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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT
AERONAUTICS, ASTRONAUTICS AND COMPUTATIONAL
ENGINEERING

STOCHASTIC ENGINEERING SIMULATIONS USING SPARSE GRID
COLLOCATION METHOD AND KRIGING BASED APPROACHES.

by D. Chandra Sekhar

The estimation of probabilistic moments is central to robust design process. Typ-
ically one would like to estimate the mean and variance of some performance
critical metric such as stress, life, etc., of a component in any engineering system,
aiming a robustly optimized design that is less sensitive to the input variation-
s/uncertainties. For complex aerospace engineering systems such as aero-engine, a
single numerical simulation of any component can often take a substantial amount
of time and few samples can be afforded at which the deterministic simulations
can be carried out. Considering the variations in the parameters and performing
a large number of simulations on such problems is unrealistic and necessitate the

improvement of existing UQ approaches.

In this study, we present the significance of probabilistic moment estimation ap-
proaches for uncertainty quantification and its importance in robust design opti-
mization studies. The background for few popular approaches is provided, where
emphasis is put on sparse grid collocation method, adaptive sparse grid collocation

approach and Kriging based Bayesian approaches.

A non-intrusive multi-point adaptive strategy using sparse grid based collocation
design and Kriging based approaches is proposed to reduce the problems arising
in high dimensional probabilistic moment estimation studies. The comparison
of multi-point adaptive approach with other existing approaches for probabilistic
moment estimation in terms of efficiency and accuracy is provided. Further on,
the effectiveness of the proposed approach is demonstrated for few mathematical
test functions and stochastic structural problems with varying dimensionality and

strong interaction among the random variables.
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Chapter 1

Introduction

Modelling and simulation of complex systems has become a reality with the sig-
nificant growth in modern day computing power. Numerical simulations are per-
formed in order to understand the underlying physics and behaviour of engineering
systems. The primary goal of numerical analysis is to provide accurate solutions
to real-world problems. To this end, effective algorithms are developed to evaluate
the systems, and this is still an active research field. However, understanding the
impact of uncertainties in the physical and numerical parameters involved in such

fields is less advanced.

Uncertainties are of two types, the first one, aleatoric uncertainty is due to inher-
ent randomness in the behaviour of the system; it is irreducible because of the
variability in the physical or environmental aspects of the system being analysed.
The second one, epistemic uncertainty is due to lack of knowledge of the operat-
ing system. This can be due to the simplified assumptions in the description of
the mathematical model or neglecting the significance of correlation between var-
ious physical processes involved in the system. It can be reduced through better
understanding and thorough modelling of the system. Probabilistic approaches
can be used to represent both aleatory and epistemic uncertainties. In addition
Helton et al. [1] illustrated the use of interval analysis, possibility theory and ev-
idence theory as alternatives to probability theory in representation of epistemic

uncertainties in the system.
The uncertainties in input parameters of the engineering systems (such as aero-

engine, Fig 1.1.), can be due to :

e deviation of manufactured geometry from design,

5



6 Chapter 1 Introduction

Figure 1.1: Rolls-Royce Trent 1000 engine on Boeing 787.

e inaccuracies in measurement of manufactured geometry,

variation in material properties and residual stresses,

in-service degradation of a component, and

boundary conditions such as temperatures, flow rates, and leakages.

The response quantities of interest can be:

e displacements, equivalent stresses, stress intensity factors, etc., in case of

finite element analysis.

e temperatures and pressures in the context of thermo-mechanical analysis.

1.1 Motivation

In deterministic design processes, the uncertainties or variabilities are disregarded
and nominal (or idealized) values of parameters such as for loads, boundary con-
ditions, geometry, working conditions etc., are often considered in modeling and
simulation. The system is often be over designed with an appropriate safety crite-
ria or failure criteria selected, to account for the expected variations in the input
parameters [2]. The design optimum attained signifies the best performance in

theory, but in practical implementation such a design may not be feasible due
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to the uncertainties in the design parameters. Such variations about the nomi-
nal values of design variables result in scatter of system performance as shown in
Fig. 1.2. The ideal determinitic design structure may perform far worse than an

alternative robust design model which is less sensitive to parameter variations.

IN SERVICE PERFORMANCE

REQUIREMENT REQUIREMENT

UNACCEPTABLY MUCH REDUCED /
LARGE VARIATION IN VARIATION IN I

PERFORMANCE PERFORMANCE

NEW NOMINAL
VALUE OF X2 WITH
SAME VARIATION

—— 22— " VARIATION IN X2

X1 vARIATION IN X1 DUETO NQISE
DUE TO NOISE

NEW NOMINAL
VALUE OF X1 WITH
SAME VARIATION

Figure 1.2: Deterministic Design Vs Robust Design [3].

To design systems which can perform their intended function with desired confi-
dence, the uncertainties involved should be considered in the initial stage of design
process. A probabilistic framework in quantifying uncertainties for safe assessment
of technological systems such as nuclear power plants etc., was provided by Apos-
tolakis et al. [4]. In that paper the role of expert opinions along with experimental
results and statistical observations, to quantitatively assess the risks involved in

the systems were also discussed.

Complex multi-physics engineering problems like fluid-structure interaction prob-
lems, routinely involve tens of physical and numerical parameters. The numeri-
cal solution of such deterministic problems is often a computationally demanding
task. Considering the variations in the parameters and performing a large number
of simulations on such problems is unrealistic. From a design perspective, and
for reliable prediction of system response, uncertainties should be systematically
identified and classified. The uncertainties should be described by accurate ap-
proaches and be propagated through the system in an acknowledged systematic

way as shown in literature [5,6].



8 Chapter 1 Introduction

This has motivated the development of efficient uncertainty quantification (UQ)
methods to assess the system output response statistics, by propagating the input
uncertainties through the governing system. Such approaches would further help

in reducing the time involved in experimental validation procedures.

A physical system can be modeled as a general function Y = M(&), where £ is
the vector of input parameters, Y is the system response. The model M can be
a simple mathematical function or “black box” function such as computer pro-
gram (FEA, CFD). The focus of the thesis is to study the probabilistic content (or
joint probability density function) of a typical response Y. However each input
parameter (&;) has a set of realizations in one-dimensional space based on the
probabilistic distribution of the variable. The problem becomes multidimensional
because of the many parameters involved. The solution of such problems is ana-
lytically intractable: they suffer from “the curse of dimensionality”, a term used

to describe the computational difficulties that arise in high-dimensional spaces.

Uncertainty quantification techniques can be broadly classified into two types,
intrusive or non-intrusive, based on their implementation and usage. In intrusive
approaches, the existing code (FEA, CFD) needs to be modified to a large extent
to incorporate the variation in the input parameters. Non-intrusive approaches use
the computational model as a black box within uncertainty quantification studies
and the cost of implementation is less, although system run time can be longer in

these approaches.

A schematic view of the typical working procedure of non-intrusive! UQ ap-
proaches is shown in Fig. 1.3. The following steps may be identified in these

approaches :

1. Identifying the input parameters (&;) of the stochastic simulation model and
prescribing them in a probabilistic context. The parameters can be uniform, nor-
mal or exponentially distributed, etc. The randomness in the variables can involve

non-uniform PDF’s with cross correlations, taken from industrial measurements

7).

2. The random variables are incorporated into the simulation model, which is

defined using appropriate criteria (safety, risk, etc).

3. After performing deterministic analysis on the model considering all the real-

izations of the random variables (&;), one collects an ensemble of solutions, i.e.,

I non-intrusive approaches rely exclusively on deterministic analysis methods.
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realizations of the random solutions Y (§;). Various methods exist (also called
uncertainty propagation methods) to estimate the response of the system (mean,

variance, and other higher order moments).

4. In the last and final step a sensitivity analysis is done. This study helps in
quantifying the different random variables in the system based on their respective
influence on the system output [8]. The random variables/inputs of the system
are not independent in their effects, hence this study helps in understanding the

correlation between random outputs.

Thus UQ approaches help to design systems, whose performance is not compro-
mised by variations in parameters (aleatory and epistemic) and ensures designs

which are least sensitive to local variations.
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/ Stochastic simulation model \

- Input Random Variable [RV) Definitions.

* Material Properties, Geometry,
Boundary conditions.

* Probabilistic, Non-probabilistic
approaches.

\ - Deterministic Simulation FEA/CFD Mndey

/_ Stochastic analysis \

- Simulation techniques (MCS,
Quasi-MCS , Lattice rules).
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|
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Figure 1.3: General sketch for uncertainty quantification approaches.
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1.2 Background

Many existing techniques can be adopted for uncertainty propagation to estimate
the statistical quantities of system output response. These include simulation
techniques, local approximation methods, spectral stochastic projection schemes

and response surface techniques, to name a few.

Monte Carlo sampling (MCS) based techniques are widely used simulation meth-
ods and find their application in many fields of engineering and science. In the
field of mathematics, MCS are used to obtain numerical solution to complex prob-
lems which are analytically intractable; numerical integration in high dimensions
is one of those complicated problems. The general procedure in MCS is to generate
random sample points of input parameters based on their probability distribution
and then perform the deterministic solution of the problem considering each input
sample. The problem is deterministic, since the points are fixed in each input
sample. All such deterministic evaluations are collected, from which statistical
information on the outputs can be extracted eg., mean, variance, etc. It has been
shown that in accordance to the “Law of large numbers” the expected value
of MCS method have convergence O(1/+/N), where N is the number of random
sample points [9]. For example, as the number of sample points is quadrupled, the
error in estimation can be halved. Thus the number of sample points required can

be quite high, in order to attain sufficient accuracy.

Several variants of MCS have been developed to accelerate the convergence of
the traditional MCS. The quasi Monte-Carlo sampling technique improves the
covergence in the order of O(1/N), by choosing the sample points with mini-
mum discrepancy [10]. Latin hypercube sampling (or LHS ) based MCS meth-
ods choose the sample points based on a technique called “stratified sampling
without replacement” as shown in literature (e.g. [11]). Though these methods
have slightly better accuracy than MCS, their applicability can be limited for

high-dimensional integrals.

More efficient alternatives based on sparse quadrature rules are developed, en-
abling us to use the existing simulation model similar to MCS. In this approach
one uses collocation points and then performs the deterministic simulations at
these points to evaluate the response of the system. Sparse quadrature based on
Smolyak’s formula is developed in the context of stochastic collocation schemes.
The selection of the type of orthogonal polynomials depend on the probabilistic

density functions of the random variables. It was first proposed by Tatang et
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al. [12] and because of its non-intrusive nature, holds an advantage over classi-
cal polynomial chaos approaches. Xiu et al. [13] suggested a class of high-order
collocation methods and different choices of collocation nodal sets have been inves-
tigated. Acharjee et al. [14] implemented this approach for stochastic deformation

processes depicting the ease and effectiveness of this approach over MCS.

Among the local approximation techniques, perturbation methods and stochastic
operator based methods offer effective ways to estimate the first two statistical mo-
ments of the response. Perturbation methods are popular non-sampling techniques
and their application is quite wide spread in many fields [15,16]. The physical pa-
rameters are continuous in space and because of inherent randomness in them, we
have random variable/fields. The random fields of the parameters are incorporated
into the governing equations via second order Taylor series, expanded around their
mean where higher orders are neglected because of the complexity in the solution
of governing equations. The limitation of this approach is that the deviations or
magnitude of uncertainty in the physical parameters should be less than 10% else
they do not perform well. In Operator-Based methods, the stochastic operators in
the governing equations are manipulated using the Neumann expansion technique.
In the stochastic finite element method, inverse stochastic stiffness parameters
(in the equilibrium equation) are deduced using the Neumann expansion [17,18].
This approach is better compared to MCS in characterizing the uncertainty and
reducing the computational time for some linear static problems. But similar to
perturbation approach it is restricted to small uncertainties in the physical param-
eters. The two methods were developed in the context of static problems. The
number of stochastic variables involved in these problems is less compared to any

comprehensive design model of engine, rotorcraft etc.

Spectral stochastic projection schemes enable to represent the randomness in the
output response using functional approximations and have gained a lot of interest
over the past 10-20 years because of their mathematical rigour and effective repre-
sentation of stochastic processes (or stochastic field if time is invariant). Stochas-
tic projection schemes based on polynomial chaos (PC) expansions are intrusive,
in which the stochastic process is represented by a Wiener expansion similar to
Fourier series expansion. It was initially developed by Norbert Weiner [19], where
multidimensional Hermite polynomials (also known as the PC basis) are used as
basis functions to represent the stochastic process. Further details about the the-
ory and its implementation for discrete mathematical models of random systems is
given by Ghanem et al. [20]. Debusschere et al. [21] developed a non-intrusive type

polynomial chaos approaches, also termed as generalized polynomial chaos (gPC),
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where non-Hermite polynomials were used to represent the stochastic process en-
compassing various problems with non-Gaussian random variables. In recent years,
it is being studied by many researchers in the context of building efficient numeri-
cal methods for solving stochastic partial differential equations (SPDE’s), in fields
like elasticity and fluid flow problems. Recent works by Eldred et al. [22], show

that these approaches are efficient for low to moderate dimensional problems.

The uncertainty quantification techniques developed for stochastic systems should
be efficient in their implementation and execution. Response surface methods are
another class of approximation techniques that are used to represent the stochastic
system under consideration. In classical response surface methodology [23], an ap-
proximate polynomial such as linear, quadratic or higher order polynomial is built
that can optimally characterize the output response by conducting a series of ex-
periments or runs of the simulation model of the system. Uncertainty propagation
methods can be applied on the response surface, rather than performing determin-
istic simulations on the actual system, further reducing the computational time

involved in UQ studies.

The objectives of the presented research are two-fold; firstly to investigate the com-
plexities incurred in applying the high-dimensional numerical integration schemes
for stochastic propagation and uncertainty quantification. Secondly, try enhance
the performance by reducing the simulations required for uncertainty quantifica-

tion at higher dimensions, for a stochastic system.

1.3 Layout of thesis

The thesis begins by introducing important concepts and emphasises the need for
better methods in performing uncertainty quantification studies. The main focus
of this work is to develop efficient probabilistic moment estimation methods for

complex, nonlinear functions in high-dimensional stochastic space.
The presentation of the current work is made in six chapters :

The first chapter deals with the motivation for the current work. A brief literature
survey is presented and a review of important published literature in relation to
the present work is done. The chapter ends with a short note on the present work

and layout of the thesis.
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Chapter 2, describes various aspects pertaining to the mathematical modeling of
uncertainty. An overview of different approaches for the propagation of stochastic
responses are described. Further the theoretical and computational aspects of
various structural optimisation methods in presence of uncertainties is presented.
For the sake of completeness the topic is extended to multi-criteria optimisation
and the emphasis is put on structural robustness, taking into account the intrinsic

variabilities involved in the system.

Chapter 3, presents an overview of stochastic collocation approach and the con-
struction of sparse grid method using a one-dimensional Clenshaw-Curtis rule. The
advantage and limitations of the sparse grid collocation method over conventional

approaches is shown for few mathematical test functions.

Chapter 4, presents the use of surrogate modeling in UQ studies. A brief review of
surrogate modeling approaches such as radial basis functions and Kriging approach
is provided. A mnovel adaptive approach is proposed and compared with other
existing approaches for few test problems. The adaptive approach proves to be

superior to other conventional approaches used in probabilistic moment estimation.

Chapter 5, covers the implementation of methods for stochastic structural prob-
lems that are discussed in the earlier chapters. The description and implementa-

tion of proposed adaptive approach is also provided for the structural problems.

Chapter 6, presents a summary and the conclusions of this thesis. The conclusions
reveals the extension of the proposed method to high-dimensional engineering

application oriented problems.



Chapter 2

Formulation of stochastic systems

This chapter presents various aspects pertaining to the mathematical modeling of
uncertainty. The first section of this chapter provides insight into the mathematical
modeling of uncertainty in stochastic systems. The concept of random field and
its discretization are discussed in the probabilistic approaches, for representing

uncertainty.

In the second section a detailed review of various approaches for the propagation of
uncertainty are described. The probabilistic representation of uncertainties using
sampling based techniques such as Monte Carlo simulation, Quasi-Monte Carlo,

lattice rules are presented.

In the third section an overview of existing formulations for structural optimization
methods considering uncertainty is presented. The emphasis is put on structural

robustness, taking into account the uncertainties involved in the system.

2.1 Mathematical models of Uncertainty

Accurate representation of uncertainty in the input random parameters is crucial
and first step in the formulation of stochastic systems. The stochastic response
output has no significance without the appropriate description of uncertainties.
Typically there exist many methods and techniques to represent randomness in
stochastic system but most often these approaches rely on the information of the
marginal distributions and co-variance of the uncertainties in a system. The lack of
sufficient information and experimental data usually forces one to assume quanti-

tatively and qualitatively the stochastic information in the underlying parameters

15



16 Chapter 2 Formulation of stochastic systems

of the stochastic system. The lack of available data is due to few reasons such as
lack of well-defined measurement techniques, necessity for large amount of mea-
surements for defining the statistical data, cost of measurement procedures. Very
few studies are reported in the literature, where analysis of stochastic systems is
performed based on actual measurements ( see for example, Bendat et al. [7] )
The modeling of stochastic input parameters using limited data is still an ongoing

research.

Aleatory uncertainties characterised by inherent randomness and which cannot
be reduced using further data are typically represented with probability distri-
butions. Epistemic uncertainties are prevalent in the system due to the lack of
knowledge about the nominal values of parametric uncertainties and are modeled
using limited data. Regulatory bodies, design certification authorities are increas-
ingly pressing towards charaterising and quantifying the aleatory, epistemic uncer-
tainties individually and separate the effects that usually arise in an engineering
system (e.g [24,25]).

There exist many approaches to represent uncertainty of the random parameters
in dealing with the structural design problems. Some of the mathematical the-
ories adopted to model uncertainties are probability theory, possibility theory,
Dempster-Shafer evidence theory, fuzzy set theory, etc. However the need for data
remains great, since the spatial or temporal variation charateristics of input pa-
rameters is necessary to improve the reliability of stochastic parameters in the

framework of stochastic formulations.

2.1.1 Probability theory

To circumvent the above difficulties, a general and popular approach is to make
assumptions for the parametric uncertanties using probabilistic approach. The
statistical nature and physical selection criteria may lead to using appropriate

distribution type for probabilistic description of uncertain parameters.

For example in a probabilistic approach, a Gaussian distribution is usually pre-
ferred to model the uncertainties arising in manufacturing tolerances. The use
of Gaussian distribution based on data/experience from previous studies may be

viewed as the sum of many individual effects according to central limit theorem.

A log-normal or uniform distribution is preferred if the parameter to be modeled

is always positive such as Young’s modulus. If the uncertain parameter depicts
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external conditions of some physical phenomena, an extremum value distribution
is used. For example, a Gumbel type distribution is often used to model the loads
(such as Gust loads) due to its capabilities to capture the maximum values. On
the other hand, Weibull distribution is often used to model parameters with low
values which are important in such situation. The validity of the distibution type
can be verified by means of Goodness-of-fit tests ( eg., Chi-square, Kolmogrov-
Smirnov tests). The decision making involves engineering experience and expert

opinion to further mitigate any undesirable situations.

Probabilistic approach suggests the use of random variables in order to model
uncertainities. A single random variable is inadequate to represent the spatial
or temporal variation in the uncertain parameters. For example, the thickness/s-
tiffness/strength of fuselage structure can vary spatially along its length but the
gound acceleration at any point can be random with respect to time. Such phe-
nomena have the characterisitcs of random function rather than a random variable.
Stochastic processes are needed to take into account such variablities. Before any
further discussion on this aspect, the definition of event and the mathematical

representation of algebra of events is discussed in next section.

2.1.2 Algebra of events and stochastic processes

The set €2 is a sample space or sure event and is collection of all possible outcomes
in an experiment. In general, individual outcomes are not preferred but collection
of outcomes called events are of importance. If €2 is uncountable, then some of the
subsets would be extremely difficult to work and a need for suitable collection of

sets is required also termed as o- algebras.

Let (Q,F,P) be a complete probability space, where € is the event space, F' C 2
the o- algebra and P is the probability measure of F'. The random variable X is a
mapping from €2 to real line R denoted as X: 2 — R. The random variable X is
continuous rather than discrete and admits a probability density function fx(z)

or cumulative distribution function Fx(z) and defined by,

the following relation holds between the two,
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Pla< X <b)= [ fx(z)de, fy(z)= 20

Instead of dealing with the PDF’s, a finite dimensional stochastic space is defined
and is given by £=[¢1,€2.63,.6N] : Q — RN, where £ represents marginally dis-
tributed random variables N in the stochastic space. Let f be any real valued
function having dependence on space (u), time (¢) and random variable £ with a
known PDF, the stochastic process can be written as g(u,t : £). As mentioned
earlier if the spatial or temporal variations of uncertain parameters are consid-
ered they are represented by the above mentioned stochastic processes. The term

random field stands for the stochastic processes which have an index in space,

g(u:§).

A random field H(u : &) is a collection of random variables defined on (X2, F', P),
where (2, F', P) is the Hilbert space of real random variables with finite variance.
Here u represent the spatial coordinates and & is the realization in the sample
space ). For example H(u' : ) is the random variable for given spatial coordinate
u’, conversely for a given realization of &,:, H(u : &) is a sample of the random
field. The modeling of parametric uncertainties relies heavily on the ingredients
of random field such as probability distribution and correlation structure. Loads,
material or geommetrical properties of a stochastic system can be modeled using

random fields.

2.2 Non-probabilistic approaches

As mention earlier in section 2.1, the possibility theory, evidence theory, interval
theory are few approaches used to take into account uncertainty with incomplete
information in random variables. The foregoing sections discuss the various as-
pects of uncertainty and decision making about systems that contain non-random

uncertainty.

2.2.1 Interval analysis

In interval analysis, a set X comprising of input parameters ; are simply defined
within intervals as shown in Fig 2.1., and it is assumed that no prior information
about the uncertain input varibles is known other than that it is contained within
set X and defined as,
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X={&{:a; <& < b}

where [a; b;] is an interval that contains possible values for &;.

Lower Bound
—
I | | | | 1 I
I | | | 1 | I
@ & D
Upper Bound
INTERVAL LIMITS

Figure 2.1: Interval Analysis.

For a vector & = [£1, &, ..., &,] of uncertain variables contained in the sets X7, Xs,...X,,,

the set of possible values is given by,
X=X x X9 x ... X X,,.

From above representation it is assumed that no restrictions in choice of specific
combinations for the variables in £. The representation of uncertainty in variable

y defined as,

Yy = M(£)>€ = [617527 "'fn]7

where M is a function of the vector £&. Propagation of uncertain input values

contained in X through function M results in set,
Y ={y: £ € X} for possible values for y.

Since there is know uncertain structure for the set X, there is no uncertain structure
for set Y. Although conceptually simple it is very difficult to determine the bounds

on the output or corresponding interval on the outputs.

A general approach to determine output in interval analysis is to take samples from
the uncertain interval inputs and then consider the maximum and minimum output
values based on sampling process as upper/lower bounds of the output. Few other
approaches are presented in literature such as Moore et al. [26], Khodaparast et al.
[27] and Walter et al. [28], where optimization methods are used to evaluate the
max/min values of ouptut measure of interest corresponding to upper and lower
bounds on the output, respectively. It may require prohibitively large number of

simulations to determine the output bounds.
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To circumvent the above difficulties one can make use of a surrogate model (eg:
a regression model, adaptive spline model, nueral net, Kriging; etc) created with
few samples from the interval bounds. The surrogate model can be sampled ex-
tensively to estimate upper/lower bounds of the output. Surrogate model based
optimization methods are used to obtain upper/lower bounds. The feasibility and
accuracy of surrogate model approaches for calculation of margins in epistemic
uncertainties depends on the goodness of surrogate with repect to sampling points

upon which it was built.

2.2.2 Possibility theory

Possibility theory assumes more structure to represent uncertain information com-
pared to interval analysis. It is based on theory of possibility space for the variable
¢ defined by specification of pair (X, r;) for uncertain variable £, where X is the set
of possible values for £ and r; is defined as function on X such that 0 < r;(&;) <1
for £ € X and sup{r(&;) : & € X} = 1. The function r; also referrerd as possibility
function for ¢ and provides a measure of “confidence” that is assigned to each
element of X. If the value of 7(§;) = 1 it implies there is no available information
that refutes the occurence of specic value for £ and a value r(&;) = 0 suggests that
there is no known information which refutes the occurence of ¢ contained in X
[29]. Hence as the value of possibility function (&) varies from 0 to 1 it suggests

the absence of infomation that refutes the occurence of &.

Possibility theory provides two measures of likelihood: possibility and necessity
respectively for the subsets of set X. The possibility and necessity for subset v of
X are defined by,

Pos;(v) = sup{r;(&) : & € v}

and

Neci(v) =1 — Pos;(v°) = 1— sup{r;(&) : & € v°},

respectively. From the consistency in properties of possibility distribution function
i, Pos;(v) implies the measure of amount of information that does not refute the
proposition that subset v contains the value for £. Similarly Nec;(v) provides a
measure of the uncontradicted information supporting the notion that v contains

the value for ;.
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The following relations holds for possibility and necessity for the possibility space(X, &;)
for the subsets v of X,

1 = Nec;(v) + Pos;(v°), Nec;(v) < Pos;(v)

1 < Pos;(v) + Pos;(v°), Nec;(v) + Nec;(v°) <1

1 = maz{Pos;(v), Pos;(v°), 0=min{Nec;(v), Nec;(v°)}

Pos;(v) < 1= Nec;(v) =0, Nec;(v) > 0= Pos;(v) =1

Similar to the properties of probability space, the graphical representation of possi-
bility space are provied by cumulative necessity function (CNF), cumulative pos-
sibility function (CPF), complimentary cumulative necessity function (CCNF),
complimentary cumulative possibility function (CCPF). For further exposition of

these aspects please refer deCooman et al. [29].

The variables &1, &, ...., &, have associated probability spaces (X1,71), (Xa,72),....,
(Xn, ) and vector £ = [&1, &9, ..., &,] also has associated possibility space (X, rx),

and

rx(§) = min {ry (1), r2(82), - mn(6n) }

It is assumed that the possible combinations for values of £’s exist and no further
restrictions are imposed in defining the set X and rx respectively. The possibility
and necesstiy functions for subsets v of X are defined once the possibility space

(X,rx) for € are known from earlier derived equations.

The uncertainty propagation of elements of £ contained in X through funtion M,
results in set Y of possible values for y. The resultant possibility space (Y, r,) also

exists for values of y. The resultant possibility distribution function r, defined by,

ry(y) = sup{r,(§) : £ € X and y = M (&)} = Posx{M~(y)} for y € Y, where
M~*(y) represents the set M~'(y) = {{ : £ € X and y = F(£)}. The terms
Posy(v) and Necy(v) for subsets v of Y can be determined using the above

derived equations.

The plots for CNF, CCNF, CPF, CCPF can be produced and provide a graphical

representation of uncertainty for y in terms of necessity and possibility.
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2.2.3 Dempster-shafter Evidence theory

Evidence theory is based upon the representation of uncertainty through specifica-
tion of triple (X, =, m;) for variable & and assumes more structure than possibility
theory [30-32].

Here X is the set of possible values for varaible §;, =; is a countable collection of

subsets of X and m; is a function defined on subsets v of X such that,

1. m,(l/) >0ifvez;
2. my(v)=0if v ¢ Z; and
3. Yoez,mi(v) =1

In the mathematical description of the evidence theory using triple (X,Z,m;),
the terms X is the sample space or universal set, Z; is the set of focal elements
for X and m;(v), termed as basic probabitiy assignment (BPA) associated with
subset v of ;. In general the basic probability assignment provides a measure of

information associated with subset v of X.

Evidence theory gives two measures of likelihood namely, plausibility and belief
for subsets of X. Typically the pausibility and belief for subset v of X are defined

respectively as,

Pli(v) = Y my(v) (2.1)

Beli(v) = > m;(v) (2.2)

Here Pl;(v) provides a measure of amount of information possibly associated with
v satisfying the requirement i.e., vNv # () in Eq 2.1 and similarly Bel;(v) provides
a measure of information known to be associated with v as a result of requirement

v Cvin Eq 2.2.

For evidence space (X, =, m;), the following relationships hold for plausibility and
belief for subsets v of X.
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Bel;(v) + Pl;(v°) = 1, (2.3)
Bel;(v) + Bel;(v°) < 1, (2.4)
and

The graphical representation of evidence space are provided by cumulative be-
lief functions (CBE’s), complementary cumulative belief functions (CCBF’s), cu-
mulative pausibility functions (CPF’s) and complementary cumulative pausibility
functions (CCPF’s). Typically for the evidence space (X, =, m;), the CBF, CCBF,
CPF and CCPF are defined by sets,

CBF, = {[¢, Bely(ve)] : € € X}, CCBF, = {[¢, Beli(1)] : £ € X} (2.6)

CPFE, ={[¢, Pli(vg)] : £ € X}, CCOPF, ={[§, Pli(vg)] : € € X} (2.7)

where v¢ is defined same as in Eq 2.3-2.4. The plots for CBF,CCBF,CPF and
CCPF for the evidence space (X, Z,m;) can be produced and provide a graphical

representation of uncertainty for y in terms of plausibility and belief for subsets
of X.

2.2.4 Fuzzy set & Membership

The fuzzy approach for uncertainty quantification is based upon the idea of mod-
eling the random parameters as fuzzy quantities. In conventional approaches of
set theory an element either belongs or not belongs to a set defined by probability,
possibity or evidence spaces. But fuzzy sets have a membership function that

allows for partial membership in the set. The idea of set membership proposed by
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Zadeh [33], holds key to decision making when facing the uncertainty. Zadeh in
his seminal paper presents the notion of fuzzyset and its capability in providing a
conceptual framework construction similar to ordinary set theory. Such framework
facilitates one to deal with uncertainties where the source of imprecision is due to
lack of well defined criteria for imprecision, and thus helps in restricting the usage

of random variables.

The notion of set membership is central to representation of objects within a
universe by sets defined in the universe also termed universal set. Hence classical
sets contain objects that satisfy precise properties of membership and on the other
hand fuzzy set contain objects that satisfy imprecise properties of membership

where the membership of object in a fuzzyset can be approximate.

Let X be an exhaustive collection of individual elements x making a universal set.
Further various combination of these individual elements make up sets A on the
universal set. For crisp set, an elemet x in the universe X is either a member
of some crisp set A or not. This binary set of information can be represented

mathematically with an indicator function,
xa={ireA¢A

where the symbol y gives the indication of unambigious membership of element x
in set A.

Zadeh extended the concept of binary membership to accomodate various “degrees
of membership” on the real continuous interval [0 1], where end points of 0 and
1 confirm to no membership or full membership just as indicator function does
for crisp sets, where infinite number of values in between end points can represent
various degrees of membership for element x in some set on the universe. The sets
on the universal set X that can accomodate degrees of membership are termed
as fuzzy sets. The key difference between crisp and fuzzy set is their membership
function where the former has unique membership function and the latter have

infinite number of membership functions.

The membership function as shown in Fig 2.2., represents the mathematical rep-
resentation of membership in a set and a fuzzy set is denoted by A where the

functional mapping is given as,

pa(z) €[0,1]
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Figure 2.2: Membership Function.

and the p4(z) is the degree of membership of element x in fuzzy set A. Therefore
ta(x) is a value on the unit interval that measures the degree to which element x

belongs to fuzzy set A; equivalently pa(z) is the degree to which x € A.

2.3 Propagation of stochastic responses

After the description of different aspects regarding to the modeling of uncertain-
ties, the next step in the stochastic structural system would be the assessment of
probabilistic content of output response, i.e to propagate the randomness through
the stochastic model. Although different approaches to propagate the uncertainty
are briefly mentioned in the first chapter, in the corresponding sections we set

stage for a detailed discussion of such approaches.

An appreciation of the merits of uncertainty propagation methods is impossible
without rudimentary understanding of simulation based techniques such as Monte
Carlo, Quasi-Monte Carlo, Lattice rules etc., used in the numerical evaluation of
integrands in high-dimensional probabilistic weighted design space. The essence
of such approaches consists of three main steps : i) generation of samples for
parametric uncertainty according to probabilistic description of the variable, ii)
to perform the simulations corresponding to each input sample, iii) to calculate
the response statistics of the output quantity of interest from the deterministic

responses.
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2.3.1 Monte Carlo Simulation

In simple terms, Monte Carlo method (MCS) is described as a numerical method
based on random sampling and has a strong statistical significance. Developed in
1940’s to reduce the complexities arising in high-dimensional spaces, MCS finds its
applications in many fields without restricting itself to numerical integration [9].
A crucial step in the application of MCS is the generation of appropriate random
samples. In computational application of MCS the random samples are generated
using a deterministic code and the numbers or vectors are termed “psuedo random

numbers” and “psuedo random vectors” respectively.

Considering random variable represented by the vector £=[¢!, €2, €3, ...€%], the
input distribution p(£1, €2, €3, ...£%) can be obtained by a finite number N of inde-
pendent samples {£™}Y_,. The individual vector ™ specifies deterministic value
for uncertain parameter, for which the response f™ = f(£™) is obtained from de-
terministic analysis. Here the mean and variance of response quantity f can be

obtained as,

L
pi =< fi >~ N Z f(Em). (2.8)
m=1
| X
0 =< (fi — )* >=~ N1 D€ — i)™ (2.9)

According to the strong law of large numbers given in Niederreter [9], the above
equation guarantees that fluctuation in the statistical estimates that are random

reduces, as the number of sample size N increases.

. RS
leNHooN nZ(f) = E(f) (2.10)

In the above equation, E(f) is the expected value. For the probabilistic error

estimate, the variance is given by,

2 (f) = / (f — E(f)df. (2.11)

which is finite for f € L2
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On the basis of the central limit theorem, the MCS for numerical integration yields
a probabilistic error bound of the form O(N(=1/?)) in terms of number of samples
N. As mentioned earlier MCS offers a way of overcoming “curse of dimensionality”
where the probabilistic error bound doesn’t depend on the dimension d but requires

the samples to be regularised and independent.

2.3.2 Quasi-Monte Carlo approach

Quasi-Monte Carlo simulation is the traditional Monte Carlo simulation but using
quasi-random sequences or low discrepancy sequences such as Halton, Faure, Sobol

sequence instead of pseudo random numbers as shown in Fig 2.3.
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Figure 2.3: Low Discrepency Sequence Points (Sobol, Halton, Faure Se-
quences).

Some of the advantages and disadvantages of QMC techniques are as follows,

Advantages:

e totally deterministic,

e low-discrepancy sequences permit to improve the performance of Monte
Carlo simulations, offering shorter computational times and/or higher ac-

curacy,

e The evaluation of an integral is the strongest application of quasi-random

sequernces.

Disadvantages:

e quasi-Monte Carlo methods are valid for integration problems, but may not
be directly applicable to simulations due to the correlations between the
points of a quasi-random sequence which can be solved using lattice rules as
given by Morokoff [10].
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e for high dimensional problems, the use of low discrepancy sequences should

adequately sample the d-dimensional hypercube.

e An inspection of appropriate error bounds for Quasi Monte Carlo methods
reveals a feature that is a draw back for these methods. Typically if the
integrand is sufficiently regular, then any additional regularity of the inte-
grand is not affected in the order of the magnitude of the error bound. This
is in contrast to one dimensional numerical schemes such as Gauss formulas
and Newton Cotes rules which can be tailored for the regularity class of the

integrand so that they become efficient for more regular integrands.

For quasi-Monte Carlo methods discussed in this section, the degree of regularity
of integrand is not reflected in the order of magnitude of error bound and to
achieve this, one must consider the integrand to be periodic with an interval P
so that the underlying Fourier analysis make sense but is no serious issue since
the non periodic integrand can always be periodized. The integration rules for
such periodic integrands can be viewed as multi-dimensional analogues of one
dimensional trapezoidal rule. These integration rules arose as special form of

good lattice points introduced by Korobov [34] in 1959.

2.3.3 Lattice rules

As discussed earlier, these integration rules were first introduced by Korbov as
good lattice points but a general class of lattice rules or methods was defined and
analyzed recently. In last few years, much research work is devoted to these type

of numerical integration schemes.

Here the d dimensional cube comprises of points generated using lattice rules.
The points are deterministic but differs to quasi-MonteCarlo methods, where the
points are generated using low-discrepancy sequences. The points are constructed
using rank-1 lattice (as shown in Figure 2.4), or rank-2 lattice, Fibonacci lattice
etc. There are different lattice structures provided in the literature [34]. They
are a generalisations of one-dimensional rectangle rule. Kuo et al. [35], further
developed a component-by-component algorithm to rapidly generate lattice points
in the high dimensional integral domain using order-weighted lattice rules. But
many challenges lie ahead in the implementation of the algorithm for varied class

of integral functions.
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Figure 2.4: Lattice Points

The lattice points are regularised in the integral domain and deterministic simula-
tions can be performed similar to MCS, SGM. Using lattice rules the probabilistic
moments can be calculated, when apriori moment estimates of the objective func-

tion are not attainable using conventional approaches.

2.4 Structural optimization under uncertainty

The methods for structural optimization are widely used for the improvement of
performance and reduce the costs incurred in the design of engineering structures.
Over the past few decades, the complexity of systems need to be studied has grown
in accordance with the computational abilities associated with design optimization.
Considerable progress has been achieved in the field of design optimization and
is still an area of active research in engineering design and applied mathematics

communities.

In structural opimization, the parameters defining the performance of the structure
need to be evaluated for desired output and these are termed as design parameters.
The function characterizing the structural performance is called objective function.
Typically there are few constraints to be satisfied in a design optimization problem,
and thus defines the feasible domain in the design variable space. These constraints
are generally referred to as design constraints. Also bound limits are imposed on

the design variables and are referred to as side constaints.

In design optimization problems the objective function and the design constraints
are described as implicit functions of the design variables. and are evaluated by

numerical simulation techniques such as FEA/CFD.

The mathematical description of a structural optimization problem is expressed

as,



30 Chapter 2 Formulation of stochastic systems

Minimize  f(z),

T

Subject to  gi(z) <0 (i=1,2,..,m),
hi(z) =0 (i=1,2,.,q),
v, <z <y, (2.12)

where z € RP is the vector of design variables, f(z) is the objective function to be
minimized and g;(x), h;(x) are the inequality and equality constraints respectively.
xr, and xy are vectors of lower and upper bounds of design variables, respectively.
The objective and constraint functions can be expensive and since they are implicit
functions of design variables, structural analysis is performed whenever the values
are required. Structural cost, structural weight/ material volume, and performance
metrics such as compliance, natural frequencies, buckling loads, nodal stresses &
displacements are typical examples of objective and constraint functions. The
design variables include geometrical dimensions, shape or topology of strucutre,
material properties and other important parameters based on the definition of the
underlying functions. In practical applications of design optimization, the number
of design variables can be numerous and evaluating the function (i.e, objective
and constraint functions) can lead to use of excessive computational power and
there is a further increase in deducing the sensitivity analysis information. Hence
it is effective to impose a relationship between coupled design variables so that
the overall independent variables can be kept to minimum in design optimization
studies. For further exposition of these aspects, please refer to Dolstinis et al. [36],
Sigmund et al. [37] and Aurora [38].

Typically the optimal design of a structure is sought using conventional design
optimization tools such as optimality criteria methods and numerical optimiza-
tion techniques based on the deterministic analysis of the simulation model while

considering nominal or deterministic values of the design parameters.

2.5 Overview of problem formulations

The design optimum attained using earlier formulation Eq. 2.12, signifies the best
performance in theory, but in practical implementation such a design may not be

feasible due to the uncertainties in the design parameters. Such variations about
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the nominal values of design variables result in scatter of system performance
and the ideal optimum of deterministic structure may perform far worse than an

alternative design which is less sensitive to parameter variations [2-4].

The general procedure for structural optimisation taking into account the system
uncertainties, is based on safety factors and there is always ambiguity involved in
the choice of appropriate safety factor to be used for the design of novel structures.
Some of the sophisticated formulations incorporating uncertainties into structural

design optimization are given below.

2.5.1 Reliabity based design optimization

Reliability is the probabilistic study of a system performance over a given period
of time under specified service conditions. Although originally developed in 19
century for computing profitable rates to customer charges by maritime and fi-
nancial companies, it found its importance in predicting the failure of structural
sytems (i.e., aircrafts, automible, ships, bridges, etc.) under uncertainty factors

inherent in these systems.

Here the structural response is considered satisfactory if the design requirements
imposed on the structure are met within acceptable degree of certainty. These
requirements are termed as limit-state or constraints. Thus the concept of struc-
tural reliability is associated with the calculation and prediction of the probability
of occurence of limit-state violations and to choose alternative designs to improve

the reliabilty of the strucuture further minimizing the risk of catastrophic failures.

In reliability based design optimization (RBDO), the failure of the system or a
component under extreme events is taken into consideration. Lately this is the
popular approach of taking account of uncertainty in design optimization studies.
Here the objective function given in Eq. 2.12, is minimized satifying probabilistic
constraints rather than deterministic constraints. In this formulation, the prob-
ability of structural failure defined using limit state functions is described in the

constraint equations of the structural optimization problem.

From classical approach based on Apostalakis et al. [3], the reliability-based design

optimization can be mathematically expressed as,



32 Chapter 2 Formulation of stochastic systems

Minimize  f(z),

Subject to  P(gi(z) <0)—®(—5;) <0 (1 =1,2,..,m),
rp <z <ay, (2.13)

where P(g;(x) < 0) is the probability of failure, f3; is the safety index or reliability
index and & is the integral for the standardised normal distribution i.e., over the

range (0, 1).

2.5.2 Non-probabilistic design optimization

It is very difficult during the early stages of structural design, the quantification
of structural reliability or compliance to specific design requirements based upon
insufficient data or information for design variables, parameters, operating condi-
tions, boundary conditions etc. Design decisions are based upon fuzzy information
that can be vague, imprecise and incomplete. The uncertain information can also

be available as intervals with lower and upper limits.

As mentioned earlier in sec 2.2, the possibility, evidence, interval theory are used
to account for representing uncertainty with incomplete information. Possibility
based design optimization, evidence based design optimization are ways to handle
a combination of probabilistic as well as non-probabilistic design variables. In non-
deterministic optimization scenario, the structural optimization against failure is

often performed based on worst case analysis [39)].

2.5.3 Structual robust design optimization

The main aim in performing robust design is to reduce the variability and improve
the mean performance of a structure in the presence of uncertainties. Hence mean
value and standard deviations in performance functions are used to define the
objective function and the constraints. The mathematical model of robust design

problem is a multi-criteria optimization problem defined as,
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Minimizing — {E(f(z)), o(f(2))},
Subject to  E(gi(z)) + fio(gi(x)) <0 (1=1,2,..,m),
o(hj(z)) <of (1=1,2,..,1),

rr < x < 2y, (2.14)

where h;(z) (j = 1,2,...,0) represent constraints on standard deviations of the
response, (3; > 0 is a feasibility index for the respective constraint and o7 is the
upper limit for standard deviation of the response. For example if g is 3.0, in
order for the constraint condition Eq. 2.14., to be satisfied, the probability of
the original constraint being met should be higher than 0.9987. The feasibility
index is considered as an appropriate measure of the robustness corresponding to
design restrictions. The robust design problem is at least a two-design problem and
often the interests may vary. But a Pareto optimal design is one way of achieving
the trade-off between the two design objectives for robust design problems. The
estimation of moments (mean, variance) of performance functions, is central to

the robust design process.

This chapter presents formulation of stochastic systems and methods for estima-
tion of randomness in input parameters for structural models. In later chapters, a
conceptual framework for probabilsitic moment estimation in the context of robust

design process for stochastic sytems is provided.






Chapter 3

Stochastic collocation approach

Uncertainty can be incorporated into stochastic structural systems by modeling the
parametric uncertainties using probabilistic approach, where they are described
as random variables. In this chapter, some important attributes about stochas-
tic collocation methods and effective use of probabilistic moment estimation in
high-dimensional spaces using a Smolyak formula is given, followed by solution to

numerical examples with uncertain random variables.

The basic properties of random variables and the techniques for building the prob-

abilistic collocation method are given in the following section.

3.1 Stochastic collocation method

From a general perspective, the probabilistic model for a stochastic system can
be interpreted as a function f(u,t : ), where £ is the vector of random variables.
The model f can be a simple mathematical function or “black box” function such
as computer program (FEA, CFD). The useful information of a typical response
(f(u,t : &) is generally extracted through integration, i.e finding mean, vari-
ance and other higher order probabilistic moments, and further enables us the
construction of trajectories for probability density functions. There are multiple
approaches for numerically solving f(u,t : £) as discussed in sec 2.1-2.3 and in-
cludes sampling based approaches, generalized polynomial chaos and collocation

method, the latter of which is of interest here.

35
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The important characteristics such as expectation (or mean ), variance (%) and
other higher order moments of stochastic function f(u,t : &) are expressed as in-

tegrals and given by,

Elf(u,t: )] = / Flut: E)p(e) d¢, €T CQ. (3.1)
1 (u,t: €)] = /F (Flust €)= E[f(u,t : O))p(€) dc. (3.2)

where p(€) is the joint PDF of the random variable £ and T" is the sample space.
The moments (u, 02) of a multi-variate function f with random variables ¢ are
difficult to estimate since the integrand is bounded in high-dimensional space.
Numerical integration also popularly known as quadrature, is basically a problem
of characterizing a function over a domain by sample points by sum of function

values at n points, multiplied with respective weights w; and defined as,

/f(uat 1 &) d€, ~ Zwif(%t 1 &) (3.3)
r i=0

For a large-sale structural system, rarely f may be calculated analytically and
often simulation is required. To achieve high accuracy with minimal number of

simulations it is desirable to use an efficient discretization scheme for Eq (3.3).

The classical integration rules such as trapezoidal and Simpson’s rules are popular
1-D quadrature methods, collectively known as Newton-Cotes formulae. For con-
creteness let us consider the trapezoidal rule in dimension d = 1 for unit interval
[0,1]. In trapezoidal rule, the integrand is evaluated at equally spaced discrete

points in the integrable domain yielding an approximation,

| s dun 3w (34)

where m is a positive integer and the weights w, are given by wy = w,, = 1/(2m)
and w, = 1/m for 1 < n < m — 1. The error in the above approximation
is in the order of O(m™2), provided f is second order continuous on [0,1]. For
multi-dimensional case d > 2, the classical integration rules use Cartesian prod-
ucts of one-dimensional rules, where the node set is a Cartesian product of one-

dimensional node sets, and corresponding weights are products of weights from
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the one-dimensional rules. For integral domain I? = [0 1]¢ the d-dimensional

Cartesian product of the trpezoidal rules is illustrated as,

m
nl Ny

u) du =~ Wy oo Wy, f(— ooy — 3.5

W Z_jo 2_)0 et (s ) (3:5)

The total number of nodes in Eq (3.5), is N = (m + 1)¢ and the error is of order
O(N~2/1). With increasing dimension d the usefullness of error bound declines
rapidly. For example to attain a prescribed level of accuracy in absolute value
< 1072 one must use approximately 109 nodes and the number of nodes increases

exponentially with d.

Hence as Newton-Cotes formulae extended to higher dimensions the accuracy tends
to be quite poor in the order of O(N%?) and O(N*) respectively, where N is
the number of quadature points and d is the dimension. A detailed explanation
of these quadrature rules and their limitations is given by Davis and Rabinowitz
[40].

Gaussian Quadrature

Gaussian quadrature differs the Newton-cotes formulas in the selection of nodes
and weights such that the approximation is exact for low order polynomial function

F'. The approximation to the weighted integral is expressed as,

/ F(u)w(u)du ~ szF(uz) (3.6)

Gaussian quadrature rules are based on data points that are not equally spaced but
nodes of the orthogonal polynomials. Further, the selection of nodes and weights
depends on the underlying weighting function according to theorem proposed by
Davis and Rabinowitz [40].

Theorem 3.1

Assume @ ()=, is an orthonormal family of polynomials with respect to the weight-

ing function w(u) on the interval [a;b], and define oy so that oi(x) = agpa® + ...
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Let x;,1 = 1,....,n be the roots of the polynomial p(x). If a < x; < ... < x, < b
and if F € C*"[a;b], then

' F2n)(¢)
/a F(z)w(z)dx = g w; F(z;) a2 2 (20! (3.7)
for ¢ € [a;b] with

Apt1 /an

T @@ (38)

W; = —

The above theorem provides a means for estimating the nodes and weights for
any weighting function and also there exist Gaussian quadrature formula for wide

spectrum of weighting function with respective values of nodes and weights.

Gaussian quadrature rules which are polynomial based methods, use orthogonal
polynomials such as Legendre, Hermite or Laguerre polynomials [41]. The classical
orthogonal polynomials corresponding to special weight functions and the support
space are given in the Table 3.1. A brief synopsis of orthogonal polynomials is

provided in appendix [A].

Table 3.1: List of some important orthogonal polynomials :

Interval ~ Weight function Symbol Name

-1 1] 1 L,(zr)  Legendre
(-00 00) e H,(z)  Hermite
[0 c0) e Gn(z)  Laguerre
-1 1] (1 —a2?)~1/2 T.(xz)  Chebyschev

The choice of orthogonal polynomial basis is based upon the distribution of the
random variable, since the PDF of the random variable differs the weight function
of appropriate orthogonal polynomial by a constant. Typically Legendre polyno-
mials are used for uniform random variables and Hermite polynomials for normal
random variables. Gauss rules have polynomial exactness of 2n—1 with n function

evaluations. Thus an integrand with order 2n — 1 or less can be integrated exactly.

Gauss-Kronrod-Patterson quadratures was first developed by Kronrod [40] and
an extension to Gaussian quadrature rules. Later Patterson [42] iterated the se-

quence developed by Kronrod to achieve nested quadratures. The n point Gaussian
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quadrature rules have polynomial exactness of 2n — 1 and with p new points added

in the successive levels the exactness of these rules can be increased to 2n—1+>_ p.

Clenshaw-Curtis quadrature uses Chebyshev polynomials as a basis and they
achieve polynomial exactness of n. The nested quadrature rules are preferred
for high dimensional numerical integration, where lower order collocation points
are a subset of the higher order collocation points. Further details regarding the

economy and reliability of suitable 1-D quadrature rules is given in [42].

3.2 Sparse grid collocation approach

For high-dimensional integration, the number of collocation points where the in-
tegrand is to be evaluated, increases exponentially. Smolyak [43] introduced a
formula to reduce such complexities mentioned above and is the principal con-
stituent for sparse grid methods. The Smolyak formula uses a weighted linear
combination of special tensor products to reduce the integration grid size. This
proved to be an efficient discretization scheme and well suited for high dimensional
problems [44-47]. Sparse grid collocation method was developed in the context of

reducing computational cost for high dimensional problems.

3.2.1 Construction

Let k be the index of the grid and n be the number of points in the sparse grid.
Let U} and w} denote the one-dimension quadrature points and weights which can
be obtained by Gaussian quadrature, Clenshaw-Curtis rules, etc. For d-dimension
sampling points ﬁd, referred to as collocation points, with level & (k > 0), the

tensor product rule specific to the sparse grid is represented as,

Uh= | UreUre..oUH (3.9)
k—d+1<|i|<k
d
| i |= Z denotes summation of multi-indices. The weight w; corresponding to
i=1

— . ) k
the I*" collocation point & = [f;ill, ..... ,§Z~‘?‘d]T € ﬁd is,
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. d—1 4 .
_ (__1\k+d—l{| i1 3
w; = (—1) (k Cde | |>(wji1’ ..... ,wjjd). (3.10)

The integration of a multivariate function f, using the sparse grid approach is

given by,

/? OO ~ 3w (@) (3.11)
€ =1

Py is the number of all possible combinations of the multi-indices that satisfy
k—d+1 < |i] < k. Here in the sparse grid construction, the one dimensional rules
are considered to be nested. The relation between the level k and the order of
sparse grid varies for different one dimensional rules. For example, for Clenshaw-

Curtis rule, n = 2% 4+ 1, and for Gauss Hermite rule, n = 281 — 1.

Fig 3.1 illustrates the construction of a sparse grid considering a one dimensional
Clenshaw-Curtis rule for (d = 2, k = 2). With 2-level (k = 2) accuracy, the number
of collocation points are 5 in a one dimensional scenario and if two dimensions are
considered as equivalently important, there should be 5 points in each dimension.
Therefore, 25 collocation points are obtained by the full grid method with the
direct tensor product on the two sets of one-dimensional quadrature nodes. The
total number of collocation points for sparse grids obtained by carrying out a
tensor product on the possible combinations of [i1, 5] is 13. Here the acceptable
combinations are [UY U], [U} UY], (U} Uf], [U? UZ], [UE UY ] since 1 < iy +iy < 2.
The sparse grid approach enables one to exclude the combinations [U? U?], [U? U7]
and [U] U?]. Sparse grid points in two and three dimensions using the Clenshaw-

Curtis rule are shown in Figure 3.2.



Chapter 3 Stochastic collocation approach

41

u,’ U’ u;?

L] [ [}
* o 0 00 [ I ] [ ] [ ] L]
[ [ [ \
u'®u’ U ® U’ Ut ® U’
.
[] . >
. .
" L]
.
Ul ® Uy U’ @ Uy’ W,

Ui ® Ul

Full Grid (n = 25)

Sparse Grid (n=13)
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Table 3.2-3.3 lists the number of sparse grid collocation points required using
Clenshaw-Curtis and Gauss Hermite rules for varying dimensionality (d = 2,6,10,12)
and levels (k = 1,2..,5).

Table 3.2: Number of sparse grid points using Clenshaw-Curtis rule:

d= 2 6 10 12

5 13 21 25
13 85 221 313
29 389 1581 2649
65 1457 8801 17265

145 4865 41265 93489

T W N =

Table 3.3: Number of sparse grid collocation points using Gauss-Hermite
rule:

d= 2 6 10 12

) 13 21 25
21 109 261 361
73 713 2441 3873

225 3953 18881 340625
637 19397 126925 258681

[ N JUR NS o

In sparse grid quadrature methods, the points and weights are chosen from ten-
sor products of low-order one dimensional quadrature rules and thus efficiently
evaluate an integrand in high-dimensional space compared to the full quadrature
rules where the number of collocation points grow exponentially. But similar to
classical quadrature techniques, the sparse quadrature methods are sensitive to
the smoothness of the integrand. Though sparse quadrature enable us to estimate
the moments with less function evaluations for multivariate functions, it is diffi-
cult to accurately estimate the moments of complex non-linear functions. Higher
order (level k) collocation points need to be used for such integral estimation. But
with the increase of order of 1-D rule, the number of points further increases as
shown in Table 3.2-3.3. In order to mitigate this problem, a dimension adaptive

algorithm is proposed.
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3.3 Adaptive sparse grid approach

A sparse grid interpolation method is developed using hierarchical rules by Klimke
[48], based on piecewise polynomials which allows the inclusion of new points
between two existing SG points. Similar to the sparse grid quadrature method,
in sparse grid interpolation (SGI) the univariate interpolation basis is extended
to multivariate case using tensor products. The main difference being, the sparse
quadrature method uses 1-D quadrature points and weights, whereas SGI begins
with univariate interpolation formulae such as piecewise Gauss polynomials, which
are transformed to multi-dimensional basis functions. An interpolation method
with few support nodes is obtained, compared with a conventional interpolation

on a full grid.

3.3.1 Construction

Let «% be 1-D interpolation nodes (with their locations z%(j = 1,....m;)) and @'
1-D basis functions, respectively; the univariate interpolate function is then given

by,

U() =3 5 (3.12)

For the multivariate case d > 1 by tensor product,

miy mi,
U @ @U)(f) =D oY flalh, i) (P @ .. @ ). (3.13)
=1 jg=1

The sparse grid interpolation of f with level k using Smolyak formula is given by,

S d-1 A .
Aq,d)(f) = (=1)2 (q— i |).(UZl ® ..U, (3.14)
where | i |= 41+ ....+14, kK = ¢—d. In the computation of sparse grid interpolation
A(q,d)(f), only the function values at sparse grid points are to be known. The
set of collocation points H (g, d) are defined by,
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Hg.d)(f)= |J K"@.ox9), (3.15)

k+1<]i|<q

i ] are the set of points used by U*.

where x' = [z, ..., 2],

A dimension adaptive tensor product quadrature approach is proposed and imple-
mented by Gerstner and Griebel [49,50], considering a optimal index set i from a
more general index sets in the summation of Eq. (3.9). The self-adaptive algorithm
is used to find the optimum index through an iterative procedure. The algorithm
uses error estimate of the function and new nodal points are added locally to re-
fine the sparse grid based on the function roughness. It is a generalisation to the
sparse grid method and can improve the convergence rate and accuracy of the
conventional sparse grid quadrature approach. Sethuraman et al. [51], used the
adaptive technique using Lagrange polynomials in the analysis of cardiovascular
simulations incorporating uncertainties. Liu et al. [52], implements the adaptive
sparse grid algorithms for solving SPDE’s with applications to electromagnetic
scattering problems. The above studies suggest the effectiveness and substantial

computational savings with the adaptive sparse grid approach.

3.4 Numerical Results & Discussion

In this section, the probabilistic moment estimation approaches are tested for a
set of analytical functions, widely used as benchmark problems in optimization
studies [53,54]. The eight functions are selected with increasing dimension/vari-
ables and are widely used as global optimisation functions with multiple minima

respectively. The test functions are provided in the following subsection.

3.4.1 Test functions:

1. Forrester function (one variable):

y(x) = (6z; — 2)*sin(127; — 4), 1€ [0,1].
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2. Branin function (two variables):

> 5 1
y(x) = (31;2—ma&‘f—i—;ﬂm—6)24—10(1—8—7T cos(x1))+10, x1 € [-5,10], 22 € [0, 15].

3. Six-hump Camelback function (two variables):

6
y(x) = 4zt — 2.1a] + % + w1y — a5+ 4x5, 21 € [-2,2], 22 € [-1,1].

4. Mystery function (two variables):
y(x) = 34+0.01(xy—22)? —214+2(2—25)*+7sin(0.5z;) sin(0.72125), 1 € [0,5], 22 € [0, 5].

5. Hartmann Hj 4 function (three variables):

3

y(x) = — Zai exp[— Y Aijw; — Py)’], a; € [0,1].

j=1
where,
1 3.0 10 30 0.6890 0.1170 0.2673
1.2 A 0.1 10 35 P 0.4699 0.4387 0.7470
o = y = , g
3 3.0 10 30 0.1091 0.8732 0.5547
3.2 0.1 10 35 0.0381 0.5743 0.8828

6. Hartmann Hg 4 function (six variables):
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4 6
y(x) ==Y i expl- > Bij(w;—Qy)*), x;€[0,1].
i=1 j=1
where,
— -— T - -
10 005 3 17 0.1312 0.2329 0.2348 0.4047
1 3 10 35 8 0.1696 0.4135 0.1451 0.8828
1.2 B 17 17 1.7 0.05 0 0.5569 0.8307 0.3522 0.8732
o = s = s =
3 3.06 0.1 10 10 0.0124 0.3736 0.2883 0.5743
3.2 1.7 8 17 0.1 0.8283 0.1004 0.3047 0.1091
8 14 8 14 | | 0.5886  0.9991 0.6650 0.0381 |

7. Trid function (ten variables):

10

y(x) == (1, —1)" - inxi_l, z; € [-3,3].

i=1

8. Dixon-Price function (twelve variables):

m

y(x) = (x1 — 1)* + > _i[227 —z; ), x; € [-10,10].

=2
3.4.2 Comparative study

Section 3.4.1, summarises the eight test functions and the distribution of their
inputs. The variables in the test functions are uniformly distributed. The first
problem is a one-dimensional function, the second and fourth problems are two-
dimensional quartic functions with cosine and sine functions respectively. The
third problem is a two-dimensional sixth order polynomial function with interac-
tion among the random variables. The fifth and sixth problems are three and six
dimensional exponential functions. The seventh problem is a quadratic polyno-
mial with ten random variables. The last problem is a quartic polynomial function

with twelve design variables.
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The first and second order moments of the first test function are calculated ana-
lytically and the analytical solution for moments of the test functions (2-8) can be
found in the literature [53]. The analytical moments of the test functions are given
in Table 3.4. The probability weighted integrals are calculated using the conven-
tional sparse grid method (SGM), the adaptive sparse grid method (ASGM) and

a comparison is provided with respect to MCS approach.

Table 3.4: Analytical moments of test functions:

Objective Moments

function 1 o Dimension
1. Forrester 0.453 4.457 1D

2. Branin-Hoo 54 o1 2D

3. Camelback 20 26 2D

4. Mystery 6.80 5.98 2D

5. Hartmann Hs,4 -0.9 1.0 3D

6. Hartmann Hg4 -0.3 0.4 6D

7. Trid 40 16.5 10D

8. Dixon-Price 619328 271959 12D

The results for estimation of moments are given in Table 3.5. The relative per-
centage error estimations (compared with analytical solutions) are given in Table
3.6. The errors (e,, €,) in the estimation of mean and standard deviation are

calculated as,

. |(,utrue - ,uapp'r)l > 100

€, = , e, = |\Tire =) 100 (3.16)

Hitrue Otrue
The moments are estimated using MCS with 10000 points and averaged for 100
different trials. The order of 1-D quadrature rule is critical in the moment esti-
mation using SGM for the test functions. From Table 3.5, the mean and standard
deviation converges for problem 1 and 2 with 17, 65 points respectively using SGM.
The adaptive sparse grid method uses more points than SGM, to further discretize
the grid in order to better approximate the integrand. For problem 3, the points
required for the mean estimation is 29 and 145 points are required for calculating
0. This is due to the difference in the order of the integrand and similar trend
exist for problems (7-8). For problem 4, 321 points are required to estimate the
moments. For problem (5-6) the moments are calculated using 441, 4865 points
respectively. The order of the integrand defines the order (or level) of SGM to

be used for accurate estimation. The number of collocation points using adaptive
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sparse grid method is high compared to SGM for problems (1-7). But for high
dimensional (> 10D) non-linear problems, the number of points required to ac-
curately estimate the moments can be too high using sparse grid method (SGM).

The adaptive sparse grid method is preferred for such problems.

The objective functions (1-4) and their approximate representation using SGM
for level (k = 1,2,..6) are shown in Figures 3.3-3.9. From the figures it can be
concluded that for accurate estimation of ¢ the number of SG points required is
relatively high (eg. Mystery function Fig. 3.7.) and depends on the smoothness

of the integrable function.

In this chapter the application of the sparse grid method (SGM) and adaptive
sparse grid method (ASGM) are demonstrated for eight mathematical test func-
tions. The results presented in this chapter show that the methods are promising
for problems with high dimensionality. The main goal is to attain a general un-
derstanding of sparse grid quadrature when applied to high dimensional problems

with interactions among the random variable/inputs in the problems.

The use of sparse grid method (SGM) for uncertainty quantification approaches
have significance in the context of engineering problems, because of considerable

amount of variables involved in such problems.

However, for the moment estimation of complex systems, the number of uncertain
variables can be quite high and there is a limitation in the number of simulation
runs possible. SGM and ASGM methods enable us to estimate the moments of
system output response with few collocation points but doesn’t always address
the required reduction in the number of function evaluations, which is the focus

of further study.
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Figure 3.3: Approximate representation of Forrester function using SGM
for k=1,..,6.
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Figure 3.4: Branin-Hoo function.
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Chapter 4

Surrogate modeling for

probabilistic moment estimation

In this chapter, we discuss an important problem that is often encountered in
wide variety of engineering problems: function approximation. Usually such
a problem arises when computational effort needed in evaluating the objective

function is costly and complex in nature.

The uncertainty quantification techniques developed for stochastic systems should
be efficient in their implementation and execution. The simulation run time for
complex systems can be quite expensive. Response surface methods are commonly
used to characterize the system response, using an approximate mathematical
model. UQ methods can be applied on the response surface, rather than perform-
ing deterministic simulations on the actual system. Such strategies further help

in reducing the computational time involved in UQ studies.

Response surface methodology uses mathematical and statistical tools in the con-
struction of empirical model. The objective is to build a surrogate model® that
can optimally represent the system response by conducting a series of experiments
or runs of the simulation model at selected sample points in the design space as

shown in Fig 4.1.

After performing a series of runs of the simulation model, a set of outputs for
respective input data are obtained, on which regression or curve fitting is done.
The response surface seeks to find the functional relationship between the output

variable and a set of input variables using first order, second order or other higher

L In this thesis the terms “surrogate model” and “response surface” are used interchangeably.

57
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DOE
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(Xin) Xa0)
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Surrogate Model

Figure 4.1: Surrogate modelling of simulation based problems.

order polynomials. An important objective in response surface approximations
is to build a globally accurate surrogate model while attempting to minimise the

computational effort i.e the number of function evaluations.

The choice of design of experiments (DOE) used to sample the system, influences
the accuracy of the surrogate model. Several different strategies exist in performing

such experiments or runs, eg., full factorial design (FFD), central composite design

(CCD), Taguchi methods, etc [54].

In standard curve fitting by polynomial regression techniques, the true function y
sampled at n points, is approximated with regression functions f;, and respective

coefficients [y,

y(xD) =" Bufu(xD) + €D (i=1,....n). (4.1)
h
here € is the error in approximation. The above equation can be written as,
y =X +e (4.2)

where y is (n x 1) vector of responses and X is a (n X ¢) matrix of sample data
points, 5 is (¢ x 1) vector of regression parameters, € is a (¢ x 1) vector of error
terms and ¢ is the number of design points. The parameters § are determined
through least-squares regression, which minimizes the sum of the squares of the

deviations of predicted values, y(X), from the function evaluations y(X). Let L

is the square of the error given by,
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L=Y0, @ =e=(y—XB) (y— Xp),
(4.3)
= yTy — QﬁTXTy + ﬂTXTXﬁ

To minimise L, Eq. (4.3), is differentiated with respect to § and equated to zero,

oL

—— = oXTy +2X"TX3 = 0. 4.4
95 Y+ f=0 (4.4)

The fitted regression model is given by,

j =X, 6= (X"X)"'XTy. (4.5)

In the above polynomial regression model, higher order polynomials are required
to model the response of highly nonlinear functions. It may take a considerable
amount of sample data to estimate all the coefficients in the Eq. (4.5). There
are other alternative surrogate modelling techniques to represent the output re-
sponse, such as radial basis functions, neural networks, smoothing spline models,
Kriging, etc. A brief review of radial basis functions and Kriging is explained in

the following sections.

4.1 Radial basis functions

Radial basis functions developed by Broomhead and Lowe [55], use a weighted sum
of simple basis functions in order to represent the complex nonlinear response. Let
the approximated function denoted by f(x), be used as a surrogate model for true
function f(z). The surrogate model is obtained for input sampling data X =
{21,729, ..,2,}T and the observed responses y = {y1,¥2,..,¥m}.. The surrogate
model f (x) obtained using radial basis functions interploates the sampling data

and is given by,

F=> Mele =zl =y, G=12,,..m (4.6)
Jj=1
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here x; are the centres of basis functions considered to be the sample data points.
The term 1 (||x — z,||) represents a set of m basis functions evaluated as Euclidean
distance between prediction x and centres z; of the basis functions. A list of

basis functions is given in Table 4.1, here z is the Euclidean norm. Using the

Table 4.1: Possible choices for basis functions 1(z) :

1. Linear Y(z) = ||z||
2. Cubic P(z) = ||z|]?

3. Thin plate spline V(z) = ||z||* log(]|z]|)

|||
202 )

5. Multiquadraic Y(z) = +/||z]]? + o2

6. Inverse multiquadric ¢ (z) = W

4. Gaussian (z)= exp(—

7. Kriging (z) = exp(— 27:1 Oil|z| ")

interpolation condition from Eq. (4.6), the coeflicients A; can be deduced from

the set of linear equations,

A A11 Alm A
Ym Aml Amm /\m
where A;; £ (|| z —a; ||, i,j=1,2,..m.

The coefficients \; are calculated as A = A~ 'y, if the inverse to matrix A ex-
ists. Apart from A, additional parameters are estimated for certain class of basis

functions (eg. Kriging basis function).
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4.2 Kriging

Kriging is a popular surrogate modeling technique and has been applied to a
variety of engineering design problems such as aerodynamic, structural and multi-
objective design problems [56]-[59]. Th origins of Kriging lies in the field of geo-
statistics [60] and was later developed for the field of engineering by Sacks et al [61].
Kriging is rooted in the statistical framework thereby fits well in the uncertainty

quantification studies. A brief overview of Kriging is presented here.

For an approximated function f () using Kriging, the observed responses y are
considered from a stochastic process and denoted by Y = {Y,Ys,...., Y, }T. The
output of the function f(x) at x, is characterized by random variable Y (z), nor-

2

mally distributed with mean g and variance o®. Let z; and z; are two sample

points and assuming the function modeled is smooth and continuous, the output
responses y(x;) and y(z;) are close if the distance ||z; — x;|| is small. This is sta-
tistically represented by assuming that the random variables Y(z;) and Y (x;) are
likely to be correlated if ||x; — x;|| is small. The correlation between the random

variables is given by,

Corr[Y (2,), Y (2;)] = exp(= S0 | 2 —an 7). (602 0, pr € [0,2]). (4.7)

From Eq. (4.7), a n x n correlation matrix can be constructed for all the observed

data. The correlation matrix W is given by,

Corr[Y(z1),Y(x1)] --- Corr[Y(z1), Y(x,)]

Corr[Y (z,),Y(x1)] -+ Corr[Y(z,), Y (z,)]

The covariance matrix equals to,

Cov(Y,Y) = o W. (4.8)

The correlation is 1 if z; = x;, and zero as || x; — x; [|[= oco. In Eq. 4.7, (6,,
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pr) are the two hyperparameters, ), accounts for different levels of correlation in
each dimension and p, governs the degree of smoothness of correlation (p, = 2

results in Gaussian correlation).

The hyperparameters 6, and pj, are fitted to maximize the likelihood on observed
data. Maximizing the likelihood identifies the parameters that model the func-
tion approximation consistently with the observed data. The likelihood function

proposed by Donald Jones [62] is given by,

1 —(y—1)" T (y — 1p)
2y _
L0110 = gy 172 207 b @)
or, after natural logarithms of the function,
—1)T ey -1
Pin(o?) - L m(w)) - (WEHE W )

202

where 1 is vector of ones of dimension n. The optimal values of mean and variance
maximizing Eq. (4.10) are obtained by taking derivatives of the above equation

and setting to zero, giving

17g—1! — 1)y — 14
v 52 W—14) (y—14) (4.11)
17"w-11 n

i=

A concentrated log-likelihood function can be derived by substituting the above

mean and variance into the log-likelihood function Eq. (4.10),

In(L) = —gzn(ﬁ) - %ln(]\IlD. (4.12)

The concentrated likelihood function depends on correlation matrix ¥ and hence
on the hyper parameters (0, py). The calculation of log-likelihood function is
computationally intensive in Kriging process. The inversion of the positive definite

correlation matrix (¥~!), is performed with Cholesky factorization.

The hyperparameters are optimally choosen in order to maximise the likelihood
function and is an optimization problem. Tuning the hyperparameters can be com-

putationally expensive with cost depending on the dimensionality of the problem
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and the number of sample points required to build the Kriging response surface
which in turn defines the size of correlation matrix W. In this report, the hyperpa-
rameters are selected using a hybrid particle swarm based optimization algorithm,
to reduce the cost involved in the optimization of log-likelihood function. The
hybrid strategy developed by Toal et al. [63], performs well compared to genetic
algorithm and traditional particle swarm optimization with respect to likelihood

optimization.

4.3 Prediction using a Kriging model

Once an appropriate set of hyperparameters are obtained, the surrogate model can
be used to make new prediction ¢ at point x which is consistent with the observed
data y. The quality of the estimate is evaluated by adding g to the observed data,
y = {y,9}", and computing the augmented likelihood function.

The augmented correlation matrix is given by,

- (T oy
o (2 »

where 1 is the vector of correlations between observed data and the prediction,

Corr[Y(z;), Y(x)]
= : : (4.14)
Corr[Y (z,), Y(x)]

By substituting the augmented correlation matrix Eq. (4.13) into the log-likelihood
equation (4.10), the augmented likelihood function which is a function of y(z) is

derived,

(7 — 1)y — 14)
262

n .9 1 ~
= 5n(6%) = 5 In([¥)) - : (4.15)

where fi and 62 are known from Eq. (4.11).
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The augmented likelihood calculated using optimum parameters, reflects how con-
sistent the prediction is with the observed data. The best estimate for this pre-

diction is the value of § that maximises the augmented likelihood function.

By substituting a partitioned inverse formulation [64] of ¥ into Eq. (4.13), and
by differentiating with respect to ¢ we obtain,

~1 o [T (y — 1)
e 00 e 10

By equating the above equation to zero the Kriging predictor is obtained, and is

given by,

g(x) = i+ TNy — 1), (4.17)

The Kriging predictor is deduced for interpolating model. In the presence of
noise in the observed data, the above Kriging formulation may yield a model that
overfits the observed data. This can be filtered by using a regression constant \.
The regression constant is added to the leading diagonal of ¥ producing W-+\I,
where I is the identity matrix. Using the similar derivation for interpolating model,
the Kriging prediction for regression model can be deduced. The regression based

predicted model is given by,

() = iy + T (T +AD "Ny — 1in), (4.18)
where,

17(T + D)ty
i = . 4.1
Hr = 7@ 1D 11 (4.19)

Using maximum likelihood estimation, a suitable regression constant A is found in

the similar way as other model parameters.

4.3.1 Sample test case

Probabilistic moment estimation of a two-dimensional Branin-Hoo function is per-

formed considering radial basis functions and Kriging based surrogate model.
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Sparse grid moment estimation approach is performed on the surrogate model
built using a linear, cubic and thin plate spline radial basis functions and a Krig-

ing response surface, for Branin-Hoo function provided in the section 3.4.1.

The analytical solution for the moments of Branin-Hoo function are 54 and 51
respectively and the number of collocation points required to accurately estimate
the mean and variance using sparse grid method is 65. To enable a direct com-
parison for probabilistic moment estimation with respect to analytical solution,
the models are built using 65 sample space design points. Latin hypercube based
sampling points are used to build the surrogate models. The probabilistic mo-
ments estimated using the surrogate models are averaged for 20 different trials of
LHS points. The approximate representation of Branin-Hoo function using the
surrogate models built with 65 LHS design points are shown in Fig 4.2-4.3. The
estimated moments and the relative percentage errors in the moment estimation

with respect to analytical moments are provided in Table 4.2.

Table 4.2: Probabilistic moments for Branin-Hoo test function.

Objective Moments Error %
function 1 o €L €
1. Linear basis function 55.194 47.849  2.21 6.18
2. Cubic basis function 54.834 48937 1.54 4.05
3. Thin plate spline basis function 54.626 49.730  1.16 2.49
4. Kriging 54.8657 51.6999 1.60 1.37
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\‘“\\\\\‘\\\\\‘\‘\‘\\\\\\“\\\\\‘\\

N W
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Figure 4.2: Branin-Hoo function.

The moments are estimated within (e,, €, < 2%) accuracy using the Kriging
model. The error in estimation of standard deviation (e, > 2%) is relatively high

using linear, cubic and thin plate spline basis functions.
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Figure 4.3: Surrogate models using linear, cubic, thin plate spline and
Kriging basis functions.

UQ approaches require a large number of function evaluations and the problem
is computationally intensive if the evaluating function is an expensive simulation
model. Surrogate modeling techniques can be useful in performing such studies.
The modeling cost involved in constructing a surrogate model depends on the

number of sample points and the type of surrogate model used.

Although the moments are estimated within 2% accuracy using a Kriging model
for two dimensional Branin-Hoo function built with a sampling plan comprising of
65 points. Similar studies cannot be performed for moment estimation of multi-
variable objective functions in a high-dimensional space. Since the number of
function evaluations required to built the surrogate model is too high. A Kriging

based adaptive approach is presented in the next section to address such problems.

4.4 Kriging based adaptive approach

In stochastic engineering simulations, the non-intrusive U() methods directly solve
the deterministic problem rather than using a suitable approximation concept to

interface the analysis software and surrogate modeling techniques. As mentioned
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earlier surrogate modeling techniques can be used in UQ studies where the ob-
jective function f with random variables is represented by a surrogate model f )
In the current study, Kriging based surrogate models are used to characterize the
objective function over the stochastic space I'. The modeling cost involved in con-
structing a Kriging model depends on the selected sampling plan. Some of these

aspects are discussed in the following sections.

4.4.1 Basic Strategy & Sampling Plan Criteria

A Kriging model is an approximation of a true function and may not be a glob-
ally accurate model unless the initial sampling plan comprises of all the observed
data points in the design space. A basic strategy commonly used in Kriging based
approaches is presented as a flow chart in Fig. 4.4. Initially, without prior knowl-
edge of the design space, a initial sample based on sampling plan (DOE) is used.
In the first stage, the Kriging model is built based on true simulations using the
initial sample. The second stage searches the surrogate via infill sampling criteria
to find a new update point. The update point is evaluated by model evaluation
and added to the other sample points. The Kriging model is tuned and the pro-
cess is repeated for maximum number of affordable simulations, or until sufficient
accuracy of model is reached. The Kriging based approach provides an estimate
of the error in the model prediction. The mean squared error (MSE) in a Kriging

model based prediction proposed by Jones [62] is given by,

1—-1Tw 1y

Z(x)=0% |1 -t W lp + o117

(4.20)
In the current work for the process of model refinement, the update points can be

chosen based on the above criteria.

The Kriging model built using the initial sampling plan can be based on psuedo-
random points, Latin hypercube points or sparse grid collocation points, etc. The
sample points should be chosen optimally to yield a response surface that repre-

sents the underlying function.

Sparse grid collocation points are fixed and deterministic in the multi-dimensional
stochastic space. For moment estimation of complex non-linear functions in high
dimensional space, a very high number of sparse grid points may be required.

Building a surrogate model considering of all the points is often unrealistic. Few
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Figure 4.4: Basic strategy for surrogate modeling.

studies have been conducted considering surrogate modelling in U@ studies by
Park and Grandhi et al. [65]. Dwight et al. [66], proposed a flexible non-intrusive
approach to parametric uncertainty quantification problems. They employ a Krig-
ing based response surface in the parameter space. The test cases considered are
low to moderate dimension problems (d=2,4). The models were built using LHS
points and moment estimation was done on the surrogate model using various
moment estimation approaches. The advantage of using surrogate model with re-
spect to other approaches (MCS, SGM) is presented. Further studies are needed

to extend the method to solve high-dimensional problems.

Here a new approach is proposed to build the Kriging model using collocation
points, where the subsequent function evaluations will be carried out for moment
estimation. The main objective is to improve the quality of Kriging response sur-
face for moment estimation, considering only few collocation points in the support

space for which,

i) the moments estimated using the Kriging model are within sufficient accuracy
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(£5%),

ii) the built-in Kriging surface represents the true objective function with few

collocation points (a subset of the full sample space design points!).

Two different approaches can be used to select the update points to the initial

sampling plan,
i) based on the Euclidean distance between the successive infill points,

ii) or minimising the variance (or mean squared error (MSE)) between predictions

from successive surrogate models that is built from additional sampling points.

The second approach is considered in this work, since the first one considers the
distance metric (eg. Morris-Mitchell criteria [67]) between the collocation points.
It can be quite deceptive in high-dimensional stochastic space with large numbers
of sparse grid points. The proposed adaptive approach considering the above crite-

ria is shown in Fig 4.5. The following steps are performed in the adaptive approach,

Step 1: First a surrogate model is built with a few initial samples taken from
the sparse grid sampling plan, the Kriging hyperparameters are estimated using a

hybrid particle swarm optimization alogrithm proposed by David et al.[63].

Step 2: In the next step, the screening of sample space design comprising of

sparse grid design points using the Kriging model is done.

Step 3: A few additional points (5-10) from the sparse grid sample space de-
sign, with maximum predicted error (MSE) are added to the initial sampling plan
to improve the surrogate model. Probabilistic moments are estimated on the up-

dated surrogate model.

Step 4: The procedure is repeated till the estimated moments on the Kriging
model are obtained within desired accuracy with respect to reference solution. A
sparse grid method with higher order, is used both to choose the sample points
and to estimate the moments on the Kriging model. The error predicted by the
Kriging model in the sample space design reduces as additional points are added

to the initial sampling plan.

1 Sample space design comprises of higher order collocation points (k=6) and first order

collocation points (k=1) are chosen as initial sampling plan.
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For engineering problems requiring high fidelity computer simulations, the stop-
ping criterion for the proposed algorithm is governed by the maximum number of
function evaluations feasible for performing the adaptive approach. The choice of
e /(MSE) error criteria for Kriging model update, depends on the range of objec-
tive function, typically a value of 0.001 is assigned [54]. It is necessary to have a
limitation on the total number of points to be used in the sampling plan, obtained
after each update, since it is computationally expensive to build a Kriging surface
using a large sampling plan for high dimensional problems. But this approach is
very much preferred over conventional SGM approach where function evaluations
needed to accurately estimate the probabilistic moments is very high and the order

of error convergence is O(2"k41) [44].
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Figure 4.5: Overview of Kriging based adaptive procedure
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4.5 Numerical Results & Discussion

In this section the application of MCS, the sparse grid method, adaptive sparse
grid method, a simple Kriging based surrogate model and the Kriging based adap-
tive approach are demonstrated for eight mathematical test functions with varying
dimensionality and strong interaction among the random variables. The test func-

tions are presented in section 3.4.1.

The results for estimation of moments are given in Table 4.1. The relative percent-
age error estimations are given in Table 4.2. The errors (e, €,) in the estimation

of mean and standard deviation are calculated as,

‘<,uanalyt7jcal - ljfapp’/‘)| % 100 (Uanalytical _ Uappr)| % 100. (421)

) € = |
Hanalytical O analytical

€y =

To begin with, MCS is used to estimate the moments of the eight test problems.
The number of points used for MCS is 10000, as shown in Table 4.1.

Sparse grid method (SGM) is used in probabilistic moment estimation of the ana-
lytic functions. The estimated moments of the test functions and the points/nodes
required to accurately estimate the moments using SGM are presented in Table
4.1.

For Kriging based adaptive approach, the initial sample points (DOE) used for
building the Kriging model are first order sparse grid points. The full sample space
design comprises of sixth order SG points. The mean square error is predicted
using Kriging model on the sample space design and 5 — 10 points with maximum
error (MSE) are updated to the initial sampling plan. Moments are estimated
using SGM on the updated Kriging response surface attained. The process is

continued till sufficient accuracy is reached in estimating the moments.

Finally, the Kriging model is built using Latin Hypercube sample (LHS) points
and moment estimation is done using SGM on the resulting Kriging model. The
number of optimal sampling points obtained using adaptive approach are used to
build the Kriging model. Here the aim is to compare probabilistic moment estima-
tion by the conventional Kriging approach and Kriging based adaptive approach

for same number of sampling points.
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The number of function evaluations required to accurately estimate the moments
is very high using MCS, and ASGM methods. The error in the moment estimation

is particularly high for problems 5 and 6, which are exponential functions.

The number of model evaluations needed for moment estimation (within < +5%accuracy)
of problems 1-8, is much less using the adaptive approach compared to MCS, SGM
and ASGM methods. A small fraction of sample space design points are used to
build the Kriging response surface. The function evaluations needed in building a
Kriging model for ten dimensional Trid function is less compared to Hartmanne 4
function (428 points), because of the exponential nature of the later function.
Similar trend is observed for two dimesional test functions 2, 3 & 4. The number
of points required in the model construction differs for each problem using the

adaptive approach due to the variation in those nonlinear functions.

If same number of LHS points are used with conventional Kriging based approach,
the errors in estimation are quite high for problems 4-6, & 8 as shown in Table 4.2.
But the moments are estimated with an accuracy of (< +3%) for problems 1-3,
& T respectively. The Kriging model built using LHS points performs better than
other approaches in estimating the moments of functions (1-3). The Kriging based
adaptive approach performs well for problems 1-4, & 7, but there is small amount
of variation in the estimated moments for problems 5, 6, & 8. For a reasonably
accurate moment estimation (£5%), the proposed approach best estimates the

moments of high-dimensional non-linear functions.
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Objective functions (1-4) and their approximate representation using the SGM, the
adaptive approach, and random Latin hypercube points are shown in Figures 4.6-
4.13. From the figures it can be concluded that the LHS based Kriging approach
approximates the functions reasonably well for problems (1-3) but fails to represent
the Mystery function due to the multi-modal nature of the Mystery function, as
shown in Fig 4.10. The adaptive approach well represents the objective functions

(1-4) with fewer SG collocation design points.

20 T T T T 20

I I I I I I I I
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 4.6: Forrester function and approximate representation of true func-
tion using SGM (k=4).

20 T T T T 20

0 0.2 04 « 0.6 0.8 1 0 0.2 04 0.6 0.8 1
X

Figure 4.7: Approximate representation of true function using adaptive
and simple Kriging approaches.
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Figure 4.8: Branin-Hoo function and approximate representation of true
function using SGM (n=65).

Figure 4.9: Approximate representation of true function using adaptive
and simple Kriging approaches (n=30).
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Figure 4.10: Mystery function and approximate representation of true
function using SGM (n=321).
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Figure 4.11: Approximate representation of true function using adaptive
and simple Kriging approaches (n=64).
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Figure 4.12: Camelback function and approximate representation of true
function using SGM (n=145).

Figure 4.13: Approximate representation of true function using adaptive
and simple Kriging approaches (n=65).



Chapter 5

Application of uncertainty
quantification methods for

structural systems

In the previous chapters, a wide variety of methods are studied and applied to
improve the performance and also to reduce the computational cost in the estima-
tion of probabilistic moments for high dimensional numerical test functions. From
a heuristic point of view, it can be concluded that the probabilistic content of
the output response quantity is characterized in its probabilistic density function.
Two engineering application oriented problems are presented in this chapter in
order to illustrate the performance of the various probabilistic moment estimation

approaches described in the previous chapters.

The first example deals with a comparison of the approaches for uncertainty quan-
tification of maximum von Mises stresses in a plate with holes. The discontinuity
in the stress field along with the complexities in approximation of the output re-
sponse makes the test model of particular interest and poses specific difficulties
for UQ methods.

The second example deals with an elastic truss structure, with the exception that
the random variables are described using non-Gaussian random variables. This ex-
ample allows to illustrate the capabilities and limitations of the proposed approach
and further illustrating the flexibility of the adaptive approach over conventional

techniques in probabilistic moment estimation.
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A schematic view of the typical working procedure for probabilistic moment esti-
mation is shown in Fig. 5.1. The following steps are performed in estimating the

probabilistic moments :

Step 1 : Identifying the input parameters (§;) of the simulation model and prescrib-
ing them in a probabilistic context using appropriate definition of random variable.
Since the variables can be uniform, Gaussian, or exponentially distributed as given

in appendix [A]. Next generate a script file for the description of random variable.

Step 2: The random variables are perturbed based on the given uncertainty and
incorporated into the nominal input file of the simulation model. Simulations are
carried out to estimate the response of the structural model, for varied degrees of

uncertainty in the random variables.

Step 3: After performing a number of deterministic simulations on the model, con-
sidering all the realizations of the random variables (;), one collects an ensemble
of solutions, i.e., realizations of the random solutions M (§;) where M refers to the

simulation model.

Step 4: Various probabilistic moment estimation approaches proposed in the ear-
lier chapters were performed to estimate the response statistics such as mean, vari-
ance, and other higher order moments of the output respose of a given stochastic

simulation model.

MATLAB PROGRAM FEA/CFD SOLVER

Input. Random Genericseript file Step-1
Variable (RV) definitions " LithRy
Perturb RV in . Bun no-mlnal
theinput file input file

Solution

Step-2

Nominal response

Read from file

:

uQ propagation
techniques

y
1

Figure 5.1: Flowchart for implementation probabilistic moment estimation
approaches.

Matrix &
vectorfile

Step-3




Chapter 5 Application of uncertainty quantification methods for structural
systems 83

5.1 Elasticity problem - a plate with holes

P=10N/mm?

A A A A

. A

AT
W

o dinecm

Figure 5.2: Plate with two holes.

The moment estimation approaches presented in this thesis are next used to esti-
mate the moments in a two-dimensional plate with two holes as shown in Fig 5.2.
The positions (X7, Y}), (X2, Y2) of the two holes are constrained to move ran-
domly in x and y directions. The four random variables are uniformly distributed
as shown in Table 5.1. The output quantity of interest are the maximum von
Mises stresses in the plate. The plate is clamped at the left edge and a pressure of
p= 10 N/mm? is applied on the other end. The Young’s modulus of the plate is
E= 209 GPa, and Poisson ratio, (v) = 0.3. The in-plane stresses in the deformed
plate are shown in Fig 5.3.

Table 5.1
Variable | Min. Value | Max. Value
Xi(mm) -14.5 -15.5
Y1 (mm) -0.5 0.5
Xo(mm) 14.5 15.5
Y5 (mm) -0.5 0.5

Four different probabilistic moment estimation methods are applied to the test
problem and results are shown in Table 5.2. In the first case, Monte-Carlo sim-
ulations are carried out to estimate the probabilistic moments. The number of

stochastic simulations performed using MCS are 5000.

In the second case, the sparse grid method (SGM) is used for probabilistic moment

estimation. A Clenshaw-Curtis one-dimensional rule is used in the sparse grid
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Figure 5.3: von Mises stresses in plate with deformed geometry.

construction. The order or level of 1-D rule used in the sparse grid construction

is varied from lower to higher level to accurately estimate the moments.

In the third case, Kriging based adaptive approach is used for probabilistic moment
estimation. The initial sample points (or DOE) used to build the Kriging model
are the first order sparse grid (SG) points. Here we consider a full sample space
design comprising of fifth order SG points. The mean square error (MSE) criteria is
used to screen the design points from the full sample space design and the points
with maximum error are updated to the initial DOE. Moments are estimated
using SGM on the improved Kriging response surface attained using the updated

sampling plan.

In the final case, the Kriging model is built using Latin-hypercube sample points
and moment estimation is performed using sparse grid method on the bult-in Krig-
ing surrogate model. The number of LHS points used to build the Kriging model
are considered to be the same number as attained using the adaptive approach.
The intent is to provide a comparision using a simple bulit-in Kriging model and

the one obtained iteratively using adaptive approach. The estimated moments
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Table 5.2: Probabilistic moment estimation of maximum von Mises stresses
in the plate :

Method i o time(t) | Fealls | €, €o
MCS 36.2176 | 0.8633 17hr. 19 min | 5000 | O 0
level(k)
1 36.0812 | 0.6079 2 min 910.38 | 29.58
2 36.0822 | 0.6185 8 min 41 1 0.37 | 28.36
SGM 3 36.4146 | 0.7054 27 min 137 1 0.54 | 18.29
4 36.4575 | 0.7385 lhr. 18 min 401 | 0.66 | 14.46
D 36.340 | 0.8735 3hr. 41 min | 1105 | 0.34 | 1.18
6 36.340 | 0.8691 O9hr. 52 min | 2929 | 0.34 | 0.67
Adaptive
approach 36.4348 | 0.8463 | 2hr.18 min 229 | 0.60 | 1.97
(47 min)
Kriging 36.4544 | 0.7195 47 min 229 1 0.65 | 16.65
(Averaged for (15hr. 39 min
20 trials) for 20 trials)

are averaged for 20 different trials of Kriging models built successively using LHS

points.

Similar to earlier studies the relative percentage errors (e,, €,) in the estimation

of mean and standard deviation of the stresses are calculated as,

(UMCS - Uappr)

|(MMC:M;5appr>| % 100

: € = | | x100.  (5.1)

€, =
g oMCS

Here the reference solution for the estimated moments of the plate is calculated
using MCS. The convergence criteria considered for the estimated moments is +2%

with respect to reference solution.

In the current problem, a single model evaluation takes ~ (11—13) seconds. Figure
5.4., shows the convergence for MCS, SGM (k=5) and adaptive approaches in
estimating the probabilistic moments. Figures 5.5 and 5.6, shows the positions of

the centres of two holes (X7, Y1), (X2,Y5) perturbed according to random variable
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definition and where model simulations are carried out using adaptive and SGM

(k=5) approaches.

The four methods estimate the mean reasonably well (¢, < 1%), but there is
a distinctive variation in the estimation of standard deviation of the stresses.
The number of FEA simulation runs required to accurately estimate o is very
high using MCS and SGM methods. The error in the estimation of o reduces
as the order of SGM is increased. The sparse grid method uses 1105 simulation
runs to estimate mean and standard deviation within +1% and 2% accuracy
respectively. The adaptive approach estimates o accurately with 229 simulation
runs with relative error e, < 2%. The time taken to perform the simulation runs
is 47 minutes but there is an additional amount of time (91 minutes) spent in

tuning the hyperparameters and overall update process of the Kriging model.

The number of model evaluations required for probabilistic moment estimation, is
much less using the adaptive approach compared with MCS and SGM approaches
as shown in Table 5.2. A fraction of sample space design points are needed in
building the Kriging model. But if LHS points of same number are used to build
the Kriging model, the errors in estimation of o is high (16.65%). Hence the
adaptive approach performs best compared to other approaches although there is
an extra time involved in tuning the hyperparameters and overall update process

of the Kriging model.
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Figure 5.4: Moment estimation using MCS, SGM (k=5) and adaptive

approaches.
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Figure 5.5: Positions of centres of two holes obtained and analysed using
Kriging based adaptive approach (n=229).
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Figure 5.6: Positions of centres of two holes obtained using SG (n=1105)
design.
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5.2 Elastic truss structure

The geometry for a simply supported truss structure presented in Figure 5.7,
is considered for the application of UQ approaches. The test problem is used
as a benchmark test case in order to solve a reliability problem involving non
Gaussian random variables. Further a regression method was performed on this
problem for estimating the PC coefficients by regression [19]. A comprehensive
representation of intrusive computational schemes for the truss structure in the
context of reliability based studies can be found in [68]. The truss structure
is made of 23 member elastic bars, whose Young’s modulus and cross sections
are uncertain. The truss structure is loaded by six vertical loads P1-P6. The
ten independent random variables with respective distribution, mean, standard

deviation are given in Table 5.3.

Here the simple elastic structure is used to estimate the probabilistic moments
by various approaches described in the previous sections. The response statistics
such as probability density function and moments of the mid-span vertical displace-
ment of the truss structure are considered with respect to a maximal admissible

displacement.

Ps P; P; P4 Ps Ps

\
Ey, A 1
Vi

24m

Figure 5.7: Elastic truss structure with 23 members.

The typical output response, in this case the mid-span deflection v can be modeled

as a function of input random variables £ and is given by,

U:M(El,EQ,Al,AQ,Pl....PG). (52)
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where M is the finite element based model function. By transforming the in-
put random vector X = {E}, Ey, Ay, Ay, P....Ps}T into a standardized Gaussian

vector,

& =Fil(o(Xy), i=1,..10. (5.3)

where F, is the CDF of the i* component of X and ¢ is the standard normal
CDF.

Table 5.3: Truss structure - Input random variables :

Description Name Distribution Mean Standard deviation
Young’s modulus  E1, E2 (Pa) Lognormal 2.10x10! 2.10x10%
Cross section of Al(m?) Lognormal  2.0x1073 2.0x1074

the horizontal bars

Cross section of A2(m?) Lognormal  1.0x1073 1.0x1074
the vertical bars

Loads P1-P6 (N) Gumbel 5.0x10% 7.5x103

The non intrusive UQ methods applied for probabilistic moment estimation and

comparison in this problem includes:

Monte Carlo simulation (MCS); 100000 samples are used .

LHS sampling; 10000 samples are used.

collocation scheme, i.e, sparse grid quadrature constructed using Gauss pat-

terson 1-D rules,

multi-point adaptive strategy, using sparse grid collocation design points.

In the first case, the reference solution is obtained by crude Monte Carlo simulation
using 100,000 runs of the finite element model. In second case, LHS sampling
points are used to perturb the random variables and the moments are estimated

from the ensemble of random solutions for the output response.
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In the third case, sparse grid collocation method is used, where the random vari-
ables are defined using appropriate definitions and Gauss-patterson 1-D rules are
used in the sparse grid construction. The first, second, third and fourth order

moments are estimated relatively accurate with 221 finite element simulations.

In fourth case, the Kriging based adaptive approach is used where similar to SGM,
Gauss patterson based sparse grid points are selected as sampling plan. Initally
5 points are used to built the Kriging model and additional sampling points are
selected based on MSE criteria. The moments are estimated on the Kriging model
using sparse grid method, the estimated moments are relatively accurate with 98

model simulations.

The probability density function (PDF) of the maximal deflection (as shown in
Fig .5.8) can be estimated by post processing the results obtained using the four
methods mentioned above. It is observed that the sparse grid expansion and
adaptive approaches converge more rapidly and closer to reference solution than

LHS based simulation technique.

The multi-point Kriging based adaptive approach performs noticeably faster with
computational gain in terms of number of simulations to be carried out. It allows
adaptive approach to estimate moments closer to reference solution using 98 sparse
grid nodes and with less function calls to FEA program, than the one associated

with a conventional sparse grid approach performed using 221 nodes.

Here we used a structural test case problem with considerable number of ran-
dom variables with strong interaction. But similar scenario do not exist for other
complex problems, where each simulation may last for hours and also the random
parameters can be quite high (10-20). Hence there is a limitation on the maximum
number of simulations to be carried out for estimating the moments. The Kriging
based adaptive approach is affordable and preferred over other approaches for such

high-dimensional problems.
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Table 5.4: Truss structure - Estimates of the first four statistical moments
of the mid-span displacement:

Moment Ref. Solution Simulation Sparse grid Adaptive approach
LHS SGM (K=2) SG Points

Mean Value 0.0847 0.0858 0.0847 0.0848
Std. deviation 0.0117 0.0181 0.0117 0.0118
Skewness -0.4691 -0.6550 -0.4843 -0.4779
Kurtosis 3.3502 3.6917 3.3816 3.2568
Number of FE runs 100,000 10,000 221 98

40 T

—| HS
a5k Adaptive approach | |

—Reference
- Smolyak (k=2)

30

20~

wn
T

1 L 1 | | |
—8.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02

Figure 5.8: Truss - probability density function of the maximal deflection.



Chapter 6

Conclusions & Recommendations
for Further Work

The final chapter of the thesis is divided into two parts: conclusions and rec-
ommendations. Section 6.1 gives a summary of the finding in the present study.

Section 6.2 illustrates the scope for improvement.

6.1 Conclusions

In search for efficient probabilistic moment estimation method, stochastic collo-
cation approach was developed. Sparse grid collocation approach shows spectral
convergence with respect to the order of approximation for many numerical test
cases. However the method varies in performance according to the parmeters
involved in the numerical test cases and becomes too computationally intensive
for high dimensional problems. Due to the response of the underlying objective
function being highly nonlinear and the number of nodes required to estimate
the probabilistic moments increases exponentially with the number of uncertain

parameters.

Surrogate model approximation techniques offer a way to solve some of the issues.
In order to reduce the number of simulations required for uncertainty quantifica-
tion, two approaches have been followed. First a surrogate model is built using a
sample design comprising of lower order sparse grid collocation points and Kriging
based function approximation were used to approximate the high dimensional sur-

face. The second approach was the screening approach, where additional points

93
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are selected from sample space design comprising of higher order sparse grid points
using maximum square error criteria (MSE) and the surrogate model is re-built.
The procedure is continued till an acceptable convergence in the estimated prob-
abilistic moments is attained. The test cases show that for 1 to 12 uncertain
parameters, the proposed adaptive approach is a good alternative to sparse grid

collocation approach.

Current work has focused on probabilistic moment estimation when multiple un-
certain parameters are present in the stochastic system. The intent was to pro-
vide a sytematic background in the field of robust design and use of statistical
approaches in the design of stochastic structural systems. The development and
adoption of new adaptive approach to represent stochastic systems in the presence
of uncertainty enables the reduction in simulations henceforth required for high

dimensional problems.

In Chapter 2, we presented various aspects pertaining to stochastic systems.
Specifically the concept of modeling uncertainty was discussed with graphical in-
terpretations. Various approches used in defining the uncertainty such as proba-
bilistic approach, interval analysis, possibility theory, evidence theory and fuzzy
based approach for modeling uncertainties are presented. Turning to uncertain
propagation, simulation based approaches such as MCS, Quasi MCS, Lattice rules
are presented. The intent is to greatly reduce the learning time to comprehend the
basic idea of simulation based approaches for interested readers. Lastly, various
design formulations developed over the period of time for design optimisation in

the presence of uncertainties is provided.

Chapter 3, describes stochastic collocation method for multi-variate numerical in-
tegration in high dimensions. A short discussion of Newton-Cotes formulas and
Gaussian formulas their strengths and weakness are provided. Sparse grid col-
location method using one dimensional Clenshaw-Curtis rule is developed. The
importance of adaptiveness for sparse grid is stressed out and the development of
adaptive sparse grid using dimension adaptive algorithm is described. The appli-
cation of SGM, ASGM are demonstrated with illustration of numerical problems
comprising of random variables. The main aim is to understand the importance
and limitations of SGM and ASGM when applied to high dimensional numerical

problems.

Chapter 4, describes the importance of surrogate modeling in UQ studies. A de-

tailed view of surrogate modeling approaches such as radial basis functions and
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Kriging approach is provided along with application of surrogate modeling ap-
proach for simple two dimensional test function. The results present the limita-
tions of radial basis functions for UQ studies but suggests the need for the use
of Kriging based adaptive approach. From the results presented in the chapter,
Kriging based adaptive method performs better than other approaches using fewer
function evaluations in moment estimation of high-dimensional nonlinear functions

in terms of accuracy and computational efficiency.

In Chapter 5, we demonstrated the stochastic simulation procedure for structural
problems involving Gaussian and non-Gaussian random variables. In order to
understand the efficiency and applicability of the proposed Kriging based adap-
tive approach it is necessary to consider large-scale structural problems. Thus we
applied the procedure to a nonlinear structural model (ten bar truss structure)
using UG-NX6/ABAQUS and Matlab software. At this point, we showed how
the method can be used for 1) probabilistic description of randomness with dif-
ferent distributions of random variables in a simulation model whilst performing
stochastic simulations, 2) estimate the probabilistic moments using few nodes or
very few simulations compared to conventional approaches such as MCS, sparse

grid method and conventional surrogate modeling approaches.

6.2 Recommendations for Further Work

The thesis discusses the application of SGM, ASGM, the implementation of a novel
Kriging based adaptive approach for moment estimation of a few mathematical
test problems and structual problems. The new adaptive approach for uncertainty
quantification studies has significance in the context of engineering problems with
strong interaction of the variables involved, where otherwise a high number of

function evaluations are needed to accurately estimate the probabilistic moments.

The main aim of this research is to improve the design that is less sensitive to
input variations or uncertainties. As mentioned earlier the estimation of proba-
bilistic moments is central in robust design framework. Future work will focus on
improving the probabilistic moment estimation approach proposed i.e., Kriging
based adaptive approach and explore its potential for high dimensional problems
with considerable number of random variables 50-100, where the objective func-
tion/simulation model can be complex and nonlinear. The following are the broad

directions to further research :
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6.2.1 Strategies for stochastic simulations

In the current adaptive approach, the surrogate model was built using SG points
in the high dimensional stochastic space. Further work can be carried out by con-
sidering different sampling plans comprising of low-discrepancy sequences, lattice
points etc. Using lattice rules the probabilistic moments can be calculated when
apriori probabilistic moment estimates of simulation model are not attainable us-
ing conventional approaches such as MCS. A comprehensive code can be developed
encompassing sampling plan techniques, moment estimation approaches with ap-
propriate definitions for randomness using probability, possibility, evidence based

theory and fuzzy techniques.

6.2.2 Non-intrusive generalized polynomial chaos (gPC)

expansion

To study the potential of non-intrusive generalized polynomial chaos (gPC) ex-
pansions for high dimensional problems. This is a good technique for uncertainty
propagation due to its strong mathematical basis and its ability to produce func-
tional representation of stochastic processes [19]. A comparative study using sim-
ple Kriging and PC expansion was provided by Keane et al. [69] in the estimation
of moments of a two-dimensional mathematical problem with normally distributed
random variables. The coefficients of PC expansion are estimated using regres-
sion and sparse grid interpolation techniques. There are many obstacles for the
implementation of PC expansion for high-dimensional problems since the approx-
imation is a higher order PC expansion with many coefficients. Hence effective
algorithms need to be developed to truncate such expansions. Further studies in-
clude a comparison of adaptive approach to PC expansion for moment estimation
of high-dimensional problems with non-Gaussian random variables. The advan-
tage of using adaptive approach for estimating the coefficients of PC expansion in

the evaluation of higher order moments should be studied.



Appendix A

Orthogonal polynomials and

quadrature schemes

A.1 Orthogonal polynomials

Definition:

Sets of orthogonal polynomials play central role in numerical integration, here we

discuss some of the important aspects pertaining to them.

Let F' is a real linear space of square integrable functions with simple rectifi-
able boundary C i.e F' = Cfa b]. Let w is the weight function, w(z) > 0 and
Jow(z)dz > 0. The inner product < f,g > defined on F is a bilinear functional
of f, g € F given by

b
< flg>o= / w(z) f(z)g(x)dx. (A1)

If fo, f1, f1,. is a finite set of elements of F' such that

<[fi,f;>=0, i#j (A.2)
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the set is called orthogonal. In addition,
<f7;,fj >=1 1=0,1,...., (AB)

the set is called orthonormal. A set of polynomials ploynomials f; satisfying Eq.

(B.2), are called orthogonal polynomials with respect to inner product (f, g)

The unique set of orthogonal polynomials f*(x), f* (z) with respect to w on finite

or infinite interval [a, b] can be attained using Gram-Schmidt orthogonalization

of the monomials (1,z,..2", n € N) where

* * ’ * * 0, m#n,
< fidie= [w@n@p@ax=am= {7 @
and leads to recurrence relationship:
Poii(x) = (z —an)Py(x) — b, Py_1(x), VYneN (A.5)
P_i(z) = Py(z) = 1. (A.6)

where the coefficients (a,, b,) :

<xP,, P, >
In =2 P, P, >
<Py, P>
- <P,,P_1>

(A7)

by (A.8)

The classical orthogonal polynomials corresponding to special weight functions and
the support space are given in the Table B.1. Other hyper geometric functions

and related groups of polynomials exist and termed as Askey polynomials.

Table A.1: List of some important orthogonal polynomials :

Interval ~ Weight function Symbol Name

-1 1] 1 L,(z)  Legendre
(00 c0) e H,(xr) Hermite
[0 c0) e Gn(r)  Laguerre
-1 1] (1 —a%)~1/2 T.(x)  Tschebyscheff
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The properties of orthogonal Hermite polynomials which are used in this thesis,

is discussed here.

A.2 Hermite polynomials

The Hermite polynomials are solution to differential equation:
y —2xy +2ny =0, y=H,(z). (A.9)

The recurrence relationship is given by

H,1(z) =22H,(x) — 22H,_1(z); Hy=1, H;=2x. (A.10)

They are orthogonal with respect to the Gaussian probability measure ¢,

o0 Oa m;’éna
/ H () HE (2)p(x)dx = nlomn, @m:{ (A.11)
— 0 1, m=n.
The first four Hermite polynomials(one-dimensional) are:
Hi=xz Hy=2>-1, Hy=2a%—-3z, H,=2a2"—62>+3. (A.12)

A.3 Gaussian quadature rule:

Let us consider a one dimensional integral
1_/f@m@mx (A.13)
c
The integral is expressed as weighted sum of function evaluations of the integrand,

I'= Qi(f) = szf(%) (A.14)

x; are the collocation points or roots of orthogonal polynomials(Legendre, Her-

mite, etc.) The associated weights are,
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o < Pn_l(ZE),Pn_l(IL') >

= B ) Py (1) (4.15)

In Gaussian quadrature scheme the number of points n (or order) is significant
and determines the accuracy of the quadrature rule. As mentioned earlier with n

points they can integrate polynomial function of order 2n — 1 exactly.

A.4 Clenshaw-Curtis rule:

It is useful to have interpolatory rules rather than abscissas (or roots) which are
equidistant (for Newton-Cotes), clustered (Gauss rules) at the bounds of the inte-
gral domain. Clenshaw-Curtis used the change of variables x to cosine functions
and finding the zeroes of the polynomials 7T;, that have trigonometric expressions
and explicit formulae. The rule is fast convergent for even, periodic integrable

polynomial functions.

The abscissas of the Clenshaw-Curtis rule are given by,

xy, = cos( ), k=1,..n. (A.16)

The abscissas are the extreme points of Tschebycheff polynomials (7,) on [-1 1]

and the associated weights wy, are,

o w 1/(n—1)2, n even, (A.17)
' " 1/n(n—2) n odd. '

1 27(k —1
wp =4 1— Z 1 cos i )7r, k=2,...,n—1. (A.18)
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