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We propose an interferometric scheme based on an untrapped nano-object subjected to gravity.
The motion of the center of mass (c.m.) of the free object is coupled to its internal spin system
magnetically, and a free flight scheme is developed based on coherent spin control. The wavepacket
of the test object, under a spin-dependent force, may then be delocalized to a macroscopic scale.
A gravity induced dynamical phase (accrued solely on the spin state, and measured through a
Ramsey scheme) is used to reveal the above spatially delocalised superposition of the spin-nano-
object composite system that arises during our scheme. We find a remarkable immunity to the
motional noise in the c.m. (initially in a thermal state with moderate cooling), and also a dynamical
decoupling nature of the scheme itself. Together they secure a high visibility of the resulting Ramsey
fringes. The mass independence of our scheme makes it viable for a nano-object selected from an
ensemble with a high mass variability. Given these advantages, a quantum superposition with 100
nm spatial separation for a massive object of 109 amu is achievable experimentally, providing a route
to test postulated modifications of quantum theory such as continuous spontaneous localisation.

Introduction.—It is expected by a significant commu-
nity of researchers that when one reaches a superposition
of quantum states separated spatially by ∼ 100 nm for
objects of mass ∼ 109 amu or larger, some hitherto un-
seen modifications of quantum mechanics [1, 2] or self
gravitational effects (Schrödinger-Newton equations) [3]
may start manifesting. Even practically, such highly non-
classical states will have varied applications in quantum
technology such as in metrology. Hence generating such
states, and indeed evidencing them, is of prime impor-
tance in the macroscopic frontier of quantum technology.
Over the years several proposals for probing spatial su-
perpositions of confined macroscopic objects have been
proposed [4–14], but tethering/trapping naturally limits
the distance that superposed state can be separated, and
the trapping mechanism itself might offer a route to de-
coherence. Thus many recent proposals involve free flight
– they have proposed to achieve large spatial superposi-
tions through nonlinear optomechanics using cavity in-
duced measurements [15, 16] and through Talbot interef-
erence of a nano-object ensemble [1]. However, access to
strong optomechanical nonlinearities and/or the condi-
tional preparation of superpositions are required in the
former set of proposals, while mass dispersion is a diffi-
culty encountered in the latter type of proposals. Here we
thus propose to use Ramsey interferometry of untrapped
nano-objects to create and probe superpositions. The
scale of the superposition is controllable through flight
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time and magnetic field gradients, while the mass does
not appear in the relevant interferometric phase.

In this Letter, we propose a scheme based on a free,
thermal nano-object with the motion of the centre of
mass (c.m.) coupled to its internal state. Under coherent
control on the internal state the wavepacket of the parti-
cle could be split and merged in a double-slit interferom-
etry fashion. If further, the interferometric arms are sub-
jected to different gravitational potentials, a dynamical
phase is induced (just as with the neutron interferome-
try experiments of Ref.[18]) and measured solely on spin
state which evidences the spatially separated superposi-
tion of the test object. The phase itself is independent of
the mass so that the nanoparticle ensemble used in the
experiment can have a wide range of masses of about the
same order of 109 amu. With the capability of generat-
ing a highly spatially separated superposition and being
robust to motional noise, our system paves the way to
testing some modifications of quantum theory, such as
continuous spontaneous localisation (CSL) [19–21].

Model.—As shown in Fig. 1, we first assume that
a nano-diamond with a single spin-1 nitrogen-vacancy
(NV) center is prepared with its c.m. in a low tempera-
ture thermal state in a harmonic trap, say, by feedback
cooling [23, 24]. The NV spin’s symmetry axis is aligned
with the trapping axis, x, and with its spin state ini-
tialised to |0〉 (by standard optical pumping). The trap-
ping axis x is tilted by θ with respect to the direction of
the gravitational field and after that a uniform magnetic

field gradient ∂ ~B/∂x is introduced which covers a certain
region in the vicinity of the trapped particle and couples
its spin and motional degrees of freedom (DOF) along x.
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FIG. 1: An untrapped nano-object undergoes an illustrated
interferometric scheme. A magnetic field gradient (titled by
θ with respect to gravity) couples the c.m. and the spin of
the particle. Starting with a spin state (|+1〉 + |−1〉)/

√
2

at t = 0, the wave packets of the particle split and accel-
erate until time t1, when a set of microwave (MW) pulse is
sent to flip the spin states, which decelerates both the wave
packet components leading to their motion along the axis re-
versing after a relevant time. The second set of MW pulses,
sent at time t2, reverses the direction of acceleration of the
separated wave-packet components once again so that after
t2 they start to decelerate while approaching each other and
merger together at t3, when a MW pulse is sent to perform
the Ramsey measurement.

Starting at t = 0 we release the nano-object and imme-
diately send a microwave (MW) pulse that creates a spin

superposition (|+1〉+ |−1〉)/
√

2. The untrapped particle
will propagate freely under a spin dependent force and
the gravity of the mass, the corresponding Hamiltonian
is

H =
p̂2

2m
− gNV µB

∂B

∂x
Ŝzx̂+mg cos θx̂, (1)

where µB is the Bohr magneton, gNV is the Lande g-
factor, θ the tilting angle of the initial trap with respect
to the gravitational direction, g the free fall acceleration,
Ŝz is the spin z operator of the NV spin, p̂ and x̂ are
the momentum and position operator along the trapping
axis respectively. We consider the c.m. initially to be
an arbitrary coherent state |β〉, under Hamiltonian (1)
the particle will propagate in a way that its wave packets
spatially separate and accelerate along x. The state at
time t is then:

|Ψ(t)〉 =
|ψ(t,+1)〉 |+1〉+ |ψ(t,−1)〉 |−1〉√

2
, (2)

which is the superposition we aim to demonstrate by
the following Ramsey scheme. We flip the spin state
of each counter-propagating component at some appro-
priate times t1 and t2, by which the split wave packets
would merge back after a relevant time, forming a two
arm interferometer. The spin flip operation (from |+1〉
to |−1〉 or the other way) could be achieved via a two-
MW-pulses sequence, provided that the Zeeman splitting

due to local magnetic field is comparably large with re-
spect to the MW pulse bandwidth [22]. If the timing of
the spin manipulation is controlled by t1 = 1

3 t2 = 1
4 t3 we

would obtain a separable state at time t3. Temporally
the MW pulse timing is precise to 5 ns or better and the
duration of each pulse would be as short as 10 ns. While
the uncertainty in pulse sequences would in principle re-
sult in decoherence on the reduced spin state at the end,
however such an effect would be negligible if the total
free flight time is much larger than the pulse times.. The
state at t3 is given by

|Ψ(t3)〉 =
1√
2
|ψ(t3)〉 (|+1〉+ e−iφg |−1〉), (3)

where |ψ(t3)〉 is the final motional state of the c.m., writ-
ten in position representation as

〈x |ψ(t3)〉 = e−ip0xe
− (x−x0−p0t3/m−g cos θt23/2)

2

2(σ′)2 , (4)

where p0 and x0 are the initial momentum and posi-
tion of the nano object respectively, and σ′ is the wave
packet spread at time t3 [22]. By dropping a global
phase factor, we have φg = 1

16~gt
3
3gNV µB

∂B
∂x cos θ, which

is the extra phase stemming from the superposition of
spatially separated trajectories subjected to an auxil-
iary field (local gravity in this case). It could be mea-
sured by completing the Ramsey scheme: The second
MW pulse on the NV spin at time t3 will map this
phase to the population of state |0〉, whose probability
then could be measured by optical fluorescent detection:
P0 = cos2 (φg/2) = cos2 ( 1

32~gt
3
3gNV µB

∂B
∂x cos θ). Prac-

tically, the particle will be re-trapped for repeated mea-
surement and either θ or t3 would be used as a control-
lable parameter that shifts the value of φg, with respect
to which a fringe of P0 is resolved.
Thermal state.—Remarkably, the phase φg is indepen-

dent on the initial motional condition, featuring an im-
munity to the initial motional noise in our scheme; con-
sider an initial motional state ρth =

∫
β
d2βPth(β) |β〉 〈β|,

where Pth is the Glauber P representation for thermal
state. The spin is initialised to |0〉 in the trap so that it
is decoupled from the motion, and as soon as the particle
is released, |0〉 is converted to (|+1〉 + |−1〉)/

√
2. Then

at time t = t3 we have,

ρth(t3) =
1

2

∫
β

dβPth(β) |ψ(t3)〉β 〈ψ(t3)|β

⊗ (|+1〉+ eiφg |−1〉)(〈+1|+ e−iφg 〈−1|).
(5)

Obviously the state of composite system is again factor-
izable (separable), so the phase difference accrued by the
spin states is not affected by initial thermal motion. A
feedback cooling on initial state of the c.m. to mK [23]
(by which the harmonic potential could barely sustain
the thermal excitations) will suffice. This factorizability
despite the untrapped motion (which naturally gives rise
to dispersion) is a non-trivial feature of our scheme.
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Experiment parameters.—The maximum spatial sepa-
ration ∆xM of the superposed components is given at
half the propagation time t3 by

∆xM = 2× 1

2m
gNV µB

∂B

∂x
(t3/4)2, (6)

we now analyse the achievable scale of magnitude this
separation under realistic parameters. We consider a di-
amond sphere of radius R ∼ 100 nm and with a density
of 3500 kg/m3, whose mass is then ∼ 1.25 × 10−17 kg
(corresponding to 7.5 × 109 amu). The coherent evo-
lution time t3 is limited by the coherence time of the
system accounting for all possible detrimental effects,
which will be discussed below and here we suppose a
realistic value of ∼ 100µs. Under an field gradient of
∂B
∂x ∼ 107 T/m [25, 26] we immediately obtain a separa-
tion of ∆xM ∼ 100 nm. Interestingly, this is comparable
to the size of the test nano object. So a good position
measurement at time t3/2, such as those used in feed-
back cooling [23], can even discriminate the two com-
ponents of the superposition spatially. Of course, this
measurement will destroy the superposition so that the
superposition has to be tested through the φg induced
fringes in other runs of the experiment where measure-
ments are only done at t3. Nonetheless some runs of the
experiment measuring spatial position at time t3/2 will
confirm the picture that the components superposed are
indeed spatially separated by 100 nm.

Decoherence.—Collisional and thermal decoherence
are mostly considered in matter wave interferometry and
optomechanical systems [27, 28], which can be seen as
random momentum kicks during the propagation of the
matter wave and whose microscopic description is given
by the master equation [1],

Li(ρ) =

∫
dωγi(ω)

∫
|n|=1

dn2

4π
[e
iωnx
c x̂ρe

−iωnx
c x̂ − ρ], (7)

where i indicates the specific decoherence class, includ-
ing collisions with residual gas partials, scattering and
absorption of blackbody photons, and thermal emission
of radiation. γi is the spectral rate and n is the direc-
tion cosine of the random momentum kick. Given γi
from realistic data the above master equation could be
numerically simulated together with the unitary part of
the free propagation (acceleration). Due to the entangle-
ment between the spin and mechanical states, the mo-
tional decoherence process, specifically the part of which
that carries out the which-path information of the two
counter propagated wave packets, would eliminate the
coherence of the c.m. and the reduced spin system at the
end, which subsequently reduces the visibility of the fol-
lowing Ramsey measurement. Practically, the collisional
decoherence is suppressed by preparing the system in a
high vacuum chamber. As trapping is lifted during the
flight the photonic scattering is absent, leaving only the
radiative decoherence from background and black body
radiation of the particle [1]. Here we provide a theoretical

estimation of the upper bound of the detrimental effect
from radiative decoherence by considering the worst sce-
nario in the evolution [22]. The resultant interferometric
visibility (square modulus of the off-diagonal term of the
reduced density matrix of the spin system) of the Ram-
sey measurement is shown in Fig. 2.
Spin dephasing of the NV center will be the last detri-

FIG. 2: Estimation on motional decoherence: ∆xM is the
maximum spatial separation and Tint is the internal temper-
ature of the test object. A large high visibility window in-
dicates the strong robustness of our scheme against motional
noise.

mental effect that limits the absolute coherence time of
the system. NV centers in isotopically-purified bulk di-
amond can have electron spin coherence time T2 up to
∼ 2 ms at room temperature[29], but such exceptional
times have not been found in nanodiamonds. In order
to achieve the longest T2, nanodiamonds are made from
high purity bulk material with a low density of nitrogen
impurities and 13C. Nanodiamond pillars with 300-500
nm diameter have shown a spin echo T2 time of over
300 µs [30]. Pillars with 50 nm diameter and 150 nm
length have achieved a spin echo T2 time of 79 µs [31].
This time was further extended by appropriate decou-
pling techniques. Interestingly, as an additional advan-
tage, the sequence of MW pulses applied in our scheme,
namely (π/2)x − (π)x − (π)x − (π/2)x, is a dynamical
decoupling sequence [32] that would echo out the noise
attributed to any slow and spin relevant effect such as
quasi static spin bath. More interestingly the perturba-
tion from the rotational DOF, induced by an unknown
torque on the particle since NV center is not necessarily
situated at the c.m. of the nanodiamond, could also be
suppressed by virtue of this technique [22].
Testing spontaneous collapse models.—Using the

macroscopicity measure in Ref.[33], a high visibility of
our interferometry would impose a value of µ = 24 for
our system, which is comparable to the largest among
the proposed experiments to date, such as those employ-
ing oscillating micromirrors or larger molecules. Since
macroscopicity is intimately connected to the testability
any macrorealistic modification of quantum theory, in
this regard, another key purpose for the creation of the
spatially large superposition will be to test the continu-
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ous spontaneous localiztion (CSL) model [19–21], which
is characterized by the locallization length rCSL and rate
λCSL. The former is about 100 nm that sets the scale
above which the delocalized matter wave gets localized.
The latter represents the average collapse rate at one pro-
ton mass, on which the interferometric experiment could
place a bound. For our scheme, if we were to observe
a high visibility (as expected from the above considera-
tions of environmental decoherence), it would bound the
collapse rate to [1]

λ ≤ 1/2N2t3 ∼ 10−14 s−1, (8)

where N is number of protons of our test object, which is
109 in our case. The version of CSL by Adler (λ ∼ 10−9

s−1) [21] should thus already decohere our superposition
by a mechanism beyond standard quantum theory, while,
to access the version by GRW [34] (λ ∼ 10−16 s−1) one
will need to extend the coherence time of the NV centre
spin by two orders of magnitude, which is challenging.

Other intrinsic decoherence.—In order to unambigu-
ously test CSL, it is crucial to rule out the significance of
other hypothetical localization effects in the mescoscopic
region we are considering. For instance, the gravitational
time dilation effect [35], which couples the internal degree
of freedom to the c.m. motion of a compound system
when the state of the latter is spatially separated in the
direction of a gravitational field, will induce a dephasing
process on a c.m. subsystem. Substituting the relevant
parameters of our model (Tint = 400 K, ∆x = 100 nm
and N = 109) we immediately obtain a coherence time
admitted by this time dilation effect of 1000 s, which is
sufficiently far from the scale of the coherence time we
consider. In a similar vein, if we consider gravitational
reduction models [36], then, assuming mass density con-
centrated around nuclei [37], we obtain a decoherence
time of 100 s. Moreover, by engineering a superposition
of distinct kinetic energy states by changing the initial
spin state to (|0〉 + |+1〉)/

√
2 in our free-flight scheme,

we can constrain an effective parameter Θ of space-time
textures [38] to . 1025 contingent on a high interfero-
metric visibility.

Multiple NVs.—Diamond samples with multi-NVs are
easy to obtain and provide a large spin-dependent fluo-
rescence increasing the sensitivity of the final spin mea-
surement. It has been experimentally demonstrated that
the orientations of all those NV centers’ axes could be
identically alligned to one of the four possible directions
in the diamond crystal and their spin states could also
be collectively manipulated and measured with Ramsey
pulses [39–41]. The mechanism in this multi NVs sce-
nario will follow the similar formula developed above [22],
starting with an arbitrary coherent state for the c.m. and
a l fold product state of (|+1〉 + |−1〉)/

√
2 for spin en-

semble, the composite system ends up again a separable
state in which the spin state is trivially a l fold product
state of (|+1〉+e−iφg |−1〉)/

√
2. Evidencing this accrued

phase on the multi-spin ensemble would reveal the super-
position of the intermediate state of the corresponding

collective spin-c.m. system.

Conclusions.—We have shown a method to generate
and evidence superpositions of two c.m. states of a free
(in the sense of being untrapped) nano-object of ∼ 109

amu mass. The untrapped nature of the particle, in con-
junction with spin dependent acceleration/deceleration
in an external magnetic field gradient enables us to reach
100 nm spatial separations between the superposed com-
ponents. This can open up possibilities of testing some of
the spontaneous collapse models such as Adler’s model
[21] through a method that is qualitatively very differ-
ent from the recently proposed non-interferometric tests
[43]. The scheme completely surpasses the scale of the
spatial separation possible through a trapped particle
of the same mass [44] by 103 orders of magnitude (es-
sentially due to the absence of a finite frequency). In
comparison to the adaptation of the Ramsey Bordé tech-
nique to nano-objects [45], we have employed a state-
dependent force that significantly boosts the delocaliza-
tion scale of the matter wave. Such a macroscopicity is
unattainable via photonic momentum kicks in Ramsey
Bordé method, and the concomitant Doppler dephasing
is negligible in our NV case [22]. A positive feature is that
the relevant interferometric phase can be probed solely
via spin Ramsey interferometry without directly measur-
ing matter wave distribution [1, 42]. Moreover, from the
point of view of control, an electron spin in solid is a
promising system with lower noise compared to optical
frequency fields in cavity-optomechanics, while its cou-
pling to the c.m. through a magnetic field gradient could
potentially be easier than achieving strong optomechani-
cal couplings. Uniquely, the MW control is also naturally
a dynamical decoupling that suppress those slow detri-
mental dynamics, so that the best coherence times of
100 µs can be used. The fact that the scale of spatial
separation can be increased substantially by using un-
trapped particles, and yet be evidenced solely by a spin-
only Ramsey interferometry in a gravitational potential,
and indeed be independent of both the initial thermal
state of the nano-object and its mass greatly facilitates
the possibility of the interferometric probing of large su-
perpositions. In view of the fact that manipulation of a
spin-full levitated nano-object is being intensely pursued
experimentally [24] at the moment, our scheme should be
realizable in the near future.
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Supplementary Material

In this supplementary material we provide details on
the calculation and simulation of the dynamics consid-
ered in the main text. Further discussion on the noisy
reduction and spin manipulation sequence are presented
in the following sections.

I. EVOLUTION OF THE FREE PARTICLE
UNDER SPIN DEPENDENT FORCE

The unitary evolution of the scheme we discussed
above can be represented as:

Utot =U(τ3) · C · U(τ2) · C · U(τ1)

=e−iHτ3/~ · C · e−iHτ2/~ · C · e−iHτ1/~,
(9)
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where C is the spin flip operator, whose exact realisation
will be discussed in next part, and ideally we assume
the spin flip is done instantaneously, operationally repre-
sented by C = (|−1〉 〈+1|+|+1〉 〈−1|). The time intervals

we have are τ3 = t3 − t2, τ2 = t2 − t1 and τ1 = t1. On
could re-arrange the above expression in a operator-wise
way that

Utot =e
i

3m (
∑3
i τ

3
i F

2
i −τ

2
2 τ3F

2
2−τ

2
1 (τ2+τ3)F 2

1 )− i
3m (τ1τ

2
3F1F3+τ1τ

2
2F1F2+τ2t

2
3F2F3+2τ1τ2τ3F1F2)

× eix̂
∑3
i Fiτi × e

−i
∑3
i ti

m p̂2e−
i

2m p̂(
∑3
i τ

2
i Fi+2τ2τ3F2+2τ1(τ2+τ3)F1),

(10)

where F1 = F3 = µBgNV
∂B
∂x Ŝz − mg cos θ, and F2 =

−µBgNV ∂B
∂x Ŝz − mg cos θ. Given by τ1 = τ3 = τ2/2 as

required separable condition, we have

Utot = e
−t33(µBgNV ∂B/∂xŜz−mg cos θ)2

24m e
−it3
m p̂2 , (11)

which is simply a wave packet spread operator plus a spin
dependent phase shifting term. Now apply this unitary
operator to our initial state |ψ(0)〉 = |β〉 (|+1〉+|−1〉)/

√
2

and solve it in the position representation, giving (by
dropping any global phase terms)

〈x|Ψ(t3)〉 = e−ip0x/~e
− (x−x0−p0t3/m−g cos θt23/2)

2

4~
mω

(1+(ωt3)2/16) × 1√
2

(|+1〉+ e−iµBgNV ∂B/∂xt
3
3 cos θg/16~ |−1〉), (12)

where ω is the trapping frequency before the particle is
released, p0 and x0 is the initial position and momentum
of the partial, respectively. Clearly the phase informa-
tion accumulated on spin state is neither dependent on
the initial kinetic condition of the trapped particle (for
instance p0 or x0), nor any disturbance on the frequency
ω of the trap.

II. SPIN FLIP PULSE SEQUENCES

The direct transition from spin |+1〉 to |−1〉 is not
dipole allowed since two quanta of angular momen-
tum would be required, so here we propose a multi-
MW pulses sequence that could introduce a coherent
transition between |+1〉 and |−1〉 mediated by spin |0〉
state. As discussed above, the spin flips happen at
t1 when the counter-propagating components are lo-
cated at x = ∆xM/4 and x = −∆xM/4, respec-
tively. The local magnetic fields seen by the NV cen-
ter have the same magnitude but opposite directions,
therefore the corresponding energy diagram for the spin
system has the same Zeeman splitting between |+1〉
and |−1〉, but their ordering is swapped, as shown in
Fig. 3. Now suppose we want to flip the system
state from (|ψ(t1,+1)〉 |+1〉 + |ψ(t1,−1)〉 |−1〉)/

√
2 to

(|ψ(t1,+1)〉 |−1〉 + |ψ(t1,−1)〉 |+1〉)/
√

2. The first MW
pulse is sent to drive a Rabi oscillation Ω1 between
ground state |0〉 and the degenerate states of |+1〉L and
|−1〉R, without affecting the other level and after a cer-

FIG. 3: Position dependent energy split of the spin system
due to the delocalized CM state of the nano diamond in an
inhomogeneous magnetic field

tain duration of the pulse it brings the spin state to |0〉.
This is followed by a second MW pulse that hits the tran-
sition between |0〉 and the degenerate states of |−1〉L and
|+1〉R fully transferring population to these latter states.
Therefore we could effectively reverse the spin state in
each superposed state by a two MW pulse sequence. The
shortest pulse duration of MW accessible would be of 10
ns, corresponding to a bandwidth of ∼ 100 MHz. The
Zeeman splitting between the |+1〉 and |−1〉 spin states is
about 56 GHz/T ×∂B/∂x×∆xM/4 ∼ 56 GHz (assuming
a 107T/m magnetic inhomogeneity), which is sufficiently
large to resolve the two resonance Ω1 and Ω2.
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III. THE TORQUE ECHO EFFECT

The MW pulse sequences in our protocol is naturally
a dynamical decoupling scheme, which is ubiquitously in
used for suppress the environmental noise with a rela-
tive low frequency (comparing with the evolution of the
central system). In our case the type Ib diamond sam-
ple in used has a rich nitrogen impurities which has been
widely observed as a quasi static spin bath inn bulk di-
amond sample, and whose noise effect on the NV center
is effectively a magnetic field fluctuation.

Moreover, as the free particle our nanodiamond pos-
sesses rotational degree of freedom and due to the fact
that the NV center is not situated at center of mass of the
particle, inevitably there would be a spin relevant torque
on it that may affect the translational decoherence via
spin coupling. Presumably this rotation is slow with re-
spect to the translational evolution, our MW decoupling
sequence would echo out such effect: The NV position in
diamond is indeed unknown to us so the |+1〉 spin state
will experience a unknown torque in some direction and
so does the |−1〉 with the same magnitude but opposite
direction. When we slip the |+1〉 and |−1〉 state (the π
pulse in the middle of the evolution), the superposition
states of the diamond will then begin to experience the
same unknown torque but in the other direction. As the
two periods (for which the spin state being |+1〉 or |−1〉
and the other way) are equal, finally the two superposi-
tion components end up with no net torque.

IV. OTHER SYSTEMATIC NOISE

The magnetic field generated by a fixed magnet will
drift in a timescale of hours, which is much larger than
the system evolution time of 1 ms. Therefore the re-
lated noise effect from the magnet could be neglected.
Practically we should require the magnet sample to be
”single domain” in order to avoid the effect of domain
wall moving. The Doppler effect may appear in the spin
state preparation when the nanoparticle is oscillating in
the trap. We will show that such the effect is negligible
for the case of NV spin under microwave driving. Here
we consider a coherent state for the c.m. of the NV cen-
ter. The Doppler-shift linewidth could be found by (in
an estimation)

δf = f0 ×
v0

c
= f0 ×

z0ωz
c

, (13)

where f0 = 2.87 GHz is the microwave frequency in use
and c is the speed of light. v0 and z0 are the velocity
and displacement amplitude of the harmonic oscillation,
respectively. We consider that the nano-object traverses
about z0 ≈ 100 nm in the 100µs experimental time-scale,
which gives an average v0 ≈ 0.001 m/s. We then
eventually have δf = 0.029 Hz. This is much smaller
than the typical linedwidth of an NV center of ∼ 10 MHz
[2]. For a thermal state of the CM, with a temperature

cooled to about 1mK in the trap, the root-mean-square
velocity is about v1 =

√
3kT/m ∼ 0.002 m/s therefore

the Doppler shift would not be a concern in our scheme.

V. ESTIMATED BOUND FOR MOTIONAL
DECOHERENCE

Practically in order to keep the decoherence process
sufficiently low, we suppress the collisional process by
preparing the system in a high vacuum environment. Ra-
diative decoherence is determined by the complex refrac-
tive index at typical wavelengths of room temperature
blackbody radiation and the internal temperature of the
test object, which had been unavoidably heated up [1]
due to the initial optical trap. The full dynamics of the
free flight scheme is described by the master equation,

ρ̇ = − i
~

[Hs, ρ] +
∑
i

Li(ρ), (14)

where Hs is the Hamiltonian (1). Starting with an ini-
tial state |ψ(0)〉 = |β〉 ⊗ (|+1〉 + |−1〉)/2, we want to
estimate the decoherence effect accumulated on the in-
termediate state (4) during the time evolution. Due to
the isotropic and perturbative nature of the noise con-
sidered(momentum kicks), the maximum spatial separa-
tion of the counter propagating wave packets remains
unchanged, hence only a dephasing on CM state is in-
volved. Note that in the unitary case the spread of the
Gaussian packets of each of the two superposed compo-
nents is up to 10 times the initial ground state width
10σ0 = 10

√
~/mω ∼ 0.1 nm, which is much smaller than

the maximum spatial separation between them ∆xM ∼
100 nm (taking the initial trap frequency ω as 105 Hz).
Therefore an estimation on the upper bound of the mo-
tional decoherence effect could be obtained as followed:
we simulate the coherence loss under Hamiltonian (1)
with our composite system being in a virtual state,

|Ψ〉′ =
|+∆xM/2〉 |+1〉+ |−∆xM/2〉 |−1〉√

2
(15)

where |±∆xM/2〉 is the eigenstate of position projection
operator, x̂ |±∆xM/2〉 = ±∆xM/2 |±∆xM/2〉 and tak-
ing Hs = 1. This state would suffer the maximum de-
phasing effect that would happen in the free flight sce-
nario we consider above (namely the evolution starting
with ψ(0) under full Hamiltonian (1)), which could over-
estimate the possible decoherence, hence impose an up-
per bound on it. At time t the off diagonal term of the
reduced spin system, which directly links to the visibil-
ity of the Ramsey interferometry is 〈+1|Tr{ρ(t)} |−1〉 =
e−η(∆xM )t where

η(∆xM ) =
∑
i

∫
dωγi(ω)

∫
|n|=1

dn2

4π
[e
iωnx
c ∆xM − 1],

(16)
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ρ(t) the system density operator and the trace operation
is carried over the motional degree of the CM. The nu-
merical result is obtained by sampling the spectrum of
the diamond response and the blackbody spectrum for a
range of internal temperatures, as shown in Fig.[2].

VI. MULTI-NVS SCENARIO

For a nano diamond with l NVs (realistically l is of
the order of 100s), the initialisation of the spin sys-
tem (after the first MW pulse on the nano diamond)
would be a product state of those individual spin sys-

tems: |ψ〉lspin = (|+1〉 + |−1〉)⊗l/2l, to which the CM
motion couples magnetically, they are coupled under new
Hamiltonian,

H =
p̂2

2m
−

l∑
i=1

gNV µB
∂B

∂x
Ŝz

(i)
x̂+mg cos θx̂. (17)

Note that since only the spin state |±1〉 of each NV
centre is relevant to the ballistic expansion process of the
matter wave, we could describe each spin as a pseudo-
spin-1/2 system and characterise the output state by a

collective spin J summing up all the pseudospins. |ψ〉lspin
could be rewritten as

|ψ〉lspin =
1

2l

l∑
n=0

l!

n!(l − n)!

∑
k

|+1〉⊗n |−1〉⊗(l−n)
, (18)

which could be seen as a superposition of N-qubit sym-

metric Dicke state: |Dn
l 〉 =

∑
k |+1〉⊗n |−1〉⊗(l−n)

, where
the summation k is over all the permutations of n’s
+1 and (l − n)’s −1. During the free propagation, the
matter wave of the nano object would undergo a bal-
listic expansion, whose trajectories are determined by
the spin value m = 2n − l of the corresponding Dicke
state. The intermediate state at time t in this scenario
is Ψsys(t) =

∑
n |ψ,m〉 |Dn

l 〉 /2l, where |ψ,m〉 is the mo-
tional state of the CM that coupled to Dicke state |Dn

l 〉
with a spin value of m. Interestingly, at time t3 the final
state of the composite system is again separable,

Ψsys(t3) =
1

2l
|ψ(t3)〉

∑
n

ei(2n−m)φg |Dn
l 〉 , (19)

where |ψ(t3)〉 has the formula of Equ. (4) in the main
text in x representation. The reduced spin state of (19)

is exactly an l product state of (|+1〉 + eiφg |−1〉)/
√

2,
on the basis of which this phase could be measured via
the Ramsey pulse and hence reveal the intermediate
superposition

∑
n |ψ,m〉 |Dn

l 〉 /2l.
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