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Abstract— This paper considers the design of multi-objective
iterative learning control (ILC) schemes for discrete linear
systems. In particular, a two step design approach is devel-
oped where the feedback and learning controllers are de-
signed separately. The design procedures developed are able
to impose performance specifications over selected frequency
ranges to obtain the desired shapes of the sensitivity functions
relevant to a particular example. This makes it possible to
reject disturbances in specific frequency ranges and hence
the desired performance specifications for both the transient
response and error convergence speed can be achieved. All
design computations required can be completed using linear
matrix inequalities (LMIs). Preliminary experimental results
demonstrate the effectiveness of the new design.

I. INTRODUCTION

In many applications, e.g. pick and place robots and
batch chemical processes, the system has to follow the
same trajectory (reference signal) repeatedly. If feedback
control is only applied and the reference signal is a dominant
disturbance, the tracking error is (approximately) the same
for each repetition of a given task. Iterative Learning Control
(ILC) can be introduced into the control system to reduce
the repetitive part of the tracking error during subsequent
repetitions with a feedforwad signal update. Specifically, ILC
is a feedforward control scheme for improving the tracking
response of systems that repeat a given task or operation
defined over a finite duration. Each repetition is known as
a trial, or pass, and when a trial is complete, the system
resets to the same initial conditions and the next trial can
begin, either immediately or after a further period of time
has elapsed.

The core advantage of this control structure is the use
information from the previous trial to update the control input
applied on the next trial and thereby improve the trial-to-trial
performance. This feature is a major reason why ILC has
been extensively employed in high precision control systems
and in other area, see, [1], [2] as the fundamental works in
these aspects.

In application, the objective of ILC is to construct the
control input signal such that the output tracks the reference
as accurately as possible. Let {ek}k denote the error se-
quence generated over the trials. Then the basic ILC problem
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is to design control action to ensure that {ek}k converges
in k. Also once a trial is complete in ILC, all information
generated is available for use in design. One of the popular
ILC laws that includes previous trial information is

uk+1(p) = uk(p)+Lek(p),

where uk(p) denotes the input on trial k and time instant
p, L acts on the error at the previous trial and it is also
often termed the learning filter in the literature. Frequently,
the ILC law is augmented with a feedback controller that
stabilizes the system and suppresses unknown disturbances.
This construction results in a so-called current trial ILC
scheme. The learning controller is designed to guarantee
convergence in the trial domain and in many cases its
construction is based on the inverse of the plant dynamics
(see the relevant references in [2]) resulting from the design
and application of the feedback loop.

The design of the feedback and learning controllers must
include some requirements on transient dynamics and trial-
to-trial error convergence. However, these requirements are
often defined over the complete frequency spectrum. This is
a very strict condition since design requirements and spec-
ifications are mostly defined for different frequency ranges
of relevance. For example, a closed-loop feedback control
system should have small sensitivity in a low frequency range
and small complementary sensitivity in the high frequency
range. Furthermore, since the bandwidth of the reference
signal has the strongest influence on the convergence rate,
learning over this frequency range should only occur when
the ILC scheme is applied.

The contribution of this paper is to provide new in-
sights into the currently known two step ILC design pro-
cedures. Specifically, systematic guidelines for designing
of ILC schemes over limited frequency range are pro-
posed. The generalized version of Kalman-Yakubovich-
Popov (KYP) lemma [3] is extensively used to permit
controller design over selected frequency ranges. These con-
troller design procedures can also include multiple design
specifications (e.g., reject disturbances at specific frequen-
cies), whereas the vast majority of currently known designs
cannot impose many relevant additional performance specifi-
cations. In particular, the developed results allows a designer
to specify and/or maximize, frequency ranges where the error
convergence condition have to be satisfied. Furthermore, the
design is based on using controller parametrization in a finite
impulse response (FIR) filter form. This allows controller
design procedures over convex sets and therefore they are
amenable to effective algorithmic solution in terms of LMIs.



The notation adopted in this paper is as follows. The
null and identity matrices with compatible dimensions are
denoted by 0 and I respectively. The notation X � Y (re-
spectively X ≺ Y ) means that the symmetric matrix X−Y is
positive definite (respectively negative definite). The symbol
(?) denotes block entries in symmetric matrices and ρ(·)
and σ(·) denote the spectral radius and maximum singular
value of their matrix arguments, respectively. Finally, the
superscript ∗ denotes the complex conjugate transpose of
a matrix and ⊗ the matrix Kronecker product.

The analysis in the remainder of this paper makes use of
the following result, known as the generalized KYP lemma.

Lemma 1: [3] For a given linear discrete time-invariant
system with the transfer-function matrix M(z) and the
frequency response matrix M(ejθ) =C(ejθI−A)−1B+D,
the following inequalities are equivalent

(i)
[
M(ejθ)

I

]∗
Π

[
M(ejθ)

I

]
≺ 0, ∀θ ∈ Θ,

where Π is a given real symmetric matrix and Θ denotes
the frequency ranges (see Table I).

(ii) [
A B
I 0

]T
(Φ⊗P+Ψ⊗R)

[
A B
I 0

]
+

[
C D
0 I

]T
Π

[
C D
0 I

]
≺0,

(1)
where R � 0, P is a symmetric matrix, Φ =
diag{−1, 1} and Ψ is specified with the reference to
the chosen frequency range - see the below Table I.

TABLE I
FREQUENCY RANGES OF INTEREST

LF (low freq.) MF (middle freq.) HF (high freq.)
Θ |θ| ≤ $l $1 ≤ θ ≤ $2 |θ| ≥ $h

Ψ

[
0 1
1 −2 cos($l)

] [
0 ej$a

e−j$a −2 cos ($b)

] [
0 −1
−1 2 cos($h)

]

where $a = $1+$2

2 and $b = $2−$1

2 .

II. PROBLEM FORMULATION

This paper addresses the case when the plant dynamics to
be controlled can be modeled by the following discrete linear
time-invariant state-space model over 0 ≤ p ≤ α− 1, k ≥ 0
as written in the ILC setting as

xk(p+ 1) =Axk(p) +Buk(p),

yk(p) =Cxk(p),
(2)

where α < ∞ denotes the finite trial length, xk(p) ∈ Rn,
yk(p) ∈ Rm and uk(p) ∈ Rl are the state, output and input
vectors at the k-th trial respectively.

The block diagram of the considered ILC is shown in
Fig. 1. It consists of a unity negative feedback control loop
with the feedback controller C(z) applied on the current
trial k to ensure stability and/or the required along the
trial dynamics. The memory block stores the previous trial
information which is used for the computation of the current
trial control and Yd(z) denotes the reference. Commonly,
L(z) stands for the learning controller or filter and Q(z)
is the robustness filter. All computations carried out in the

P (z)C(z)

memory

Q(z)

L(z)

+
+ Fk(z)

Fk+1(z)

Yk(z)Yd(z)

Ek(z)

+ +

+ -

Fig. 1. ILC block diagram representation.

framework of the dashed box are completed off-line during
the time elapsed between the end of one trial and the
beginning of another one. According to Fig. 1 the ILC law
can be represented as follows:

Fk+1(z) = Q(z) (Fk(z) + L(z)Ek(z)) ,

and hence the previous trial error feedforward contribution
(assuming Yd(z) = 0) to the current trial error is

Ek(z)=−
[
(I+P (z)C(z))−1P (z)

]
Fk(z) = −SP (z)Fk(z),

where SP (z) = (I+P (z)C(z))−1P (z) denotes the process
sensitivity function and the propagation of the error from
trial-to-trial is given by

Ek+1(z) = Q(z) (I − SP (z)L(z))Ek(z).

Introducing

M(z) = Q(z) (I − SP (z)L(z)) , (3)

it follows that the condition for trial-to-trial error conver-
gence can been formulated in H∞ control terms as [2]:

‖M(z)‖∞ , sup
θ∈[−π,π]

σ(M(ejθ)) < 1, (4)

and minimizing ‖M(z)‖∞ increases the trial-to-trial conver-
gence speed.

Clearly, based on (3) and (4) we have that fast error
convergence will occur if L(z) ≈ S−1P (z) for the entire
frequency range. However, if SP (z) is strictly proper its
exact inverse is improper. Hence, we will limit our attention
to the frequency range where L(z) can be a good approxi-
mation to S−1P (z). Undesirable frequencies should be cut-off
by the Q(z) because the inverse of SP (z) is not sufficiently
matched at higher frequencies. The next sections consider
the separate design of C(z) and L(z) to satisfy the error
convergence condition in finite frequency range only and
then a suitable cut-off frequency of Q(z) is established.

III. PARAMETRIZATION OF A FEEDBACK CONTROLLER

Having obtained conditions for the ILC convergence, there
exist a need for framework to impose specifications beyond
the trial-to-trial error convergence only. In particular, it is
required to attenuate influence of some exogenous signals
(such as disturbances or noises) to meet the control perfor-
mance specifications. Hence, this section starts with a more



general model of a plant than (2). Let consider a discrete-
time system of the following form over 0 ≤ p ≤ α−1, k ≥ 0,

xk(p+1) =Axk(p)+Bx1
w1
k(p)+Bx2

w2
k(p)+Buk(p)

z1k(p) = Cz1xk(p) +Dz1w
1
k(p) +D1uk(p)

z2k(p) = Cz2xk(p) +Dz2w
2
k(p) +D2uk(p)

yk(p) = Cxk(p) +Dy1w
1
k(p) +Dy2w

2
k(p)

(5)

where wi ∈ Rr is the disturbance input, zi ∈ Rqi is the
controlled output and y ∈ Rm is the measured output. A, B,
Bxi

, C, Czi , Di, Dzi and Dyi are known system matrices of
the suitable dimensions. Also, let a state-space representation
of the feedback controller C(z) be given by

xck(p+ 1) = Acx
c
k(p) +Bcyk(p),

uk(p) = Ccx
c(p) +Dcy(p),

(6)

where xc ∈ Rnc is the state vector of the controller and Ac,
Bc, Cc, Dc are controller matrices of appropriate dimensions
to be designed. Clearly, the state-space model (6) results in
the controller realization C(z) = Dc + Cc(zI −Ac)−1Bc.

It is known that multi-objective control problems are
hard to solve when the controller structure (6) is directly
applied. The crucial problem is that the closed-loop transfer
function matrix, on which design specifications are imposed,
is nonlinearly dependent on the controller C(z). Hence, the
resulting design conditions are nonconvex and no compu-
tationally effective method exists for checking them. Fortu-
nately, a multi-objective control problem can be reformulated
to the form of convex optimization problem by applying
a particular set of transformations as proposed in [4]. To
proceed, the controller (6) is transformed to the observer-
based structure by defining

x̂k(p+1)=(A+BDcC−BK−LC)x̂k(p)+Lyk(p)+Bvk(p), (7)

where x̂k(p) in an estimate of the state vector, vk(p) is
additional signal to be used later, L is the observer gain
and K is the state feedback gain matrix. Thus, the control
law takes the form

uk(p) = −Kx̂k(p) + vk(p). (8)

Clearly, the matrices K and L can be computed using
approaches as the LQG control (for instance, K and L can
be derived using MATLAB routines dlqr and dlqe). Next,
let define the state estimation error ek(p) = yk(p)−Cx̂k(p).
Using the observer (7) and the control law (8), the system
(5) along with the controller (6) can be transformed to the
closed-loop system represented as follows:[

zik(p)
ek(p)

]
=

[
Ai Bi
Ci Di

] [
wik(p)
vk(p)

]
, (9)

where i = 1, 2 and

Ai =

[
A+BDcC−BK BK

0 A+BDcC−LC

]
,

Bi =

[
Bxi+BDcDyi B

Bxi+BDcDyi− LDyi 0

]
,

Ci =

[
Czi+DiDcC−DiK DiK

0 C

]
,Di=

[
Dzi+DiDcDyi Di

Dyi 0

]
.

In the operator domain the equation (9) takes the form:[
Zik(z)
Ek(z)

]
=

[
Gi1(z) Gi2(z)
Gi3(z) 0

] [
W i
k(z)

Vk(z)

]
, (10)

where Gi1(z) stands for the open-loop transfer function
matrix from wi to zi, Gi2(z) is the open-loop transfer
function matrix from v to zi and Gi3(z) represents the open-
loop transfer function matrix from wi to e. The next step is
to develop an effective method for computing the feedback
controller matrices (6) with performance specification. This
can be achieved by means of Youla parametrization. To
proceed, assume the signal v in (8) be as follows

vk(p) = Hek(p),

where H represents the Youla parameter. The Youla param-
eter is used to form a closed-loop transfer function which
represent mapping from wi to zi. Specifically, for each
channel we have

Gi(z) = Gi1(z) +Gi2(z)H(z)Gi3(z), (11)

and Youla parameter H(z) is selected in the form of a FIR
system

H(z) = h0 + h1z
−1 + · · ·+ hnz

−n. (12)

Then, the state-space representation of H(z) is

H(z)=

[
Ah Bh

Ch Dh

]
=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
. . . . . .

...
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1
hn hn−1 . . . h2 h1 h0


, (13)

In view of representations (9) and (10), the state space model
matrices representing Gi1, Gi2 and Gi3 can be easily found.
Due to space limitations, the details of these matrices are not
provided here but can be found e.g. in [5]. Assuming that
these matrices are related to single input single output sys-
tems, Gi in (11) can be obtained via series connection of Gi2
and Gi3 first, then the achieved representation is connected
in series with H(z) and finally via parallel connection with
Gi1. Resulting representation of Gi in the packed matrix is

Gi =

[
Ai Bi
Ci Di

]
. (14)

Due to a complicated form as well as large space required,
details concerning matrices Ai, Bi, Ci, Di are not provided
here but can be easily determined via routine matrix trans-
formations.



A. Design specification in frequency domain

In order to define frequency requirements for the control
system one can use the principal gains approach. Principal
gains (singular values) can be used to assess the performance
of the system. The control synthesis problem is to design
the control system represented by the closed-loop transfer
function matrices Gi(z) in such a way as to satisfy mixed
frequency specifications

σ̄(Gi(e
jθ)) ≤ γi, ∀θ ∈ Θi, (15)

where γi is the performance bound and Θi denotes the
frequency ranges of relevance as in Table I. Furthermore,
select the matrix Π as

Π =

[
I 0
0 −γ2i I

]
, (16)

where γi is a given scalar that satisfies 0 < γi ≤ 1. Then

σ(Gi(e
jθ)) < γi ⇔ ‖Gi(ejθ)‖∞ < γi, ∀θ ∈ Θi.

Next, to meet finite frequency required specifications, follow-
ing [3], block entries of the matrix Ψ in (1) depend on the
chosen frequency range and are defined in Lemma 1. Then
straightforward adaptation of Lemma 1 lead to the following
result.

Theorem 1: Let Ψ =

[
Ψ11 Ψ12

Ψ∗12 Ψ22

]
be given. For the

state-space realization of Gi in the form (14) if there exist
matrices Ri � 0 and symmetric Pi such that the following
LMIs−AT

iPiAi+Ψ11AT
iRiAi+Ψ12AT

iRi+(Ψ12AT
iRi)

∗+Pi+Ψ22Ri

−BT
i PiAi + Ψ11BT

i RiAi + Ψ12BT
i Ri

Ci

−AT
i PiBi + Ψ11AT

i RiBi + Ψ∗
12RiBi − CT

i

−BT
i PiBi + Ψ11BT

i RiBi − γ2
i I DT

i

Di − I

 ≺ 0,

(17)

hold, then the closed-loop system satisfies the required finite
frequency specifications (15).

Proof: The LMI (17) can be obtained by employing
the same procedure as proposed in [5] and due to the limit
of the space, the proof is omitted.
Additionaly, it is important to stress that (17) can be adopted
for the case when design specifications must hold for the
entire frequency range. Only in the case when Θi = [0, π]
in (15), one can take Ψ = 0 in (1) and then making
the similar steps to these for finite frequency rages it is
possible to obtain the following result.

Theorem 2: For the state-space realization of Gi in the
form (14) if there exist Pi such that the following LMIs ATiPiAi ATiPiBi CTi

BTiPiAi BTiPiBi − γiI DTi
Ci Di −I

 ≺ 0, (18)

hold, then the closed-loop system satisfies the required entire
frequency specifications.

Proof: The proof can be determined as an obvious
consequence of Theorem 1 when Ψ = 0 and thus omitted
here.

With the computed H(z) : (Ah, Bh, Ch, Dh) the designed
feedback controller matrices in (6) are then given by

Ac =

[
A+BDcC−BK−LC−BDhC BCh

−BhC Ah

]
,

Bc =

[
L+BDh

Bh

]
, Cc =

[
−K+DhC Ch

]
, Dc =Dh.

(19)

IV. DESIGN OF A LEARNING CONTROLLER

Based on the results obtained in the previous section, i.e.
by considering that there exist stabilizing feedback controller
C(z) satisfying multi-objective performance requirements
and hence the sensitivity function SP (z) of (3) has been
determined, one can develop an effective procedure for de-
signing the learning controller L(z). The goal is to compute
matrices AL, BL, CL and DL that define its minimal state-
space realization of L(z). Furthermore, since the bandwidth
of the reference signal affects the convergence ratio the most,
it is relevant to impose performance specifications over this
specific frequency range. To proceed, it is routine to show
that (4) limited to such a frequency range is equivalent to[

M(ejθ)
I

]T[
I 0
0 −γ2I

][
M(ejθ)

I

]
≺0, ∀θ∈Θ, (20)

Moreover choosing Π = diag{I,−γ2I}, where γ satisfyies
0 < γ ≤ 1, and using Lemma 1 makes (20) equivalent to (1).
Interested reader is referred to [6] for more details on the
finite frequency rages for ILC design. The crucial problem
here is that (1) is not convex due to the product of the L-filter
parameters and the matrices P and R.

In order to obtain a convex formulation of the problem,
again we assume that L(z) has the form of n-th order FIR
filter given by

L(z) = α0 + α1z
−1 + α2z

−2 + . . .+ αnz
−n, (21)

and the associated minimal state-space realization is

L(z) = CL(zI −AL)−1BL +DL, (22)

with matrices

AL =

[
0 In−1
0 0

]
, BL =

[
0
1

]
,

CL =
[
αn αn−1 · · · α2 α1

]
, DL =

[
α0

]
.

(23)

In the above form, the parameters α0, α1, . . . , αn to be
designed are only present in the matrices CL and DL. This
agian allows to avoid calculation of products of two matrix
variables in their entries and hence the filter parameters
can be computed via a constrained convex optimization
procedure using LMIs. To see this, let introduce matrices
Asp, Bsp, Csp and Dsp of the state-space realization of the
sensitivity function SP (z). Then a state-space representation
of L(z)SP (z) in (3) is

A =

[
Asp 0

BLCsp AL

]
, B =

[
Bsp

BLDsp

]
,

C =
[
DLCsp CL

]
, D = DLDsp.

(24)



It should be kept in mind that filter parameters appear in C
and D only. Then the following result gives an LMI design
for the L-filter.

Theorem 3: Let Ψ =

[
Ψ11 Ψ12

Ψ∗12 Ψ22

]
be given. Then a

stable n-order filter L(z) of the form (21) can be designed
such that the ILC convergence condition (20) holds for a
chosen finite frequency range Θ of Lemma 1 if there exist
matrices P , R � 0, C, and D such that the following LMI
is feasible[−ATPA+Ξ11ATRA+Ξ12ATR+ΞT12RA+P+Ξ22R

−BTPA+Ξ11BTRA+Ξ12BTR
−C

−ATPB+Ξ11ATRB+ΞT12RB −CT
−BTPB+Ξ11BTRB−γ2I 1−DT

1−D −1

]
≺0.

(25)

Moreover, the required Q(z)-filter can be selected as a low-
pass filter with the cut-off frequency equal to the highest
frequency for which the above result is valid.

Proof: This is given for the low frequency (LF) range
since this choice is often encountered in physical applications
and the others follow by identical steps. For the considered
frequency range, the matrix Ψ in (1) can be partitioned as

Ψ=

[
Ψ11 Ψ12

ΨT
12 Ψ22

]
=

[
0 1
1 −2 cos($l)

]
and with the notation introduced in (24), the state-space
representation of M(z) in (3) for Q(z) = 1 is[

A B
−C 1−D

]
.

Direct application of Lemma 1 for the above state-space
model matrices gives (25) and the proof is complete.

Remark 1: The robustness filter Q(z) can be implemented
as a zero-phase filter (e.g. by using the filtfilt routine
in MATLAB) since such filtering is performed off-line using
previous trial information and the known reference trajectory.

Remark 2: To minimize the inaccuracies between the
computed L and the known S−1P , the term γ in (25) has
to be minimized. This can be achieved by using the linear
objective minimization procedure

min
R�0,µ>0

µ

subject to (25)

substituting µ = γ2.

V. A COMPLETE DESIGN PROCEDURE

To summarize the paper developments, a design procedure
for ILC scheme is given as follows.

Step 1: Compute the matrices K and L using LQG control
approach, e.g. using MATLAB routines dlqr()
and dlqe().

Step 2: Impose the performance specification in finite
and/or entire frequency range based on required
shape of sensitivity function.

Step 3: Solve the LMIs (17)-(18) and compute the feed-
back controller parameters from (19).

Step 4: Check the frequency content of the reference sig-
nal and carry out the finite frequency range design
of the learning filter with Theorem 3.

Step 5: Obtain the learning controller parameters
from (23).

VI. DESIGN EXAMPLE WITH AN EXPERIMENTAL
VALIDATION

To validate the proposed controller design procedures,
the results of an experimental validation on a laboratory
servomechanism system are presented and discussed. The
system consists of a DC motor and the inertial mass (brass
cylinder, weight 2.03 [kg], diameter 0.066 [m], length 0.068
[m]), which are connected through a rigid shaft. Rotational
motion of the mass is exited by the DC motor, load position is
measured by an incremental encoder and the whole system
operates with a PC-based digital controller. The system is
fully integrated with MATLAB/SIMULINK and operates in
real-time. The block scheme of the servo with the direct
connection to the representation (5) is shown in Fig. 2
where J = 11.18 · 10−4[kg ·m2] is the moment of inertia,
B = 3.5077 · 10−6[N ·m ·s] is viscous friction coefficient,
Ke = 0.1288[ V

rad/s ] is the electromotive force constant,
Km = 0.0163[N ·mA ] is the motor torque constant, R = 2[Ω]
is the resistance and L = 0.001[H] stands for the inductance.
A continuous-time model (see the block diagram of the

w2 z2z1

y
w1

e
u i θ α

C(s) 1
L

1
s Km

R

1
J

1
s

1
s

B

Ke

− − − −

Fig. 2. Block scheme of the modular servo

system depicted in Fig. 2) has been transformed to the
discrete state-space form using the sampling time Ts = 0.01
and the resulting matrices of the state-space model are

A =

 −0.0005 −0.0639 0
0.0072 0.9911 0
0.0001 0.01 1

 , B =

 0.4958
0.0690
0.0003

 ,
C =

[
0 0 24

]
, D = 0.

Moreover, according to the representation (5) we have Bx1
=

0, Bx2
= B, Cz1 = −C, Cz2 = C, Dz1 = 1, D1 = 0,

Dz2 = 0, D2 = 0, Dy1 = 0 and Dy2 = 0. it means
that z1 = e, z2 = y, and y = α. The state vector
x = [i ω α]T . The reference trajectory for the mass position
is of duration 6.5 secs as shown in Fig. 3 and consists of
harmonic components from 0 to 2[Hz]. This means that the
frequency range from 0 to 2[Hz] is of primary importance.
The reference signal consists of 6 rotations in the positive
direction, a return path, 6 rotations in the negative direction
and then a return to the start position. Based on the separation
rule and using the simple pole placement technique the
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Fig. 3. The reference trajectory

observer gain L = [0.0039 −0.0598 −0.0074]T and the
gain matrix K = [−0.0170 −2.3440 −21.9580] are derived.
Furthermore, assuming that the initial controller (6) is a static
one with Dc = 0.0001, and solving the set of LMIs (17)
yields the feasible solution and the application of the feed-
back controller design procedure gives the corresponding
stabilizing controller matrices as

Ac=

−0.0089 −1.2260 −10.7572
0.0061 0.8294 −2.9437
0.0001 0.0092 0.8155

 , Bc=

 0.0054
−0.0595
−0.0074

 ,
Cc=

[
−0.0170 −2.3440 −21.8811

]
, Dc=

[
0.0032

]
.

With the above data, the design procedure for the learning
controller for frequency range from 0 to 2[Hz] has been
executed and gives the following FIR polynomial coefficients

α0 = 7.7126, α1 =
[
3.9546 −11.1428

]
. (26)

Given (23) and (26) a state-space model of the learning
controller is given by the matrices

AL=

[
0 1
0 0

]
, BL=

[
0
1

]
, CL=

[
3.955 −11.14

]
, DL=7.713

Figure 4 shows that the frequency responses of L(z) and
SP (z) are almost identical in the low frequency range up to
10[Hz]. Moreover, the test system has a tendency to amplify
high frequency signals (noise) and hence Q(z) should be
chosen as a low-pass filter with the cut-off frequency below
10[Hz]. In this example a sixth order low-pass digital Butter-
worth filter with cut-off frequency equal to 4[Hz] has been
used. With the design completed, the resulting ILC scheme
was experimentally tested over 20 trials. After each trial the
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Fig. 4. Magnitude plot of (1−LS−1
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Fig. 5. Convergence of the tracking error

corresponding root mean square (RMS) value of the tracking
error was computed using

RMS =

√√√√ 1

N

N∑
p=1

e(p)2,

where N is the number of sampled data in the trial time.
In Fig. 5 the RMS value of the tracking error is shown as
a function of the trial number. Clearly, the last figure confirms
convergence of the tracking error with increasing k.

VII. CONCLUSIONS

In this paper a systematic procedure for the design of
both feedback and learning controllers for ILC schemes has
been developed. Using the proposed design it is possible
to impose many control performance constrains over finite
and/or semi-finite frequency ranges. It is shown that FIR
form of required controllers leads to a problem form in
terms of LMIs. Experimental validation of the results on a
laboratory setup has also been presented demonstrating the
validity of the proposed design.

The area for possible future research is to use the two-
dimensional/repetitive systems setting. Application of these
systems setting should result in one step design procedure
and lead to an optimal complementation of the feedback
with the learning action. This means that interplay between
feedback and feedforward actions has to be considered. Also
robust control should be investigated.
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