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Background: The expansion of childhood vaccination programs in low and middle income countries has
been a substantial public health success story. Indicators of the performance of intervention programmes
such as coverage levels and numbers covered are typically measured through national statistics or at the
scale of large regions due to survey design, administrative convenience or operational limitations. These
mask heterogeneities and ‘coldspots’ of low coverage that may allow diseases to persist, even if overall
coverage is high. Hence, to decrease inequities and accelerate progress towards disease elimination goals,
fine-scale variation in coverage should be better characterized.
Methods: Using measles as an example, cluster-level Demographic and Health Surveys (DHS) data were
used to map vaccination coverage at 1 km spatial resolution in Cambodia, Mozambique and Nigeria for
varying age-group categories of children under five years, using Bayesian geostatistical techniques built
on a suite of publicly available geospatial covariates and implemented via Markov Chain Monte Carlo
(MCMC) methods.
Results: Measles vaccination coverage was found to be strongly predicted by just 4–5 covariates in geo-
statistical models, with remoteness consistently selected as a key variable. The output 1 � 1 km maps
revealed significant heterogeneities within the three countries that were not captured using province-
level summaries. Integration with population data showed that at the time of the surveys, few districts
attained the 80% coverage, that is one component of the WHO Global Vaccine Action Plan 2020 targets.
Conclusion: The elimination of vaccine-preventable diseases requires a strong evidence base to guide
strategies and inform efficient use of limited resources. The approaches outlined here provide a route
to moving beyond large area summaries of vaccination coverage that mask epidemiologically-
important heterogeneities to detailed maps that capture subnational vulnerabilities. The output datasets
are built on open data and methods, and in flexible format that can be aggregated to more operationally-
relevant administrative unit levels.

� 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Health policy decision-making based on spatially heteroge-
neous vaccination has resulted in a shift from pursuing coverage
targets at the national-level to ensuring that high coverage levels
are evenly distributed across provinces or districts [1]. While this
likely represents a more effective strategy over targeting
country-level goals, administrative area summaries may still mask
important geographical inequities in coverage [2]. Small regions of
susceptibility formed by spatial clustering of unvaccinated individ-
uals can sustain disease transmission, even when high overall vac-
cination coverage is achieved. Continued disease circulation can
also be driven by age cohorts that are missed by routine vaccina-
tion, unless they are removed from the susceptible population
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through natural infection or vaccination campaigns that target
broader age ranges [3,4].

To better capture heterogeneities in vaccine coverage, two gen-
eral options exist, either increasing the intensity of surveys or
using statistical modelling approaches. The former is costly, and
therefore modelling approaches that leverage existing survey data,
spatial relationships between survey clusters and relationships
with geospatial covariates have become increasingly popular in
mapping key development indicators at high spatial resolution.
Driven by rapid increases in computing power, rising availability
of a range of detailed geospatial datasets and advances in statistical
methods, recent examples include the mapping of age structures
[5], poverty [6], malaria prevalence [7], sanitation [8] and literacy
[9] within Bayesian geostatistical frameworks that enable quantifi-
cation and mapping of uncertainty in estimates. These efforts have
revealed new insights into the spatial heterogeneities of health and
development metrics, as well as producing more precise estimates
of populations at risk or affected when combined with high resolu-
tion population maps (e.g. [10]).

Here we explore the potential of geostatistical approaches to
modelling age-structured vaccination coverage across three coun-
tries, using measles vaccine as an example. Geolocated cluster sur-
vey data are combined with a library of candidate geospatial layers
capturing covariates such as urbanicity, remoteness and poverty,
to test their ability to predict vaccination coverage at high spatial
resolution and estimate numbers covered when combined with
population maps.

2. Methods

Fig. 1 depicts an overview of the modelling approach used in
this work from data assembly to model outputs, using Nigeria as
an example. Each stage is described in the following sections,
and in greater detail in supplemental materials.
Fig. 1. A schematic diagram of the modelling approach used to produce
2.1. Measles vaccination coverage data

The Demographic and Health Surveys (DHS) program conducts
nationally representative household surveys that provide data on a
wide range of demographic and health indicators in low and mid-
dle income countries [11]. Cross-sectional data on the spatial dis-
tribution of measles vaccination coverage in children under 5
years of age for Cambodia, Nigeria and Mozambique were obtained
from the DHS database [12]. For each child surveyed, the measles
vaccination status, i.e. whether they had ever received a measles
vaccine or not, as determined from the vaccination card or as
reported by the mother, was extracted. In this definition of measles
vaccination coverage, used by the Demographic and Health Sur-
veys program [12–14], there is an implicit assumption that the
child has at least received the first dose of measles containing vac-
cine (MCV-1), but could also have had the second dose (MCV-2).
Other information obtained included the child’s age in months at
the time of the survey and the centroid of the cluster from which
the child’s household was selected. To maintain confidentiality,
DHS cluster centroids are randomly displaced up to 2 km in urban
areas and 5 km in rural areas [15], and this displacement was
accounted for during covariate data extraction following recom-
mended approaches [16]. For each country, only the most recent
survey was used, corresponding to 2014, 2011 and 2013 for Cam-
bodia, Mozambique and Nigeria, respectively. Overall, 22,897 chil-
dren in these countries were vaccinated against measles out of a
total of 45,297 children with complete records. Fig. S1 (supplemen-
tal material) maps the cluster locations and the proportions of
under-5 s vaccinated in each country. For a variety of reasons, vac-
cination coverage is often evaluated by age [2,17,18]. In this work,
we defined four age intervals relevant to coverage assessments: <9
months, 9–11 months, 12–23 months and 24–59 months, and also
analysed coverage in the under 5 year age category (i.e. <59
months).
high resolution age-structured estimates of vaccination coverage.
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2.2. Covariate data, processing and selection

Many geospatial socio-economic, environmental and physical
factors are known to directly or indirectly influence or be associ-
ated with the spatial distribution of the under-five demographic
and geographical inequities in vaccination coverage [5,19–21]. In
a spatial regression context, these covariate factors can aid in
explaining the observed spatial distributions of measles vaccina-
tion coverage and are also particularly important for prediction.
For this analysis, we assembled a suite of candidate covariate data
layers that are documented in Table S1 (supplemental material),
and include factors such as remoteness (measured as travel time
to nearest large settlement) and related infrastructure metrics that
have been shown to be associated with vaccination coverage
[21,22]. Additional categories of covariates include demographics,
as vaccination coverage can vary by population density and ethnic
groups [23,24], and economic metrics, since coverage has been
shown to vary with rates of poverty [25,26]. A set of land use/cover,
topographic and climate/environment variables were also tested
for their ability to predict coverage rates. While these may not have
a direct link to coverage, they are often associated with social,
health, access and demographic factors that underlie geographic
variations, and have been shown to be associated with demograph-
ics, wealth and various other development indicators [5,6,8,9]. The
values of each covariate dataset at the locations of the DHS clusters
were extracted. Examples of the covariate data, the processing
details and the covariate selection step which was performed using
non-spatial binomial generalized linear models (GLMs) in a fre-
quentist framework are provided in supplemental materials.
2.3. Model fitting and validation

For each of the age groups definedpreviously,wemodel YðsiÞ, the
number of children vaccinated at cluster location siði ¼ 1; . . . ;nÞ,
using a binomial spatial regressionmodel (see, e.g. [27]), with prob-
ability of success, pðsiÞ. LettingNðsiÞ denote the total number of chil-
dren surveyed at cluster si, the model can be written as:

YðsiÞjNðsiÞ � BinomialðNðsiÞ;pðsiÞÞ;
logitðpðsiÞÞ ¼ xðsiÞTbþwðsiÞ;
wðs1Þ; . . . ;wðsnÞ � GPð0;RwÞ;

ð1Þ

where xðsiÞ is a set of covariates associated with cluster si and b are
the corresponding regression parameters. w ¼ ðwðs1Þ; . . . ;wðsnÞÞT is
a zero-mean stationary Gaussian Process with covariance matrix,
Rw, used to model spatial dependence in the data. The random
effects w are also used to capture the effect of spatially-varying
covariate factors that are not included in the model. A popular spec-
ification for Rw from the Matérn family of covariance functions [28]
used in this work is the exponential function given by
Rw ¼ r2expð�/DÞ, where r2 > 0 and / > 0 are known as the partial
sill and the spatial decay parameters, respectively, and D is a matrix
of known Euclidean distances between the cluster locations.

The geostatistical model in (1) was fitted in a Bayesian frame-
work using MCMC methods (see supplemental materials for
details). Using the fitted model, we predicted the age-specific prob-
abilities, pðsÞ, of being vaccinated at 1 � 1 km resolution for each
country. The predicted probabilities were then aggregated to
policy-relevant administrative areas for each country. The coeffi-
cients of determination (R2) of the fitted models were used to eval-
uate their predictive power. Further, to assess the performance of
themodels for out-of-sample prediction, a cross-validation exercise
was carried out in each case. Percentage bias, validation mean
square error and nominal coverage of the 95% prediction intervals,
all of which are described in the supplemental materials, were used
to quantify predictive performance. The model was implemented
using the spBayes package in R [29,30].

3. Results

3.1. Covariate selection and model construction

The selected covariates for modelling and predicting vaccination
coverage for Cambodia were travel time, population density, dis-
tance to residential areas and distance to infrastructures. For
Mozambique, these were: travel time, precipitation, evapotranspi-
ration and net primary production. For Nigeria, travel time, poverty,
aridity, night-time light intensity and enhanced vegetation index
were selected for the analysis. The results highlight that remoteness
(measured as travel time tomajor settlements) is an important pre-
dictor of vaccination coverage having been selected in all the coun-
tries tested, as well as matching previous findings [21].

The selected covariates were used in the spatial model described
previously to model and predict the probability of being vaccinated
againstmeasles at 1 � 1 km spatial resolution for each age cohort in
the three countries studied at the time of their DHS survey. The esti-
matesof theparametersof thefittedmodels including the regression
coefficients are reported inTable1 for the0–59 monthagegroupand
for other age groups in supplemental materials (Tables S2–S4).

We note that the covariates are measured on differing scales,
and therefore, the estimated coefficients of the covariates were
not directly comparable. Covariates for which the coefficients had
95% credible intervals, i.e. the intervals formed by the 2.5% and
97.5% quantiles, that did not include zero were identified as having
strong/consistent associations with vaccination coverage. The esti-
mates showed that vaccination coverage generally decreased with
increases in remoteness (except in the 0–8 month age group where
parameter estimates have been biased relative to other age groups
due to insufficient data), with this association being consistent
across most age groups in these countries. In Cambodia, the proba-
bility of being vaccinated generally increased with increasing pop-
ulation density (consistent in 0–59 month and >12 month age
groups) and decreased with increasing distance to infrastructure
and residential areas (both consistent in the 9–11 month age
group). In Nigeria, an increase in poverty was associated with a
reduction in vaccination coverage whereas aridity, night-time light
intensity and vegetation amount were each positively correlated
with vaccination coverage. Additionally, the estimated associations
between all the covariates and vaccination coverage were found to
be consistent for age groups 24–59 months and 0–59 months. For
Mozambique, precipitation and evapotranspiration were both con-
sistently negatively correlated with vaccination coverage in the 0–
59 month age group. Also, a strong positive association was found
between net primary production and vaccination coverage in the
24–59 month and 0–59 month age groups in this country.

The 95% credible intervals of the parameters of the spatial ran-
dom effect, w, did not include zero; thus confirming the presence
of significant spatial dependence in the data. The estimates of
the spatial correlation decay parameter, /, suggest the presence
of local residual spatial correlation in the models for Cambodia
and Mozambique (effective spatial range 6 71 km, i.e. a distance
at which spatial dependence is negligible – see supplemental
materials for details) across all the age groups. For Nigeria, the
same pattern was seen in the lower age groups, but relatively
higher levels of spatial correlation were estimated in age groups
P 12 months, with effective ranges of up to 286 km.

3.2. Model validation

Model validation statistics showed that for Nigeria, the nominal
coverage of the 95% prediction intervals ranged between 92.78%



Table 1
Estimates of the parameters of the fitted models for age 0–59 months. Reported are the posterior means, standard deviations and quantiles (2.5%, 50% and 97.5%) of the regression
coefficients and the parameters of the spatial random effect, w.

Parameter Mean SD 2.5% 50% 97.5%

Cambodia
(Intercept) 0.8646 0.7889 �0.7442 0.8895 2.2519
log (travel time) �0.0225 0.0571 �0.1324 �0.0221 0.0962
log (population density) 0.0953 0.0427 0.0096 0.0961 0.1773
log (distance to residential areas) 0.0153 0.0467 �0.0829 0.0180 0.1023
log (distance to infrastructures) �0.0499 0.0441 �0.1386 �0.0478 0.0359
Partial sill (r2) 0.1903 0.0363 0.1288 0.1874 0.2701
Spatial decay (/)a 30.7648 17.2687 7.7638 26.6455 67.1314

Mozambique
(Intercept) 3.3841 0.6232 1.9759 3.4159 4.5262
log (travel time) �0.0558 0.0340 �0.1202 �0.0569 0.0109
Precipitation �0.0095 0.0021 �0.0134 �0.0096 �0.0051
Evapotranspiration �0.0009 0.0004 �0.0016 �0.0009 �0.0001
log (net primary production) 0.2486 0.1993 �0.1518 0.2517 0.6395
Partial sill (r2) 0.3061 0.0399 0.2351 0.3037 0.3903
Spatial decay (/)a 17.5505 11.7127 4.7154 14.4912 52.3511

Nigeria
(Intercept) �1.1970 0.4300 �1.9973 �1.1915 �0.2504
Poverty �0.9333 0.4834 �1.8746 �0.9455 0.0392
Aridity 0.0001 2.93 � 10�5 6.68 � 10�5 0.0001 0.0002
log(Night-time lights) 0.3840 0.0753 0.2408 0.3844 0.5329
log(travel time) �0.1438 0.0519 �0.2378 �0.1463 �0.0417
EVI 2.5418 0.7748 1.0493 2.5170 4.1947
Partial sill (r2) 1.8089 0.2590 1.3942 1.7784 2.4145
Spatial decay (/)a 1.9417 0.3267 1.3237 1.9331 2.6197

a These correspond to effective ranges of 13 km, 23 km and 173 km, respectively (see supplemental materials for details).
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and 95.63%, which indicate good approximations of the true value.
For Cambodia and Mozambique, the coverage values were at least
91% in all cases. Although for the lower age groups in Cambodia
(<12 months), the values obtained were too high; this was most
likely as a result of high uncertainties arising from small sample
sizes at the cluster locations. Percentage bias was generally low
for all countries and age groups, ranging between �2.84% and
2.80%, and extending up to �8.20% only in the 0–8 month age
group. As expected, due to increasing amounts of data being avail-
able for model-fitting, better predictions were obtained for the 0–
59 month age group and other age groups greater than 11 months,
as mean square error values also revealed. R2 values generally indi-
cated a strong predictive power in the fitted models for the com-
bined 0–59 month age group, with all values being >0.65, and as
high as 0.95 for Nigeria. For the age-structured models, with the
exception of a few cases (ages 0–8 and 9–11 months in Cambodia;
9–11 months in Mozambique), the covariates used in these models
were shown to explain at least 50% of the variation in the observed
probabilities of being vaccinated. The full model validation statis-
tics for all countries are reported in supplemental materials
(Table S5).

3.3. Vaccination coverage maps

The outputs of the geostatistical modelling of measles vaccina-
tion coverage in children under 5 years of age are shown for the
test countries in Fig. 2. The 1 � 1 km prediction maps in the top
row highlight substantial geographic inequities in each country,
though the differing colour scales should be accounted for when
comparing between countries. The uncertainty maps in the bottom
row show the standard deviation around per-grid square predic-
tions. Where it is high, confidence in predictions is lower than
where the standard deviation is low. Fig. 2A shows that in 2013
a substantial area of the north of Nigeria was predicted with high
confidence (Fig. 2D) to have a negligibly low proportion of children
under 5 years old vaccinated against measles, with spots of higher
coverage only in the major towns and cities. This contrasts with
the south of the country, where percentages vaccinated are signif-
icantly higher, though spatial heterogeneity and levels of uncer-
tainty in predictions are generally higher. Fig. 2B And C highlight
more favourable overall vaccination rates in Cambodia and
Mozambique, but with clear regions of lower coverage. The per-
centages of under 5 year olds vaccinated drops to around 50–60%
in northeast Cambodia and to 20–30% in north-central
Mozambique.

An example output of the age-structured mapping for Nigeria in
2013 is shown in Fig. 3 (the same outputs for Cambodia and
Mozambique are in supplemental material). Here, the spatial
inequities in vaccination efforts are clear with the progression from
9–11 to 12–23, then 24–59 months showing rising proportions of
the target population vaccinated against measles increasing in
many areas of the country, particularly the south and central
regions, but much of the northern areas remaining at zero or very
low coverage rates.

3.4. Comparisons against existing national and regional estimates

Subnational assessments of vaccination coverage have typically
been made using surveys such as the DHS aggregated to the
provincial level. Using these estimates to prioritise vaccination
efforts can mean that smaller coldspots of low coverage can be
missed. Fig. 4 illustrates this through mapping the 20% of areas
with the lowest estimated coverage through using DHS region esti-
mates compared to the 1 � 1 km estimates. While similarities
between the red areas are clear, significant differences are appar-
ent as we move from large area summaries to finer scale mapping.
In Nigeria in 2013, it is clear that the northwest and northeast
areas have the lowest rates of coverage, but accounting for finer-
scale heterogeneities reveal that the central-north and eastern
regions are not consistently featured as part of the lowest 20% cov-
erage areas, and that other ‘coldspots’ [2] appear that are masked
through averaging across large areas. A similar story is evident
for Cambodia and Mozambique, where there is general agreement
between the regional and high resolution maps in terms of approx-



Fig. 2. Predicted measles vaccination coverage in children under 5 years old at 1 � 1 km for (A) Nigeria 2013, (B) Cambodia 2014 and (C) Mozambique 2011, with associated
uncertainty maps, measured as standard deviations, in (D), (E) and (F).

Fig. 3. Predicted measles vaccination coverage at 1 � 1 km for Nigeria children (left) 9–11 months old, (middle) 12–23 months old, and (right) 24–59 months old.
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imate low coverage areas, but the high resolution maps capture
heterogeneities that are not apparent through aggregate
summaries.

At fine spatial scales, vaccination coverage is typically heteroge-
neous. This is often not captured by summaries of data at national
or administrative unit level 1, and Fig. 5a illustrates this. Mapping
vaccination coverage at high spatial resolution captures substan-
tially more of the variability that exists across a country, with
the figure comparing estimates made through traditional sum-
maries of survey data at national and provincial levels (ADM1) in
red, and estimates made at district (ADM2) and 1 � 1 km through
the models outlined here shown in blue. The large area summaries



Fig. 4. Maps showing those areas estimated to be the 20% lowest measles vaccination coverage areas in each country through using DHS region estimates (left column) and 1
� 1 km map estimates (right column).
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Fig. 5. Differences in proportions and numbers of under 5 year old children vaccinated against measles through estimates constructed at varying levels of spatial aggregation.
The variability in percentage covered estimates through national, sub-national administrative units and 1 � 1 km grid squares are shown in (a). The change in numbers
vaccinated through moving from national to DHS region level and to 1 � 1 km grid squares is shown in (b). Further details are provided in supplementary materials (Tables
S6–7).

C.E. Utazi et al. / Vaccine 36 (2018) 1583–1591 1589
do not capture the ‘coldspots’ of low coverage, and the greater vari-
ability around the mean is apparent at finer levels of spatial disag-
gregation. Moreover, the mean values and distributions around
them are different as a result of the large area estimates summaris-
ing across units that cover urban and rural populations, with their
typically higher and lower coverage rates, respectively. By captur-
ing these heterogeneities with finer-scale mapping, the mean cov-
erage values across all units typically become lower through larger
numbers of rural units (with relatively low coverage) than urban
(with higher coverage). These differences are also reflected in dif-
ferences in estimates of the numbers of children under 5 years
old vaccinated through moving from national to provincial to high
resolution mapping (using gridded population datasets [10]), as
shown in Fig. 5b. These differences are as large as 15% fewer chil-
dren vaccinated for Mozambique compared to national level calcu-
lations. Maps of numbers of under 5 children unvaccinated are
provided in supplemental materials.
Fig. 6. Maps of proportions of under 5 children estimated to be vaccinated against measle
Action Plan (GVAP) threshold of 80%, for (A) Nigeria in 2013, (B) Cambodia in 2014 and (
legend, the reader is referred to the web version of this article.)
The Global Vaccine Action Plan (GVAP) sets out a target of
reaching 80% coverage with all vaccines in all districts by 2020
[8]. The geostatistical mapping undertaken here provides a mech-
anism for measuring progress towards these targets through esti-
mating coverage rates at fine spatial scales to enable district-
level summaries to be produced, and combining themwith gridded
population data [10]. Although the GVAP targets relate to individ-
ual vaccines, the nature of the input survey data means that our
assessment is based on the coverage of vaccination with at least
the first dose of measles vaccine (MCV-1). Supplemental material
shows examples of aggregation to different administrative levels
and calculations of numbers unvaccinated (Figs. S5–8). Fig. 6
shows district-level estimates of the proportions of under 5 chil-
dren estimated to be vaccinated against measles at the year of
input survey data, and highlights that substantial efforts are
needed in most places to meet the GVAP targets relating to measles
vaccine. In Nigeria in 2013, Cambodia in 2014 and Mozambique in
s, with districts highlighted in green if they were above theWHO Global Vaccination
C) Mozambique in 2011. (For interpretation of the references to colour in this figure
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2011, only 4%, 5% and 0% of districts respectively had coverage pre-
dicted to be >80%. While these numbers are low, it is clear however
that the majority of districts in Cambodia and Mozambique were
close to the 80% target, with coverage rates >60%. This is not the
case though for Nigeria, where only relatively small regions in
the south and centre either reached the 80% threshold or had cov-
erage rates >60%.
4. Discussion

The launch of the Sustainable Development Goals with their
‘leave no one behind’ agenda [31,32], the rise of disease eradication
campaigns [1,33–37], and tightening health budgets in many
places [38], have contributed to the rise in thinking subnationally
to improve measurements and target interventions more effi-
ciently. This has driven an emphasis on geographically-located
data collection and the development of methods to exploit this
in the production of small area estimates in the health and devel-
opment arena. Here we have shown the potential of such data and
approaches in the context of childhood vaccination in uncovering
heterogeneities previously masked by large area summaries,
improving estimates of numbers covered and providing a frame-
work for monitoring progress towards targets.

The modelling framework outlined here brings together freely-
available datasets and open-source tools to produce 1 � 1 km esti-
mates of vaccination coverage for key age groups, together with
measures of uncertainty for these estimates. The validation statis-
tics and relatively narrow uncertainty ranges show the strong pre-
dictive power of the models, and highlight how variabilities in
coverage rates can be captured at local scales using just 4–5
geospatial covariates. While some consistencies in covariate selec-
tion were seen (e.g. remoteness), different sets of geospatial data-
sets were selected for the best model for each of the three test
countries. This suggests potentially differing drivers of vaccination
coverage distributions, and that challenges may arise in building
more universal multi-country or global models, as highlighted
with other health and development metrics [9].

It is clear from the analyses here that high levels of vaccination
coverage measured at national and regional levels still mask signif-
icant spatial heterogeneities that represent a risk for outbreaks.
While the focus has been on measles vaccination as a test case,
many of the methods and findings translate to other vaccine pre-
ventable diseases. Population movements linking up areas of low
coverage and high population densities could lead to the persis-
tence of transmission even with comprehensive vaccination cam-
paigns in other areas. An illustration of the potential for
improved prioritization of target areas through, for example,
enhancing routine health care services or spatially-focused SIA
campaigns is shown in Fig. 4, where refined spatial detail aids in
identification of coldspots that are missed at regional scales. More-
over, the value of more spatially precise estimates in improving the
precision of mapping and estimation of susceptible numbers is
illustrated through the differences seen in Fig. 5 through switching
from large area to 1 � 1 km estimates.

While the modelling framework and results presented here
show strong potential, it is clear that limitations do exist. The
model validation statistics show that coverage rates were not pre-
dicted perfectly, particularly where sample sizes were small. The
occurrence of smaller sample sizes at some cluster locations results
from a combination of factors, such as the survey design (DHS sur-
vey samples are selected to ensure representativeness at coarser
administrative areas than the cluster level) and disproportionate
distributions of children under 5 years within the clusters. An
examination of the data sets used in model fitting revealed no
marked pattern, such as urban-rural differences, in sample size dis-
tribution in all three countries. Statistically, the estimation of bino-
mial probabilities with small numbers of trials leads to poorer
predictive power and greater uncertainty (see, e.g. [39]), as is the
case in some of the models fitted here. However, these inaccuracies
are aptly captured by the uncertainty (standard deviation) maps
(Fig. 2) and the validation statistics (Table S5) reported and can
form a basis for guiding additional targeted data collection. The
covariate layers used cover a wide range of factors associated with
vaccination coverage, but data on many others, such as access to
healthcare, education, literacy, health facility staffing levels, and
vaccine stocks were not available to improve outputs further. Addi-
tionally, the approaches outlined here produce maps that are nec-
essarily tied to the date of the coverage surveys. Obtaining more
recent maps requires either more recent survey data, or the imple-
mentation of demographic and epidemiological modelling tech-
niques, which are the focus of ongoing work [2,40].

The methods presented here provide a robust approach for
mapping vaccination coverage rates at high spatial resolution,
and there are various avenues for future improvements and new
directions. Here measles vaccination in three countries was used
to test and demonstrate approaches, but the potential exists to
examine the applicability of these approaches to a range of other
childhood vaccinations, and expand to new settings. With national
household surveys forming a snapshot in countries undergoing
rapid demographic and health changes, obtaining contemporary
estimates of vaccination coverage and numbers susceptible to
disease will require the integration of additional forms of data,
such as subnational fertility rates and the timings and locations
of supplemental immunization activities into demographic and
disease transmission models. This work forms part of a larger effort
to undertake this, resulting in high resolution estimates of suscep-
tibility to guide strategies [2,40]. Additional forms of data can also
add value in strategic planning on mechanisms of delivery to reach
those areas and populations with the lowest rates of vaccination
coverage. These include geospatial treatment seeking and health
facility catchment models [41,42] and mobile network data to
quantify seasonally varying vaccine demands at health facilities
[43], and identify and map mobile populations [44].
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