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ABSTRACT

Given the rapid rise of electric vehicles (EVs) worldwide, and the
ambitious targets set for the near future, the smart charging of an
EV fleet must be seen as a priority. Specifically, we study a sce-
nario where EV charging is managed through self-interested EV
aggregators (e.g. car parks or electricity suppliers) who compete in
the day-ahead market in order to purchase the electricity needed
to meet their clients’ requirements. In order to reduce electricity
costs and lower the impact on electricity markets, we study the
possibility of inter-aggregator cooperation. Specifically, we model
the system as a coalitional game and prove that the resulting game
is superadditive and balanced, hence having a non-empty core.
However, due to the game not being convex, the Shapley value is
not guaranteed to lie in the core. As an alternative, we propose em-
ploying the payment mechanism provided by the least-core, which
we show to be in the core in our setting. Furthermore, a realistic
empirical evaluation is presented, using real market and driver
data from the Iberian Peninsula. The simulations show that large
payment reductions can be achieved when using the coordination
mechanism. Moreover, we show that the individual payments of
the least-core are very close to the Shapley value, suggesting that
the payment mechanism is both fair and stable.

KEYWORDS

electric vehicles; cooperative game theory; Shapley value; least-core

ACM Reference Format:

Alvaro Perez-Diaz, Enrico Gerding, and Frank McGroarty. 2018. Coordina-
tion of Electric Vehicle Aggregators: A Coalitional Approach. In Proc. of the
17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), Stockholm, Sweden, July 10-15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION

To date, there exists a world-wide fleet of more than two million
electric vehicles (EVs), combining purely electrical and hybrid [15].
Furthermore, EV sales are growing exponentially in most countries
and there are targets to achieve 50 to 200 million of EVs at a global
scale in the next decade [14]. These high penetration targets aim to
reduce the use of fossil fuels and improve environmental conditions.
However, the transition from conventional to electric vehicles is not
without challenges [24]. Specifically, compared to traditional fuel
powered vehicles, EVs present a novel and heavy strain to existing
electricity networks, which will need to accommodate a new type
of consumer with high demand. Careless managing of a fleet of EVs
can cause great demand peaks and network congestion, which can
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compromise the good functioning of the electricity grid and require
the use of expensive and polluting generation methods. On the
positive side, in contrast with conventional electricity consumption
such as heating or lighting, EVs offer a high degree of flexibility:
on average, a given EV is idle up to 95% of the time [34].

In order to deal with these challenges and to exploit the flexi-
bility inherent to EVs, the last decade has seen the introduction of
the concept of the EV aggregator [16]: an intermediary between a
fleet of EVs and the electricity grid and markets. Potential examples
of EV aggregators are EV charging enabled car parks, micro-grids,
etc. The aggregator is able to control the charging (and potentially
discharging) of its fleet, and this way informed collective decisions
can be made. In contrast with individual EV operation, the much
higher degree of coordination possible when a fleet is centrally
managed by an aggregator offers great benefits. For example, elec-
tricity consumption to charge the fleet’s batteries can be spread
over time, avoiding expensive and polluting demand peaks. In par-
ticular, in this work we focus on EV aggregators participating in
day-ahead markets, in order to purchase the electricity needed to
meet their clients’ energy requirements. In more detail, day-ahead
markets match electricity supply and demand on an hourly basis
(see Section 2), and are the main source of whole-sale electricity.
Here, increased electricity demand means increased prices, result-
ing in the so-called price impact, and hence it is in every market
participant’s interest to avoid unnecessary demand peaks.

The participation of an EV aggregator in this type of market has
been extensively studied in the literature in recent years, both under
price-taker (where no price impact is considered) and price-maker
(where price impact is considered) approaches (see [12, 21] for
reviews). All these works consider a single aggregator participating
in the day-ahead market. However, given the fast growing numbers
of EVs and the very large targets established for the near future,
we envision an scenario where different EV aggregators co-exist
in the same day-ahead market. These aggregators may vary in
nature and size, but it is reasonable to assume that they are self-
interested. Indeed, reduced electricity costs translate in more profit
for the aggregator and/or more benefits for their EV fleet. In this
scenario, reduced overall costs can be achieved by inter-aggregator
coordination, producing more informed and optimised bidding.
However, this coordination is challenging, as an aggregator may
choose to cheat the system if greater personal benefit is perceived.

Against this background, there are some works considering a
multi-aggregator setting [19, 23, 27, 32, 33], but do not consider
self-interested aggregators. More in line with this paper, a first step
towards inter-aggregator cooperation in our setup can be found

n [21]. They propose a day-ahead bidding coordination mecha-
nism which uses techniques from the field of mechanism design.
By employing a third-party coordinator, which collects the EV



aggregator’s electricity requirements and performs joint bidding,
reduced price impact and lower costs are achieved. Truthful coop-
eration is encouraged by employing payment systems based on a
Vickrey-Clarke-Groves (VCG) mechanism. Their results show that
significant cost reductions arise from utilising the coordination
mechanism when compared to individually optimal bidding. How-
ever, they do not study the stability of the coordination mechanism,
i.e. what would happen if different coordinators are present, and the
aggregators choose whether to form smaller cooperative groups.

In order to address this issue, in this paper we study the coordi-
nation approach introduced in [21] from a different perspective, by
using tools from cooperative game theory [6]. Cooperative game
theory studies games in which the participating agents can form
coalitions in order to improve their performance, and has been
successfully applied in smart grid related studies. Specifically, co-
operation among small power producers is studied in [5, 7]. [7]
considers small distributed energy producers which are able to
form coalitions to make joint offers in electricity markets. This
is shown to be beneficial to gain market visibility, and to reduce
the uncertainty related to their bids, resulting in increased profit.
[5] considers a similar scenario, and focuses on profit distribution
among the coalition members. Similarly, cooperation among wind
producers is studied in [3], their results show that cooperation in-
creases their profit. Moreover, cooperative game theory has been
employed to aggregate demand response providers, in order to
improve their performance and grid stability [9, 20]. Lastly, cooper-
ation among independent households with distributed generation
and storage capabilities is studied in [1]. Their results show that
battery degradation can be greatly reduced, while obtaining signif-
icant better energy efficiency, by cooperation. However, none of
these works studies EV charging, which presents several distinctive
challenges, as detailed below.

Against this background, we study the formation of EV aggrega-
tor coalitions in order to coordinate day-ahead bidding. Specifically,
we focus on finding payoff allocations (i.e. payment mechanisms)
which result in fair and stable coalitions. Moreover, our scenario
presents several challenges: complex hourly interdependence (see
Section 3.1), a complex underlying optimisation problem (see Sec-
tion 3.2), and the presence of externalities in the coalitional game
(see Section 4.2). In more detail, this paper makes the following
contributions to the state of the art:

e We present the first application of cooperative game theory
to study the cooperation of EV aggregators participating in
day-ahead markets.

e We propose a coalitional game and prove that it has a non-
empty core. Moreover, we propose a payment mechanism
that lies in the core, specifically, the least-core.

e We compare this payment mechanism against the well-known
Shapley value, whose computational complexity is softened
by employing a sampling approximation with bounded error.

o We present a realistic empirical evaluation that uses real
market and driver data to compare the least-core and the
Shapley value payment mechanisms.

The rest of the paper is structured as follows. Section 2 introduces
the considered day-ahead market and the mathematical formalism
to quantify price impact. Section 3 presents the considered EV
aggregator and day-ahead bidding models. We are then ready to

present our cooperation model and study its theoretical properties
in Section 4. An empirical evaluation is presented in Section 5.
Finally, we conclude in Section 6.

2 THE DAY-AHEAD MARKET

This section details the day-ahead market structure considered in
this paper and present in most countries. Moreover, we discuss
how to quantify the price impact of buy orders (electricity demand),
which is an important aspect of our work.

Day-ahead markets divide each day into 24 hourly slots, each
running a separate uniform-priced double-sided auction. Before
closure time (usually noon) on day D, bids and offers for each hourly
slot of day D + 1 must be submitted to the market. Then, a matching
algorithm determines the accepted bids and offers, and establishes
an hourly uniform price using marginal pricing, this is, the price of
the intersection between supply and demand.

Bids (buy orders) and offers (sell orders) for each hourly slot
are quantity-price pairs. For bids (offers), the price represents the
highest (lowest) price the participant is willing to pay (sell for). As
is common in most markets, we define a minimum price ppi, = 0
and some maximum price, pmax. After closure time, the auctioneer
aggregates all buy and sell orders, by high-price and low-price
priorities, respectively. This generates the aggregated demand and
supply curves, and their intersection determines the accepted orders
and the resulting uniform price, as depicted in Fig. 1a.

Clearly, the arrival of a new buy order pushes the clearing price
up if it gets accepted (i.e. if it lies towards the left-hand side of
the intersection). Fig. 1b illustrates the effect of a new buy order
with quantity E placed at price pmax. The price increase (price
impact) depends on the new order’s price and quantity, and on
the supply and demand curves. Price impact is an essential market
characteristic associated with large market participants, and careful
managing is required to avoid pushing prices up unnecessarily.
Price impact has been studied in the electricity markets literature
by employing residual curves [13], which are detailed below.

Employing standard notation, for any given hour t, let D;(p) and
St (p) be the aggregated demand and supply curves respectively,
as a function of price, p. The residual supply curve is defined as
R:(p) = S¢(p) — D¢(p) = E, and represents the amount of energy,
E, an agent could bid for while maintaining a clearing price p.
Conversely, the clearing price when bidding a quantity E is given by
p = R;Y(E). Introducing the notation P (E) = R;!(E), the clearing
price when the new agent bids an amount E is p = $;(E), and the
price impact Ap of this order is given by Ap = P;(E) —P;(0), where
P (0) represents the base price at hour t, i.e. the price without the
agent’s new bid. This formalism is depicted in Figs. 1b and 1c.

We are now ready to introduce the EV aggregator model and the
day-ahead bidding algorithm.

3 EV AGGREGATOR PARTICIPATION IN

DAY-AHEAD MARKETS

As discussed in Section 1, an EV aggregator is responsible for the
charging of a fleet of EVs and, to this end, purchases the required
electricity from the day-ahead market (see Section 2) [4]. We will
start by describing the aggregator structure and operation. Then, we
will describe the bidding algorithm, which is from [21]. Finally, we
will show how two or more independent aggregators can coordinate
their bidding.
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Figure 1: (a) Aggregated supply and demand curves, and market clearing mechanism. (b) Price impact of a buy order with volume E and
maximum price pmax. (¢) Final price function P (E). Source: OMIE, 01/11/2016, 11" hour. [21]

3.1 EV Aggregator Model

In our model, EVs arrive and depart dynamically over time. When
an EV arrives to the charging point, it communicates the desired
departure time, ¢! and desired state of charge at departure, SoC;, to
the aggregator. We assume that arrival time and state of charge, tg
and SoCé can be automatically inferred by the aggregator. Each EV
has a maximum charging speed, P, in kW, which depends on two
factors: the available physical infrastructure, and the EV’s battery.
The charging schedule of the EV is then left at the aggregator’s
discretion, which can choose when to perform the charging while
guaranteeing the desired state of charge by departure time. This
flexibility allows charging the battery in an informed way, rather
than randomly, or at arrival, providing cheaper electricity costs.
Due to the nature of the day-ahead market, electricity bids need
to be placed between 12 and 36 hours before delivery time (assuming
market closure at noon, see Section 2). This requires the market
participants to forecast their electricity needs and to bid accordingly.
Following [4, 21], we model the requirements of an EV by employ-

ing two vectors with 24 entries each, r™™ and r™%¢, Specifically,

r;nin’i is the amount of energy needed at hour t assuming charging
has been left for the last possible moment and that the charging
requirements need to be fulfilled. Conversely, r}nax’i
of energy needed at hour t assuming charging starts as soon as
possible. For example, consider an EV arriving at 3pm, stating 9pm
departure time and 8kWh charging needs with Ppax = 3kW. Then,
™% # would be as specified in Table 1. Specifically, if 6pm is reached
with no charging done, at least 2kW of energy needs to be charged
between 6-7pm in order to fulfil the EV driver requirements. The

same applies with 3kW between 7-8pm and 8-9pm. Similarly, for the

is the amount

same scenario, the requirement vector r'™®** would be as specified
in Table 2.
rmm, i rmm, 1 rmln, i rmin, i min, [ rmm, i rmin, i
3 4 5 6 7 8 9
0 0 0 2 3 3 0
Table 1: Example of requirement vector r™i™:
rmax, 1 rmax, 1 rmax, 1 rmax, 1 rmax, 1 rmax, 1 rmax, 1
3 4 5 6 7 8 9
3 3 2 0 0 0 0

Table 2: Example of requirement vector r™a%!

Then, two global energy requirement vectors, R™" and R™2X,
can be obtained by summing the hourly requirements of all the EVs
>N P and

i=1 "t

associated to the particular aggregator, i.e. R}
N _max,i
Zisg e

max
Rt

In order to make informed bids in the day-ahead market, several
quantities need to be forecasted by the aggregator (denoted by a
hat): hourly energy requirements, ﬁrtnin and ﬁ?‘ax, hourly number
of available EVs, N, and hourly price impact functions, P,.

Considering advanced forecasting approaches is outside of the
scope of this paper and simple forecasting is employed in the sim-
ulation experiments shown in Section 5. Specifically, data from
the previous day is the forecast for the day after [4, 12, 21]. How-
ever, we note that all theoretical results presented in this paper are
independent of the forecasting approach used.

3.2 Day-Ahead Bidding Algorithm

Now that the day-ahead and EV aggregator models have been de-
tailed, we are ready to present the day-ahead bidding algorithm.
The algorithm is from [21] and reproduced here for convenience.
The mathematical problem is defined as follows: given an EV aggre-
gator’s forecasted requirements and price impact functions, find the
optimal distribution of energy quantities to bid across the 24 hourly
slots of the next day, (Eo, ..., E3), in order to satisfy its clients’
charging needs while minimising the total cost of the purchased
energy. We assume that the agent’s bids are set at maximum price,
Pmax, in order to guarantee execution. Hence only bidding hours
and quantities need to be decided.

As discussed in [21], and in order to avoid a complex min-
imisation landscape with multiple minima, the forecasted hourly
price impact functions P, (see Sections 2 and 3.1) are approxi-
mated by quadratic convex functions. Specifically, they are given
by ﬁfonvex = a,E? + bEs + ?@(0), where all the coefficients a;
and by are restricted to be positive. Formally, the optimisation al-
gorithm is given by Egs. (1), (2a), (2b), (2c). In more detail, the
objective function (1) minimizes the total cost of the purchased
energy. The constraints guarantee that the amount of purchased
energy is enough to satisfy the forecasted demand (2a), that it is
not purchased before the forecasted arrival of the EVs (2b) and that
the energy purchased at each hour is not greater than the amount
that the aggregator is able to charge at the given hour, based on
the forecasted number of available vehicles (the aggregator cannot
store energy). It is worth noting that the number of constraints is
always 72, independent on the fleet size. Also, given the convexity
of the problem, there exists a unique global minimum, which we
are guaranteed to find.

1)

min

m }Z?Etconvex(Et) “E;
oy
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E;/At < N¢Ppax, Yt =0,...,23 (ZC)

3.3 Joint Bidding

The bidding algorithm detailed in the previous section for a single
aggregator can be extended to perform joint bidding, where a num-
ber of independent aggregators join their requirements and apply
the optimisation algorithm globally. In more detail, let C be a set of
EV aggregators. Then, following [21], let ﬁ;nin’i and Iértmx’i be ag-
gregator i’s forecasted energy requirements for hour ¢ , and N, ; the
number of available EVs from aggregator i, as specified in Section
3.2. The combined requirements of all the aggregators in C are then:

fertnin _ Z R;nin,i thnax — Z thnax,i Nt — Z Ntl
ieC (3) ieC (4) ieC ©)
To find the optimal global energy bids, the bidding optimisation
algorithm given by Egs. (1), (2a), (2b), (2c) can be applied with
constraints given by the combined requirements (3), (4) and (5). This

will result in obtaining a global day-ahead energy volume E%lObal for

each hour ¢, which can be then distributed among the aggregators
in C. The redistribution mechanism is defined in [21], and allocates
an hourly energy schedule to each participating aggregator.

4 COORDINATION AMONG AGGREGATORS

In this section, we present our novel coalitional analysis of inter-
aggregator cooperation in day-ahead markets. By employing tech-
niques from cooperative game theory, we model the scenario as
a coalitional game, and discuss and prove several desirable the-
oretical properties. In more detail, we focus on finding payment
mechanisms which incentivise the aggregators to form coalitions
and cooperate, rather than strategically manipulate the system.

Cooperation is achieved by employing a coordination system,
proposed in [21], which consists of three stages. Firstly, the coop-
erating aggregators report their forecasted energy requirements
to the coordinator. The coordinator is then able to perform coor-
dinated bidding, as shown in Section 3.3. Secondly, the purchased
energy is distributed among the participating aggregators according
to their reported preferences. Thirdly, the coordinator must com-
pute suitable payments for each of the participating aggregators.
This step is key to ensure that cooperation rather than strategic
manipulation is encouraged.

The rest of the section is structured as follows. We first describe
the proposed EV aggregator coalitional game. Then, the presence
of externalities is discussed. The main theoretical properties of the
game are then described, including superadditivity and balanced-
ness. Lastly, the Shapley value is considered, together with the
nucleolus and the least-core imputations.

4.1 Defining the Aggregator Coalitional Game

We start by presenting the basic concepts of cooperative game
theory [6], before proceeding to describe our proposed game. Con-
sider a set of players N = {1, ..., n}, i.e. the set of EV aggregators
participating in the day-ahead market.

Definition 4.1 (Coalition). A coalition is any subset of players
C C N. The number of players in the coalition C is given by its
cardinality |C|. All possible coalitions are denoted by the power set
of N, 2N The grand coalition is the set of all players, N.

Definition 4.2 (Coalition structure). A coalition structure over N
is a collection of non-empty subsets CS = {Cy, ..., Cy} such that
u};lcj =NandC;NCj=0VYi#j.

Definition 4.3 (Characteristic function game). A characteristic
function game G is given by a pair (N, v), where N is a finite and
non-empty set of players, and v : 2N —s R is a characteristic
function. The value v(C) is usually referred to as the value of the
coalition C.

Note that the characteristic function assigns a value to the whole
coalition, not to its individual members. Games in which a coalition
value, v(C), can be divided in any way among its members are
called transferable utility (TU) games.

Focusing on our scenario, consider a realisation of the market
with hourly prices p = (po, . . ., p23). Then, the aggregators pur-
chasing an energy schedule given by E = (E, . .., E3) will incur a
total electricity cost given by:

23
cost(p,E) = o Pt Et (6)

This provides a natural way to define the value function of our
coalitional game. In more detail, for a coalition C, v(C) must rep-
resent the electricity costs paid by the members of C when they
perform coordinated bidding. However, the price impact present in
our market model introduces an extra layer of complexity, as any
market participant affects the resulting prices with their bids. More
specifically, the cost paid by a coalition C depends not only on the
members of the coalition itself, but on all the other aggregators as
well. This situation is treated in detail in the next section.

4.2 Value Function with Externalities

The first thing to note is that our setting deviates from traditional
characteristic function games. This is due to the presence of exter-
nalities [6, Ch 5.2]. Specifically, in classical game theory, the value
of a coalition C, v(C), only depends on the coalition itself. However,
in our market structure with price impact (see Section 2), a given
coalition C is also affected by the aggregators not in the coalition. In
more detail, any market participant will affect the resulting market
prices, hence affecting every other participant’s costs. Formally, the
resulting prices depend on the whole coalition structure, p = p(CS),
and thus so does the value function of our game: v(C, CS). Games
with such value functions are called partition function games [31].

A coalitional game with externalities can be studied in partition
function form. However, the resulting game has poor theoretical
properties and does not yield useful results, as we show in Section
4.2.1. Another usual procedure when dealing with a coalitional game
with externalities is to introduce a conjecture on the behaviour of
the outsider agents [2]. In more detail, when considering a coalition
C, the behaviour of the outsider agents, N \ C is assumed to be
deterministic, and to follow the chosen conjecture, hence recovering
the classical theory where the value of the coalition only depends on
the coalition itself. The earliest proposed conjecture is the so-called
a-conjecture [2], which assumes that the outsider players act as to



minimise the payoff of the deviated coalition. However, it does not
seem appropriate in our setting, as an aggregator trying to minimise
a coalition’s payoff through price impact would automatically harm
itself as well. More recent conjectures proposed in the literature
include the y-conjecture and the outsider coalition conjecture. Both
are reasonable in our setting and are further explored in the next
two subsections.

4.2.1 The outsider coalition (oc) conjecture. Introduced in [10], it
assumes that, when a coalition C deviates from the grand coalition,
all the outsiders join together and form a counter coalition N \
C. Hence, the resulting coalition structure is C°¢ = {C,N \ C}.
Formally, the resulting prices depend on the coalition structure,
and we can write p = p(C°®). Similarly, the amount of energy
purchased by the members of coalition C depends on C itself and
on the coalition structure C°¢, E = E¢(C°°). Therefore, the value
function can be defined as:

Voc(C) := —cost (P(Coc)’ Ec (Coc))

Even though this conjecture seems reasonable in our scenario,
the resulting coalitional game (N, v,¢) has poor stability properties.
To see this, we first introduce the following definition.

Definition 4.4 (Superadditive game). A coalitional game (N, v)
is superadditive if for every pair of disjoint coalitions C1,Cy C N
such that C; N Cy = 0, we have v(C1) + v(C2) < v(Cy U Cy).

In other words, in a superadditive game, the grand coalition has
the incentive to form, as the agents can earn at least as much profit
by working together. Unfortunately, the considered game is not
superadditive, as proven below.

THEOREM 4.5. The coalitional game (N, v,.) is not superadditive.

ProoF. We present a counter-example which employs a simpli-
fied market structure with three hours and synthetic prices. In more
detail, consider hourly prices given by: P, (E1) =10+ Eq, Py (E2) =
5+ E;/2, 733 (E3) = 10 + E3. Consider nine identical EV aggregators,
N ={1,...,9}, with the following individual energy requirements:
RMax = (1,0,0), RM" = (0,0, 1) and a maximum charging speed
Pmax = 1. Considering the following pair of coalitions, C; = {1, 2}
and Cy = {3, 4}, it holds: v5c(C1 U C2) < 0oc(C1) + voc (C2). Hence
the coalitional game (N, vo¢) is not superadditive. O

Thus, the grand coalition does not necessarily form, in which
case full coordination is not achieved. This counter-example also
applies to the partition function game described in Section 4.2,
which is not superadditive either.

4.2.2  They-conjecture. Another common choice is the so-called
y-conjecture [8], in which the outsider agents select their individual
best strategies. Hence, the resulting coalition structure is C¥ =
{C} U {{i}li € N, i ¢ C}. Formally, we can write p = p(C?) and
E = Ec(CY). Then, the value function can be defined as:

vy (C) = —cost(p(C"),Ec(C)) ™)

As we will show in Section 4.3, this conjecture has nice theoreti-
cal properties. As a result, we will adopt it throughout the rest of
the paper. For convenience, we will drop the subscript y and write
v henceforth.

4.3 Properties of the Coalitional Game

The coalitional game proposed in the previous section, (N, v), has
several desirable properties. Specifically, we will show that it is
superadditive and balanced, hence it has a non-empty core. Thus,
all the EV aggregators are incentivised to cooperate together (grand
coalition), and a payment mechanism can be implemented which
results in a stable grand coalition, with no sub-coalition having an
incentive to deviate. We will now detail and prove these properties.

For convenience, and extending the notation presented in the
previous subsection, let cost(p(Cg ) Ec, (C%/ )) be the total electric-
ity cost paid by the members of C; € N when coalition C; C N
performs coordinated bidding (see Section 3.3), and all other partic-
ipants perform individual bidding (see Section 3.2).

We are now ready to show that the game is superadditive.

LEMMA 4.6. For all coalitions C1,Cy C N such that C1 C Co, it
holds that:

cost(p((C1 U C2)").Ec, ((C1 U C2)")) < cost(p(CY ). Ecy (C)))

Proor. This lemma trivially follows from the fact that coordi-
nated bidding with more participants can only decrease the total
costs. Hence the price paid by members of coalition C; when coor-
dination happens inside C; U Cy can only be lower, or equal, than
when coordination happens only inside C;. The equality case hap-
pens only when the members of C; and C, have non-overlapping
energy requirements, or when the price impact of their combined
bids is not high enough. O

THEOREM 4.7. The coalitional game (N, v) is superadditive.

Proor. Consider any two disjoint coalitions, C1,C2 € N. Then,

U(Cl V] Cz) > ’U(Cl) + U(CZ) =1 COSt(p((Cl U CZ)Y)’EC1UC2 ((Cl U Cz)y))

< r:ost(p(C%/),EC1 (Ci/)) + cost(p(C‘g),Ec2 (C%/))
Given the following identity:
cost(p((C1 U C2)Y), Ecyuc, ((C1 U C2)Y))
= cost(p((C1 U C2)"), Ec, ((C1 U C2)Y))
+ cost(p((C1 U C2)Y), Ec, ((C1UCy)Y))
the expression above reads:
cost(p((C1 U C2)¥), B¢, ((C1 U Co)Y))
+ cost(p((C1 U C2)), Eg, ((C1 U C2)Y))

< cost(p(Ci/),Ec1 (C{)) + cost(p(C%/), Ec, (Cg))
which is always true, applying Lemma 4.6. O

This result shows that overall costs are minimised when the
grand coalition forms. The main issue is now how to distribute
the value of the grand coalition, i.e. the resulting costs, among its
members, the so-called payoff allocation.

Definition 4.8 (Payoff allocation). A vector x = (x1,...,Xp) isa
payoff allocation vector for a coalition structure CS = {Cy, ..., C}
over Nifx; > 0foralli € N, and Ziecj x; < v(Cj) for any
j=1... .k

(1) (Efficiency) An allocation x is efficient if Yiec; Xi = v(Cj)

foranyj=1...,k.



(2) (Individually rational) An allocation is individually rational

if x; > v({i}) foralli € N.
This value distribution can be done in an arbitrary way. However,
certain allocations have special properties, such as efficiency and
individual rationality, which make them desirable, as defined below.

Definition 4.9 (Imputation). A payoff allocation for the grand
coalition N is said to be an imputation if it is both efficient and
individually rational.

Definition 4.10 (The Core). Given a TU characteristic function
game (N, v), the core, C, is defined as the set of imputations such
that no sub-coalition can obtain a payoff which is better than the
sum of the members current payoffs. Explicitly:

C = {x € RN‘ ZieN xi = v(N), Zies xi > v(S), VS C N}

In other words, payoft allocations lying in the core provide sta-
bility, as no sub-coalition has an incentive to deviate from the grand
coalition in order to increase its profit. However, the core of coali-
tional game can be empty [6]. A classical result guarantees the
non-emptiness of the core for certain games, the so-called balanced
games. After the pertinent definitions, we prove that our game is
balanced, and thus has a non-empty core.

Definition 4.11 (Balanced function). A function « : 2N — R is
said to be balanced if for all i € N, we have },~conv a(C) 1{i € C} =
1, where 1 is the indicator function.

Definition 4.12 (Balanced game). A coalitional game (N, v) is bal-
anced if for any balanced function a, we have ), ~onv a(C)v(C) <
o(N).

THEOREM 4.13 ([28]). A coalitional game has a non-empty core if
and only if it is balanced.

THEOREM 4.14. Our proposed coalitional game (N, v) is balanced.
As a result, it has a non-empty core.
Proor. Let a : 2N — R be an arbitrary balanced function.
Balancedness of the coalitional game follows from Lemma 4.6:

D alCp(C) == ) a(C) cost(p(CY),Ec(CY))
Cce2N Ce2N
< - > a(C) cost(p(N¥),Ec(N"))

Ce2N
== >0 > alO1iecicost(p(NY), E (s (NY))
Ce2N ieN
=- Z cost(p(NY,E{i}(NY)) = —cost(p(NY,EN(NY)) = v(N)
ieEN
Thus the coalitional game is balanced and, by the Bondareva-Shapley
Theorem, it has a non-empty core. O

The non-emptiness of the core of our proposed coalitional game
guarantees the existence of at least one payoff allocation which
stabilises the grand coalition.

4.4 Fair Payoff Allocation

After proving that the proposed game has a non-empty core, we
now seek a payoff allocation lying in it. One of the most widely
used allocations is the Shapley value, defined as:

Definition 4.15 (Shapley value [6]). Given a coalitional game
(N, v), the Shapley value assigns a payoff SV; to each player i € N
given by:

ISI'(N —|S| - 1)!

SVi(v) = N

CCN\{i}

The Shapley value is the only payment allocation satisfying
the efficiency, symmetry, dummy action and additive axioms [6,
Ch 2.2.1]. Hence, it is traditionally considered to present a fair
payoff distribution. Moreover, there exist the following positive
results which guarantee that the Shapley value lies in the core of a
particular type of coalitional games, convex games.

[v(CU{i} - o(C)]

Definition 4.16 (Convex game). A coalitional game (N, v) is con-
vex if it has a supermodular value function:

v(C1) + v(Cg) < v(C1 UC2) +v(Cy NCy) ,¥C1,C2 C N

THEOREM 4.17 ([29]). If(N,v) is a convex game, then the Shapley
value is the barycentre of its core.

However, it turns out that our proposed coalitional game is not
convex, as proven by the counter-example in the following result.

THEOREM 4.18. The coalitional game (N, v) is not convex.

Proor. We present a counter-example which employs a sim-
plified market structure with three hours and synthetic prices. In
more detail, consider hourly prices given by: 1 (E;) = 10 + 20E,
732 (E2) = 0.1 + 20E, 733 (E3) = 10 + 20E3. Consider three identical
EV aggregators, N = {1, 2, 3}, with the following individual energy
requirements: R™& = (1,0,0), Rmin (0,0,1) and a maximum
charging speed Ppax = 1. Considering the following pair of coali-
tions, C; = {1,2} and Cy = {2, 3}, it holds: v(C; UCy) +0v(C1 NCy) <
v(Cq) + v(Cy). Hence the coalitional game is not convex. O

As a result, the Shapley value is not guaranteed to be in the
core of our proposed coalitional game (N, v). Therefore, we seek a
different payoff allocation which is guaranteed to be in the core.

4.5 Imputations in the Core

Another widely used imputation is the nucleolus. It employs a dif-
ferent approach than the Shapley value, trying to minimise player
dissatisfaction, which is defined next.

Definition 4.19 (Excess). Given a coalitional game (N, v) and a
payment allocation x € RN, the dissatisfaction of coalition C is
measured by the excess defined as: e(x,C) = v(C) — X ;ec xi-

Any payoff vector x generates an excess vector, e(x) = (e(x, C1),
..,e(x,Cyn)) € RZN, where Cy,...,Cyn is the list of subsets of
N ordered in non-increasing order by their excess under x. Then,
two deficit vectors can be compared lexicographically. Given two
payoff vectors x,y, we have e(x) <jex e(y) if there exists k € R
such that for all i < k, e;(x) = e;j(y), and e (x) < er(y).

Definition 4.20 (Nucleolus). Given a coalitional game (N, v), its
nucleolus is given by the lexicographically minimal imputation.

The nucleolus is in the core of a coalitional game with non-empty
core, as the core is the set of imputations with negative excess [30].
Hence, it is in the core of our proposed coalitional game. However,



computing the nucleolus for a game with n players requires solving
2" linear programs [26], which is prohibitive for all but the smallest
coalitional games. In order to maintain computational tractability
and develop a scalable system, we will employ an approximation
to the nucleolus which lies in the core and presents better scaling
properties. Specifically, we propose utilising the least-core [18]. This
imputation only minimises the worst-case excess for all coalitions,
instead of finding the imputation that lexicographically minimises
the vector of excesses. As a result, the least-core is much less com-
putationally expensive than computing the nucleolus. Moreover, if
the core is non-empty, the least-core belongs to it [30].

In more detail, following the exposition in [3], the least-core can
be defined as the payment allocation x which solves the following
minimisation problem:

¢ v(C) — Yiecxi—e<0,YCCN
e, s.t.
o(N) - Xienxi =0

This is a linear program with n + 1 variables and 2" + 1 constraints,
presenting reduced computational complexity than the nucleolus.

We have described two stabilising payoff allocations for the
grand coalition. Given the fact that we want our system to be
able to scale to large scenarios, computational tractability is an
important characteristic. The analysis of runtimes of the two payoff
allocations is presented in Section 5.3.

e = min
x€R”, eeR

®)

5 EXPERIMENTAL EVALUATION

In this section, we study the performance of the coalitional game
proposed in Section 4, employing real market and driver behaviour
data from the Iberian Peninsula. The purpose of this empirical study
is two-fold. First, we show the global welfare benefits of coordinated
bidding against uncoordinated independent bidding. Secondly, we
compare two different payment allocations: the Shapley value (see
Section 4.4) and the least-core (see Section 4.5). In order to maintain
computational tractability, an error-bounded approximation of the
Shapley value is employed, as described in Section 5.2.

5.1 Experimental Setup

This case study considers a night-time residential scenario in which
EVs arrive in the evening and need to be charged by the next
morning. We consider medium-sized electric vehicles with battery
capacities of 24kWh. Charging speed is considered to be the same
for all EVs and set to Pmax = 3.7kW. Charging efficiency is con-
sidered to be 90%, meaning that 10% of the consumed electricity
is lost and does not contribute to the charging of the battery. This
parameter choices are consistent with the literature [11].

We employ real market data from the OMIE day-ahead market!.
Specifically, we utilise weekday data from November 2016. Detailed
order data is available online, allowing us to build the aggregated
hourly supply and demand curves, and compute price impacts
employing residual supply curves as shown in Section 2.

Similarly, we utilise real driver data from a Spanish driving be-
haviour survey [25]. Specifically, it determines the distribution of
times for the first and last trip from and to home. These distribu-
tions are given in Table 3. To account for driver mobility, each EV

Uhttp://www.omie.es/en/inicio

will make use of its aggregator’s services with 80% probability every
day.

With respect to energy requirements, the state of charge of an
EV at arrival and departure times is drawn from a uniform dis-
tribution as follows: SoCq € [SoCiotal/4, SOCiotal/2] and SoCy €
[2 - S0Ciotal/3, S0Ciotal]- Consequently, the EV charging require-
ments range between a large percentage of the battery (up to 75%),
to a small percentage (down to 16%), accounting for long and short
trips home.

o Time 1%h | 20h | 21h | 22h | 23h

Probability | 0.16 | 0.25 | 0.32| 0.12| 0.15

; Time 6h [7h | 8h | 9h | 10h
d Probability | 0.04 | 0.02| 0.34| 0.5 | 0.1

Table 3: Possible arrival (p) and departure (t;) times rounded
to the nearest hour, with their respective probabilities.

5.2 Approximating the Shapley value

The Shapley value (see Section 4.4) is known to be computationally
expensive. Specifically, its computational complexity is 2" - O(v),
where O(v) is the complexity of the value function. In order to
improve its computational tractability, often an approximation is
employed [17]. In this paper, we apply the state-of-the-art error-
bound approximation proposed in [17, Ch 4.1] for superadditive
games.

In more detail, let SV;(v) denote the Shapley value for a given
agent i € N, and SVi(v) the approximated Shapley value for the
same agent. Instead of considering the v(C U {i} — v(C)) contri-
butions from all subsets of N \ {i}, the approximation randomly
samples a number of them, m, s, which depends on the desired
level of precision:

P(|sviv) - SVi(v)| 2 €) <

The specific formula for m,_s is detailed in [17, Ch 4.1]. Throughout
our simulations, we employ €, = 5%, in order to balance precision
and computational tractability.

5.3 Experimental Results

We present the results from three different simulations. Firstly, we
study the global cost reductions provided by coordination, when the
grand coalition performs joint bidding (see Section 3.3), in compari-
son to individual bidding (see Section 3.2). Results indicate that sig-
nificant cost reductions can be achieved by coordination, as shown
in Fig. 2. Now that the efficacy of coordinated inter-aggregator
bidding has been shown, we turn our attention to the two proposed
payment mechanisms, the least-core and the approximated Shapley
value.

In more detail, we present the results from two different simula-
tions. Firstly, we consider an scenario where four different EV aggre-
gators of different sizes, namely 10, 20, 30 and 40k EVs participate in
the market. Apart from size, they share the same characteristics, as
described in Section 5.1. The purpose of this simulation is to study
how the proposed payment mechanisms capture the greater elec-
tricity costs of larger market participants. Results are shown in Figs.
4a and 4b. Specifically, Fig. 4a presents the daily prices assigned
to each aggregator by the least-core payment mechanism. We can
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see that it correctly assigns larger payments to larger aggregators.
Moreover, Fig. 4b presents the daily difference between least-core
and approximated Shapley value payments for each aggregator. We
can see that the differences are of very small magnitude, concluding
that both payment mechanisms are both very close in all cases.

Lastly, we consider a similar scenario, where three different
aggregators participate in the market. In this case, they all have the
same size, 150k EVs each, but have different charging flexibilities. In
more detail, instead of employing the real arrival and departure data
provided in Table 3, we employ synthetic data in order to capture
the effects of charging flexibility on allocated prices. Specifically,
we consider an evening charging scenario where all EVs depart at
midnight. The first aggregator receives EVs at 14h, the second at
16h and the third at 18h. Thus, the first aggregator has the highest
flexibility and the third is the most constrained. This choice of
arrival and departure times is motivated by the typical hourly prices
found in the OMIE market, where electricity is cheaper around
15-17h, and more expensive afterwards. Results are presented in
Figs. 5a and 5b. We can see that first aggregator, the most flexible,
is able to obtain energy at cheaper hours, hence being allocated
cheaper payments. Conversely, the third aggregator which is forced
to operate at expensive hours, incurs larger payments. The second
aggregator lies in between. Similarly to the previous scenario, we
can see that least-core and approximated Shapley value payments
are very close together for all aggregators and every trading days.

As just described, the least-core and Shapley value payments
are very close in all considered scenarios. This suggests that both
payment mechanisms present good stability and fairness properties.
Moreover, given their computational complexity (see Fig. 3), the
approximated Shapley value presents much better scaling proper-
ties, and is more suitable for the application of this framework to
large scenarios. We note that the presented results do not depend
on the particular trading days shown here. Longer simulations have
been run utilising different trading months, and the results obtained
follow the same trend.

6 CONCLUSION AND FUTURE WORK

In this paper, we present the first study of coperative game theory
applied to EV charging. We define a cooperative game in which self-
interested EV aggregators can cooperate with each other in order to
effectively bid in the day-ahead market. We propose employing a y-
conjecture in order to obtain a game in characteristic function form.
Next, we show that the resulting game is superadditive, hence the
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Figure 5: (a) Daily least-core payment allocations for three aggre-
gators of the same size (150k EVs) but with different flexibilities. (b)
Daily difference between the least-core and approx. Shapley value
payments.

larger the formed coalition, the larger electricity cost reductions for
the EV aggregators. Moreover, we prove that our game is balanced
and thus has a non-empty core. The payment mechanism given by
the least-core is proposed in order to distribute payments among
the grand coalition of aggregators. As the least-core belongs to the
core of our game, this payment mechanism stabilises the grand
coalition. Lastly, we present numerical simulations which employ
real market and driver behaviour data, in order to show the efficacy
of coordinated bidding. The least-core payments are compared with
a more computationally tractable approximation to the Shapley
value. The good agreement between the two suggests that they
both present good stability and fairness properties.

Future work will focus on the extension of the proposed coalition
framework to a vehicle-to-grid (V2G) setting [34]. In more detail,
V2G involves selling electricity stored in the batteries of EVs back to
the grid, in order to obtain a profit and/or support grid functioning
in times of scarcity. Plenty of works in the literature have shown
the benefits of V2G in a variety of scenarios. However, the scenario
considered in this paper has not been studied.
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