuchi & Heider, 1992; Keating & Sakai, 1991) was updated with u-channel samples
(Roberts et al., 2003). New magnetic reversal datums were used to constrain diatom datums of Baldauf and
Barron (1991) and Harwood et al. (1992). Recently, the integrated magnetobiostratigraphic framework for
these sites has been refined using stable isotope chemostratigraphy (Bohaty et al.,, 2014). Maxima and
minima in 8'80 and §'3C of the fine fraction throughout the Southern Ocean have been shown to be synchro-
nous within the uncertainty of the magnetobiostratigraphy and are used to enhance correlations between
sites (Bohaty et al, 2014). All ages are reported relative to the 2012 Geologic Time Scale (Gradstein
etal, 2012).

3. Analytical Methods
3.1. Fossil Fish Teeth

Forty-seven samples were taken from ODP Hole 744A (samples between 101.84 and 152.64 m below sea-
floor) and 151 samples from ODP Hole 748B (samples between 65.67 and 125.97 m below seafloor). Fossil fish
teeth were handpicked from the >125 um fraction of 204 washed sediment samples. Fish teeth were treated
with reductive, oxidative, and partial dissolution steps (Boyle, 1981; Boyle & Keigwin, 1985) to chemically
remove ferromanganese coatings. Treated samples were transferred to acid-cleaned microcentrifuge tubes
and dissolved in 50 pL of 0.25 M HCI. Samples were processed for ion and cation exchange chemistry
using the method of Scher and Delaney (2010). Briefly, dissolved fish teeth were loaded on to LnSpec resin
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(50-100 pm), using microcolumns made from heat shrink Teflon tubing, and the Nd was collected using
0.25 M HCl.

3.2. Neodymium Isotopic Analysis

The measurement of Nd isotopes was carried out using a Neptune multicollector-inductively coupled plasma
mass spectrometer (MC-ICPMS) at the University of South Carolina, run in static mode, using an Apex inlet
system (ESI; Ohama, NE) and an X skimmer cone. The Nd isotope analysis consisted of 40 cycles of 8 s integra-
tion time for all masses of Nd and masses of 147 and 149, where mass 147 was used to monitor and correct
for the isobaric interference of '**Sm on mass 144.

The JNdi-1 isotope standard was run every fifth sample, and the average value for the analytical session was
used to normalize the measured Nd isotope ratios to JNdi-1 = 0.512115. The instrumental uncertainty over
the time period of analysis was 0.000011 (20, n = 129). Fossil fish tooth "**Nd/'**Nd data were corrected
for the radiogenic ingrowth of **Nd since the time of deposition, based on a '*’Sm/"*Nd ratio of 0.133
from samples of a similar age at Kerguelen Plateau Site 738 (Scher et al., 2011) (see supporting information
Figure S1).

3.3. Paleolatitude and Paleodepth of Sites

We derive paleodepths for our study sites and comparison sites (Table 1) based on the present-day isostati-
cally unloaded basement depth, LIP emplacement age, and an age-depth subsidence model for oceanic crust
based on Stein and Stein (1992). We isostatically load sediment through time based on the observed
sediment age-depth models for each site and apply the isostatic correction outlined in Sykes (1996) (see
supporting information). We derive paleodepths of ~1,200 m (Site 748, Hole 748B) and ~2,250 m (Site 744,
Hole 744A), which are deeper than previously published depths (Site 748, Hole 748B: ~900 m (Bohaty et al.,
2009); Site 744, Hole 744A: ~1,900 (Bohaty et al., 2012)). This difference results from our choice of oceanic
subsidence model (i.e,, Stein & Stein, 1992), which has shown to better predict oceanic basement depth
and thermally rejuvenated lithosphere through time (Mdiller et al., 2008) compared to subsidence models
which only reflect changes related to aging of oceanic plates (e.g., Parsons & Sclater, 1977) (which is used
within the approaches of Coffin, 1992 and Bohaty et al., 2009).

The paleolatitudes of our study sites (Sites 744 and 748) vary by 2-3° to their present-day latitudes. During the
time period of interest (36-23 Ma), paleolatitudes for our study sites are ~58-63°S (Site 744) and ~55-60°S
(Site 748), based on the ranges derived from plate reconstructions (e.g., Mdiller et al., 2016; Seton et al.,
2012), and those available from van Hinsbergen et al. (2015) (Table 1). The paleolatitudes derived for other
ODRP sites referred to in this study are between 32°S and 66°S (Figure 2) and range by up to 8° between plate
reconstructions (Table 1).

4, Results

The eng records from the two sites in this study are remarkably similar. Both sites show a small but significant
long-term eyg decrease of around 1 eyg and illustrate several short-term fluctuations that are synchronous at
the resolution of this study. In general, the more Antarctic proximal location (Site 744) has less radiogenic &g
signatures with short-term excursions that reach lower gyg values.

The Nd isotopic composition of fish tooth samples generated from Site 744 have eyqy(t) values between
—7.2 £ 0.3 (at 344 Ma) and —9.3 + 0.4 (at 33.7 Ma) (Figure 3a), with a mean value of eyq(t) = —7.9. The Nd
isotopic composition of fish tooth samples from Site 748 is more radiogenic than those at Site 744, with
eng(t) values between —6.5 + 0.1 (at 34.5 Ma) and —8.3 = 0.5 (at 32.5 Ma) (Figure 3a), with a mean value of
eng(t) = —7.3. Both Site 744 and Site 748 show an Nd isotope excursion over the EOT interval (when inferred
across the hiatus in the cores): Site 744 shows a large negative excursion (from eyq(t) values around —7.5 to
—9.3 + 0.4 at 33.7 Ma) (Figure 3b), while Site 748 displays a smaller Nd isotope excursion (from eyg(t) values
around —7 to —8.3 = 0.1 at 33.7 Ma) (Figure 3b). The long-term decrease in the Nd isotopic composition is
subtle due to the short-term excursions toward less radiogenic values. Before and after the EOT excursion
the eng value at Site 744 is around —7.25 and at Site 748 is around —7. At the end of the record gyg values
for both sites are around —8 to —8.25.

WRIGHT ET AL.

157



@AG U Paleoceanography and Paleoclimatology

10.1002/2017PA003238

Table 1

Comparison of Present-Day and Oligocene (~30 Ma) Depths and Latitudes

Present-day

Oligocene (~30 Ma)

Paleolatitude (°S)

Depth Latitude Paleodepth
Site Hole Region (m) (°S) (m) T2012 BC2002 Seton et al. (2012) Miiller et al. (2016)
748 B S Kerguelen Plateau 1,287.5 58.441 1,200 55.44 57.72 57.0578 60.3882
744 A S Kerguelen Plateau 2,307.3 61.579 2,250 58.29 60.51 60.1737 63.5598
738 B S Kerguelen Plateau 2,252.7 62.709 2,100 59.37 61.55 61.2762 64.737
689 B Maud Rise 2,080 64.517 1,900 67.58 69.07 64.9213 63.6731
1090 B Agulhas Ridge 3,698.6 429137 3,400 49.93 51.11 47.1674 46.0179
1263 A Walvis Ridge 2,717.1 28.5328 2,400 35.63 36.65 32,6517 31.2332
1264 A Walvis Ridge 2,507 28.5325 2,350 35.63 36.65 32.6525 31.2394
1172 A East Tasman Plateau 2,621.9 43.9598 2,400 54.85 53.67 58.4039 61.1877
1124 C Hikurangi Plateau 3,967.5 39.4984 3,850 4436 4249 46.3610 45.7359
757 B Ninetyeast Ridge 1,652.1 17.0243 1,150 27.61 29.35 29.3955 32.7201
Note. T2012 (Torsvik et al., 2012) and BC2002 (Besse & Courtillot, 2002) are based on the reference frame from van Hinsbergen et al. (2015).

Unconformities in both sections result in a hiatus within the EOT interval (34.2-33.7 Ma). Neodymium isotope
values at both sites decrease prior to the hiatus and increase following the hiatus. At Site 748, enq(t) values
decrease by 1 gyg unit (from —6.6 to —7.5) in the 400 kyr preceding the onset of the hiatus across the
Eocene-Oligocene boundary. The record from Site 744 is lower resolution; however, a 0.5 gyq decrease
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Figure 2. Plate tectonic reconstruction for 30 Ma (Oligocene) showing the location of the study sites and other sites referred to in this study. Reconstruction is based
on Mdiller et al. (2016). Paleobathymetry is derived using the method outlined in Miiller et al. (2008) and is illuminated by reconstructed marine gravity anomalies

from Sandwell et al. (2014) to illustrate regions of presently preserved oceanic crust. Present-day coastlines (white line), the reconstructed coastlines based on their
present-day outline (solid light gray), regions of nonoceanic crust (e.g., continental shelves) (dark gray), and the paleoposition of the Kerguelen Plateau (gray outline)

are shown.
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Figure 3. Fossil fish teeth eng(t) records generated in this study from ODP Sites 744 and 748, with uncertainties larger than instrumental uncertainty for the time
period of analysis shown (0.000011, 20, n = 129). Sampling gaps are shown as dashed lines. Present-day enyg endmember ranges (gray) for the Pacific, Indian, and
Atlantic are from Goldstein and Hemming (2003). (a) Full fish tooth Nd record generated for this study. (b) Fish tooth Nd record from this study across the EOT only.

precedes the hiatus. The gyqy(t) values at both sites recover to pre-EOT values around 33.5 Ma, though the
magnitude of the recovery of eyq(t) values at Site 744 is twice as large compared to Site 748.

5. Discussion

During the Eocene, the Kerguelen Plateau was likely influenced by a water mass that carried circumpolar
waters (i.e., proto-CDW) (Scher et al., 2014). The Nd isotope records from fossil fish teeth generated in this
study reveal a long-term decrease in eyg(t), from —6.5 to —7.5 in the late Eocene to —7.5 to —8.3 eng(t) by
the late Oligocene, which resembles estimated late Eocene CDW values (eng(t) = —7.5 to —8.0; Scher et al.,
2014). The similarity in eng(t) trends to more negative values at the Southern Kerguelen Plateau and Maud
Rise suggests that both locations were likely influenced by a common water mass, such as proto-CDW
(Figure 4). We interpret the water mass around Sites 744 and 748 to include a significant proto-CDW compo-
nent during our study period, based on the integration of our Nd isotope records with the interpreted loca-
tion of proto-PF (Cooke et al., 2002) and water mass from Nd isotope records from other Southern Ocean sites
(Scher et al., 2014).

Reconstructions of the position of the proto-PF around the Kerguelen Plateau during the Eocene and
Oligocene suggest that the proto-PF likely passed south of Site 748 and migrated northward since the
Eocene, based on the presence of bolboforms (Cooke et al., 2002). The northward migration of the proto-
PF is also supported by the significant cooling of surface and intermediate waters around Kerguelen
Plateau during the late Eocene and early Oligocene, based on benthic foraminiferal 5'20 values at Site 744
(Salamy & Zachos, 1999) and Site 748 (Zachos, Berggren, et al., 1992). Given that the modern-day topography
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Figure 4. Comparison of fossil fish teeth eng(t) records generated in this study (southern Kerguelen Plateau) and fossil fish teeth derived Nd records from Southern
Ocean sites in the Pacific, Atlantic, and Indian Ocean sectors, including Site 738 (Scher et al., 2011), Site 757 (Martin & Scher, 2006), Site 689 (Scher & Martin, 2004), and
Site 1090 (Scher & Martin, 2006, 2008). The Pacific sector (“South Pacific”) of the Southern Ocean endmember is based on Sites 1124 and 1172 (Scher et al., 2015),
while the Walvis ridge endmember is based on Sites 1263 and 1264 (Via & Thomas, 2006). All records have been converted into the timescale of Gradstein et al.
(2012). Gray shaded regions and ranges refer to present-day &ng endmember values (Goldstein & Hemming, 2003).

of the Kerguelen Plateau influences the pathway of the Southern Ocean fronts (Sokolov & Rintoul, 2009), it is
possible that the Kerguelen Plateau may have similarly deviated the pathway of the proto-PF during the
Eocene and Oligocene. The paleobathymetry of the southern and central Kerguelen Plateau was
sufficiently deep and unlikely to have formed a barrier on water transport pathways during the Eocene;
however, the inferred subaerial emplacement of Skiff Bank (~68 Ma; Duncan, 2002) and shallow
paleodepth estimates (870 m; Wallace, 2002) associated with northern Kerguelen Plateau emplacement at
~40 Ma (Duncan, 2002) likely influenced the pathways of Southern Ocean protofronts. We infer that the
proto-PF passed north of Site 748 before our record begins, as we do not see any significant evidence for
changes in water mass mixing between the late Eocene and late Oligocene, and cooling of waters around
the southern Kerguelen Plateau could occur without a change in water mass mixing as a result of the
globally cooling climate.

5.1. Long-Term Decrease in gygq(t)

We observe a long-term decrease in our fossil fish teeth Nd record from Sites 744 and Sites 748 from eyg(t)
values from —6.5 to —7.5 in the late Eocene to —7.5 to —8.3 by the late Oligocene (Figure 3). Decreasing fossil
fish tooth eyqy(t) values during the Oligocene have been observed at other sites in the Atlantic sector of the
Southern Ocean, that is, Agulhas Ridge (Site 1090; Scher & Martin, 2008) and the Walvis Ridge (Sites 1262,
1263, and 1264) (Via & Thomas, 2006) (Figure 4) and are suggested to be due to an increase in NCW export
from ~33 Ma (Via & Thomas, 2006). An increase in the flux of NCW into the Southern Ocean would cause a
decrease in eng(t) values into the Oligocene, due to the mixing of unradiogenic NCW (eng = —10.07 £ 0.10;
ferromanganese crust sample ALV-539; O'nions et al., 1998) with proto-CDW (i.e., eng(t) = —7.5 to —8 in the
late Eocene; Scher et al., 2014). Comparison of benthic foraminiferal 3'80 records suggests the inception of
NCW formation around the middle to late Eocene (~38.5 Ma) in the Labrador Sea (Borrelli et al., 2014),
strengthening around 35 Ma (Langton et al., 2016). The presence of NCW in the deep Atlantic by the earliest
Oligocene is also supported by the onset of drift deposition in the northeast Atlantic (Davies et al., 2001) and
8'3C deep-water aging gradients (Elsworth et al,, 2017), though Abelson and Erez (2017) suggest NCW and
the onset of modern-like Atlantic meridional overturning circulation (AMOC) occurred during the late
Eocene, immediately before the EOT. We interpret the long-term decreasing trend at our study sites to be
related to the increase in NCW contribution to proto-CDW. We note that it is also feasible that the decrease
in our g values could be due to a change in the value of NCW itself, rather than a change in its flux; however,
there is currently no evidence to support this scenario. The similar long-term decrease in the Nd isotope
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records from both Sites 744 and 748 additionally support the influence of a common water mass around
Kerguelen Plateau, for example, proto-CDW. We suggest that the long-term decrease in proto-CDW &eng
values is not related to an increased contribution from proto-AABW. However, we suggest that the entrain-
ment and mixing of proto-AABW into proto-CDW resulted in the offset in eyg values between our study sites
during the late Eocene and Oligocene (section 5.2).

An alternative mechanism for the decreasing eyg(t) values in proto-CDW waters during the Oligocene is an
increasing contribution from Southern Ocean-sourced bottom waters. Bottom water formation (e.g., a
proto-AABW) in the Southern Ocean has been proposed since the early Eocene, in modern day locations such
as the Weddell Sea (Thomas et al., 2003), the Ross Sea (Douglas et al., 2014; Hollis et al., 2012; Thomas et al.,
2014), or near Adélie Land (Huck et al., 2017). Proto-AABW forming during the Eocene and Oligocene is likely
to have similar eng values to modern day, due to the geological similarity in the contributing source regions
on Antarctica in present-day locations of bottom water formation. Therefore, while it is possible that the long-
term decrease in our eyg Values at Sites 744 and 748 may reflect a change in the contribution of proto-AABW,
recent insights into the onset of NCW export after the EOT imply the long-term change in our record is related
to the increase of NCW, rather than a change in proto-AABW.

5.2. Offset Between Neodymium Records From Sites 744 and 748

The eng(t) record derived from Site 744 is less radiogenic than Site 748 for the duration of our study period.
This offset could be attributed to a greater contribution of proto-AABW influencing Site 744, possibly due to
its closer proximity to Antarctica and deeper paleodepth (~2,250 m) compared to Site 748. Proto-AABW for-
mation in the Weddell Sea (Thomas et al., 2003) or the Ross Sea (Douglas et al., 2014; Hollis et al., 2012;
Thomas et al., 2014) may have influenced our sites. The major circulation pathways from the Weddell Sea bot-
tom water source is thought to flow north of southern Kerguelen Plateau rather than through the Princess
Elizabeth Trough and past our southern Kerguelen Plateau sites during the early Eocene (Thomas et al.,
2003); however, this pathway is somewhat speculative. Similarly, unradiogenic waters may have been
sourced from Adélie Coast-Wilkes Land bottom waters flowing from the Australian-Antarctic Basin, westward
toward the Kerguelen Plateau (eng = —10.6; Huck et al., 2017). The Prydz Bay gyre would additionally have
allowed for redistribution of proto-AABW and associated entrained dissolved Nd from short-lived weathering
activity in the Prydz Bay region to the Kerguelen Plateau.

During the Eocene and Oligocene, sinking of the dense waters associated with proto-AABW and mixing with
lower CDW would more greatly influence Site 744. Our new records provide observational support for
increasing proto-AABW influence with closer proximity to Antarctica and increasing depth. The Nd isotope
record from Site 744, which is ~1,000 m deeper and closer to the Antarctic continent than Site 748, is consis-
tently ~0.5 eng less radiogenic than the record from Site 748 (Figures 3 and 5). We suggest that while both
Sites 744 and 748 were influenced by proto-CDW, based on their similar long-term trend, a greater contribu-
tion of proto-AABW to the deeper Site 744 is also preserved resulting in the observed ~0.5 eygq offset.
5.2.1. Evidence of Glacial Weathering Events in Site 744

The history of Antarctic ice sheet stability during the Oligocene is still very much a matter of debate. High fre-
quency variability in the fish tooth eyq4 records from Antarctic-proximal marine sediments has been inter-
preted as detecting changes in the contribution of dissolved Nd during erosional events resulting from
late Eocene and EOT glacial pulses on Antarctica (Scher et al., 2011, 2014). Surges of weathering associated
with ice growth at the EOT are manifested as negative eygq excursions on southern Kerguelen Plateau
(Scher et al,, 2011), and can also be observed in Site 744 in the early Oligocene (Figure 3). While the short
excursions in the fish tooth Nd isotope record are somewhat poorly resolved, we suggest these isotope
excursions at Site 744 represent a local/regional response in seawater chemistry to Antarctic glacial weather-
ing pulses as an increase in the contribution of dissolved unradiogenic Nd from the nearby Lambert Graben
to the surrounding seawater in Prydz Bay would result in less radiogenic eng Values preserved in the fish teeth
at Site 744.

Prydz Bay, via the Lambert Graben, is believed to be a site of major East Antarctic glacial discharge (DeConto
& Pollard, 2003; Strand et al., 2003) during the Oligocene, and a major fluvial output during the late Eocene
(Jamieson et al.,, 2005). Prydz Bay is composed of Precambrian basement with Archean, Proterozoic, and
Cambrian terranes and intrusives (Fitzsimons, 2003). The Lambert Graben, which intersects Prydz Bay and
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Figure 5. Schematic of water transport pathways from the late Eocene (~36-34 Ma), EOT (33.9-33.5 Ma), middle Oligocene (31-27 Ma), and late Oligocene
(25-23 Ma), based on Nd isotope data only. ODP sites are colored based on their average eng(t) value for each period considered (see supporting information).
Plate tectonic reconstructions are based on Miller et al. (2016), with paleobathymetry derived using the method outlined in Miiller et al. (2008). Present-day
coastlines (white line), the reconstructed position of the present-day coastlines (solid light gray), and regions of nonoceanic crust (e.g., continental shelves) (dark
gray) are also shown. The paleoposition of the Kerguelen Plateau is shown as a gray outline.

extends 700 km inland, represents a failed arm of a Mesozoic triple junction associated with Gondwana
breakup (Stagg, 1985). At present day, the Lambert Glacier-Amery Ice Shelf system discharges around 16%
of the grounded East Antarctic Ice Sheet into Prydz Bay (Fricker et al., 2000; O'Brien et al., 2007). Sediments
from Prydz Bay have eyg values ranging between —17.7 and —21.3 (Roy et al., 2007), providing a suitable
source of unradiogenic material to our study sites. While this is not the only possible source of
unradiogenic material to our study sites, Prydz Bay is the main trunk in the preglacial river network (Wilson
& Luyendyk, 2009) and is therefore the most likely source of unradiogenic material.

Both study sites preserve the onset and recovery of the negative eyg excursion associated with major expan-
sion of ice sheets and enhanced erosion of bedrock on Antarctica across the EOT (Scher et al,, 2011). However,
Site 744 gyq values appear to have been more strongly influenced by changes in Antarctic weathering across
the EOT, for example, Site 744 has a negative excursion to —9.3 £ 0.4 eng(t) at 33.7 Ma and recovers to around
—7.3 after 33.5 Ma, while Site 748 has a negative excursion to —8.1 + 0.1 gng(t) at 33.65 Ma and recovers to —7
after 33.5 Ma (Figure 3). This is likely due to the proximity of Site 744 to Prydz Bay and its greater influence of
proto-AABW, which transports the erosional signal to Site 744. In particular, Nd isotope ratios from Site 744
show a significant drop by 1.2 + 0.3 gyq at 32.6 Ma. This may be a response to widespread expansion of
the Antarctic ice sheet, already observed by Galeotti et al. (2016) as an increase in coarse grains at 32.8 Ma
in marine sediments from the Ross Sea.

5.3. Other Potential Terrigenous Sources of Neodymium

During the Eocene and Oligocene, the southern Kerguelen Plateau was remote relative to all sources of ter-
rigenous material except for the adjacent Prydz Bay. Other possible sources of Nd include nearby
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hydrothermal activity and/or volcanogenic sediments associated with the emplacement of northern
Kerguelen Plateau, and the weathering of glaciers and IRD from East Antarctica, for example, at ~33.7 Ma
(Scher et al,, 2011; Zachos, Breza, et al., 1992).

The timing of northern Kerguelen Plateau emplacement (40-34 Ma; Duncan, 2002) overlaps with our fish
tooth Nd isotope record (36-23 Ma) from the southern Kerguelen Plateau, which raises the possibility of con-
tributions from volcanogenic sediments and/or hydrothermal products with radiogenic Nd isotope signa-
tures. Basaltic samples dredged between the Kerguelen Archipelago and Heard Island exhibit radiogenic
Nd isotope compositions, with eng values from —1.95 to 6.26 (Weis et al., 2002). Thus, the influence of volcanic
input associated with the eruption of northern Kerguelen Plateau would result in an increase in our fish tooth
Nd record to more positive eng Values; however, this trend is not observed in our record. Additionally, the pre-
dominant northward flow of the modern Kerguelen DWBC (Fukamachi et al., 2010) and its inferred northward
flow in the Eocene (Scher et al,, 2014) suggests that volcanogenic contributions transported to our study sites
by deep currents from the eruption of the northern Kerguelen Plateau would be unlikely. The occurrence of
IRD at ~33.7 Ma (when converted into the Gradstein et al., 2012 timescale) has also been established at Sites
748 (Zachos, Breza, et al.,, 1992) and 738 (Scher et al,, 2011) and represents short episodes of ice rafting carry-
ing terrigenous material derived from a metamorphic and/or plutonic terrane, such as those found on the
Antarctic continent (Pierce et al., 2014). However, previous work has found that fossil fish teeth are not
affected by postburial uptake of rare earth elements from IRD (Scher et al., 2011). Finally, hydrothermal activ-
ity has been shown to have a negligible effect on oceanic Nd isotope ratios (Halliday et al., 1992); however,
this study is based on hydrothermal activity at a ridge axis rather than the emplacement of a large igneous
body. Based on the radiogenic Nd isotope ratios (eng = —1.95 to 6.326) of the northern Kerguelen Plateau,
compared to our unradiogenic fish teeth Nd record (eng = —7 to —8), we suggest that the northern
Kerguelen Plateau emplacement is not a source of Nd to our study sites.

5.4. Implications for the Drake Passage

The timing of the tectonic opening and deepening of the Tasman Gateway (e.g., ~33 Ma; Stickley et al., 2004),
along with a number of interpretations for the Drake Passage (e.g., shallow/intermediate opening from
50 Ma, deep water gateway opening from ~30-34 Ma; Eagles & Jokat, 2014; Livermore et al., 2005, 2007),
coincides with our study period (36-23 Ma). The opening of the Tasman Gateway was a distal event far down-
stream of the circum-Antarctic relative to our study sites. Although the westward flowing ASC may have pos-
sibly transported Pacific waters toward Kerguelen Plateau (Scher et al., 2015), they were probably not
detectable due the similarity in eyg values to our record (~ — 7.5 gyg) from the Kerguelen Plateau.
However, since our study sites are eastward of the Scotia Sea, and downstream of the oceanic gateway,
we expect to capture large changes water mass communication related to the opening of the Drake Passage.

A significant opening of the Drake Passage during the late Eocene/Oligocene should result in a shift in eng
values on Kerguelen Plateau toward more radiogenic compositions, reflecting an increased input of Pacific
waters to proto-CDW. However, the long term eyg trend is opposite from this prediction. Our study sites
reveal a decrease in &yg values over the study interval, implying that no change in Pacific throughflow was
initiated by mixing through the Drake Passage during the Oligocene. Since our eyg(t) values (between
—7.5 and —8 at Site 748) during the Oligocene are comparable to modern CDW (eng = —8.5; Stichel et al.,,
2012), we infer that Oligocene water mass composition was similar to present day. Consequently, we propose
that the inception of water mass mixing through the Drake Passage preceded the timing of our fossil fish
tooth record (36-23 Ma), which is consistent with the published timing of initial water mixing through the
Drake Passage suggested based on existing proxy evidence (41-37 Ma; Diester-Haass & Zahn, 1996; Scher
& Martin, 2006). This timing is also consistent with plate tectonic reconstructions supporting an early opening
of Drake Passage (e.g., Eagles & Jokat, 2014; Livermore et al.,, 2005, 2007) and suggests that remnant volcanic
arcs in the Scotia Sea may not have formed a barrier to Southern Ocean circulation until the Miocene
(~12 Ma), as has been proposed (Dalziel et al., 2013).

6. Summary and Conclusion

New Nd isotope records from the southern Kerguelen Plateau preserve a proto-CDW signal during the late
Eocene to late Oligocene. Site 748 preserves a gradual shift to less radiogenic Nd isotope values, with eng
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values around —6.5 to —7.5 in the late Eocene to eyg values between —7.5 and —8.3 by the late Oligocene,
which we attribute to an increased contribution of NCW. The long-term unradiogenic trend in our fish tooth
Nd isotope record supports previous work, which infers an early to middle Eocene timing of mixing between
the Pacific and Atlantic basins via the Drake Passage, prior to our study interval. We find a consistent ~0.5 eng
offset between Site 744 (less radiogenic) and Site 748 (more radiogenic), which we interpret as an increasing
proto-AABW influence associated with the closer proximity of Site 744 to the Antarctic continent. Both study
sites show large excursions toward less radiogenic values at the EOT and in the early Oligocene—the magni-
tude of the response at Site 744 is greater than Site 748, and Site 744 additionally preserves short-frequency
variability in the early Oligocene, further supporting a higher proto-AABW contribution at this location and its
transport of dissolved Nd produced by enhanced erosion during glacial advance and retreat on Antarctica.
The fish tooth Nd record at Site 748 does not preserve this high-frequency variability, indicating a reduced
influence of AABW at this location. We suggest that Maud Rise and the southern Kerguelen Plateau were
influenced by a common water mass (proto-CDW) by the Oligocene, based on the similar less radiogenic
trend preserved by these sites. Future work such as high-resolution sampling and analysis of Site 744 may
provide further insight into the early glacial history of East Antarctica.
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