
STRATIFIED LANGLANDS DUALITY IN THE An TOWER

GRAHAM A. NIBLO, ROGER PLYMEN AND NICK WRIGHT

Abstract. Let Sk denote a maximal torus in the complex Lie group G = SLn(C)/Ck
and let Tk denote a maximal torus in its compact real form SUn(C)/Ck, where k divides
n. Let W denote the Weyl group of G, namely the symmetric group Sn. We elucidate
the structure of the extended quotient Sk//W as an algebraic variety and of Tk//W
as a topological space, in both cases describing them as bundles over unions of tori.
Corresponding to the invariance of K-theory under Langlands duality, this calculation
provides a homotopy equivalence between Tk//W and its dual Tn

k
//W . Hence there is

an isomorphism in cohomology for the extended quotients. Moreover this is stratified
as a direct sum over conjugacy classes of the Weyl group. We derive a formula for the
periodic cyclic homology of the group ring of an extended affine Weyl group in terms
of these extended quotients and use our formulae to compute a number of examples of
homology, cohomology and K-theory.
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1. Introduction

In [7] we introduced an equivariant Poincaré duality for finite group actions on tori,
giving a natural isomorphism

K∗W (T ) ∼= KW
∗ (T∨).

In the context of the action of the Weyl group on a maximal torus for a compact con-
nected semisimple Lie group, this provides a canonical pairing between the K-theory
of the group C∗-algebra of an extended affine Weyl group and of its Langlands dual.
In his consideration of the K-theory of Hecke algebras, Solleveld [9, 11] determined the
K-theory of the group C∗-algebra for the affine Weyl groups associated to a number of
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Lie Groups including SLn(C). In order to do so he computed the extended quotients of
maximal tori up to homotopy.

In this paper we compute the extended quotient of the maximal torus by the Weyl
group for all semisimple (real and complex) Lie groups of type An, giving a detailed con-
struction of the extended quotients as varieties and topological spaces. In particular for
SUn(C)/Ck and its Langlands dual SUn(C)/Cn

k
with maximal tori Tk, Tn

k
respectively,

we show that there is a homotopy equivalence between Tk//W and Tn
k
//W , inducing

isomorphisms in cohomology, though this is not canonical. The extended quotients are
stratified by the conjugacy classes of the Weyl group. The canonical pairing of K∗W (Tk)
with K∗W (Tn

k
) provided by our Poincaré duality takes values in the representation ring

R(W ). Taking the multiplicity of the trivial representation induces an integer valued
pairing, which, via the equivariant Chern character of Baum and Connes [3], induces a
faithful pairing

(1) H∗(Tk//W,C)×H∗(Tn
k
//W,C)→ C.

We examine the equivariant Chern character further in Section 3 and show that this is
compatible with the stratification of the extended quotients by conjugacy classes. While
(1) is stated here in the context of groups of type An as studied in this paper, we note in
passing that the pairing it describes exists in general for dual tori T, T∨ corresponding
to Langlands dual compact semisimple Lie groups.

In the complex case, the extended quotients are varieties which are unions of tori
crossed with cyclic singularities, and we compute the structure of these varieties. We
illustrate briefly the connection with p-adic groups. Let F be a local non-archimedean
field such as the p-adic field Qp, and consider the p-adic group

G = PGLn(F ).

The Langlands dual of G is G = SLn(C). Suppose further that p > n. Let S be the stan-
dard maximal torus in SLn(C), let T be the maximal compact subgroup of S. According
to [2, Theorem 5.2], the Iwahori-spherical block in the principal series of G admits the
structure of the algebraic variety S//W . Furthermore, the set of tempered representa-
tions in the Iwahori-spherical block admits the structure of the extended quotient T//W .
Theorem 1.2 and Theorem 1.6, with k = 1 therefore provide explicit descriptions of these
spaces of representations.

We now proceed to the statement of our results. Let Ck denote the cyclic group of
k-th roots of unity in C. If k divides n then, abusing notation, we will identify this
group with the subgroup CkIn in the centre of SLn(C). We will first consider the Lie
group SLn(C)/Ck where the corresponding Weyl group is the symmetric group Sn. Its
conjugacy classes, indexed by cycle structures, correspond to partitions of n.

Definition 1.1. For a partition µ of n given by n = µ1 + . . .+µc the numbers µ1 . . . , µc
will be called the parts of µ and the parts have multiplicities mj = |{i | µi = j}|. We will
denote the greatest common divisor of the parts of µ by g(µ) and the greatest common
divisor of the multiplicities of the parts by m(µ). We also let b(µ) denote the number of
distinct parts of µ and will write c(µ) for the total number of parts. For each i let pi(µ)



STRATIFIED LANGLANDS DUALITY IN THE An TOWER 3

denote the number of distinct parts of µ which have multiplicity strictly greater than i.
We will omit the µ decoration on these symbols where the context is clear.

Theorem 1.2. Let Sk denote a maximal torus of SLn(C)/Ck and W denote the cor-
responding Weyl group. The extended quotient Sk//W is an algebraic variety which
decomposes as a disjoint union of irreducible components. Each component is the prod-
uct of a complex torus with a cyclic quotient of a complex affine space. Specifically we
have a disjoint union over partitions µ of n:

Sk//W ∼=
∐
µ

∐
ω∈Cgcd(g(µ),k)

(C×)b(µ)−1 × Aµ,ω ×Xµ,ω.

The space Xµ,ω is a discrete set of cardinality gcd(g(µ)/|ω|, n/k). The space Aµ,ω is the
cyclic singularity

Ac(µ)−b(µ)/Cgcd(m(µ), k|ω| )

where the generator η of the group Cgcd(m(µ), k|ω| )
acts by multiplication by powers of η on

the factors of Ac(µ)−b(µ). For each i there are pi(µ) factors on which the generator acts
by multiplication by ηi.

Corollary 1.3. With Sk and W as above there is a homotopy equivalence

Sk//W ∼=
∐
µ

(C×)b(µ)−1 × Yµ.

where Yµ is a discrete set of cardinality
g(µ)

a

a−1∑
s=0

gcd(a, s) where a = gcd

(
g(µ),

n

g(µ)
, k,

n

k

)
.

In particular, interchanging SLn(C)/Ck with its Langlands dual does not change the
homotopy type of the extended quotient, and moreover this holds for each µ component.

Remark 1.4. While passing from SLn(C)/Ck to the Langlands dual group SLn(C)/Cn/k
does not change the homotopy type of the extended quotient, the singularity structure
of the cyclic quotients can and often does vary. In particular when k = 1 the varieties
are smooth, while the dual case k = n, considered by Solleveld, will always give the
most singular case in the tower. In that case each Yµ has cardinality g(µ), recovering
Solleveld’s formula, [9].

Remark 1.5. The number
∑a−1

s=0 gcd(a, s) appearing in the formula for cardinality of
the set Yµ is the ath value of Pillai’s arithmetical function [8]. The cardinality of Yµ can

alternatively be expressed as g(µ) times the sum
∑
d|a

φ(d)
d .

We now consider the real case.

Theorem 1.6. Let Tk denote a maximal torus of SUn(C)/Ck and W denote the cor-
responding Weyl group. The extended quotient Tk//W is a disjoint union of compact
orbifolds with boundary. Each component is a bundle over a compact torus with fibre a
cyclic quotient of a polysimplex. Specifically we have a disjoint union over partitions µ
of n:
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Tk//W ∼=
∐
µ

∐
ω∈Cgcd(g(µ),k)

Eµ,ω/Cgcd(m(µ), k|ω| )
×Xµ,ω.

The space Xµ,ω is a discrete set of cardinality gcd(g(µ)/|ω|, n/k). The space Eµ,ω is a
bundle of polysimplices over a torus of dimension b(µ)− 1.

The group Cgcd(m(µ), k|ω| )
preserves the torus and acts on the polysimplicial fibres, which

are products of simplices of dimensions mj − 1, where j ranges over the distinct parts of

the partition µ. Each simplex can be regarded as a join of mj/ gcd(m(µ), k
|ω|) simplices

of dimension gcd(m(µ), k
|ω|) − 1 on each of which which the group acts by cyclically

permuting the vertices. This action preserves the orientation on the fibres if and only if
c is odd or the 2-adic norms satisfy |c|2 < | gcd(m(µ), k

|ω|)|2.

The precise construction of the bundle Eµ,ω is given in section 7 below.

Corollary 1.7. With Tk and W as above there is a homotopy equivalence:

Tk//W ∼=
∐
µ

(S1)b(µ)−1 × Yµ.

where Yµ is a discrete set of cardinality
g(µ)

a

a−1∑
s=0

gcd(a, s) where a = gcd

(
g(µ),

n

g(µ)
, k,

n

k

)
.

In particular, interchanging SUn(C)/Ck with its Langlands dual does not change the
homotopy type of the extended quotient, and moreover this holds for each µ component.

We now consider the relationship between the homotopy equivalence provided by
Corollary 1.7 and the faithful pairing in cohomology provided by (1). We begin by
expanding on the construction of the pairing. There is an isomorphism K∗W (T ) ∼=
K∗(C(T ) oW ) and, using our Poincaré duality K∗W (T∨) ∼= KW

∗ (T ) ∼= K∗(C(T ) oW ).
The pairing between K-theory and K-homology of the algebra C(T )oW thus provides
a canonical integer valued pairing between K∗W (T ) and K∗W (T∨). This pairing is ob-
tained from the R(W )-valued pairing of the groups K∗W (T ) and K∗W (T∨), by taking the
multiplicity of the trivial representation as alluded to above.

Regarding R(W )⊗C as the algebra of class functions on W , the characteristic function
of a conjugacy class [g], gives an idempotent eg. The K-theory groups K∗W (T ) and
K∗W (T∨) are modules over R(W ) and hence these idempotents provide a decomposition
of these two groups indexed by the conjugacy classes. The extended quotients also
decompose as a coproduct indexed by conjugacy classes, for example

T//W ∼=
∐
[g]

T g/Z(g)

and similarly for T∨. We show in Section 3 that the equivariant Chern character of
Baum and Connes [3] is compatible with these decompositions in the following sense.
For each conjugacy class [g] the map restricts to give:

eg(K
∗
W (T )⊗ C)

∼=−−→ H∗(T g/Z(g);C)

eg(K
∗
W (T∨)⊗ C)

∼=−−→ H∗((T∨)g/Z(g);C).
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The pairing of K∗W (T ) and K∗W (T∨) also respects the stratification in the following
sense. Given classes x in K∗W (T ) and y in K∗W (T∨), the equivariant pairing of these is
given by (x⊗C y)Q ∈ KKW (C,C) = R(W ) where Q ∈ KKW (C(T )⊗ C(T∨),C) is the
K-homology element giving the Poincaré duality isomorphism. The external product
K∗W (T )×K∗W (T∨)→ K∗W (T × T∨) is R(W )-bilinear, so in particular the pairing of egx
with y agrees with the pairing of x with egy. As this holds for the R(W )-valued pairing,
taking multiplicities it is also true for the integral pairing.

We conclude that the induced faithful pairing (1) respects the stratification of the
extended quotients by the conjugacy classes of W , i.e. we have a direct sum of pairings
indexed by the conjugacy classes of W .

Corollary 1.7 may thus be viewed as a refinement of our Poincaré duality pairing of
[7], stratifying this over the conjugacy classes of the Weyl group and additionally giving
an isomorphism between the homology and cohomology.

In summary Corollaries 1.3 and 1.7 allow us to compute the cohomology and K-theory
groups of the extended quotients. Hence using the equivariant Chern character for K-
theory, we are able to compute K∗(C

∗
rW

′
a) in the An case. Analoguously, one can use

the well-known identification

HP∗C[W ′a(G)] '
⊕
k∈Z

Hq+2k(S∨//W ;C).

to compute the periodic cyclic homology HP∗C[W ′a(G)]. We include as appendices a
number of tables of these computations.

As an application, let G be a split reductive p-adic group, let T be a maximal torus
in G. Let H,S be the Langlands dual groups of G, T , and let G,T be the compact
real forms of H,S. Let I denote an Iwahori subgroup of G and let C∗r (G, I) denote the
reduced Iwahori-spherical C∗-algebra, as in [10]. According to [10, (5.8)], we have

K∗C
∗
r (G, I) ' K∗C∗(X oW )

where W is the Weyl group of G and X is the cocharacter group X∗(T ) of T . By
T -duality we have

X∗(T ) = X∗(S) = X∗(T ).

The Fourier transform determines the isomorphism

C∗(X∗(T ) oW ) ' C(T ) oW

since the Pontryagin dual of X∗(T ) is T . Applying the Green-Julg theorem we infer that

K∗C
∗
r (G, I) ' K∗W (T ).(2)

We note in passing that (2) confirms, in an important special case, the conjecture on
p.82 of [1].

If G = PGLn(F ) with F a non-archimedean local field, then T is a maximal torus
in SUn(C) and W is the symmetric group Sn; if G = SLn(F ), then T is a maximal
torus in SUn(C)/Cn and W is again the symmetric group Sn. Our results thus provide
computations of K∗C

∗
r (G, I) in these cases.
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2. Examples

Example 2.1. We consider the examples of SL6(C) and PSL6(C) = SL6(C)/C6. In the
former case, since k = 1, the variable ω in the summation formula can only take the value
1, and we give the variety (C×)b(µ)−1×Aµ,1 and its multiplicity |Xµ,1| for each partition µ
of 6. In the latter case each partition will give rise to the same number of components as
for SL6(C), but in this case they are indexed by the value of ω which ranges over certain
powers of the primitive 6th root of unity ζ. We list the possible values of ω (each giving

a single component) and again describe the corresponding variety (C×)b(µ)−1 × Aµ,ω.

SL6(C) PSL6(C)

µ |Xµ,1| (C×)b(µ)−1 × Aµ,1 ω (C×)b(µ)−1 × Aµ,ω

6 6 A0

1 A0

ζ A0

ζ2 A0

−1 A0

ζ4 A0

ζ5 A0

1 + 5 1 C× 1 C×

2+4 2 C× 1 C×
−1 C×

1 + 1 + 4 1 C× × A1 1 C× × A1

3+3 3 A1
1 A1/〈−1〉
ζ2 A1/〈−1〉
ζ4 A1/〈−1〉

1 + 2 + 3 1 (C×)2 1 (C×)2

1 + 1 + 1 + 3 1 C× × A2 1 C× × A2

2+2+2 2 A2 1 A2/〈(ζ2, ζ4)〉
−1 A2/〈(ζ2, ζ4)〉

1 + 1 + 2 + 2 1 C× × A2 1 C× × A2/〈(−1,−1)〉
1 + 1 + 1 + 1 + 2 1 C× × A3 1 C× × A3

1 + 1 + 1 + 1 + 1 + 1 1 A5 1 A5/〈(ζ1, ζ2, ζ3, ζ4, ζ5)〉

Note that the values of ω allowed for PSL6(C) are exactly the set |Xµ,1| for SL6(C).
This is a general property of the cases k = 1 and k = n, however for intermediate cases
the picture is more complicated. For each µ, the homotopy-types of the corresponding
components agree, and in many cases the components are isomorphic as varieties. As
noted above this is not true in general and indeed the component varieties for SL6

and PSL6 are not isomorphic (or even homeomorphic) in the cases µ = 2 + 2 + 2,
µ = 1 + 1 + 2 + 2 and µ = 1 + 1 + 1 + 1 + 1 + 1. While for SL6, the varieties are
smooth and the factor Aµ,1 is simply an affine space, for PSL6 the factor Aµ,ω is a cyclic
singularity as classified in [5].

We remark that in the PSL6 example the spaces Aµ,ω do not in fact depend on ω.

This is because 6 is square-free, hence gcd(m, k
|ω|) = gcd(m, k) for all ω.
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Example 2.2. We now consider the dual examples of SL6(C)/C2 and SL6(C)/C3. Here
we will see that, while the components again do not depend on the variable ω the possible
values of ω associated to a partition µ do depend on k, as does the cardinality of Xµ,ω.
Again we also note that the singularity structure is differs between the two groups for
the partitions 2 + 2 + 2, 1 + 1 + 2 + 2 and 1 + 1 + 1 + 1 + 1 + 1.

SL6(C)/C2 SL6(C)/C3

µ ω |Xµ,ω| (C×)b(µ)−1 × Aµ,ω ω |Xµ,ω| (C×)b(µ)−1 × Aµ,ω

6

1 3 A0 1 2 A0

ζ2 2 A0

-1 3 A0

ζ4 2 A0

1 + 5 1 1 C× 1 1 C×

2+4
1 1 C×

1 2 C×−1 1 C×
1 + 1 + 4 1 1 C× × A1 1 1 C× × A1

3+3 1 3 A1/〈−1〉
1 1 A1

ζ2 1 A1

ζ4 1 A1

1 + 2 + 3 1 1 (C×)2 1 1 (C×)2

1 + 1 + 1 + 3 1 1 C× × A2 1 1 C× × A2

2+2+2
1 1 A2

1 2 A2/〈(ζ2, ζ4)〉−1 1 A2

1 + 1 + 2 + 2 1 1 C× × A2/〈(−1,−1)〉 1 1 C× × A2

1 + 1 + 1 + 1 + 2 1 1 C× × A3 1 1 C× × A3

1 + 1 + 1 + 1 + 1 + 1 1 1 A5/〈(−1, 1,−1, 1,−1)〉 1 1 A5/〈(ζ2, ζ4, 1, ζ2, ζ4)〉

To illustrate the possible dependence of Xµ,ω and Aµ,ω on ω we must consider a value
of n with square factors. Specifically we will consider n = 16. Since there are rather a
lot of partitions of 16 we shall just select a few examples to demonstrate the process by
which the components of Sk//W are constructed.

Example 2.3 (The quotient variety for SL16(C)/C2 corresponding to µ = 2+2+2+2+4+4).
The partition has greatest common divisor g = 2, so the total number of components is

|Yµ| =
2

a

a−1∑
s=0

gcd(a, s) = 3 where a = gcd
(

2,
n

2
, k,

n

k

)
= 2.

The greatest common divisor gcd(g, k) = 2 hence ω = ±1. In the case ω = 1 we have
|Xµ,ω| = gcd( g

|ω| ,
n
k ) = gcd(2, 8) = 2. The multiplicities are m2 = 4,m4 = 2 so m = 2 so

the cyclic singularity is the quotient of A6−2 by the cyclic group Cgcd(m, k|ω| )
= Cgcd(2,8) =

C2. This is generated by η = −1 which acts by multiplication by (η1, η1, η2, η3) =
(−1,−1, 1,−1). The exponents of η appearing here can easily be read as the non-zero
entries of the Young tableau decorated as follows:
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0
1
0
1
2
3

The b zeros appearing in the table correspond to (the trivial action on) the torus factor,
which is a codimension-1 torus in Cb.

Turning to the case ω = −1 we see that |Xµ,ω| = gcd( g
|ω| ,

n
k ) = gcd(1, 8) = 1. The

cyclic group Cgcd(m, k|ω| )
= Cgcd(2,1) is trivial, hence for ω = 1 we obtain a copy of

C× × A4. In conclusion this partition yields three components, two copies of the space
C××A4/(−1,−1, 1,−1) indexed by ω = 1 and one copy of C××A4 indexed by ω = −1.

We now consider the Langlands dual case k = 8:

Example 2.4 (The quotient variety for SL16(C)/C8 corresponding to µ = 2+2+2+2+4+4).

Again |Yµ| = 3, since exchanging k = 2 with k = 8 interchanges k with n/k and we
obtain the same value a = 2. As above g = m = 2 and ω = ±1. In the case ω = 1 we
again have |Xµ,ω| = 2 and we obtain two copies of the variety C× ×A4/(−1,−1, 1,−1).
When ω = −1 we have |Xµ,ω| = gcd(1, 2) = 1, and the cyclic group is Cgcd(m, k|ω| )

=

Cgcd(2,4) = C2. This gives the variety A4/(−1,−1, 1,−1) in contrast to the case k = 2
where we obtained a copy of the affine space itself . Hence this partition now yields three
copies of the space C× × A4/(−1,−1, 1,−1), two indexed by ω = 1 and one indexed by
ω = −1.

We remark that for this particular choice of partition, taking k = 4 (the self dual
case) would yield the same quotient variety as we obtain for k = 8. By way of contrast
consider the components arising for the partition µ = 4 + 4 + 4 + 4.

Example 2.5 (The quotient variety for SL16(C)/C4 and SL16(C)/C8 corresponding to
the partition µ = 4 + 4 + 4 + 4). We have g = m = 4, and ω lies in Cgcd(g,k) = C4 hence
ω ∈ {±1,±i}. With ω = 1 we have |Xµ,ω| = gcd( g

|ω| ,
n
k ) = gcd(4, 4) = 4. The cyclic

singularity is the quotient of A4−1 by the cyclic group Cgcd(4,4) = C4. This is generated

by η = i which acts by multiplication by (η1, η2, η3) = (i,−1,−i):

0
1
2
3

Now set ω = −1. We have |Xµ,ω| = gcd(2, 4) = 2. The cyclic singularity is the
quotient of A3 by the cyclic group Cgcd(4,2) = C2. This is generated by −1 which acts
by multiplication by (−1, 1,−1).
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For each of ω = ±i, |Xµ,ω| = gcd(1, 4) = 1 and the cyclic group acting is trivial
because k/|ω| = 1 so these two elements yield, between them, two copies of the affine
space A3.

Hence this partition furnishes 8 components, four of them isomorphic to the cyclic
singularity A3/(i,−1,−i), two of them isomorphic to A3/(−1, 1,−1) and two of them
isomorphic to A3.

Now turning to the case k = 8 again we have, ω ∈ {±1,±i} since gcd(4, 8) = 4.
With ω = 1 we have |Xµ,ω| = gcd( g

|ω| ,
n
k ) = gcd(4, 2) = 2. The cyclic singularity is the

quotient of A3 by the cyclic group Cgcd(4,8) = C4, yielding A3/(i,−1,−i). For ω = −1,

|Xµ,ω| = gcd(2, 2) = 2. The cyclic singularity is the quotient of A3 by the cyclic group
Cgcd(4,4) = C4. This is generated by i which acts by multiplication by (i,−1,−i).

For each of ω = ±i, |Xµ,ω| = gcd(1, 2) = 1 and the cyclic group acting is has order
gcd(4, 2) = 2. Hence these two elements yield, between them, two copies of the cyclic
singularity A3/(−1, 1,−1).

Hence this partition now furnishes only 6 components (rather than the 8 appearing
in the k = 4 case). Four of these are isomorphic to the cyclic singularity A3/(i,−1,−i)
and two of them are isomorphic to A3/(−1, 1,−1). In general the number of components
grows with gcd(k, n/k). However if n is square free the number of components will be
constant in k. See the examples in table 3.

3. Extended quotients and the equivariant Chern character

In [3] Baum and Connes introduced a version of the Chern character on equivariant
K-theory. The isotropy of the action is encoded in the target cohomology groups by
taking the extended quotient which they defined as follows.

Let Γ be a finite group acting on a complex affine variety X by automorphisms. The
quotient variety X/Γ is obtained by collapsing each orbit to a point.

For x ∈ X, the stabilizer group of x is denoted Γx := {γ ∈ Γ : γx = x}. Let c(Γx)
denote the set of conjugacy classes of Γx. The extended quotient is obtained by replacing
the orbit of x by c(Γx). This is done in the following way.

The inertia space of the action is defined to be

X̃ := {(γ, x) ∈ Γ×X : γx = x}.

This is an affine subvariety of Γ×X. The group Γ acts on X̃:

Γ× X̃ → X̃

α(γ, x) =(αγα−1, αx), α ∈ Γ, (γ, x) ∈ X̃.

The (geometric) extended quotient X//Γ is, by definition, the usual quotient for the

action of Γ on X̃:

X//Γ := X̃/Γ.

The projection onto the second factor (γ, x) 7→ x is Γ-equivariant and so passes to
quotient spaces to give a morphism of affine varieties

ρ : X//Γ→ X/Γ.
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This map is referred to as the projection of the extended quotient onto the ordinary
quotient. The inclusion

X ↪→ X̃, x 7→ (e, x)

where e is the identity element of Γ, is Γ-equivariant and so passes to quotient spaces to
give an inclusion of affine varieties X/Γ ↪→ X//Γ. This is referred to as the inclusion of
the ordinary quotient in the extended quotient.

Similarly there is a projection map from the quotient space X//Γ to the set of con-
jugacy classes c(Γ) in Γ. Selecting a set C of representatives for the conjugacy classes,
each element of X//Γ can be represented by a pair (γ, x) with γ ∈ C. The point x lies
in the fixed set Xγ and is determined up to the action of the centraliser Z(γ) of γ, thus
the extended quotient may be decomposed as a disjoint union of components:

X//Γ ∼=
∐
γ∈C

Xγ/Z(γ).

If X is a topological space on which Γ acts by homeomorphisms, then the same
procedure will create the topological space X//Γ.

Example 3.1. Consider the action of the Coxeter group 〈s1, s2, s3 | s2
1 = s2

2 = s2
3 =

(s1s2)3 = (s2s3)3 = (s3s1)3 = e〉 on the plane generated by reflections in the sides of an
equilateral triangle. The triangle is a strict fundamental domain so the quotient of the
plane under the action can be identified with it. We regard this triangle as a cell complex
in the natural way, and note that the stabiliser of any point in the interior of the triangle
is trivial, so these orbit points do not ramify in the extended quotient. Points in the
interior of an edge of the triangle have stabiliser isomorphic to the cyclic group of order
2 and so these edges are doubled. The edges corresponding to the conjugacy class of the
identity are attached to the triangle (which is also labelled by the identity). The vertices
have stabilisers isomorphic to the dihedral group D3 which has three conjugacy classes
corresponding to the decomposition of the group into the identity element, the reflections
and the rotations, so each vertex ramifies into three vertices. The vertices labelled by the
identity element are attached to the triangle, those labelled by the reflection conjugacy
class are attached at the endpoints to the two edges labelled by reflections lying in that
conjugacy class. The remaining three points remain unattached so the extended quotient
has five components, one closed triangle, one triangular loop and three additional points.

Now let X be a topological space equipped with the action of a finite group W . The
equivariant Chern character for discrete groups [3] gives a map

chW : Kj
W (X)→ ⊕lHj+2l(X//W ;C)

which becomes an isomorphism when Kj
W (X) is tensored with C. This is given by the

following composition:

K∗W (X)⊗ C ∼=
(
K∗(X̃)⊗ C

)W ∼= (H∗(X̃;C)
)W ∼= H∗(X//W ;C),

where the middle isomorphism is the non-equivariant Chern character.
The first term is naturally equipped with the structure of an R(W )⊗C-module, and

we will equip each of others similarly. An element of R(W )⊗C is given by a class function
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χ and we lift this to a function on X̃ by χ∗(g, x) = χ(g). As χ is a class function, χ∗

descends to a well defined function on the quotient X̃/W = X//W . This induces actions
on the K-theory and cohomology groups by multiplication as required. It is obvious that
the second and third isomorphisms are now R(W ) ⊗ C-module isomorphisms. We will
now check that the first isomorphism is also an R(W )⊗ C-module map.

We identify K∗W (X) with the KK-group KK∗W (C, C0(X)) and elements in K-theory
will be represented by a (graded or ungraded) equivariant Kasparov triple (E , 1, T ),

(with the identity representation of C). The map from K∗W (X) to K∗(X̃)⊗C is defined
as follows: For each g ∈ W , one restricts the KK-element to the g-fixed set Xg, to
obtain an element of K∗〈g〉(X

g). Since the action of the group 〈g〉 on Xg is trivial, the

restriction can be expressed as a sum of elements of the form (Ei ⊗ Vπi , 1, Ti ⊗ 1) where
(πi, Vπi) is a representation of 〈g〉 and W acts trivially on the module Ei The element
(Ei ⊗ Vπi , 1, Ti ⊗ 1) is mapped to

(Ei, 1, Ti)⊗ χπi(g) ∈ K∗(Xg)⊗ C

where χπi denotes the character of πi. Summing over i and g gives the required W -

invariant element of K∗(X̃)⊗ C.
Given (E , 1, T ) ∈ K∗W (X), and a representation (σ, Vσ) in R(W ), the product is simply

given by (E ⊗ Vσ, 1, T ⊗ 1). Applying the map has the effect of replacing restriction∑
i

(Ei ⊗ Vπi , 1, Ti ⊗ 1) by
∑
i

(Ei ⊗ Vπi ⊗ Vσ, 1, Ti ⊗ 1⊗ 1). We thus obtain∑
g∈W

∑
i

(Ei, 1, Ti)⊗ χπi⊗σ(g) =
∑
g∈W

∑
i

(Ei, 1, Ti)⊗ χπi(g)χσ(g) ∈ K∗(X̃)⊗ C.

Hence the map K∗W (X)⊗ C→ K∗(X̃)⊗ C is an R(W )⊗ C module map as claimed.
Regarding R(W )⊗C as the algebra of class functions on W , the characteristic function

of a conjugacy class [g], gives an idempotent eg. The sum of these over all conjugacy
classes yields the identity, hence K∗W (X) decomposes as a direct sum

K∗W (X)⊗ C =
⊕

[g] a conjugacy class

eg(K
∗
W (X)⊗ C)

The observation that the equivariant Chern character is an R(W ) ⊗ C-module isomor-
phism implies that this takes eg(K

∗
W (X)⊗ C) to the image of H∗(X//W ;C) under the

idempotent eg, however this is precisely the cohomology of the [g]-component of X//W .
The equivariant Chern character thus respects the stratification by conjugacy classes,
thus restricting to give isomorphisms

eg(K
∗
W (X)⊗ C)

∼=−−→ H∗(Xg/Z(g);C).

4. On cyclic quotients

Quotients by cyclic group actions play a key role in this paper. In particular we
will be concerned with cyclic quotients of real and complex tori, and of complex affine
space. The varieties that occur in the latter case were classified in [5] and we refer
the reader there for details. Here we record a useful technical lemma that allows us
to simplify the descriptions of the quotients arising in the former case. It allows us to
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change coordinates on a torus to push the action entirely onto one factor, and can be
regarded as an elementary generalisation of Bezout’s identity.

Lemma 4.1. Let G be an abelian group and ζ ∈ G. Let T = Gn and p1, . . . , pn ∈ Z
so that T is equipped with an action of the cyclic group 〈ζ〉 defined by ζ · (g1, . . . , gn) =
(ζp1g1, . . . , ζ

pngn). Then there is an automorphism of T which intertwines the given
action with the action ζ � (h1, . . . , hn) := (ζdh1, h2, . . . , hn), where d = gcd(p1, . . . , pn).
The automorphism is algebraic in the sense that each coordinate is given by a monomial
in the variables.

Proof. For an element A ∈ SLn(Z) we define an automorphism of T as follows. For
g = (g1, . . . , gn) ∈ T define Ag ∈ T by the formula

(Ag)i =
∏
j

g
aij
j .

It is straightforward to verify that this is an action of SLn(Z) by automorphisms of T .
Now by the Euclidean algorithm we may choose an element A ∈ SLn(Z) such that the
first column is the (transpose of the) vector (p1/d, . . . , pn/d).

(A(ζ � g))i =
n∏
j=1

(ζ � g)
aij
j = (ζdg1)ai1

n∏
j=2

g
aij
j = ζdai1

n∏
j=1

g
aij
j = ζpi(Ag)i.

So, A(ζ � g) = ζ · (Ag) as required. �

5. Proof of Theorem 1.2

As usual we identity the conjugacy classes of W = Sn with partitions of n. Let µ be a
partition of n and let mj for j = 1, . . . n denote the multiplicity of j in the partition µ. We
view µ as the permutation of 1, . . . , n with cycle type (1)m1(2)m2 . . . (n)mn . Specifically
we take µ to fix the first m1 elements, transpose the next m2 pairs, etc., thus selecting
representatives of the conjugacy classes as required. For each µ we will compute the
fixed set and identify the quotient by the centraliser Z(µ) of µ.

Let S be the standard maximal torus in SLn(C) consisting of diagonal matrices such
that the product of the diagonal entries is 1. Let Sk denote the maximal torus S/Ck
in SLn(C)/Ck. An element of Sk is fixed by µ if selecting a representative s ∈ S there
exists ω ∈ Ck such that µ · s = ωs. It follows that for a cycle of µ of length j, the
corresponding coordinates of s must have the form a, ωa, ω2a, . . . ωj−1a. Moreover ωja
must equal a thus ω must satisfy the equation ωj = 1. So the order of ω divides the
length of each cycle in µ. Since ω is an element of Ck it follows that this order, written
|ω|, divides h = gcd(g(µ), k).

Elements of Sk fixed by µ are thus represented by elements of S of the form

s = (a1,1, . . . , a1,m1 , a2,1,ωa2,1, . . . , a2,m2 , ωa2,m2 , . . . ).

We note that some of the multiplicities mj will be zero, in which case the corresponding
string will be empty.

We denote the Ck-orbit of s by [a1,1, . . . , a1,m1 , a2,1 . . . , a2,m2 , . . . ], omitting terms
containing a power of ω as these are determined by the others. Note that the total
number of coordinates remaining in this notation is the number of parts c(µ) of µ.
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The condition that s lies in S implies that

Ω
( m1∏
i=1

a1,i

)( m2∏
i=1

a2,i

)2( m3∏
i=1

a3,i

)3
· · · = 1,

where Ω is a power of ω. Specifically Ω = ωα where α =
∑n

j=1mj
(j−1)j

2 . Some of the
products will be empty; for each of the non-empty products the exponent is divisible by
g allowing us to write the formula as

(3)

(( m1∏
i=1

a1,i

)1/g( m2∏
i=1

a2,i

)2/g( m3∏
i=1

a3,i

)3/g
. . .

)g
= Ω−1.

The permutation µ is the product of disjoint cycles µ = τ1,1 . . . τ1,m1τ2,1 . . . τ2,m2 . . .
where each τj,i is a j-cycle. The centraliser Z(µ) is the group generated by the cycles
τj,i along with permutation groups Sm1 ,Sm2 , . . . with Smj acting by permuting the mj

parts of size j. Hence Smj simply permutes the coordinates aj,1, . . . , aj,mj .
The action of τj,i on [a1,1, . . . , a1,m1 , a2,1 . . . , a2,m2 , . . . ] has the effect of multiplying

the coordinate aj,i by ω while leaving all other coordinates fixed.

For each j, l let σj,l be the l-th degree symmetric polynomial in the variables a
|ω|
j,1, . . . , a

|ω|
j,mj

.

By construction the actions of τj,i and Smj on the coordinates leave σj,l fixed for all j, l.
Conversely suppose that (aj,i) and (a′j,i) are coordinates yielding the same values of

σj,l for all j, l. It follows that the powers a
|ω|
j,i and (a′j,i)

|ω| agree up to a permutation (for

each j) of the i indices. Hence multiplying each aj,i by some power of ω and permuting
we obtain a′j,i. So the coordinates are identified by the action of the centraliser Z(µ)
precisely when they yield the same values of σj,l.

The action of the generator ζ = e2πi/k of Ck on the coordinates has the effect of
multiplying σj,l by ζ l|ω|. Note that ζk/|ω| acts trivially on all the coordinates after
factoring by the action of Z(µ), hence it is really an action of Ck/|ω|.

To summarise we have now identified the quotient of the ω-part of the µ-fixed set by
the centraliser Z(µ) as a subspace of Ac(µ)/Ck/|ω|. We denote a point of the image by
[σj,l].

In order to identify the subspace we reformulate Equation 3 in terms of the variables
σj,l. We have

(4)

∏
j

σ
j/g
j,mj

g/|ω|

= Ω−1

where the index j in the product runs through the b(µ) distinct parts of µ.

The action of the generator ζ has the effect of multiplying
∏
j σ

j/g
j,mj

by ζq where

q =
∑
j
|ω|jmj/g = |ω|n/g. Now ζq generates a group of order

k

gcd(k, q)
=

kg

gcd(kg, n|ω|)
=

g

gcd(g, k′|ω|)

where k′ = n/k.
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By Equation 4 the product
∏
j σ

j/g
j,mj

can take g/|ω| values, however factoring out by

the (free) action of ζq gives

g

|ω|
· gcd(g, k′|ω|)

g
= gcd(g/|ω|, k′)

components. Let ξ be one of the g/|ω| roots of Ω−1 and consider the variety defined by
the equation

(5)
∏
j

σ
j/g
j,mj

= ξ.

In these b(µ) variables this equation defines a complex torus of codimension 1. However
there are a further c(µ)− b(µ) variables σj,l with l < mj which are unconstrained. So we

obtain a variety of the form (C×)b(µ)−1×Ac(µ)−b(µ), and the component of the extended
quotient corresponding to this variety is given by factoring out the action of the subgroup
Cgcd(k,q) = 〈ζk/ gcd(k,q)〉. We recall that this generator acts on each coordinate σj,l of the

the variety as multiplication by ζ l|ω|k/ gcd(k,q).
First we will consider the action on the constrained coordinates σj,mj . Here ζk/ gcd(k,q)

acts by multiplication by ζmj |ω|k/ gcd(k,q), and we note that this is the restriction of the
natural multiplication action on the larger variety (C×)b, where b = b(µ). Following the
proof of Lemma 4.1 we select an element A ∈ SLb(Z) with first column equal to the

transpose of the vector
(
mj1
m(µ) , . . . ,

mjb
m(µ)

)
, where the indices ji denote the distinct parts

of µ. Abusing notation we will use j to denote an index in the set J = {j1, . . . , jb}.
We now transform the coordinates σj,mj by the inverse matrix A−1 to obtain new

coordinates which we denote by ρi. Now (again abusing notation) the coordinates σj,mj

are recovered by the formula σj,mj =

b∏
i=1

ρ
aji
i .

The subvariety defined by equation 5 is transformed by A−1 to the variety

(6)

b∏
i=1

∏
j∈J

(
ρ
aji
i

)j/g
=

b∏
i=1

ρ
∑
j∈J ajij/g

i = ξ.

which we denote by Vµ,ω,ξ. Recall that there are still c(µ)− b(µ) unconstrained coordi-
nates σj,l, j < mj in this variety for which we have not changed variables.

Now let d = m(µ)|ω|k
gcd(k,q) . According to the Lemma, in these coordinates the action of the

generator multiplies the first coordinate ρ1 by ζd and leaves ρ2, . . . , ρb invariant. Let λ

denote the order of ζd. i.e., λ = k
gcd(d,k) . We will show that the quotient κ :=

∑
j∈J aj1j/g

λ

is an integer which will allow us to rewrite Equation 6 in the form

(7) (ρλ1)κ ·
b∏
i=2

ρ
∑
j∈J ajij/g

i = ξ.

where ρλ1 is left invariant by the action.
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First we compute

λ =
k

gcd
(
m(µ)|ω|k
gcd(k,q) , k

) =
gcd(k, q)

gcd (m(µ)|ω|, gcd(k, q))
=

gcd(k, q)

gcd (m(µ)|ω|, k, q)
=

gcd(k, q)

gcd (m(µ)|ω|, k)
,

since m(µ)|ω| divides q = n
g |ω|.

On the other hand, the exponent of ρ1 is
∑
j
aj1j/g =

∑
j

mj
m(µ)

j
g = n

m(µ)g . Thus

κ =
n gcd(m(µ)|ω|, k)

m(µ)g gcd(k, q)
=

gcd(nm(µ)|ω|, nk)

gcd(m(µ)gk,m(µ)gq)
=

gcd(nk, nm(µ)|ω|)
gcd(m(µ)gk, nm(µ)|ω|)

,

which is an integer because m(µ)g divides n.

To recap, we have changed coordinates on the constrained variables replacing σj,mj
by ρi, and pushing the action there entirely onto the first coordinate ρ1, ρ1 7→ ζdρ1.

We will now consider the unconstrained variables σj,l where l < mj , where the action

is (still) given by σj,l 7→ ζ l|ω|k/ gcd(k,q)σj,l. Let

η = ζλ|ω|k/ gcd(k,q) = ζk|ω|/ gcd(m(µ)|ω|,k) = ζk/ gcd(m(µ),k/|ω|)

which generates the cyclic group Cgcd(m(µ),k/|ω|). This acts on the affine space of dimen-
sion c(µ)− b(µ) spanned by the unconstrained variables, with the generator η acting by
σj,l 7→ ηlσj,l. The cyclic singularity Aµ,ω is defined to be the quotient variety. It is easy

to see that for each l there are pl(µ) coordinates on which the action multiplies by ηl.
We will next define a map φ from the variety Vµ,ω,ξ ⊂ (C×)b ×Ac−b to (C×)b ×Aµ,ω,

with image a codimension 1 subvariety, where c = c(µ).
Recall that λ = k

gcd(d,k) so by Bezout’s Lemma there exists an integer δ such that

(8)
d

gcd(d, k)
· δ ≡ 1 mod λ.

Let ρ̂1 denote a gcd(d, k)-th root of ρ1. While this is not uniquely defined, we will see

that the construction that follows is independent of the choice. Set αl =
l|ω|kδ(λ− 1)

gcd(k, q)
,

and define the map φ : Vµ,ω,ξ ⊂ (C×)b × Ac−b → (C×)b × Aµ,ω by(
(ρ1, ρ2, . . . , ρb), (σj,l)j∈J,l<mj

)
7→
(

(ρλ1 , ρ2, . . . , ρb), (ρ̂1
αlσj,l)j∈J,l<mj

)
.

To see that this is well defined we need to verify that it is independent of the choice
of ρ̂1, but ρ̂1 is defined up to multiplication by a gcd(d, k)-th root of unity, all of which
are powers of the primitive root ζλ, so it suffices to show that replacing ρ̂1 by ζλρ̂1 does
not change the image.

We have

ζλαl =

(
ζ

λl|ω|k
gcd(k,q)

)δ(λ−1)

=
(
ηl
)δ(λ−1)



16 GRAHAM A. NIBLO, ROGER PLYMEN AND NICK WRIGHT

Hence as points in the quotient space Aµ,ω,(
(ζλρ̂1)αlσj,l

)
j∈J,l<mj

=

((
ηl
)δ(λ−1)

ρ̂1
αlσj,l

)
j∈J,l<mj

=
(
ρ̂1
αlσj,l

)
j∈J,l<mj

.

Now we will show that φ is constant on orbits of the action of Cgcd(k,q) = 〈ζk/ gcd(k,q)〉
of Vµ,ω,ξ. We have

φ
(

(ζdρ1, ρ2, . . . , ρb), (ζ
l|ω|k/ gcd(k,q)σj,l)

)
=
(

(ζdλρλ1 , ρ2, . . . , ρb), ((ζ
d

gcd(d,k) ρ̂1)αlζ l|ω|k/ gcd(k,q)σj,l)
)

Now dλ = dk
gcd(d,k) which is divisible by k so ζdλ = 1. Also we compute

d

gcd(d, k)
αl +

l|ω|k
gcd(k, q)

=

(
dδ(λ− 1)

gcd(d, k)
+ 1

)
l|ω|k

gcd(k, q)
.

Using Equation 8 we now observe that
dδ(λ− 1)

gcd(d, k)
+ 1 ≡ 0, mod λ and set r =

1
λ

(
dδ(λ−1)
gcd(d,k) + 1

)
. It then follows that ζ

dαl
gcd(d,k) ζ l|ω|k/ gcd(k,q) = ηrl, yielding

φ
(

(ζdρ1, ρ2, . . . , ρb), (ζ
l|ω|k/ gcd(k,q)σj,l)

)
=
(

(ρλ1 , ρ2, . . . , ρb), (η
rlρ̂1

αlσj,l)
)

=
(

(ρλ1 , ρ2, . . . , ρb), (ρ̂1
αlσj,l)

)
= φ

(
(ρ1, ρ2, . . . , ρb), (σj,l)

)
in (C×)b × Aµ,ω, as required.

We conclude that φ induces a map from the quotient of Vµ,ω,ξ by the action of Cgcd(k,q)

to the variety (C×)b × Aµ,ω. We will now show that this induced map is injective.

Suppose then that
(

(ρ1, ρ2, . . . , ρb), (σj,l)
)

and
(

(ρ′1, ρ
′
2, . . . , ρ

′
b), (σ

′
j,l)
)

have the same

image under φ. Then ρ1 and ρ′1 differ by a a power of ζd, noting that this is a primitive
λ-th root of unity. The action of Cgcd(k,q) does not change ρ2, . . . ρb, and it follows that
up to the action of Cgcd(k,q) the first coordinates agree. Moreover we have noted that
applying the action does not change the image under φ, so without loss of generality we
may assume that ρ′i = ρi for all i. We will show that the σj,l coordinates must now agree
up to the action of the subgroup of Cgcd(k,q) which stabilises the ρ coordinates.

We are given that the coordinates ρ̂1
αlσj,l agree with ρ̂′1

αl
σ′j,l up to the action of 〈η〉,

i.e., for some r

ρ̂′1
αl
σ′j,l = ηrlρ̂1

αlσj,l

But since ρ1 = ρ′1, we may choose the roots ρ̂1, ρ̂′1 to be equal, giving

σ′j,l = ηrlσj,l = ζrlλ|ω|k/ gcd(k,q)σj,l = (ζ l|ω|k/ gcd(k,q))rλσj,l.

But as noted above ζdλ = 1 so ζdrλ = 1 for each r. Hence

(ζ
k

gcd(k,q) )rλ ·
(

(ρ1, ρ2, . . . , ρb), (σj,l)
)

=
(

(ρ′1, ρ
′
2, . . . , ρ

′
b), (σ

′
j,l)
)

so the map induced by φ is injective as required.
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Finally we consider the image of the induced map. Given an element of (C×)b×Aµ,ω
represented by (

(ψ1, ψ2, . . . , ψb), (τj,l)
)

choose a λ-th root ρ1 of ψ1 and a gcd(d, k)-th root ρ̂1 of ρ1. We set ρi = ψi for i ≥ 2

and σj,l = ρ̂1
−αlτj,l. Then

(
(ρ1, ρ2, . . . , ρb), (σj,l)

)
is in the variety Vµ,ω,ξ if and only if

Equation 7 is satisfied by these coordinates. When this happens the image is precisely(
(ψ1, ψ2, . . . , ψb), (τj,l)

)
. Equation 7 translates in these coordinates into the equation

(9) ψκ1 ·
b∏
i=2

ψ
∑
j∈J ajij/g

i = ξ.

Since the variables τj,l are unconstrained the image is the product of a codimension-1

subvariety T of (C×)b with the cyclic singularity Aµ,ω.
Finally we will show that the exponents appearing in Equation 9 are coprime, from

which it follows that the subvariety T is a single torus. Recall that g is the greatest
common divisor of the parts ji of the partition. We form a matrix B in SLb(Z) with
first row given by b1i = ji/g, which is possible since the numbers ji/g are coprime. Then
the first row of the product BA has entries (BA)1i =

∑
j
ajij/g. Since the matrix BA

has determinant 1 these entries are coprime. Dividing the first entry by λ to get the
exponent κ of ψ1 does not change the greatest common divisor. This completes the
proof.

6. Proof of Corollary 1.3

The cyclic singularities are contractible so to prove Corollary 1.3 it suffices to show
that ∣∣∣∣∣∣

∐
ω∈Cgcd(g(µ),k)

Xµ,ω

∣∣∣∣∣∣ =
g(µ)

a

a−1∑
s=0

gcd(a, s)

where a = gcd

(
g(µ),

n

g(µ)
, k,

n

k

)
.

There are h = gcd(g, k) possible values for ω. Writing ω as the pth power of the
generator of Ch, the order of ω is h/ gcd(h, p) so, setting k′ = n/k, the cardinality is∑

ω∈Ch

gcd(g/|ω|, k′) =

h−1∑
p=0

gcd

(
g gcd(h, p)

h
, k′
)

=

h−1∑
p=0

gcd(gcd(g, gp/h), k′) =
h−1∑
p=0

gcd(g, gp/h, k′).

Letting h′ = gcd(g, k′) and a = hh′/g we observe that

a =
gcd(g, k) gcd(g, k′)

g
=

gcd(g2, gk, gk′, kk′)

g
= gcd(g, k, k′, n/g).
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The cardinality is now given by

h−1∑
p=0

gcd(h′, gp/h) =

h−1∑
p=0

gcd(h′, ph′/a) =
h′

a

h−1∑
p=0

gcd(a, p)

=
h′h

a2

a−1∑
s=0

gcd(a, s) =
g

a

a−1∑
s=0

gcd(a, s).

The third equality follows from the fact that gcd(a, p) repeats with period a, since
gcd(a, p+ a) = gcd(a, p).

We remark that a is symmetric in the interchange of k with k′ = n/k giving the same
number of components in each stratum for a group and its Langlands dual.

7. Proof of Theorem 1.6

Let T denote the standard maximal torus in SUn(C) consisting of diagonal matrices
with entries of modulus 1 and with determinant 1. Let Tk denote the maximal torus
T/Ck in SUn(C)/Ck. The Weyl group is again the permutation group W = Sn and
conjugacy classes of elements correspond to partitions of n.

The fixed set in the maximal torus Tk = T/Ck corresponding to a partition µ is a
subspace of the fixed set for the action on Sk = S/Ck considered in Section 5. Specifically
the fixed set in Tk is the subspace of the fixed set in Sk where each coordinate is required
to have modulus 1.

Recall that the points of the fixed set in Sk are parametrised by elements ω ∈ Ck,
with order dividing h = gcd(g, k), along with tuples of variables (aj,i) where j ranges
over the sizes of parts of the partition and i ranges from 1 to mj , the multiplicity of j
in the partition. These must satisfy the equation( m1∏

i=1

a1,i

)1( m2∏
i=1

a2,i

)2( m3∏
i=1

a3,i

)3
· · · = Ω−1

where Ω = ω
∑n
j=1mj

(j−1)j
2 , see Equation 3. We now require one additional constraint

per variable, namely |aj,i| = 1. The coordinates are not uniquely determined as we must

factor out the action of Ck: changing each aj,i by a factor of ζ = e2π
√
−1/k gives the

same point of the quotient.

It is convenient to introduce polar coordinates θj,i such that aj,i = e2π
√
−1 θj,i . Since

i is used as an index, we will not use it to denote the square root of −1. Taking Θ such

that Ω = e2π
√
−1 Θ the above equation yields

(10)
∑
j

mj∑
i=1

j θj,i = −Θ mod Z

where j ranges over the parts of µ. We denote the space of points (θj,i) satisfying this
equation by Vµ,ω.

For each µ, we must identify the quotient of this fixed set by the centraliser Z(µ) of
this permutation. Recall that the centraliser is generated by cycles τj,i which act by
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multiplying aj,i by ω, and by the symmetric groups Smj which act by permuting the
coordinates (aj,1, . . . , aj,mj ).

Lifting from the variables aj,i to θj,i has the effect of ‘lifting’ the centraliser as follows.
The variables θj,i are determined by aj,i, only modulo Z. The group Ck acts by multiply-

ing each aj,i by ζ = e2π
√
−1 1

k and hence the action lifts to an action of the infinite cyclic

group Z, where the generator, which we denote ζ̃ acts as a shift by 1
k on each θj,i. It is

easy to see that the cyclic group 〈ω〉 is generated by e
2π
√
−1 1
|ω| , thus the variables θj,i

can additionally be shifted by any integer multiple of 1
|ω| . Permuting the variables aj,i

simply corresponds to permuting θj,i. Hence the action of the centraliser corresponds to
the action on the θj,i coordinates generated by the lattice with coordinates in 1

|ω|Z, the

shift ζ̃, and by these permutations. We will denote this group by Z̃(µ, ω).
We now introduce variables σj =

∑mj
i=1 θj,i|ω|. These correspond to the maximal

degree symmetric polynomials in the complex case. We rewrite Equation 10 in the form∑
j

j

|ω|
σj = −Θ mod Z

where the sum is taken over the distinct parts j of µ. The action of ζ̃ has the effect of

shifting σj by
mj |ω|
k and hence changes

∑
j
j
|ω|σj by

∑
j

j

|ω|
mj |ω|
k

=
n

k
.

Note that shifting the value of a θj,i by 1
|ω| has the effect of shifting the value σj by 1

and hence changing
∑

j
j
|ω|σj by j

|ω| .

It follows that the sum
∑

j
j
|ω|σj can be shifted by any multiple of gcd(nk ,

g
|ω|) where

g is the greatest common divisor of the parts j. Thus we can assume without loss of
generality that

∑
j
j
|ω|σj lies in the finite set

Xµ,ω =
{
−Θ,−Θ + 1, . . . ,−Θ + gcd

(n
k
,
g

|ω|

)
− 1
}
.

Indeed as every element of Z̃(µ, ω) shifts the sum by a multiple of gcd(nk ,
g
|ω|), these

different values give gcd(nk ,
g
|ω|) distinct components of the quotient.

Now fixing the value of σj we consider tuples θj,1, . . . , θj,mj such that the sum
∑mj

i=1 θj,i|ω|
yields this value. We use Morton’s description of symmetric products of circles, see [6].

We will consider the subgroup Z̃0(µ, ω) of Z̃(µ, ω) generated by the sublattice

{(νj,i) : νj,i ∈
1

|ω|
Z for all j, i and νj,1 + · · ·+ νj,mj = 0 for all j}

along with the permutation groups Smj . Note that this subgroup preserves each of the

variables σj . By adding integer multiples of 1
|ω| (totalling zero) to the variables θj,i we

can assume that the minimum and maximum values differ by at most 1
|ω| . Additionally,
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the action of the symmetric group allows us to arrange the variables θj,i in ascending
order, thus we may assume that

(11) θj,1 ≤ θj,2 ≤ · · · ≤ θj,mj ≤ θj,1 +
1

|ω|
.

Moreover this condition yields a unique representative for each orbit of the group Z̃0(µ, ω).
For x ∈ Xµ,ω we denote by Vµ,ω,x the subspace of Vµ,ω defined by the equation

(12)
∑
j

j

|ω|
σj = x

along with Morton’s inequalities (11). For each j, we observe that for a fixed value of σj ,
the set of points (θj,1, . . . , θj,mj ) satisfying the inequalities form a simplex of dimension
mj − 1. The variables σj can take any real values, subject to the constraint (12), hence

these lie in a codimension 1 affine subspace of Rb. It follows that the space Vµ,ω,x is a

product of Rb−1 with a polysimplex whose component simplices have dimensions mj−1.

We will think of Vµ,ω,x as a bundle of polysimplices over the space Rb−1.

We now consider elements of Z̃(µ, ω) which preserve Morton’s inequalities, 11. Let
Wj denote the element defined by

(θj,1, . . . , θj,mj ) 7→ (θj,2, . . . θj,mj , θj,1 +
1

|ω|
).

This shifts the sum
∑mj

i=1 θj,i by 1
|ω| and hence shifts σj by 1, while leaving all other

σj′ invariant, and preserves Morton’s inequalities. Note that ζ̃ also preserves these

inequalities and that the elements Wj along with ζ̃ and Z̃0(µ, ω) generate the whole of

Z̃(µ, ω).

Each Wj changes
∑

j
j
|ω|σj by j

|ω| and hence takes this value out of the set Xµ,ω.

Similarly the shift ζ̃ changes the sum by n
k so we must consider compositions of the form

ζ̃γ
∏
jW

βj
j where

γ
n

k
+
∑
j

j

|ω|
βj = 0.

Let Lµ,ω denote the group of elements of this form. The quotient by Z̃(µ, ω) of the space
Vµ,ω is thus the disjoint union ∐

x∈Xµ,ω

Vµ,ω,x/Lµ,ω

We remark that the elements ζ̃, {Wj} are commuting elements of infinite order, so Lµ,ω
is an abelian group of rank b−1, indeed Lµ,ω can be identified as a quotient of the lattice

{(γ, (βj)) ∈ Z× Zb : γ
n

k
+
∑
j

j

|ω|
βj = 0}

of rank b, where the kernel is the cyclic subgroup generated by the element

γ =
k

|ω|
, βj = −mj .
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It is easy to see that this is in the kernel and moreover for the linear part of the affine

map W
βj
j to be the identity mj must divide βj .

We will now compute the stabiliser of the fibres of Vµ,ω,x, i.e. we will determine which

elements ζ̃γ
∏
jW

βj
j preserve all the σj variables. This will hold when

γmj |ω|
k

+ βj = 0

for each j. The elements (γ, (βj)) satisfying this equation form an infinite cyclic group
whose generator is given by

γ =
k

gcd(m|ω|, k)
, βj = − mj

gcd(m, k/|ω|)
.

The action of ζ̃γ
∏
jW

βj
j on each simplex factor of the fibre is then the βj power of themj-

cycle on the vertices. This decomposes as a product of
mj

gcd(m,k/|ω|) disjoint gcd(m, k/|ω|)-
cycles on each simplex. The effective action is thus by a group of order gcd(m, k/|ω|)
and each simplex can be regarded as a join of mj/ gcd(m, k

|ω|) simplices of dimension

gcd(m, k
|ω|)− 1 on each of which this group acts by cyclically permuting the vertices.

The action on each simplex of the join is orientable or not depending on whether or
not the dimension gcd(m, k

|ω|)−1 is even. It follows that the action on the join preserves

orientation precisely when (gcd(m, k
|ω|) − 1)mj/ gcd(m, k

|ω|) is even and that the action

on the polysimplex preserves the orientation when∑
j

(gcd(m, k
|ω|)− 1)mj

gcd(m, k
|ω|)

=
∑
j

mj

(
1− 1

gcd(m, k
|ω|)

)
= c− c

gcd(m, k
|ω|)

is even. Hence this action preserves the orientation on the fibres if and only if c is odd
or the 2-adic norms satisfy |c|2 < | gcd(m, k

|ω|)|2.

To complete the proof we observe that Lµ,ω is the product of a free abelian group
Γµ,ω of rank b− 1 with the cyclic group Cgcd(m, k|ω| )

and define Eµ,ω = Vµ,ω,x/Γµ,ω. Note

that up to a homeomorphism induced by translation, this is independent of x ∈ Xµ,ω.
The quotient Eµ,ω is a bundle of polysimplices over a torus of dimension b− 1

Thus we have

T//W ∼=
∐
µ

∐
ω∈Cgcd(g(µ),k)

∐
x∈Xµ,ω

Vµ,ω,x/Lµ,ω ∼=
∐
µ

∐
ω∈Cgcd(g(µ),k)

∐
x∈Xµ,ω

Eµ,ω/Cgcd(m(µ), k|ω| )

where Cgcd(m(µ), k|ω| )
acts on the fibres of the bundle as described above.

It follows that each component is a bundle over a compact torus of dimension b − 1
with fibre a cyclic quotient of a polysimplex.

It is instructive to consider the special case when k = 1, for which ω can only take the
value 1. In this case the components are the bundles Eµ,1. These bundles are obtained

by gluing polysimplex fibres using the compositions
∏
jW

βj
j where

∑
j jβj = 0. In this

context we have the following simple lemma in the spirit of Morton [6]. Indeed in the
case where we have a partition of the form 1 + j + · · · + j for some j > 1, the space
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Eµ,1 is simply a symmetric product of mj circles. Morton showed that this is a simplex
bundle over a circle, which is orientable or not according to whether mj is odd or even.

Lemma 7.1. In the case k = 1, given a partition µ of n with distinct parts j1, . . . , jb
and g = gcd(j1, . . . , jb), the bundle Eµ,1 is non-orientable if and only if the vectors

(j1/g, . . . , jb/g) and (mj1−1, . . . ,mjb−1) are linearly independent as elements of (Z/2)b.

Proof. The composition
∏
jW

βj
j preserves the orientation on the polysimplex if and

only if
∑

j(mj − 1)βj is even. If the vectors are linearly dependent then (noting that

(j1/g, . . . , jb/g) is non-zero modulo 2 since its entries have greatest common divisor 1)
we have either (mj1 − 1, . . . ,mjb − 1) = (0, . . . , 0) modulo 2, whence each Wj preserves
the fibre orientation, or (mj1 − 1, . . . ,mjb − 1) = (j1/g, . . . , jb/g) modulo 2. In the latter

case any element (βj1 , . . . βjb) in the lattice satisfies
∑

j
j
gβj = 0 hence

0 =
∑
j

j

g
βj ∼=

∑
j

(mj − 1)βj mod 2

and again all elements of the lattice preserve orientation on the fibres.
Conversely suppose (j1/g, . . . , jb/g) and (mj1−1, . . . ,mjb−1) are linearly independent

modulo 2. Then in particular there exists a pair j, j′ such that (j/g, j′/g) and (mj −
1,mj′ − 1) are linearly independent modulo 2. Set βj = j′/g, βj′ = −j/g and βj′′ = 0

for all other j′′. This defines a point of the lattice and the composition W
βj
j W

βj′

j′ will

reverse orientation on the polysimplex fibres since the independence of (j/g, j′/g) and

(mj − 1,mj′ − 1) modulo 2 ensures that (mj − 1) j
′

g − (mj′ − 1) jg is odd. �

Example 7.2. We consider in detail the real counterpart SU6(C) of the example SL6(C)
considered in section 2.

µ (j1/g, . . . , jb/g) (mj1 − 1, . . . ,mjb − 1) |Xµ,1| Eµ,1 orientable?
6 (1) (0) 6 ∆0 Yes

1 + 5 (1, 5) (0, 0) 1 S1 Yes
2 + 4 (1, 2) (0, 0) 2 S1 Yes

1 + 1 + 4 (1, 4) (1, 0) 1 S1 ×∆1 Yes
3 + 3 (1) (1) 3 ∆1 Yes

1 + 2 + 3 (1, 2, 3) (0, 0, 0) 1 (S1)2 Yes
1 + 1 + 1 + 3 (1, 3) (2, 0) 1 S1×̃∆2 ∼= S1 ×∆2 Yes

2 + 2 + 2 (1) (2) 2 ∆2 Yes
1 + 1 + 2 + 2 (1, 2) (1, 1) 1 S1×̃(∆1 ×∆1) No

1 + 1 + 1 + 1 + 2 (1, 2) (3, 0) 1 S1×̃∆3 ∼= S1 ×∆3 Yes
1 + 1 + 1 + 1 + 1 + 1 (1) (5) 1 ∆5 Yes

Here the notation S1 denotes the unit circle while ∆p denotes the standard p-simplex.
The notation S1×̃F denotes a twisted bundle over the circle with fibre F , which in our
case is a simplex or, more generally a polysimplex. (Recall that since k = 1 there is no
cyclic group action on the fibre.)

In the case of the 1 + 1 + 4 partition the gluing map is W 4
1W

−1
4 which acts as the

identity on the fibre so the bundle is trivial as noted in the table. In the case when
µ = 1 + 1 + 1 + 3 the gluing map is W 3

1W
−1
3 which acts as a rotation of order 3
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on the simplex ∆2. While this is non-trivial as a simplex bundle it is orientable and
homeomorphic to the direct product.

For µ = 1 + 1 + 2 + 2 the fibre is a product of two intervals, and the gluing map,
W 2

1W
−1
2 preserves the first factor and flips the second. It follows that the bundle is

the product of a Möbius band with an interval and, in particular is non-orientable. We
note that modulo 2 the vectors in the table reduce to (1, 0) and (1, 1) which are linearly
independent.

When µ = 1 + 1 + 1 + 1 + 2 the gluing map is again W 2
1W

−1
2 acting as the square

of a cyclic permutation of the vertices of the fibre which is a 3-simplex. This should be
thought of as the join of two 1-simplices both of which are flipped by the gluing map,
so this is a rotation of π about an axis orthogonal to both 1-simplices. The result is
therefore homeomorphic to the direct product.

8. Proof of Corollary 1.7

The gluing maps defining the bundle Eµ,ω and the action of the cyclic group Cgcd(m(µ),k/|ω|)
are products of simplicial maps on the factors of the polysimplex. It follows that the
product of the barycentres of the simplices is preserved by these actions and that the re-
traction onto this point defines a homotopy equivalence from the quotient Eµ,ω/Cgcd(m(µ),k/|ω|)
to the b− 1-torus over which the bundle Eµ,ω is defined.

Each component is thus homotopy equivalent to (S1)b−1 as required. The computation
of the number of components furnished by each µ is as in Section 6.
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Appendix A. Computations

Our formula, together with the binomial formula for the Betti numbers of tori, allow
us to compute the cohomology of the extended quotients corresponding to the extended
affine Weyl groups. From the point of view of cohomology the real and complex tori
(S1)b−1, (C×)b−1 are identical, hence the cohomology groups of the extended quotients
Sk//W and Tk//W are the same. Since K-theory is a compactly supported theory one
must be more careful about the identification of the real and complex tori, although they
do, coincidentally, have the same K-theory. For this reason we restrict to the real case
when considering K-theory so that the standard Chern character argument [3] provides
the ranks of the K-theory groups.

In Tables 1 and 2 below we compute the Betti numbers for small values of n in the
case of SLn(C)/Ck for k = 1, 2. By duality these are the same as the Betti numbers
for PSLn(C) and SLn(C)/Cn/2 respectively. For n0 a triangle number there is only one
partition that can contribute a top dimensional class in the cohomology of the extended
quotient, that is n0 = 1 + 2 + . . .+ b so the cohomological dimension increases and the
top dimensional Betti number resets to 1 at each of these. More generally we have the
following.

Lemma A.1. For each n let b = b
√

8n+1−3
2 c and let n0 = 1 + 2 + . . . + b, which is the

largest triangle number less than or equal to n. Then n = n0 + r where 0 ≤ r ≤ b. Let

P2(r) :=
r∑
s=0

P (s)P (r−s), where P (s) denotes the number of partitions of s and P2(r) is

the number of partitions of r into parts of two kinds. The top dimensional cohomology
of S//W appears in dimension b− 1, and has rank P2(r), hence the generating function
for the top dimensional Betti numbers P2(r) is

∞∏
s=1

1

(1− xs)2
.

Proof. The top dimensional cohomology is carried by tori corresponding to partitions
which maximise the number of distinct parts b(µ), which increases at each triangle
number since these are the minimal numbers which can be partitioned into a given
number of distinct parts. So the cohomological dimension of the extended quotient is

b
√

8n+1−3
2 c.

Given the partition n0 = 1 + 2 + . . .+ b we obtain the partitions for n0 + r as follows.
First partition r as a sum s+ (r− s) then choose partitions of s and r− s. We splice the
partition of s into the partition of n0 noting that this does not change the number of
distinct parts but increases multiplicities of (some of) the first s terms. In particular it
does not change the multiplicities of the last r− s terms i.e. these still have multiplicity
1, Now writing the partition of r− s = x1 +x2 + . . .+xd in increasing order, and noting
that d ≤ r − s, we add these terms to the last terms of the spliced partition. Each of
these new terms must have multiplicity one, since the xi terms are monotonic while the
terms b− (d− 1), . . . , b are strictly increasing. Hence this produces a partition with the
same number b of distinct parts.

Conversely, suppose we are given a partition of n = n0 + r with b distinct parts
j1 < j2 < . . . < jb, which have multiplicities mj1 , . . . ,mjb . We express the partition as
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the union of the partition of j1+j2+. . .+jb with parts ji together with its complement in
the partition of n. Since ji ≥ i it follows that j1+j2+. . .+jb ≥ n0, so the complementary
partition is a partition of s ≤ b, with multiplicities mj1 − 1, . . .mjb − 1. The partition
j1 + j2 + . . . + jb of n0 + (r − s) is obtained from the partition n0 = 1 + 2 + . . . + b
by adding ji − i to the ith term, where the non-zero terms ji − i define a partition of
r− s where ji−1 − (i− 1) ≤ ji − i. Hence this produces all partitions of n into exactly b
parts. �

Table 3 gives the ranks of K0 and K1 for n ranging from 2 to 20 and k dividing n in
the case of the Lie groups SUn(C)/Ck. Note that, as remarked above, when n is square
free the answers do not vary with k.

Remark A.2. We note that for SUn(C) (and, by duality, PSUn(C)) the Euler charac-
teristic of the extended quotient (the difference of the ranks of K0 and K1) is the sum of
the divisors of n. This follows from considering the partitions of n with a single distinct
part and summing the size of these parts.

The computations of the Betti numbers in Tables 1 and 2 can be viewed as computa-
tions of the periodic cyclic homology HP∗C[W ′a]. Similarly the K-theory computations

in Table 3 can be interpreted (identifying K∗(C
∗
rW

′
a) with Kj

W (Tn
k
) and applying the

equivariant Chern character) as computations of the ranks of K∗(C
∗
rW

′
a).
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n b0 b1 b2 b3 b4 b5 b6 b7 b8
1 1
2 3
3 5 1
4 9 2
5 11 5
6 20 9 1
7 21 15 2
8 35 25 5
9 42 39 10
10 61 60 18 1
11 66 83 31 2
12 112 132 53 5
13 113 171 82 10
14 168 253 129 20
15 210 346 193 34 1
16 279 480 290 60 2
17 313 618 415 97 5
18 461 882 607 157 10
19 508 1107 841 242 20
20 719 1533 1192 372 36
21 852 1958 1627 551 63 1
22 1088 2587 2248 816 105 2
23 1277 3253 3006 1173 172 5
24 1756 4376 4103 1685 272 10
25 2006 5400 5387 2365 423 20
26 2573 7031 7212 3318 642 36
27 3106 8802 9403 4563 961 65
28 3937 11304 12393 6277 1414 108 1
29 4593 13895 15942 8486 2054 180 2
30 5958 17909 20840 11480 2945 287 5
31 6872 21787 26510 15295 4175 453 10
32 8676 27629 34226 20394 5858 694 20
33 10305 33853 43311 26834 8138 1055 36
34 12655 42271 55286 35328 11213 1566 65
35 15009 51480 69364 45962 15313 2306 110
36 18664 64348 88029 59864 20768 3340 183 1
37 21673 77496 109523 77103 27944 4796 295 2
38 26559 95862 137729 99418 37385 6796 468 5
39 31447 115954 170716 126960 49653 9560 724 10
40 38217 142322 213011 162237 65632 13298 1107 20
41 44623 170725 262212 205495 86178 18375 1660 36
42 54386 209199 325553 260569 112690 25161 2461 65
43 63303 249804 398441 327617 146468 34234 3597 110
44 76379 303841 491402 412339 189689 46224 5203 185
45 89696 363217 599369 515152 244298 62058 7439 298 1

Table 1. The Betti numbers of the extended quotient of the maximal
torus of SLn(C) by the Weyl group.
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n b0 b1 b2 b3 b4 b5 b6 b7 b8 b9
2 3
4 10 2
6 20 9 1
8 40 27 5
10 61 60 18 1
12 122 139 54 5
14 168 253 129 20
16 306 505 295 60 2
18 461 882 607 157 10
20 758 1583 1210 373 36
22 1088 2587 2248 816 105 2
24 1848 4504 4156 1690 272 10
26 2573 7031 7212 3318 642 36
28 4063 11527 12518 6297 1414 108 1
30 5958 17909 20840 11480 2945 287 5
32 8939 28109 34516 20454 5860 694 20
34 12655 42271 55286 35328 11213 1566 65
36 19041 65152 88616 60021 20778 3340 183 1
38 26559 95862 137729 99418 37385 6796 468 5
40 38892 143835 214203 162609 65668 13298 1107 20
42 54386 209199 325553 260569 112690 25161 2461 65
44 77335 306262 493588 413151 189794 46226 5203 185
46 106879 438330 734529 643953 313641 82762 10542 476 2
48 151344 633466 1092391 995271 510521 144834 20594 1137 10
50 206440 893139 1596122 1515435 817909 248268 38983 2555 36
52 286682 1268240 2329944 2290931 1294065 417826 71771 5463 110
54 390133 1771783 3355161 3420111 2020028 691336 128924 11196 300
56 534934 2480996 4820172 5072447 3119948 1126632 226551 22131 747 2
58 719869 3424517 6843460 7441500 4763117 1809963 390279 42387 1742 10
60 979775 4745295 9701610 10856045 7205703 2870751 660346 78961 3846 36

Table 2. The Betti numbers of the extended quotient of the maximal
torus of SLn(C)/C2 by the Weyl group.
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n, k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
0

3
0

3
5
1

5
1

4
9
2

10
2

9
2

5
11
5

11
5

6
21
9

21
9

21
9

21
9

7
23
15

23
15

8
40
25

45
27

45
27

40
25

9
52
39

56
41

52
39

10
79
61

79
61

79
61

79
61

11
97
85

97
85

12
165
137

176
144

165
137

165
137

176
144

165
137

13
195
181

195
181

14
297
273

297
273

297
273

297
273

15
404
380

404
380

404
380

404
380

16
571
540

603
565

609
569

603
565

571
540

17
733
715

733
715

18
1078
1039

1078
1039

1102
1057

1102
1057

1078
1039

1078
1039

19
1369
1349

1369
1349

20
1947
1905

2004
1956

1947
1905

1947
1905

2004
1956

1947
1905

Table 3. The rank of the K-theory of the extended quotient of the maximal torus of SUn(C)/Ck by the Weyl group.
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