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Abstract— Repetitive processes are important class of 2D
systems with engineering applications and as a setting for
iterative learning control (ILC) design. The application area for
ILC is systems that execute the same finite duration task over
and over again, with resetting to the starting location one each
execution is complete. Previous research for linear dynamics
has used the stability theory of linear repetitive processes to
design control laws that have been experimentally verified.
This paper applies the recently developed passivity theory for
discrete repetitive process to ILC design. Based on this theory,
a parametric description of a class of stabilizing controllers
is obtained and a new design is developed that enhances the
convergence properties of the implemented control law. An
example using the model of the Quanserr flexible link is given
to demonstrate the application of the new design.

I. INTRODUCTION

Repetitive processes [1], [2] have been the subject of
considerable interest both in the design of stabilizing control
laws and also their application to physical examples. The
unique characteristic of these processes is a series of sweeps,
termed passes, through a set of dynamics defined over a fixed
finite duration known as the pass length. On each pass an
output, termed the pass profile, is produced which acts as a
forcing function on, and hence contributes to, the dynamics
of the next pass profile. This, in turn, leads to the unique
control problem where the output sequence of pass profiles
generated can contain oscillations that increase in amplitude
in the pass-to-pass direction.

Background on repetitive processes, including their use
in modeling physical examples, can be found in [2] and
the relevant cited references. These processes evolve over
a subset of the upper-right quadrant of the 2D plane and
are one form of 2D systems. As standard control action
cannot prevent the increase in oscillations in the sequence of
pass profiles, a stability theory for these processes has been
developed [1], [2] using an abstract model of the dynamics
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in a Banach space setting. This abstract model includes all
processes with linear dynamics and a constant pass length
as special cases.

The stability theory for linear repetitive processes guar-
antees that a bounded, in the sense of the norm on the
underlying function space, initial pass profile produces a
bounded sequence of pass profiles. Two cases exist, either
this property is required over the finite and fixed pass length
or uniformly, i.e., independent of the pass length. The first of
these properties is termed asymptotic stability and the second
stability along the pass. Moreover, stability along the pass
can be analyzed by considering the case when the pass length
tends to infinity. Also the results of applying this theory to
many special cases have been reported and also extended to
control law design algorithms.

Mathematical models in the form of repetitive processes
arise naturally in iterative learning control (ILC). This form
of control is applied to systems that execute the same
finite operation repeatedly, where each execution is termed
a pass in this paper and the associate duration is termed
the pass length (trial and iteration are also used in some
of the literature). This form of control based on the idea
that the performance of such systems can be improved by
using information from the previous pass (or a finite number
thereof), i.e., improve performance from pass-to-pass.

A common form of ILC constructs the current pass input
as the sum of the input on the previous pass plus a correction
term designed using previous pass information. This design
approach was first introduced in [3] and ILC remains a very
active area of research. A notable feature is the number of
applications where experimental verification is also available
and the survey papers [4], [5] are one starting points for
the literature. The novel feature of ILC is that it allows the
use of temporal information that would be non-causal for
standard systems. This is because once a pass is complete,
the complete data from the previous pass is available and
hence non-causal temporal information cane be used in the
control law with the proviso that such information has been
generated on the previous pass (or passes).

Some applications areas for ILC will require the use of a
nonlinear model and hence a stability theory for nonlinear
repetitive processes is required. Recent years have seen the
emergence of results on such a theory for nonlinear 2D
systems. For example, the stability of nonlinear 2D systems
written in the Roesser or Fornasini-Marchesini state-space
model form have been considered in, e.g., [6]. In [7] a sta-
bility theory was developed for discrete nonlinear repetitive
processes where vector Lyapunov functions were used to



characterize the practically motivated stability properties.
In the case of standard, termed 1D in the multidimensional

systems literature, nonlinear systems, dissipativity theory [8]
is one of the most powerful methods for control design,
where a particular form, known as passivity (and its gen-
eralizations) see, e.g., [9], [10], can be used to solve the
global feedback stabilization problem for a wide class of
systems. In [7] new results on a dissipativity approach
to the stabilization of discrete and differential nonlinear
repetitive processes were obtained by using a vector storage
function approach that is different from that in, e.g., [11] and
the resulting design based on divergence properties of this
function.

This paper develops results on the use of this approach
to ILC design for linear dynamics, where the analysis is for
the discrete case and the extension to differential dynamics
noted as a natural extension. The main result is a new design
that has the potential of delivering improved performance
over existing alternatives. An example based on the model
of the Quanserr flexible link is used to illustrate the new
design. Finally, areas for possible future research are briefly
discussed.

II. PROBLEM FORMULATION

Let the nonnegative integer k denote the pass number. Also
let uk(p) ∈ Rl, xk(p) ∈ Rn and yk(p) ∈ Rm be the input,
state and output vectors, respectively, at instant 0 ≤ p ≤
T − 1 < ∞. Then in the ILC setting the dynamics of the
linear uncontrolled system are described by

xk(p+ 1) = Axk(p) +Buk(p),

yk(p) = Cxk(p), k = 0, 1, . . . (1)

with assumed boundary conditions

y0(p) = Cx0(p), 0 ≤ p ≤ T − 1, xk(0) = x0, k ≥ 0 (2)

Suppose that yref (p) denotes the supplied reference vector
over 0 ≤ p ≤ T − 1. Then ek(p) = yref (p) − yk(p)
is the error on pass k and the problem is to construct
a sequence of input functions such that the performance
achieved is gradually improving with each successive pass
can be expressed as a convergence condition on the input
and error, i.e.,

lim
k→∞

||ek(p)|| = 0, lim
k→∞

||uk(p)− u∞(p)|| = 0. (3)

The paper extends the set of ILC laws based on a passivity
approach, for which the next section gives the required
background.

This paper paper considers discrete dynamics but results
given extend in a natural manner to linear differential dy-
namics with state-space model

ẋk+1(t) = Axk+1(t) +Buk+1(t),

yk+1(t) = Cxk+1(t), xk(0) = x0. (4)

where t denotes the along the trial variable and the remaining
notation is as in the discrete case.

III. PRELIMINARIES

This section summarizes the required results from the
existing passivity based stability theory, which follows in
the main [7] for nonlinear dynamics

A. General stability result

The state-space model of the discrete nonlinear repetitive
processes considered is

xk+1(p+ 1) = f1(xk+1(p), yk(p), uk+1(p)),

yk+1(p) = f2(xk+1(p), yk(p), uk+1(p)), (5)

where on pass k xk(p) ∈ Rnx is the current pass state vector,
yk(p) ∈ Rny is the pass profile vector, uk(p) ∈ Rnu is the
control input vector and f1, and f2 are nonlinear functions.
Also it is assumed that f1(0, 0, 0) = 0, f2(0, 0, 0) = 0 and
hence an equilibrium at the origin.

The boundary conditions, i.e., the pass state initial vector
sequence and the initial pass profile, are assumed to be
known and have the form

xk+1(0) = dk+1, k ≥ 0,

y0(p) = f(p), 0 ≤ p ≤ T − 1, (6)

where dk+1 ∈ Rnx is a known vector sequence, f(p) ∈ Rny

denotes a vector whose entries are known functions of p,
0 ≤ p ≤ T − 1. Moreover, if ||q|| denotes the norm of a
vector q, it is assumed that f(p) and dk+1 satisfy

||f(p)||2 ≤Mf , ||dk+1||2 ≤ κdζkd , k = 0, 1, ... (7)

where Mf > 0 is a finite scalar, κd > 0 is independent of
T and 0 < ζd < 1 determines the rate of convergence of the
pass state initial vector sequence. Throughout this paper, it is
assumed that the boundary conditions considered satisfy (7)
and no further explicit mention of these conditions is made.

The unique control problem for repetitive processes is the
possible presence of oscillations that increase in amplitude
from pass-to-pass. Hence the stability theory for repetitive
processes demands that a bounded initial pass profile pro-
duces a bounded sequence of pass profiles. The strongest
requirement is for this property to hold for all possible values
of the pass length, which can be analyzed mathematically by
considering T →∞.

This paper uses the following definition of stability for
discrete nonlinear repetitive processes.

Definition 1: A nonlinear repetitive process described
by (5) and (6) is said to be exponentially stable if there
exist κ > 0 and 0 < λ < 1 such that

||xk(p)||2 + ||yk(p)||2 ≤ κλk+p, (8)

where κ is independent of T, i.e., of the pass length.
In contrast to the 1D case , the full increment of a candidate
Lyapunov function for the case of (5) cannot be used to apply
the second Lyapunov method for stability analysis as in the
standard systems case.

This fact has stimulated research using a vector Lyapunov
function and the discrete counterpart of the divergence op-
erator (referred to as the divergence operator in the rest of



this paper) instead of the full increment. The analysis below
employs a vector Lyapunov function of the following form
for discrete processes

V (x, y) =

[
V1(xk+1(p))
V2(yk(p))

]
, (9)

where V1(x) > 0, x 6= 0, V2(y) > 0, y 6= 0, V1(0) =
0, V2(0) = 0. The divergence operator of this function along
the trajectories of (5) is defined as

DdV (xk+1(p), yk(p))

= ∆pV1(xk+1(p)) + ∆kV2(yk(p)), (10)

where

∆pV1(xk+1(p)) = V1(xk+1(p+ 1))− V1(xk+1(p)),

∆kV2(yk(p)) = V2(yk+1(p))− V2(yk(p)).

The following theorem holds.
Theorem 1: [7] Consider a nonlinear discrete repetitive

process described by (5) and (6). Suppose also that there exist
positive constants c1, c2, c3 such that the vector Lyapunov
function V and its divergence along the trajectories of (5)
satisfy the inequalities

c1||xk+1(p)||2 ≤ V1(xk+1(p)) ≤ c2||xk+1(p)||2,
c1||yk(p)||2 ≤ V2(yk(p)) ≤ c2||yk(p)||2,

DdV (xk+1(p), yk(p)) ≤ −c3(||xk+1(p)||2 + ||yk(p)||2).

Then this process is exponentially stable.

B. General passivity result

A powerful method in the analysis and control of 1D
systems is dissipativity theory [8], especially the particular
case of passivity theory [8], [9] where an extension of
a Lyapunov function termed a storage function is used.
This section considers design for discrete linear repetitive
processes in this setting.

Introduce, for analysis and control law design purposes
only as discussed below, the auxiliary vector zk(p) ∈ Rnu

given by

zk+1(p) = g(xk+1(p), yk(p), uk+1(p)), (11)

where g is a nonlinear function such that g(0, 0, 0) = 0 and
define the dissipativity property as follows.

Definition 2: A discrete nonlinear repetitive process de-
scribed by (5) and (6) is said to be exponentially dissipative
if there exists a vector function (9), a scalar function S(u, z)
and positive scalars c1, c2 and c3 such that

c1||x||2 ≤ V1(x) ≤ c2||x||2,
c1||y||2 ≤ V2(y) ≤ c2||y||2,

DdV (xk+1(p), yk(p)) ≤ S(uk+1(p), zk+1(p))

− c3(xk+1(p) + yk(p)).
In the particular case when S(u, z) = zTGu, where G is a
constant square matrix of compatible dimensions, a repetitive
process described by (5) and (6) is said to be exponentially
G-passive, see [12] for the 1D systems case. Since (5) does

not involve full increments, as in the case of ordinary 1D
difference equations, it is impossible to use cross terms in
the vector storage function (9).

The auxiliary vector z of (11) can be used to achieve
certain dissipativity properties and for the case of passivity
this is known as passivation [13]. Moreover, the choice of
this vector depends on the choice of storage function V and
it is a separate complex problem (similar to the choice of
a Lyapunov function for a nonlinear systems). The problem
is to find a pair (z, V ) satisfying the definition of passivity
and later it will be shown how this pair and corresponding
feedback law can be chosen for considered special cases.

The following theorem allows the application of the pas-
sivity property to stabilizing control design.

Theorem 2: [7] Suppose that a discrete nonlinear repeti-
tive process described by (5), (6) and (11) is exponentially G
passive. Suppose also that there exists a function ϕ(z) such
that ϕ(0) = 0 and zTGϕ(z) > 0 if z 6= 0. Then the control
law

uk+1(p) = −ϕ(zk+1(p)) (12)

results in controlled dynamics that are exponentially stable.
Application of this theory requires the selection of a

suitable V1(xk+1(p)) and V2(yk(p)) and in the nonlinear
case there is, as for other nonlinear systems, no general
method for selecting these functions. In the particular case
of linear dynamics, it is possible to chose these functions
as quadratic and the rest of this paper develops a passive
control law design for discrete linear repetitive processes,
with a particular application to ILC design.

C. A particular example of the general approach

Consider the 1D discrete linear system with state equation

x(q + 1) = Ax(q) +Bu(q), q = 0, 1, . . . , (13)

where x ∈ Rnx is state vector, u ∈ Rnu is control
input vector, A and B are constant matrices of compatible
dimensions. Assume that matrix A is stable and define the
matrix P � 0 (i.e., a symmetric positive definite matrix) as
a solution of the Lyapunov inequality

ATPA− P +Q ≺ 0, (14)

where Q � 0. Consider also a storage function for (13) of the
form of V (x) = xTPx. The full increment of this function
along the trajectories of (13) is

∆V (x(q)) = x(q)T (ATPA− P )x(q)

+ (2x(q)TATPB + u(q)TBTPB)u(q). (15)

Using [10], (13) is passive with respect to input u(q) and
output y(q) = 2BTPAx(q) + BTPBu(q) and the control
law

u(q) = −(I +
1

2
G(x(q))−1G(x(q))BTPAx(q), (16)

where G(x) is a matrix function that is positive semi-definite
for all x ∈ Rnx , stabilizes system (13). Moreover, the
matrices Q and G(x) define a set of stabilizing controllers



of the form (16) and by varying these matrices it is possible
to alter the dynamical properties of the controlled system.

If matrix A is unstable define the pair of matrices P � 0
and K as a solution to

(A+BK)TP (A+BK)− P +Q ≺ 0, (17)

and apply the results above to the system

x(q + 1) = Āx(q) +Bv(q), (18)

where Ā = A + BK is a stable matrix and v(q) = u(q) −
Kx(q). In this case the set of stabilizing controls are given
by

u(q) = [K − (I +
1

2
G(x(q)))−1G(x(q))BTPĀ]x(q) (19)

and again by varying Q and G(x) the dynamical properties
of the controlled system can be modified. The analysis in the
remainder of this paper aims to transfer this design freedom
to ILC design for linear dynamics.

IV. PASSIVITY-BASED ILC DESIGN

A commonly used ILC law is to select the input on
the current pass as that used on the previous pass plus a
correction. In this paper the ILC law on pass k+ 1 is of the
form

uk+1(p) = uk(p) + ∆uk+1(p), (20)

where ∆uk+1(p) is the correction term to be designed.
The novel feature of ILC is all information generated on
a completed pass is available for use in the computation of
∆uk+1(p). This allows the use of temporal information that
is non-causal in the standard sense provided it is generated
on a previous pass. In this section discrete linear dynamics
are considered.

To write the ILC dynamics as a discrete linear repetitive
process, introduce, for analysis purposes only, the vector

ξk+1(p+ 1) = xk+1(p)− xk(p). (21)

Then the controlled dynamics can be written as

ξk+1(p+ 1) = Aξk+1(p) +B∆uk+1(p− 1),

ek+1(p) = −CAηk+1(p) + ek(p)

− CB∆uk+1(p− 1). (22)

If the control correction term provides exponential stability
of (22) then the ILC law (20) converges in the sense that
conditions (3) hold.

Introduce the notation A11 = A, A11c = A +
BK1, A12 = 0, A12c = BK2, A21 = −CA, A21c =
−CA − CBK1, A22 = I, A22c = I − CBK2, B1 =
B, B2 = −CB, vk+1(p) = ∆uk+1(p− 1)−K1xk+1(p)−
K2yk(p) and rewrite (22), for technical purposes only, in the
following equivalent form

xk+1(p+ 1) = A11cxk+1(p) +A12cyk(p) +B1vk+1(p),

yk+1(p) = A21cxk+1(p) +A22cyk(p) +B2vk+1(p), (23)
0 ≤ p ≤ T − 1; k = 0, 1, 2, ...

and to simply the notation x̄k+1(p) =

[
ξk+1(p)
ek(p)

]
, Ā =[

A11 A12

A21 A22

]
,

B̄ =

[
B1

B2

]
, K = [K1 K2].

Assume that matrix K satisfies the following matrix
inequality

(Ā+ B̄K)TP (Ā+ B̄K) +Q+KTRK � 0 (24)

where Q � 0 and R � 0 are weighting matrices. This
inequality is easily reduced to a Linear Matrix Inequality
(LMI) with respect to X = diag[X1 X2], where X1 = P−11

and X2 = P−12 and Y = KX:
X (ĀX + B̄Y )T X Y T

ĀX + B̄Y X 0 0
X 0 Q−1 0
Y 0 0 R−1

 � 0,

X � 0. (25)

If these inequalities are feasible then K = Y X−1.
The next theorem describes a set of stabilizing control law

for (22).
Theorem 3: The dynamics of (22) are exponentially pas-

sive with respect to the output

zk+1(p) = 2B̄TPĀcx̄k+1(p) + B̄TPB̄vk+1(p), (26)

where
Āc = Ā+ B̄K

and a set of feedback stabilizing control laws for the system
with this output is given by

∆uk+1(p− 1) = F (x̄k+1(p))x̄k+1(p), (27)

where

F (x̄k+1(p)) = [I +G(x̄k+1(p))B̄TPB̄]−1[(I

−G(x̄k+1(p))B̄TPB̄)K − 2G(x̄k+1(p))B̄TPĀ], (28)

where G(x̄) is an arbitrary matrix of compatible dimensions
that is positive semi-definite for all x̄ ∈ Rnx+ny . and the
pair of matrices P = X−1 and K solve (25).

Proof: Consider the candidate vector storage function
as (9) with V1(ξk+1(p)) = ξTk+1(p)P1ξk+1(p), V2(ek) =
eTk (t)P2ek(t), where P1 � 0 and P2 � 0. Calculating
divergence of (9) along the trajectories of (23) gives

DdV = x̄T (ĀT
c PĀc − P )x̄+ (2x̄T ĀT

c PB̄v

+ vT B̄TPB̄)v, (29)

where P = diag[P1 P2]. Choose the output z as (26), then

DdV (x, y) ≤ −x̄TQx̄+ zT v (30)

and it follows from (30) that (23) is exponentially passive
with respect to input v and output (26). By Theorem 2, the
control law

vk+1(p) = −G(x̄k+1(p))zk+1(p) (31)



Fig. 1. Angles of the rotary flexible link.

where Gx̄ is defined above results in exponential stability of
(23). Then by routine calculations it follows from (31), (26)
and definition of v that each control law from (27) results in
exponential stability of (22).

V. EXAMPLE

As the example, ILC design for the Quanser r flexible
link is considered. The mathematical model of the dynamics
of the link in the horizontal position is easily obtained from
Lagrange’s equations of motion, see Quanserr lab manual
for details [14]. The state-space form of this model is as
follows.

ẋ = Aox+Bou, (32)

where x = [θ α θ̇ α̇]T , Ao =
0 0 1 0
0 0 0 1

0 Ks

Jeq
−Beq

Jeq
0

0 −Ks(Jl+Jeq)
JlJeq

Beq

Jeq
0

 , Bo = [0 0 1
Jeq
− 1

Jeq
]T ,

θ is the servo angle, α is the flexible link angle (Fig.1) ,
Ks is the stiffness of the flexible link, Jeq is the moment of
inertia of the servo, Beq is the viscous friction coefficient of
the servo, Jl is the moment of inertia of the flexible link.

The required reference trajectory is the required servo
angle θ(t), which is chosen to simulate a ”pick and place”
process of duration 2 sec’s and is shown in Fig. 2.

For the flexible link model (32) A = exp(AoTs), B =
Ts∫
0

exp(Aoτ)dτ, where Ts is sampling time, and C =

[1 0 0 0]. Since CdBd 6= 0 it is possible to use the model (22)
for ILC design and by Theorem 3 the set of stabilizing
control laws is given by

∆uk+1(p− 1) = [I +GB̄TPB̄]−1[(I −GB̄d
T
PB̄)K

− 2GT B̄TPĀ][ξTk+1(t) eTk (p)]T , (33)

where Ā =

[
A 0
−CA I

]
, B̄d =

[
B
−CBd

]
and matrices

K and P are given by the solution of the LMI (25). Only
the case of linear feedback is considered (G does not depend
on x̄ in this case)

Fig. 2. The reference trajectory

Fig. 3. Comparing the performance of the controllers based on using of
discrete model: G = 0 (dashed line), G = 1 (solid line).

Choosing Ts = 0.01s. and applying Theorem 3 for the
case with G = 0 and

Q1 = diag[10−5 10−5 20 0.5], Q2 = 105, R = 10−9

gives

F =
[
−27.4 −1.29 −0.34 −0.005 6.56

]
.

Applying Theorem 3 with G = 1 and with the same
∆, Q1, Q2 and R gives

F =
[
−16.83 −1.24 −0.29 −0.0064 7.77

]
.

The choice of Q and R is based on both linear quadratic
regular theory reasons and engineering reasons. In particular,
the choice above reflects the premise that in applications
the learning error and derivative of the servo angle are key
variables in ILC design.

To compare designs

E(k) =

√√√√ 1

T

T∑
p=0

||ek(p)||2,



which is the mean square error computed along trial k.
and Fig 3) gives the results from application of the two
control laws. These confirm that monotonic trial-to-trial error
convergence occurs for both designs but the choice G = 10
has better performance in terms of the convergence rate. In
particular, the initial error is reduced by a factor of 10 in 5
trials for G = 10 but 10 trials are required under G = 0.
Moreover, convergence occurs after 10 trials for G = 10
but the stability along the trial with G = 0 requires 20
trials. Further tuning of this ILC is possible by varying the
matrices Q and G(x) and hence the ILC design performance
can be tailored to the requirements of the example under
consideration.

VI. CONCLUSIONS
This paper has shown how passivity based designs for

nonlinear repetitive processes can be applied to the design
of ILC laws, where in this paper attention has focused on
discrete linear dynamics with a straightforward extension
to differential linear dynamics. In the resulting design, the
parameter G can vary depending on the number of trials. This
provides the possibility of trial-dependent adaptation in pass-
to-pass error convergence. The full implications of this result
is the subject of ongoing research. In principle, the passivity
setting extends to ILC design for nonlinear dynamics and
this topic is also under investigation.
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