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ABSTRACT
Given the rapid rise of electric vehicles (EVs) worldwide, and the

ambitious targets set for the near future, the smart charging of an

EV fleet must be seen as a priority. Specifically, we study a sce-

nario where EV charging is managed through self-interested EV

aggregators (e.g. car parks or electricity suppliers) who compete in

the day-ahead market in order to purchase the electricity needed

to meet their clients’ requirements. In order to reduce electricity

costs and lower the impact on electricity markets, we study the

possibility of inter-aggregator cooperation. Specifically, we model

the system as a coalitional game and prove that the resulting game

is superadditive and balanced, hence having a non-empty core.

However, due to the game not being convex, the Shapley value is

not guaranteed to lie in the core. As an alternative, we propose em-

ploying the payment mechanism provided by the least-core, which

we show to be in the core in our setting. Furthermore, a realistic

empirical evaluation is presented, using real market and driver

data from the Iberian Peninsula. The simulations show that large

payment reductions can be achieved when using the coordination

mechanism. Moreover, we show that the individual payments of

the least-core are very close to the Shapley value, suggesting that

the payment mechanism is both fair and stable.
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1 INTRODUCTION
To date, there exists a world-wide fleet of more than two million

electric vehicles (EVs), combining purely electrical and hybrid [15].

Furthermore, EV sales are growing exponentially in most countries

and there are targets to achieve 50 to 200 million of EVs at a global

scale in the next decade [14]. These high penetration targets aim to

reduce the use of fossil fuels and improve environmental conditions.

However, the transition from conventional to electric vehicles is not

without challenges [24]. Specifically, compared to traditional fuel

powered vehicles, EVs present a novel and heavy strain to existing

electricity networks, which will need to accommodate a new type

of consumer with high demand. Careless managing of a fleet of EVs

can cause great demand peaks and network congestion, which can

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

compromise the good functioning of the electricity grid and require

the use of expensive and polluting generation methods. On the

positive side, in contrast with conventional electricity consumption

such as heating or lighting, EVs offer a high degree of flexibility:

on average, a given EV is idle up to 95% of the time [34].

In order to deal with these challenges and to exploit the flexi-

bility inherent to EVs, the last decade has seen the introduction of

the concept of the EV aggregator [16]: an intermediary between a

fleet of EVs and the electricity grid and markets. Potential examples

of EV aggregators are EV charging enabled car parks, micro-grids,

etc. The aggregator is able to control the charging (and potentially

discharging) of its fleet, and this way informed collective decisions

can be made. In contrast with individual EV operation, the much

higher degree of coordination possible when a fleet is centrally

managed by an aggregator offers great benefits. For example, elec-

tricity consumption to charge the fleet’s batteries can be spread

over time, avoiding expensive and polluting demand peaks. In par-

ticular, in this work we focus on EV aggregators participating in

day-ahead markets, in order to purchase the electricity needed to

meet their clients’ energy requirements. In more detail, day-ahead

markets match electricity supply and demand on an hourly basis

(see Section 2), and are the main source of whole-sale electricity.

Here, increased electricity demand means increased prices, result-

ing in the so-called price impact, and hence it is in every market

participant’s interest to avoid unnecessary demand peaks.

The participation of an EV aggregator in this type of market has

been extensively studied in the literature in recent years, both under

price-taker (where no price impact is considered) and price-maker

(where price impact is considered) approaches (see [12, 21] for

reviews). All these works consider a single aggregator participating

in the day-ahead market. However, given the fast growing numbers

of EVs and the very large targets established for the near future,

we envision an scenario where different EV aggregators co-exist

in the same day-ahead market. These aggregators may vary in

nature and size, but it is reasonable to assume that they are self-

interested. Indeed, reduced electricity costs translate in more profit

for the aggregator and/or more benefits for their EV fleet. In this

scenario, reduced overall costs can be achieved by inter-aggregator

coordination, producing more informed and optimised bidding.

However, this coordination is challenging, as an aggregator may

choose to cheat the system if greater personal benefit is perceived.

Against this background, there are some works considering a

multi-aggregator setting [19, 23, 27, 32, 33], but do not consider

self-interested aggregators. More in line with this paper, a first step

towards inter-aggregator cooperation in our setup can be found

in [21]. They propose a day-ahead bidding coordination mecha-

nism which uses techniques from the field of mechanism design.

By employing a third-party coordinator, which collects the EV



aggregator’s electricity requirements and performs joint bidding,

reduced price impact and lower costs are achieved. Truthful coop-

eration is encouraged by employing payment systems based on a

Vickrey-Clarke-Groves (VCG) mechanism. Their results show that

significant cost reductions arise from utilising the coordination

mechanism when compared to individually optimal bidding. How-

ever, they do not study the stability of the coordination mechanism,

i.e.what would happen if different coordinators are present, and the
aggregators choose whether to form smaller cooperative groups.

In order to address this issue, in this paper we study the coordi-

nation approach introduced in [21] from a different perspective, by

using tools from cooperative game theory [6]. Cooperative game

theory studies games in which the participating agents can form

coalitions in order to improve their performance, and has been

successfully applied in smart grid related studies. Specifically, co-

operation among small power producers is studied in [5, 7]. [7]

considers small distributed energy producers which are able to

form coalitions to make joint offers in electricity markets. This

is shown to be beneficial to gain market visibility, and to reduce

the uncertainty related to their bids, resulting in increased profit.

[5] considers a similar scenario, and focuses on profit distribution

among the coalition members. Similarly, cooperation among wind

producers is studied in [3], their results show that cooperation in-

creases their profit. Moreover, cooperative game theory has been

employed to aggregate demand response providers, in order to

improve their performance and grid stability [9, 20]. Lastly, cooper-

ation among independent households with distributed generation

and storage capabilities is studied in [1]. Their results show that

battery degradation can be greatly reduced, while obtaining signif-

icant better energy efficiency, by cooperation. However, none of

these works studies EV charging, which presents several distinctive

challenges, as detailed below.

Against this background, we study the formation of EV aggrega-

tor coalitions in order to coordinate day-ahead bidding. Specifically,

we focus on finding payoff allocations (i.e. payment mechanisms)

which result in fair and stable coalitions. Moreover, our scenario

presents several challenges: complex hourly interdependence (see

Section 3.1), a complex underlying optimisation problem (see Sec-

tion 3.2), and the presence of externalities in the coalitional game

(see Section 4.2). In more detail, this paper makes the following

contributions to the state of the art:

• We present the first application of cooperative game theory

to study the cooperation of EV aggregators participating in

day-ahead markets.

• We propose a coalitional game and prove that it has a non-

empty core. Moreover, we propose a payment mechanism

that lies in the core, specifically, the least-core.

• We compare this paymentmechanism against thewell-known

Shapley value, whose computational complexity is softened

by employing a sampling approximation with bounded error.

• We present a realistic empirical evaluation that uses real

market and driver data to compare the least-core and the

Shapley value payment mechanisms.

The rest of the paper is structured as follows. Section 2 introduces

the considered day-ahead market and the mathematical formalism

to quantify price impact. Section 3 presents the considered EV

aggregator and day-ahead bidding models. We are then ready to

present our cooperation model and study its theoretical properties

in Section 4. An empirical evaluation is presented in Section 5.

Finally, we conclude in Section 6.

2 THE DAY-AHEAD MARKET
This section details the day-ahead market structure considered in

this paper and present in most countries. Moreover, we discuss

how to quantify the price impact of buy orders (electricity demand),

which is an important aspect of our work.

Day-ahead markets divide each day into 24 hourly slots, each

running a separate uniform-priced double-sided auction. Before

closure time (usually noon) on dayD, bids and offers for each hourly
slot of day D+1 must be submitted to the market. Then, a matching

algorithm determines the accepted bids and offers, and establishes

an hourly uniform price using marginal pricing, this is, the price of

the intersection between supply and demand.

Bids (buy orders) and offers (sell orders) for each hourly slot

are quantity-price pairs. For bids (offers), the price represents the

highest (lowest) price the participant is willing to pay (sell for). As

is common in most markets, we define a minimum price pmin = 0

and some maximum price, pmax. After closure time, the auctioneer

aggregates all buy and sell orders, by high-price and low-price

priorities, respectively. This generates the aggregated demand and

supply curves, and their intersection determines the accepted orders

and the resulting uniform price, as depicted in Fig. 1a.

Clearly, the arrival of a new buy order pushes the clearing price

up if it gets accepted (i.e. if it lies towards the left-hand side of

the intersection). Fig. 1b illustrates the effect of a new buy order

with quantity E placed at price pmax. The price increase (price

impact) depends on the new order’s price and quantity, and on

the supply and demand curves. Price impact is an essential market

characteristic associated with large market participants, and careful

managing is required to avoid pushing prices up unnecessarily.

Price impact has been studied in the electricity markets literature

by employing residual curves [13], which are detailed below.

Employing standard notation, for any given hour t , letDt (p) and
St (p) be the aggregated demand and supply curves respectively,

as a function of price, p. The residual supply curve is defined as

Rt (p) = St (p) − Dt (p) = E, and represents the amount of energy,

E, an agent could bid for while maintaining a clearing price p.
Conversely, the clearing price when bidding a quantity E is given by

p = R−1t (E). Introducing the notation Pt (E) = R−1t (E), the clearing
price when the new agent bids an amount E is p = Pt (E), and the

price impact ∆p of this order is given by ∆p = Pt (E)−Pt (0), where
Pt (0) represents the base price at hour t , i.e. the price without the
agent’s new bid. This formalism is depicted in Figs. 1b and 1c.

We are now ready to introduce the EV aggregator model and the

day-ahead bidding algorithm.

3 EV AGGREGATOR PARTICIPATION IN
DAY-AHEAD MARKETS

As discussed in Section 1, an EV aggregator is responsible for the

charging of a fleet of EVs and, to this end, purchases the required

electricity from the day-ahead market (see Section 2) [4]. We will

start by describing the aggregator structure and operation. Then, we

will describe the bidding algorithm, which is from [21]. Finally, we

will show how two ormore independent aggregators can coordinate

their bidding.
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Figure 1: (a) Aggregated supply and demand curves, and market clearing mechanism. (b) Price impact of a buy order with volume E and
maximum price pmax. (c) Final price function P (E ). Source: OMIE, 01/11/2016, 11th hour. [21]

3.1 EV Aggregator Model
In our model, EVs arrive and depart dynamically over time. When

an EV arrives to the charging point, it communicates the desired

departure time, t id , and desired state of charge at departure, SoC
i
d , to

the aggregator. We assume that arrival time and state of charge, t0d
and SoC

i
0
can be automatically inferred by the aggregator. Each EV

has a maximum charging speed, P i
max

in kW, which depends on two

factors: the available physical infrastructure, and the EV’s battery.

The charging schedule of the EV is then left at the aggregator’s

discretion, which can choose when to perform the charging while

guaranteeing the desired state of charge by departure time. This

flexibility allows charging the battery in an informed way, rather

than randomly, or at arrival, providing cheaper electricity costs.

Due to the nature of the day-ahead market, electricity bids need

to be placed between 12 and 36 hours before delivery time (assuming

market closure at noon, see Section 2). This requires the market

participants to forecast their electricity needs and to bid accordingly.

Following [4, 21], wemodel the requirements of an EV by employ-

ing two vectors with 24 entries each, rmin,i
and rmax,i

. Specifically,

rmin,i
t is the amount of energy needed at hour t assuming charging

has been left for the last possible moment and that the charging

requirements need to be fulfilled. Conversely, rmax,i
t is the amount

of energy needed at hour t assuming charging starts as soon as

possible. For example, consider an EV arriving at 3pm, stating 9pm

departure time and 8kWh charging needs with Pmax = 3kW. Then,

rmin,i
would be as specified in Table 1. Specifically, if 6pm is reached

with no charging done, at least 2kW of energy needs to be charged

between 6-7pm in order to fulfil the EV driver requirements. The

same applies with 3kW between 7-8pm and 8-9pm. Similarly, for the

same scenario, the requirement vector rmax,i
would be as specified

in Table 2.

rmin,i
3

rmin,i
4

rmin,i
5

rmin,i
6

rmin,i
7

rmin,i
8

rmin,i
9

0 0 0 2 3 3 0

Table 1: Example of requirement vector rmin,i

rmax,i
3

rmax,i
4

rmax,i
5

rmax,i
6

rmax,i
7

rmax,i
8

rmax,i
9

3 3 2 0 0 0 0

Table 2: Example of requirement vector rmax,i

Then, two global energy requirement vectors, Rmin
and Rmax

,

can be obtained by summing the hourly requirements of all the EVs

associated to the particular aggregator, i.e. Rmin

t =
∑N
i=1 r

min,i
t and

Rmax

t =
∑N
i=1 r

max,i
t .

In order to make informed bids in the day-ahead market, several

quantities need to be forecasted by the aggregator (denoted by a

hat): hourly energy requirements, R̂min

t and R̂max

t , hourly number

of available EVs, N̂t , and hourly price impact functions,
ˆPt .

Considering advanced forecasting approaches is outside of the

scope of this paper and simple forecasting is employed in the sim-

ulation experiments shown in Section 5. Specifically, data from

the previous day is the forecast for the day after [4, 12, 21]. How-

ever, we note that all theoretical results presented in this paper are

independent of the forecasting approach used.

3.2 Day-Ahead Bidding Algorithm
Now that the day-ahead and EV aggregator models have been de-

tailed, we are ready to present the day-ahead bidding algorithm.

The algorithm is from [21] and reproduced here for convenience.

The mathematical problem is defined as follows: given an EV aggre-

gator’s forecasted requirements and price impact functions, find the

optimal distribution of energy quantities to bid across the 24 hourly

slots of the next day, (E0, . . . ,E23), in order to satisfy its clients’

charging needs while minimising the total cost of the purchased

energy. We assume that the agent’s bids are set at maximum price,

pmax, in order to guarantee execution. Hence only bidding hours

and quantities need to be decided.

As discussed in [21], and in order to avoid a complex min-

imisation landscape with multiple minima, the forecasted hourly

price impact functions
ˆPt (see Sections 2 and 3.1) are approxi-

mated by quadratic convex functions. Specifically, they are given

by
ˆPconvex

t = atE
2

t + btEt +
ˆPt (0), where all the coefficients at

and bt are restricted to be positive. Formally, the optimisation al-

gorithm is given by Eqs. (1), (2a), (2b), (2c). In more detail, the

objective function (1) minimizes the total cost of the purchased

energy. The constraints guarantee that the amount of purchased

energy is enough to satisfy the forecasted demand (2a), that it is

not purchased before the forecasted arrival of the EVs (2b) and that

the energy purchased at each hour is not greater than the amount

that the aggregator is able to charge at the given hour, based on

the forecasted number of available vehicles (the aggregator cannot

store energy). It is worth noting that the number of constraints is

always 72, independent on the fleet size. Also, given the convexity

of the problem, there exists a unique global minimum, which we

are guaranteed to find.

min

{Et }

∑
t

ˆPconvex

t (Et ) · Et (1)



t∑
j=0

Ej ≥
t∑
j=0

R̂min

j , ∀t = 0, . . . , 23 (2a)

t∑
j=0

Ej ≤
t∑
j=0

R̂max

j , ∀t = 0, . . . , 23 (2b)

Et /∆t ≤ N̂tPmax , ∀t = 0, . . . , 23 (2c)

3.3 Joint Bidding
The bidding algorithm detailed in the previous section for a single

aggregator can be extended to perform joint bidding, where a num-

ber of independent aggregators join their requirements and apply

the optimisation algorithm globally. In more detail, letC be a set of

EV aggregators. Then, following [21], let R̂min,i
t and R̂max,i

t be ag-

gregator i’s forecasted energy requirements for hour t , and N̂ i
t the

number of available EVs from aggregator i , as specified in Section

3.2. The combined requirements of all the aggregators inC are then:

R̂min

t =
∑
i ∈C

R̂min,i
t

(3)

R̂max

t =
∑
i ∈C

R̂max,i
t

(4)

N̂t =
∑
i ∈C

N̂ i
t

(5)

To find the optimal global energy bids, the bidding optimisation

algorithm given by Eqs. (1), (2a), (2b), (2c) can be applied with

constraints given by the combined requirements (3), (4) and (5). This

will result in obtaining a global day-ahead energy volume E
global

t for

each hour t , which can be then distributed among the aggregators

inC . The redistribution mechanism is defined in [21], and allocates

an hourly energy schedule to each participating aggregator.

4 COORDINATION AMONG AGGREGATORS
In this section, we present our novel coalitional analysis of inter-

aggregator cooperation in day-ahead markets. By employing tech-

niques from cooperative game theory, we model the scenario as

a coalitional game, and discuss and prove several desirable the-

oretical properties. In more detail, we focus on finding payment

mechanisms which incentivise the aggregators to form coalitions

and cooperate, rather than strategically manipulate the system.

Cooperation is achieved by employing a coordination system,

proposed in [21], which consists of three stages. Firstly, the coop-

erating aggregators report their forecasted energy requirements

to the coordinator. The coordinator is then able to perform coor-

dinated bidding, as shown in Section 3.3. Secondly, the purchased

energy is distributed among the participating aggregators according

to their reported preferences. Thirdly, the coordinator must com-

pute suitable payments for each of the participating aggregators.

This step is key to ensure that cooperation rather than strategic

manipulation is encouraged.

The rest of the section is structured as follows. We first describe

the proposed EV aggregator coalitional game. Then, the presence

of externalities is discussed. The main theoretical properties of the

game are then described, including superadditivity and balanced-

ness. Lastly, the Shapley value is considered, together with the

nucleolus and the least-core imputations.

4.1 Defining the Aggregator Coalitional Game
We start by presenting the basic concepts of cooperative game

theory [6], before proceeding to describe our proposed game. Con-

sider a set of players N = {1, . . . ,n}, i.e. the set of EV aggregators

participating in the day-ahead market.

Definition 4.1 (Coalition). A coalition is any subset of players

C ⊆ N . The number of players in the coalition C is given by its

cardinality |C |. All possible coalitions are denoted by the power set

of N , 2
N
. The grand coalition is the set of all players, N .

Definition 4.2 (Coalition structure). A coalition structure over N
is a collection of non-empty subsets CS =

{
C1, . . . ,Ck

}
such that

∪kj=1Cj = N and Ci ∩Cj = ∅ ∀i , j.

Definition 4.3 (Characteristic function game). A characteristic
function game G is given by a pair (N ,v ), where N is a finite and

non-empty set of players, and v : 2
N −→ R is a characteristic

function. The value v (C ) is usually referred to as the value of the
coalition C .

Note that the characteristic function assigns a value to the whole

coalition, not to its individual members. Games in which a coalition

value, v (C ), can be divided in any way among its members are

called transferable utility (TU) games.

Focusing on our scenario, consider a realisation of the market

with hourly prices p = (p0, . . . ,p23). Then, the aggregators pur-
chasing an energy schedule given by E = (E0, . . . ,E23) will incur a
total electricity cost given by:

cost(p,E) =
∑

23

t=0
pt · Et (6)

This provides a natural way to define the value function of our

coalitional game. In more detail, for a coalition C , v (C ) must rep-

resent the electricity costs paid by the members of C when they

perform coordinated bidding. However, the price impact present in

our market model introduces an extra layer of complexity, as any

market participant affects the resulting prices with their bids. More

specifically, the cost paid by a coalition C depends not only on the

members of the coalition itself, but on all the other aggregators as

well. This situation is treated in detail in the next section.

4.2 Value Function with Externalities
The first thing to note is that our setting deviates from traditional

characteristic function games. This is due to the presence of exter-
nalities [6, Ch 5.2]. Specifically, in classical game theory, the value

of a coalitionC ,v (C ), only depends on the coalition itself. However,

in our market structure with price impact (see Section 2), a given

coalitionC is also affected by the aggregators not in the coalition. In

more detail, any market participant will affect the resulting market

prices, hence affecting every other participant’s costs. Formally, the

resulting prices depend on the whole coalition structure, p = p(CS ),
and thus so does the value function of our game: v (C,CS ). Games

with such value functions are called partition function games [31].
A coalitional game with externalities can be studied in partition

function form. However, the resulting game has poor theoretical

properties and does not yield useful results, as we show in Section

4.2.1. Another usual procedurewhen dealingwith a coalitional game

with externalities is to introduce a conjecture on the behaviour of

the outsider agents [2]. In more detail, when considering a coalition

C , the behaviour of the outsider agents, N \ C is assumed to be

deterministic, and to follow the chosen conjecture, hence recovering

the classical theory where the value of the coalition only depends on

the coalition itself. The earliest proposed conjecture is the so-called

α-conjecture [2], which assumes that the outsider players act as to



minimise the payoff of the deviated coalition. However, it does not

seem appropriate in our setting, as an aggregator trying to minimise

a coalition’s payoff through price impact would automatically harm

itself as well. More recent conjectures proposed in the literature

include the γ -conjecture and the outsider coalition conjecture. Both
are reasonable in our setting and are further explored in the next

two subsections.

4.2.1 The outsider coalition (oc) conjecture. Introduced in [10], it
assumes that, when a coalition C deviates from the grand coalition,

all the outsiders join together and form a counter coalition N \
C . Hence, the resulting coalition structure is Coc = {C,N \C}.
Formally, the resulting prices depend on the coalition structure,

and we can write p = p(Coc). Similarly, the amount of energy

purchased by the members of coalition C depends on C itself and

on the coalition structure Coc
, E = EC (Coc). Therefore, the value

function can be defined as:

voc (C ) := −cost
(
p(Coc),EC (Coc)

)
Even though this conjecture seems reasonable in our scenario,

the resulting coalitional game (N ,voc) has poor stability properties.
To see this, we first introduce the following definition.

Definition 4.4 (Superadditive game). A coalitional game (N ,v )
is superadditive if for every pair of disjoint coalitions C1,C2 ⊂ N
such that C1 ∩C2 = ∅, we have v (C1) +v (C2) ≤ v (C1 ∪C2).

In other words, in a superadditive game, the grand coalition has

the incentive to form, as the agents can earn at least as much profit

by working together. Unfortunately, the considered game is not

superadditive, as proven below.

Theorem 4.5. The coalitional game (N ,voc) is not superadditive.

Proof. We present a counter-example which employs a simpli-

fied market structure with three hours and synthetic prices. In more

detail, consider hourly prices given by:
ˆP1 (E1) = 10+E1, ˆP2 (E2) =

5+E2/2, ˆP3 (E3) = 10+E3. Consider nine identical EV aggregators,

N = {1, . . . , 9}, with the following individual energy requirements:

Rmax = (1, 0, 0), Rmin = (0, 0, 1) and a maximum charging speed

Pmax = 1. Considering the following pair of coalitions, C1 = {1, 2}
and C2 = {3, 4}, it holds: voc (C1 ∪C2) < voc (C1) +voc (C2). Hence
the coalitional game (N ,voc) is not superadditive. □

Thus, the grand coalition does not necessarily form, in which

case full coordination is not achieved. This counter-example also

applies to the partition function game described in Section 4.2,

which is not superadditive either.

4.2.2 Theγ -conjecture. Another common choice is the so-called

γ -conjecture [8], in which the outsider agents select their individual

best strategies. Hence, the resulting coalition structure is Cγ =
{C} ∪ {{i}|i ∈ N , i < C}. Formally, we can write p = p(Cγ ) and
E = EC (Cγ ). Then, the value function can be defined as:

vγ (C ) := −cost
(
p(Cγ ),EC (Cγ )

)
(7)

As we will show in Section 4.3, this conjecture has nice theoreti-

cal properties. As a result, we will adopt it throughout the rest of

the paper. For convenience, we will drop the subscript γ and write

v henceforth.

4.3 Properties of the Coalitional Game
The coalitional game proposed in the previous section, (N ,v ), has
several desirable properties. Specifically, we will show that it is

superadditive and balanced, hence it has a non-empty core. Thus,

all the EV aggregators are incentivised to cooperate together (grand

coalition), and a payment mechanism can be implemented which

results in a stable grand coalition, with no sub-coalition having an

incentive to deviate. We will now detail and prove these properties.

For convenience, and extending the notation presented in the

previous subsection, let cost

(
p(Cγ

2
),EC1

(C
γ
2
)
)
be the total electric-

ity cost paid by the members of C1 ⊆ N when coalition C2 ⊆ N
performs coordinated bidding (see Section 3.3), and all other partic-

ipants perform individual bidding (see Section 3.2).

We are now ready to show that the game is superadditive.

Lemma 4.6. For all coalitions C1,C2 ⊆ N such that C1 ⊂ C2, it
holds that:

cost
(
p
(
(C1 ∪C2)

γ ),EC1

(
(C1 ∪C2)

γ )) ≤ cost
(
p(Cγ

1
),EC1

(C
γ
1
)
)

Proof. This lemma trivially follows from the fact that coordi-

nated bidding with more participants can only decrease the total

costs. Hence the price paid by members of coalition C1 when coor-

dination happens inside C1 ∪C2 can only be lower, or equal, than

when coordination happens only inside C1. The equality case hap-

pens only when the members of C1 and C2 have non-overlapping

energy requirements, or when the price impact of their combined

bids is not high enough. □

Theorem 4.7. The coalitional game (N ,v ) is superadditive.

Proof. Consider any two disjoint coalitions, C1,C2 ⊆ N . Then,

v (C1 ∪C2) ≥ v (C1) +v (C2) ⇔ cost

(
p
(
(C1 ∪C2)

γ ),EC1∪C2

(
(C1 ∪C2)

γ ))
≤ cost

(
p(Cγ

1
),EC1

(C
γ
1
)
)
+ cost

(
p(Cγ

2
),EC2

(C
γ
2
)
)

Given the following identity:

cost

(
p
(
(C1 ∪C2)

γ ), EC1∪C2

(
(C1 ∪C2)

γ ))
= cost

(
p
(
(C1 ∪C2)

γ ), EC1

(
(C1 ∪C2)

γ ))
+ cost

(
p
(
(C1 ∪C2)

γ ), EC2

(
(C1 ∪C2)

γ ))
the expression above reads:

cost

(
p
(
(C1 ∪C2)

γ ),EC1

(
(C1 ∪C2)

γ ))
+ cost

(
p
(
(C1 ∪C2)

γ ),EC2

(
(C1 ∪C2)

γ ))
≤ cost

(
p(Cγ

1
),EC1

(C
γ
1
)
)
+ cost

(
p(Cγ

2
),EC2

(C
γ
2
)
)

which is always true, applying Lemma 4.6. □

This result shows that overall costs are minimised when the

grand coalition forms. The main issue is now how to distribute

the value of the grand coalition, i.e. the resulting costs, among its

members, the so-called payoff allocation.

Definition 4.8 (Payoff allocation). A vector x = (x1, . . . ,xn ) is a
payoff allocation vector for a coalition structureCS =

{
C1, . . . ,Ck

}
over N if xi ≥ 0 for all i ∈ N , and

∑
i ∈Cj xi ≤ v (Cj ) for any

j = 1 . . . ,k .

(1) (Efficiency) An allocation x is efficient if
∑
i ∈Cj xi = v (Cj )

for any j = 1 . . . ,k .



(2) (Individually rational) An allocation is individually rational
if xi ≥ v ({i}) for all i ∈ N .

This value distribution can be done in an arbitrary way. However,

certain allocations have special properties, such as efficiency and

individual rationality, which make them desirable, as defined below.

Definition 4.9 (Imputation). A payoff allocation for the grand

coalition N is said to be an imputation if it is both efficient and

individually rational.

Definition 4.10 (The Core). Given a TU characteristic function

game (N ,v ), the core, C, is defined as the set of imputations such

that no sub-coalition can obtain a payoff which is better than the

sum of the members current payoffs. Explicitly:

C B

{
x ∈ RN

�����

∑
i ∈N

xi = v (N ),
∑

i ∈S
xi ≥ v (S ), ∀S ⊆ N

}
In other words, payoff allocations lying in the core provide sta-

bility, as no sub-coalition has an incentive to deviate from the grand

coalition in order to increase its profit. However, the core of coali-

tional game can be empty [6]. A classical result guarantees the

non-emptiness of the core for certain games, the so-called balanced
games. After the pertinent definitions, we prove that our game is

balanced, and thus has a non-empty core.

Definition 4.11 (Balanced function). A function α : 2
N −→ R is

said to be balanced if for all i ∈ N , we have

∑
C ∈2N α (C ) 1{i ∈ C} =

1, where 1 is the indicator function.

Definition 4.12 (Balanced game). A coalitional game (N ,v ) is bal-
anced if for any balanced function α , we have

∑
C ∈2N α (C )v (C ) ≤

v (N ).

Theorem 4.13 ([28]). A coalitional game has a non-empty core if
and only if it is balanced.

Theorem 4.14. Our proposed coalitional game (N ,v ) is balanced.
As a result, it has a non-empty core.

Proof. Let α : 2
N −→ R be an arbitrary balanced function.

Balancedness of the coalitional game follows from Lemma 4.6:∑
C ∈2N

α (C )v (C ) = −
∑

C ∈2N
α (C ) cost

(
p(Cγ ),EC (Cγ )

)
≤ −

∑
C ∈2N

α (C ) cost
(
p(Nγ ),EC (Nγ )

)
= −

∑
C ∈2N

∑
i ∈N

α (C )1{i ∈C }cost
(
p(Nγ ),E{i } (N

γ )
)

= −
∑
i ∈N

cost

(
p(Nγ ,E{i } (N

γ )
)
= −cost

(
p(Nγ ,EN (Nγ )

)
= v (N )

Thus the coalitional game is balanced and, by the Bondareva-Shapley

Theorem, it has a non-empty core. □
The non-emptiness of the core of our proposed coalitional game

guarantees the existence of at least one payoff allocation which

stabilises the grand coalition.

4.4 Fair Payoff Allocation
After proving that the proposed game has a non-empty core, we

now seek a payoff allocation lying in it. One of the most widely

used allocations is the Shapley value, defined as:

Definition 4.15 (Shapley value [6]). Given a coalitional game

(N ,v ), the Shapley value assigns a payoff SVi to each player i ∈ N
given by:

SVi (v ) =
∑

C⊆N \{i }

|S |!(N − |S | − 1)!

N !

[v (C ∪ {i} −v (C )]

The Shapley value is the only payment allocation satisfying

the efficiency, symmetry, dummy action and additive axioms [6,

Ch 2.2.1]. Hence, it is traditionally considered to present a fair

payoff distribution. Moreover, there exist the following positive

results which guarantee that the Shapley value lies in the core of a

particular type of coalitional games, convex games.

Definition 4.16 (Convex game). A coalitional game (N ,v ) is con-
vex if it has a supermodular value function:

v (C1) +v (C2) ≤ v (C1 ∪C2) +v (C1 ∩C2) ,∀C1,C2 ⊆ N

Theorem 4.17 ([29]). If (N ,v ) is a convex game, then the Shapley
value is the barycentre of its core.

However, it turns out that our proposed coalitional game is not

convex, as proven by the counter-example in the following result.

Theorem 4.18. The coalitional game (N ,v ) is not convex.

Proof. We present a counter-example which employs a sim-

plified market structure with three hours and synthetic prices. In

more detail, consider hourly prices given by:
ˆP1 (E1) = 10 + 20E1,

ˆP2 (E2) = 0.1 + 20E2, ˆP3 (E3) = 10 + 20E3. Consider three identical
EV aggregators, N = {1, 2, 3}, with the following individual energy

requirements: Rmax = (1, 0, 0), Rmin = (0, 0, 1) and a maximum

charging speed Pmax = 1. Considering the following pair of coali-

tions,C1 = {1, 2} andC2 = {2, 3}, it holds:v (C1∪C2)+v (C1∩C2) <
v (C1) +v (C2). Hence the coalitional game is not convex. □

As a result, the Shapley value is not guaranteed to be in the

core of our proposed coalitional game (N ,v ). Therefore, we seek a

different payoff allocation which is guaranteed to be in the core.

4.5 Imputations in the Core
Another widely used imputation is the nucleolus. It employs a dif-

ferent approach than the Shapley value, trying to minimise player

dissatisfaction, which is defined next.

Definition 4.19 (Excess). Given a coalitional game (N ,v ) and a

payment allocation x ∈ RN , the dissatisfaction of coalition C is

measured by the excess defined as: e (x,C ) = v (C ) −
∑
i ∈C xi .

Any payoff vector x generates an excess vector, e(x) = (e (x,C1),

. . . , e (x,C
2
N )) ∈ R2

N
, where C1, . . . ,C2

N is the list of subsets of

N ordered in non-increasing order by their excess under x. Then,
two deficit vectors can be compared lexicographically. Given two

payoff vectors x, y, we have e(x) ≤
lex

e(y) if there exists k ∈ R
such that for all i < k , ei (x) = ei (y), and ek (x) ≤ ek (y).

Definition 4.20 (Nucleolus). Given a coalitional game (N ,v ), its
nucleolus is given by the lexicographically minimal imputation.

The nucleolus is in the core of a coalitional gamewith non-empty

core, as the core is the set of imputations with negative excess [30].

Hence, it is in the core of our proposed coalitional game. However,



computing the nucleolus for a game with n players requires solving

2
n
linear programs [26], which is prohibitive for all but the smallest

coalitional games. In order to maintain computational tractability

and develop a scalable system, we will employ an approximation

to the nucleolus which lies in the core and presents better scaling

properties. Specifically, we propose utilising the least-core [18]. This
imputation only minimises the worst-case excess for all coalitions,
instead of finding the imputation that lexicographically minimises

the vector of excesses. As a result, the least-core is much less com-

putationally expensive than computing the nucleolus. Moreover, if

the core is non-empty, the least-core belongs to it [30].

In more detail, following the exposition in [3], the least-core can

be defined as the payment allocation x which solves the following

minimisation problem:

e∗ = min

x∈Rn,e ∈R
e, s.t.




v (C ) −
∑
i ∈C xi − e ≤ 0, ∀C ⊂ N

v (N ) −
∑
i ∈N xi = 0

(8)

This is a linear program with n + 1 variables and 2n + 1 constraints,
presenting reduced computational complexity than the nucleolus.

We have described two stabilising payoff allocations for the

grand coalition. Given the fact that we want our system to be

able to scale to large scenarios, computational tractability is an

important characteristic. The analysis of runtimes of the two payoff

allocations is presented in Section 5.3.

5 EXPERIMENTAL EVALUATION
In this section, we study the performance of the coalitional game

proposed in Section 4, employing real market and driver behaviour

data from the Iberian Peninsula. The purpose of this empirical study

is two-fold. First, we show the global welfare benefits of coordinated

bidding against uncoordinated independent bidding. Secondly, we

compare two different payment allocations: the Shapley value (see

Section 4.4) and the least-core (see Section 4.5). In order to maintain

computational tractability, an error-bounded approximation of the

Shapley value is employed, as described in Section 5.2.

5.1 Experimental Setup
This case study considers a night-time residential scenario in which

EVs arrive in the evening and need to be charged by the next

morning. We consider medium-sized electric vehicles with battery

capacities of 24kWh. Charging speed is considered to be the same

for all EVs and set to Pmax = 3.7kW. Charging efficiency is con-

sidered to be 90%, meaning that 10% of the consumed electricity

is lost and does not contribute to the charging of the battery. This

parameter choices are consistent with the literature [11].

We employ real market data from the OMIE day-ahead market
1
.

Specifically, we utilise weekday data from November 2016. Detailed

order data is available online, allowing us to build the aggregated

hourly supply and demand curves, and compute price impacts

employing residual supply curves as shown in Section 2.

Similarly, we utilise real driver data from a Spanish driving be-

haviour survey [25]. Specifically, it determines the distribution of

times for the first and last trip from and to home. These distribu-

tions are given in Table 3. To account for driver mobility, each EV

1
http://www.omie.es/en/inicio

will make use of its aggregator’s services with 80% probability every

day.

With respect to energy requirements, the state of charge of an

EV at arrival and departure times is drawn from a uniform dis-

tribution as follows: SoC0 ∈ [SoC
total
/4, SoC

total
/2] and SoCf ∈

[2 · SoC
total
/3, SoC

total
]. Consequently, the EV charging require-

ments range between a large percentage of the battery (up to 75%),

to a small percentage (down to 16%), accounting for long and short

trips home.

t0
Time 19h 20h 21h 22h 23h

Probability 0.16 0.25 0.32 0.12 0.15

td
Time 6h 7h 8h 9h 10h

Probability 0.04 0.02 0.34 0.5 0.1

Table 3: Possible arrival (t0) and departure (td ) times rounded
to the nearest hour, with their respective probabilities.

5.2 Approximating the Shapley value
The Shapley value (see Section 4.4) is known to be computationally

expensive. Specifically, its computational complexity is 2
n · O (v ),

where O (v ) is the complexity of the value function. In order to

improve its computational tractability, often an approximation is

employed [17]. In this paper, we apply the state-of-the-art error-

bound approximation proposed in [17, Ch 4.1] for superadditive

games.

In more detail, let SVi (v ) denote the Shapley value for a given

agent i ∈ N , and S̃V i (v ) the approximated Shapley value for the

same agent. Instead of considering the v (C ∪ {i} − v (C )) contri-
butions from all subsets of N \ {i}, the approximation randomly

samples a number of them,mϵ,δ , which depends on the desired

level of precision:

P
(���SVi (v ) − S̃V i (v )

��� ≥ ϵ
)
≤ δ

The specific formula formϵ,δ is detailed in [17, Ch 4.1]. Throughout

our simulations, we employ ϵ,δ = 5%, in order to balance precision

and computational tractability.

5.3 Experimental Results
We present the results from three different simulations. Firstly, we

study the global cost reductions provided by coordination, when the

grand coalition performs joint bidding (see Section 3.3), in compari-

son to individual bidding (see Section 3.2). Results indicate that sig-

nificant cost reductions can be achieved by coordination, as shown

in Fig. 2. Now that the efficacy of coordinated inter-aggregator

bidding has been shown, we turn our attention to the two proposed

payment mechanisms, the least-core and the approximated Shapley

value.

In more detail, we present the results from two different simula-

tions. Firstly, we consider an scenario where four different EV aggre-

gators of different sizes, namely 10, 20, 30 and 40k EVs participate in

the market. Apart from size, they share the same characteristics, as

described in Section 5.1. The purpose of this simulation is to study

how the proposed payment mechanisms capture the greater elec-

tricity costs of larger market participants. Results are shown in Figs.

4a and 4b. Specifically, Fig. 4a presents the daily prices assigned

to each aggregator by the least-core payment mechanism. We can

http://www.omie.es/en/inicio
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see that it correctly assigns larger payments to larger aggregators.

Moreover, Fig. 4b presents the daily difference between least-core

and approximated Shapley value payments for each aggregator. We

can see that the differences are of very small magnitude, concluding

that both payment mechanisms are both very close in all cases.

Lastly, we consider a similar scenario, where three different

aggregators participate in the market. In this case, they all have the

same size, 150k EVs each, but have different charging flexibilities. In

more detail, instead of employing the real arrival and departure data

provided in Table 3, we employ synthetic data in order to capture

the effects of charging flexibility on allocated prices. Specifically,

we consider an evening charging scenario where all EVs depart at

midnight. The first aggregator receives EVs at 14h, the second at

16h and the third at 18h. Thus, the first aggregator has the highest

flexibility and the third is the most constrained. This choice of

arrival and departure times is motivated by the typical hourly prices

found in the OMIE market, where electricity is cheaper around

15-17h, and more expensive afterwards. Results are presented in

Figs. 5a and 5b. We can see that first aggregator, the most flexible,

is able to obtain energy at cheaper hours, hence being allocated

cheaper payments. Conversely, the third aggregator which is forced

to operate at expensive hours, incurs larger payments. The second

aggregator lies in between. Similarly to the previous scenario, we

can see that least-core and approximated Shapley value payments

are very close together for all aggregators and every trading days.

As just described, the least-core and Shapley value payments

are very close in all considered scenarios. This suggests that both

payment mechanisms present good stability and fairness properties.

Moreover, given their computational complexity (see Fig. 3), the

approximated Shapley value presents much better scaling proper-

ties, and is more suitable for the application of this framework to

large scenarios. We note that the presented results do not depend

on the particular trading days shown here. Longer simulations have

been run utilising different trading months, and the results obtained

follow the same trend.

6 CONCLUSION AND FUTUREWORK
In this paper, we present the first study of coperative game theory

applied to EV charging. We define a cooperative game in which self-

interested EV aggregators can cooperate with each other in order to

effectively bid in the day-ahead market. We propose employing a γ -
conjecture in order to obtain a game in characteristic function form.

Next, we show that the resulting game is superadditive, hence the
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Figure 4: (a) Daily least-core payment allocations for four aggrega-
tors with different sizes. (b) Daily difference between the least-core
and approx. Shapley value payments.
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larger the formed coalition, the larger electricity cost reductions for

the EV aggregators. Moreover, we prove that our game is balanced

and thus has a non-empty core. The payment mechanism given by

the least-core is proposed in order to distribute payments among

the grand coalition of aggregators. As the least-core belongs to the

core of our game, this payment mechanism stabilises the grand

coalition. Lastly, we present numerical simulations which employ

real market and driver behaviour data, in order to show the efficacy

of coordinated bidding. The least-core payments are compared with

a more computationally tractable approximation to the Shapley

value. The good agreement between the two suggests that they

both present good stability and fairness properties.

Future work will focus on the extension of the proposed coalition

framework to a vehicle-to-grid (V2G) setting [34]. In more detail,

V2G involves selling electricity stored in the batteries of EVs back to

the grid, in order to obtain a profit and/or support grid functioning

in times of scarcity. Plenty of works in the literature have shown

the benefits of V2G in a variety of scenarios. However, the scenario

considered in this paper has not been studied.
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