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Summary. For an important example from the class of compartmental models
we determine optimal designs, which are robust against misspecifications of the
unknown model parameters. We propose a maximin approach based on D-efficiencies
and provide designs that are optimal with respect to the particular choice of various
parameter regions.
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1 Introduction

We consider a compartmental model, which is commonly applied in the chem-
ical sciences and pharmacokinetics as far as two-step reactions are concerned
(see, e.g., [BL59], [GP82] or [At03]). Suppose a substance A decomposes to
form substance B which then in turn decomposes to form substance C. As-
suming that the reactions are irreversible and first order, the concentrations
[A], [B] and [C] of products A, B and C, respectively, as functions of the time
x ≥ 0 satisfy the kinetic differential equations

d[A]
dx

= −θ1[A],
d[B]
dx

= θ1[A]− θ2[B],
d[C]
dx

= θ2[B], (1)

where θ1 > θ2 > 0 denote unknown constants measuring the specific rates
of the first and second decomposition, respectively. Solving system (1) with
initial conditions [A] = 1 and [B] = [C] = 0 we obtain the amount of inter-
mediate product B after time x ≥ 0 has elapsed as

η(x, θ) =
θ1

θ1 − θ2

(
e−θ2x − e−θ1x

)
. (2)
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In a statistical setup, we thus model observations Y on [B] at different
times x as a regression model Y = η(x, θ) + ε, where the observation er-
rors ε are independent and from an exponential family with zero expecta-
tion and constant variance σ2. The Fisher information I(x, θ) for estimat-
ing the parameter θ = (θ1, θ2)T at time x is then given by the expression
I(x, θ) = f(x, θ)fT (x, θ), where f(x, θ) = (f1(x, θ), f2(x, θ))T is the gradient
of the regression function η(x, θ) with respect to θ. An (approximate) design
ξ is a probability measure with finite support on the non-negative real axis
IR+

0 , i.e. the observations are taken at the support points of the measure pro-
portional to the corresponding masses. The Fisher information matrix of the
design ξ is given by

M(ξ, θ) =
∫ ∞

0

I(x, θ) dξ(x), (3)

and an optimal design maximizes a real-valued function of the Fisher in-
formation matrix, which is usually referred to as an optimality criterion (see,
e.g., [Sil80]). A typical example is D-optimality where the determinant of the
Fisher information is maximized with respect to the design ξ.

Since an appropriate choice of the experimental conditions can improve
the quality of the statistical inference substantially, much effort has been de-
voted to the problem of finding optimal designs for the compartmental model
(2) (see, e.g., [At03], [AC93], [BL59], [DO99], [HW85] or [HH74]). The Fisher
information and thus the optimal designs with respect to the common op-
timality criteria depend on the unknown parameter. Following [Ch53], several
authors assume that an initial guess of θ is available and determine so-called
locally optimal designs (see [BL59] or [HH74]). However, misspecifications of
the parameter for a locally optimal design can lead to poor results in the
subsequent data analysis. A more robust alternative is to assume sufficient
knowledge of θ to specify a prior distribution for this parameter and to av-
erage the respective optimality criteria over the plausible values of θ defined
by the prior. This leads to so-called Bayesian optimality criteria (see, e.g.,
[AC93] or [PW85]). As an alternative for the construction of robust designs,
we propose a maximin approach based on D-efficiencies, which only requires
the specification of a certain range for the unknown parameter. We feel that
this is a more realistic scenario since practitioners will often have difficulties to
specify a prior distribution for the unknown parameter θ. Most of the literat-
ure on maximin design discusses models with only one nonlinear parameter or
minimally supported designs (see,e.g., [Im01]). Model (2), however, contains
two nonlinear parameters and therefore standard techniques are not readily
applicable. In section 2, we provide some insight in the structure of locally
D-optimal designs for the compartmental model (2). In section 3, we define
the standardized maximin D-optimality criterion, determine various designs
optimal with respect to the maximin criterion and investigate the properties
of these optimal designs. It turns out that in many cases the standardized
maximin D-optimal designs are supported on three points so that they can
also be used for model checking.
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2 Locally D-optimal designs

We commence our investigation of the locally D-optimal designs by presenting
a result relating D-optimal designs with respect to several parameter combin-
ations, thus yielding a substantial simplification of the optimization problem.

Lemma 1. Let x∗(θ) denote the vector of support points of the locally D-
optimal design with respect to the parameter θ. Then

x∗(γθ) =
1
γ

x∗(θ)

for any γ > 0. Moreover, the locally D-optimal designs with respect to the para-
meters θ and γθ have the same weights at the corresponding support points.

Proof. The assertion of Lemma 1 is a simple consequence of the homogeneity
of the linear differential equation formulation (1) and applies quite generally.

By Lemma 1 it is sufficient to compute locally D-optimal designs with θ1 = 1,
since the optimal designs with respect to any other parameter can easily be
obtained from these designs by rescaling.

Numerical calculations suggest that the locally D-optimal designs in the
compartmental model (2) are supported on exactly two points. Furthermore,
minimally supported D-optimal designs are equally weighted, which is a stand-
ard result in design theory (see, e.g., [Sil80], Lemma 5.1.3). Some locally D-
optimal designs for several representative situations with respect to the choice
of θ are listed in Table 1.

Table 1. The support points x∗1, x
∗
2 of the locally D-optimal designs ξ∗ =

{x∗1, x∗2; 1/2, 1/2} with respect to the parameter θ = (1, θ2)
T .

θ2 x∗1 x∗2 θ2 x∗1 x∗2 θ2 x∗1 x∗2

0.1 0.9283 11.0171 0.4 0.8186 3.9018 0.7 0.7164 2.8599
0.2 0.8907 6.1603 0.5 0.7825 3.4353 0.8 0.6868 2.6634
0.3 0.8554 4.6515 0.6 0.7483 3.1076 0.9 0.6594 2.5020

As an interesting result from Table 1 we obtain that a large distance
between θ1 and θ2 results in relatively large support points of the locally D-
optimal designs ξ∗. In the following lemma, we show a result on the asymptotic
behavior of the design ξ∗ when θ2 tends to its upper boundary.

Lemma 2. If θ2 tends to 1 (= θ1) from below, the locally D-optimal design
ξ∗ = ξ∗(θ2) converges weakly to the design with support points x∗1 = (3−

√
3)/2,

x∗2 = (3+
√

3)/2 and equal weights, which is D-optimal for the linear regression
model

Y = a1(x−
x2

2
)e−x + a2

x2

2
e−x + ε.
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Proof. Let θ2 = 1−z. By a Taylor expansion of the regression gradient at the
point z = 0 we obtain

f1(x, θ) = (x− x2

2
)e−x + o(z), f2(x, θ) = −x2

2
e−x + o(z),

and the assertion follows. ut

So far, we have considered design regions for the time x, which are un-
bounded, i.e. the time x is allowed to vary from zero to infinity. However, in
many situations there exists a boundary, xmax say, on the maximal amount
of time that is feasible for the particular experiment. In this case, Lemma 1
has to be modified appropriately, i.e. if ξ∗ = (x∗i ;w

∗
i ) is the locally D-optimal

design with respect to the parameter θ on the design space [0, xmax] with sup-
port points x∗i and corresponding weights w∗i , then ξ∗γ = ( 1

γ x∗i ;w
∗
i ) is locally

D-optimal with respect to the parameter γθ on the design space [0, 1
γ xmax].

Table 2 gives several examples of locally D-optimal designs for the compart-
mental model (2) with a restricted design space. The efficiencies (eff) of the
restricted designs ξ∗xmax

are given by the square root of the ratio of their par-
ticular criterion value and the criterion value of the locally D-optimal design
ξ∗ with respect to an unrestricted design interval.

Table 2. Locally D-optimal designs with respect to several restricted design spaces
[0, xmax] and different values of θ.

θ = (1, 0.5)T θ = (1, 0.1)T θ = (1, 0.05)T

xmax x∗1 x∗2 eff xmax x∗1 x∗2 eff xmax x∗1 x∗2 eff

∞ 0.783 3.435 1 ∞ 0.928 11.017 1 ∞ 0.958 21.004 1
3 0.758 3 0.979 10 0.928 10 0.994 19 0.958 19 0.995
2.5 0.713 2.5 0.891 8 0.932 8 0.944 15 0.958 15 0.945
2 0.646 2 0.728 6 0.936 6 0.820 11 0.958 11 0.824
1.5 0.548 1.5 0.495 4 0.914 4 0.589 7 0.963 7 0.603
1 0.410 1 0.240 2 0.717 2 0.224 3 0.875 3 0.234
0.5 0.228 0.5 0.049 1 0.436 1 0.053 1 0.441 1 0.027
0.25 0.120 0.25 0.008 0.5 0.236 0.5 0.009 0.5 0.236 0.5 0.005

Observing the entries of Table 2, we notice that if the largest support point of
the unrestricted D-optimal design ξ∗ is larger than xmax the boundary itself
is in the support of ξ∗xmax

. Moreover, the efficiencies of the restricted optimal
designs decrease considerably with decreasing xmax. As a consequence, we
suggest using the unrestricted design whenever possible, else trying to choose
the boundary xmax as large as possible from the experimental circumstances.
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3 Standardized maximin D-optimal designs

Following [Mü95] or [Im01] we propose as robust designs for the compart-
mental model (2) designs, which maximize the minimal D-efficiency calcu-
lated over a certain range for the parameter θ, thus protecting the experiment
against the worst case scenario. That means that we maximize the expression

Ψ−∞(ξ) = inf
θ∈Θ

[(
det M(ξ, θ)
det M(ξ∗θ , θ)

)1/2]
, (4)

where, throughout this article, ξ∗θ denotes the locally D-optimal design with
respect to θ. A design maximizing Ψ−∞(ξ) is called standardized maximin
D-optimal (with respect to Θ). The parameter space Θ of possible values of
θ has to be specified in advance by the experimenter. An advantage of this
approach compared to a Bayesian setup is that it is not required to specify a
prior distribution for the unknown parameter θ, which is not possible in all
circumstances. The only ”prior knowledge” needed to use the standardized
maximin D-criterion is an approximate range Θ for the parameter θ.

A powerful tool for checking maximin optimality of a design is an equival-
ence theorem, which can be found in [DH03].

Theorem 1. A design ξ∗ is standardized maximin D-optimal with respect to
Θ if and only if there exists a prior π∗ supported on the set

N (ξ∗) =
{

θ ∈ Θ | Ψ−∞(ξ∗) =
(

detM(ξ, θ)
det M(ξ∗θ , θ)

)1/2}
such that the inequality

d(ξ∗, x) =
∫
N (ξ∗)

fT (x, θ)M−1(ξ∗, θ)f(x, θ) dπ∗(θ) ≤ 2 (5)

holds for all x within the design space. Moreover, there is equality in (5) for
all support points of the design ξ∗.

Following [DH03] we call the prior π∗ least favourable distribution. The
designs given in the following discussion were calculated numerically using
Theorem 1 whereby their optimality was carefully checked. These calcula-
tions are quite complicated, since the least favourable distribution is two-
dimensional. A MATLAB-programme is available from the third author.

There are two obvious ways, in which a parameter space Θ can be specified.
On the one hand, it might be sensible to assume a one-dimensional closed
interval as an admissible range for each parameter. Since the inequality θ1 >
θ2 > 0 always holds, that means that Θ is given by a closed rectangle in the
positive half plane, i.e. Θ = Θ(z1, z2, z3, z4) := [z1, z2]× [z3, z4], zi > 0, z1 >
z4. On the other hand, the fact that θ1 > θ2 can result in a triangular region
Θ, i.e. Θ = Θ(z1, z2) := {(z1, z2)|0 < z1 ≤ θ2 < θ1 ≤ z2}.

The following lemma applies Lemma 1 to simplify the maximin optimiza-
tion problem for Θ from the above-mentioned cases considerably.
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Lemma 3. Denote by x∗i = x∗i (z1, . . . , zj) the support points of the standard-
ized maximin D-optimal design with respect to Θ(z1, . . . , zj), j = 4 or j = 2.
For any γ > 0 the design with the same weights and support points 1

γ x∗i is
Ψ−∞-optimal with respect to the parameter space γΘ = Θ(γz1, . . . , γzj).

If xi denote the support points of the Ψ−∞-optimal design with respect to Θ
on the restricted design space [0, xmax], then the design with the same weights
and support points 1

γ xi is Ψ−∞-optimal with respect to γΘ on [0, 1
γ xmax].

Proof. The standardized maximin D-optimal design with respect to γΘ can
be obtained by maximizing

min
θ∈γΘ

det
∫ xmax

0
I(x, θ) dξ(x)

det
∫ xmax

0
I(x, θ) dξ∗θ (x)

= min
θ∈Θ

det
∫ xmax

0
I(x, γθ) dξ(x)

det
∫ xmax

0
I(x, γθ) dξ∗θ (x)

= min
θ∈Θ

1
γ4 det

∫ xmax

0
I(γx, θ) dξ(x)

1
γ4 det

∫ xmax

0
I(γx, θ) dξ∗θ (x)

= min
θ∈Θ

det
∫ xmax

γ

0 I(x, θ) dξ̃(x)

det
∫ xmax

γ

0 I(x, θ) dξ∗γθ(x)
,

where the design ξ̃ is derived from ξ by the relation ξ̃({x}) = ξ({γx}).
The above equalities are obtained by direct calculations on the entries of
I(x, θ), whereas the last transformation in the denominator is an application
of Lemma 1. ut

In Tables 3 and 4 we present some Ψ−∞-optimal designs corresponding to rect-
angular parameter regions. The term min effD stands for the criterion value of
the optimal design. The intervals [z1, z2], [z3, z4] in Table 3 are chosen relat-

Table 3. Standardized maximin D-optimal designs ξ∗ for model (2) with unrestric-
ted design space with respect to various rectangular parameter spaces.

z1 z2 z3 z4 x1 x2 min effD z1 z2 z3 z4 x1 x2 min effD

0.7 0.8 0.3 0.4 1.06 4.78 0.983 0.9 1.1 0.2 0.5 0.86 4.40 0.891
0.9 1.0 0.3 0.4 0.88 4.33 0.986 2.2 2.8 0.2 0.5 0.37 3.47 0.885
0.9 1.1 0.3 0.4 0.84 4.25 0.978 2.2 2.8 0.2 0.7 0.37 2.94 0.809
0.9 1.1 0.3 0.5 0.83 3.95 0.954 2.0 3.0 0.2 0.7 0.37 2.93 0.787

ively small. In this case, the Ψ−∞-optimal designs are supported on two points
and equally weighted. For the examples in Table 4 we choose larger parameter
regions Θ, thus obtaining optimal designs supported on three points. Results
for triangular parameter regions are depicted in Table 5.

In our numerical study, we observe that standardized maximin D-optimal
designs with respect to rectangular or triangular parameter spaces have at
most three support points. A third support point appears if a ”large” Θ is
chosen, since these Ψ−∞-optimal designs must be ”good” despite a high level
of uncertainty about the position of the parameters. In some cases a relatively
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Table 4. Standardized maximin D-optimal designs ξ∗ for model (2) with unrestric-
ted design space with respect to various rectangular parameter spaces.

z1 z2 z3 z4 x1 x2 x3 w1 w2 w3 min effD

2 3 0.2 0.8 0.37 2.28 4.69 0.50 0.35 0.15 0.755
2 3 0.2 0.9 0.35 1.97 4.80 0.49 0.32 0.19 0.736
2 3 0.2 1 0.35 1.63 5.14 0.50 0.29 0.21 0.727
2 3 0.1 1 0.38 1.85 7.88 0.54 0.25 0.20 0.661

Table 5. Standardized maximin D-optimal designs for model (2) with unrestricted
design space with respect to various triangular parameter regions.

z1 z2 x1 x2 x3 w1 w2 w3 min effD

1 2 0.44 1.64 0.50 0.50 0.822
0.5 1 0.88 3.28 0.50 0.50 0.822
0.4 1 0.79 2.43 5.76 0.38 0.39 0.22 0.761
1 3 0.25 0.84 2.18 0.35 0.41 0.24 0.740
0.3 1 0.83 2.61 7.15 0.36 0.41 0.22 0.728

small number of different stages for the experiment can reduce costs consider-
ably. Moreover, three design points still allow model checking to some extent.

We, finally, deal with the problem of finding Ψ−∞-optimal designs on a
restricted design space. The results which are similar for rectangular and
triangular parameter regions Θ are given in Tables 6 and 7. Unlike our obser-

Table 6. Standardized maximin D-optimal designs for model (2) with respect to
various rectangular parameter regions on restricted design spaces.

Θ = [0.8, 1.2]× [0.2, 0.5] Θ = [2, 3]× [0.2, 1]

xmax x1 x2 min effD xmax x1 x2 x3 w1 w2 w3 min effD

∞ 0.86 4.41 0.854 ∞ 0.36 1.64 5.29 0.50 0.29 0.21 0.727
4 0.79 3.89 0.943 4 0.35 1.69 4 0.51 0.28 0.21 0.741
3 0.79 3 0.984 3 0.35 1.85 3 0.49 0.31 0.20 0.785
2 0.67 2 0.992 2 0.33 1.91 0.5 0.5 0.909
1 0.42 1 0.998 1 0.31 1 0.5 0.5 0.986
0.5 0.23 0.5 1.000 0.5 0.20 0.5 0.5 0.5 0.996

vations concerning locally D-optimal designs, we find that the largest support
point of the restricted maximin optimal designs is not always given by the
boundary value. Another noticeable aspect is that in both the rectangular
and the triangular case the number of support points of the restricted design
decreases with decreasing the boundary, whereas the D-efficiencies increase.
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Table 7. Standardized maximin D-optimal designs for model (2) with respect to
various triangular parameter regions on restricted design spaces.

z1 = 0.5, z2 = 1 z1 = 0.3, z2 = 1

xmax x1 x2 min effD xmax x1 x2 x3 w1 w2 w3 min eff

∞ 0.88 3.28 0.82 ∞ 0.83 2.62 7.12 0.36 0.41 0.22 0.728
3 0.78 2.91 0.93 5 0.75 2.25 5 0.33 0.41 0.26 0.759
2 0.68 2 0.98 3 0.81 3 0.5 0.5 0.904
1 0.42 1 0.99 2 0.73 2 0.5 0.5 0.963
0.5 0.23 0.5 0.99 1 0.44 1 0.5 0.5 0.979
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