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1 Introduction

Being both a valid form of payment and an alternative to governments-backed currency, Bitcoin

has emerged, among the class of cryptocurrency, as the most popular digital money (Cheah and

Fry, 2015; Pieters and Vivanco, 2017). Indeed, Bitcoin has been used to purchase legal and illegal

good and services (Bohme et al., 2015) as more retailers are accepting Bitcoin for transactionary

purposes.1 While bulk of the existing literature is focused on the legal aspects and underlying

blockchain technology, little is known about the adaptive capability of Bitcoin markets following

changes in the regulations or arrival of a stochastic shock.2 This is important because a key element

in the determination of Bitcoin prices is the assumption of full confidence of its users or what a

user feels at a point of time on the expected market prices. This leads to an unrealistic frictionless

supply and demand interactions in the Bitcoin market. Moreover, this ‘feeling’ is conditional on

a variety of factors, such as, the general macroeconomic/financial conditions of the real economy.

Therefore, Bitcoin markets are not completely ‘memory-less’ markets, rather are autoregressive

in nature so that a shock in this market can leave a long-lasting impact on equilibrium prices.

Quantifying this ‘memory’ and mapping its implications for market efficiency are very important

in the context of the present research note.

Our premise appears to have strong support from the literature. Cheah and Fry (2015) and

Katsiampa (2017) suggest that the recent volatility in Bitcoin prices is an outcome of market

sentiments, where the latter can be associated with significant ‘memory’. Therefore, fluctuations in

Bitcoin markets are, at least, partially accounted for by the ability of the system to remember past

shocks. However, a strong memory is not necessarily a boon for the Bitcoin market, because large

volatility in Bitcoin prices and its strong persistence often undermine the stability and threaten

the store value function of Bitcoin as a currency.3 Yet, the massive interests in Bitcoin investment

appears to arise from the diversification strategy and hedging purposes in risk management. Indeed,

Dyhrberg (2016a) found that Bitcoin is ideal for risk-averse investors in anticipation of negative

shocks to the market, whereas Dyhrberg (2016b) found that Bitcoin could be used as a hedging

asset against market specific risk.

The above discussions have a leading aim: to devise a robust mechanism that fully characterizes

the profits in the Bitcoin market. Recalling that this market is virtually detached from the real

economy, profits earned from the demand-supply equilibrium in the Bitcoin market is principally

driven by price changes at a point of time. Theoretically, the way one models ‘price changes’ should

capture various degrees of market-(in)efficiency. The nascent but growing literature on the subject

employs I(1)/I(0) framework, to test, whether the integration order (d) for Bitcoin prices in a

1For example, the number of transactions per month using Bitcoin increased from 12,000 to 2.1 million from
August 2010 to August 2014 and in December 2015, approximately 200,000 Bitcoin transactions were carried out per
day (Polasik et al., 2015).

2Both the features are regularly present, for example, financial crisis, changes in political regimes and introduction
of new regulations to control fluctuations in Bitcoin prices.

3See, for instance, a recent review in the Independent about the unprecedented fall in Bitcoin prices after a recent
surge. http : //www.independent.co.uk/life− style/gadgets− and− tech/news/bitcoin− price− live− updates−
latest− value− exchange− rate− digital − cryptocurrency − futures− investment− a8147681.html.

2



market i at time t (denoted as Yit), is equal to 1 or 0 (see equation 1 below).

(1− L)dYi,t = εt; εt ∼ iid(0, σ2) (1)

Rejection of a unit root null hypothesis (i.e., d = 1) is taken as an indication of the presence of

(weak-form) informational market efficiency in the series. In other words, the current price reflects

all available information of its growth over time. In reality, it does not have to be so because

the strict assumption of I(1)/I(0) property can be contested on theoretical grounds. A significant

amount of informational loss can occur unless we allow d to assume a real value between 0 and

1. That is, we are left with very limited information on the adaptive capability of Bitcoin markets

to stochastic shocks. This leads an investor to settle with an undesirable sub-optimal gains from

risk-adjusted returns.

In the current research note, we relax this strict assumption and model Bitcoin prices in a long-

memory framework. We examining their dynamic interdependence/co-movement patterns across

markets, where for each market, i, we define

(1− L)dYt =
∞∑
j=0

(−1)j
(
d(d− 1)(d− 2) . . . (d− j + 1)

j!

)
Yt (2)

In equation 2, d(d−1)(d−2)...(d−j+1)
j! is the binomial coefficient defined for any real number d and

non-negative integer j. The impact of a shock to Bitcoin prices in this setting is not necessarily

permanent or completely stationary. In line with Fama (1970) if Bitcoin prices display significant

‘memory’, it contradicts the efficient market hypothesis (EMH) in varying degrees.

To test whether cross-market Bitcoin markets display heterogeneous informational inefficiency,

we model them as an interdependent system. In a single market context, Bouri et al. (2017) and

Bariviera (2017) have provided some evidence of long-range dependence. However, rarely a mar-

ket in a highly internationalized world is regarded as atomistic, in particular, the Bitcoin market

whose cross-market mobility is relatively free from the strict limitations of monetary policy rules.

A long-memory estimation with explicit modelling of cross-market interdependency can aid users

with reliable information on Bitcoin price (co-)movements and efficiency at both individual mar-

ket and system levels. An innovation in this paper thus, concerns identification of long-memory

and characterization of cointegration relationship from a system perspective. Moreover, we hold

that persistent uncertainty can exert a debilitating effect on the stability in Bitcoin markets. Ac-

cordingly, we examine the impact of uncertainty on price co-movements in this market. Recently

developed fractionally cointegrated VAR (FCVAR) approach of Johansen and Nielsen (2010) forms

the backbone of our empirical construct.

To investigate further, in Section 2, we present data characteristics and estimation method.

Section 3 presents and discusses main results. Section 4 presents results from robustness exercise.

Finally, Section 5 concludes with main findings of the paper along with relevant policy implications.
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2 Data and methodology

2.1 Data characteristics

We collect daily Bitcoin closing price data (between 27/11/2011-17/03/2017) for five developed

markets (viz., Europe, USA, Australia, Canada and UK) from the aggregation website Bitcoin

Charts (www.bitcoincharts.com). Data prior to 25/2/2014 are collected from Mt. Gox. Subsequent

to Mt. Gox closure the remaining observations were collected from other exchange platforms such

as Bitstamp (the largest European Bitcoin exchange), Zyado and LocalBitcoins.

Uncertainty plays a prominent role in shaping users’ sentiment and the confidence in the Bitcoin

prices. An ideal measure of uncertainty would be economic policy uncertainty of Baker et al. (2016)

or financial uncertainty as in Ludvigson et al. (2016). However, daily data on these measures are

not available. A close approximation, as suggested by Bloom (2009), is the estimated volatility

of S&P 500.4 We follow convention and estimate a class of GARCH(1,1) model. Assuming that

shocks can leave an asymmetric impact on volatility, we estimate an asymmetric GARCH(1,1)

specification of S&P 500 and use the estimated volatility as a proxy for daily uncertainty for each

Bitcoin market.

Figure 1 presents time series plots of Bitcoin closing prices. Notable trends emerge: the prices

depict tendency of upward movement and visible evidence of co-movement with lead/lag (see for

instance, the case of Australia and USA, and the GBP and Canadian closing prices). Descriptive

statistics are presented in Table 1. We observe that Canadian closing prices display highest average

prices (361.863) with a standard deviation of 423.213, whereas UK market (GBP closing prices)

is among the lowest average (201.851) with a standard deviation of 228.289. Considering the

percentile distribution of the closing prices, every market demonstrates large differences in mean;

for instance, when we compare the 25th, 50th and 75th percentile distributions for Canada, the

respective mean are 12.781, 276.990, 563.810.

Table 1: : Descriptive Statistics of Bitcoin Closing Prices

Variable N mean sd min max cv p25 p50 p75
PRICES
EURO 1057.000 236.821 253.342 1.521 1207.690 1.070 9.900 201.730 366.050
USD 1057.000 287.344 300.079 2.050 1285.330 1.044 12.890 226.150 448.340
AUSTRALIA 1057.000 360.467 389.687 2.089 2332.360 1.081 12.642 300.165 544.000
GBP 1057.000 201.851 228.289 1.355 1325.380 1.131 8.004 153.420 300.120
CANADA 1057.000 361.863 423.213 2.260 5405.410 1.170 12.781 276.990 563.810

To gain first hand knowledge of the presence of long-memory, we examine the autocorrelation

function (ACF) and the spectral density plots of the price data. A long-memory in prices can be

expected if their ACFs decay asymptotically as a power law (τ−α with α < 1) such that past prices

leave a long-lasting impact on the present. This is precisely evident in Figure 2 (except GBP which

appear to be stationary). The autocorrelation for the five prices is in the range of 0.125 < α < 0.39

4Bloom (2009) shows that stock market volatility closely mimics news-based uncertainty or macroeco-
nomic/financial uncertainty at aggregate economy level.
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depicting remarkably strong memory. As an additional check, in Figure 3, we have presented the

spectral density functions for each series. We expect that for a fractional process the spectral

density functions would have mass concentrated near the origin. Indeed, this feature is prevalent

across five markets, implying that the prices follow a long-memory process.

2.2 Estimation

(A) Memory in an individual series

Among various approaches to estimate the memory parameter d in equation (2), we employ Phillips’

(1999) modified log periodogram and Shimotsu and Phillips’ (2005) exact local Whittle (ELW)

estimators. The ELW makes no assumption about the presence of cointegration and is consistent

both when cointegration is present and when it is absent. Moreover, this estimator is also applicable

to both stationary and non-stationary case.

(B) Memory in a system and its impact on equilibrium relationship

To understand the dynamic nature of interdependence among Bitcoin markets, we employ a coin-

tegrated vector autoregression (VAR) model which is able to capture fractional processes char-

acterized by slowly decaying autocorrelation functions. In our case, the given vector of Bitcoin

prices across markets, Yi,t, is fractionally cointegrated if all the markets are integrated of the same

order (say, d), and there is at least one linear combination of these components which fractionally

integrated of order b, with b < d. Thus, the fractional cointegration assumes the existence of a

common stochastic trend which is integrated of order d, and the short-term departures from the

long-run equilibrium being integrated of order d − b. Johansen and Nielsen’s (2010) fractionally

cointegrated vector autoregressive (FCVAR) accommodates all these features and provide a robust

estimation of the interdependent system. In our context, the FCVAR (see equations 3-8 below) is

applied to the relative Bitcoin prices whereby local currencies are expressed with respect to GBP.

∆bYt = αβ
′
LbYt +

k∑
i=1

Γi∆
bLibYt + εt, (3)

which we apply to Yt = ∆d−bXt such that

∆dXt = αβ
′
Lb∆

d−bXt +

k∑
i=1

Γi∆
dLibXt + εt. (4)

As usual, εt is p-dimensional independent and identically distributed with mean zero and covariance

matrix Ω.

Moreover, α and β are p × r matrices, where 0 ≤ r ≤ p. The columns of β represent the cointe-

grating relationships in the system, whereas the elements of β
′
Xt represent the long-run equilibria

relationship among the variables in the system. Moreover, the coefficients in α represent the speed
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of adjustment towards equilibrium for each of the variables, whereas the parameters Γi govern the

short-run behaviour of the variables. We begin with the assumption that d = b and that there is a

constant term for the cointegration relationship in the model (see equation 4). This gives rise to:

∆dXt = α(β
′
LdXt + ρ

′
) +

k∑
i=1

Γi∆
dLidXt + εt. (5)

In the above, µ can correct for the fact that all initial values of Xt are not observed. The model

we estimate is

∆d(Xt − µ) = Ldαβ
′
(Xt − µ) +

k∑
i=1

Γi∆
dLid(Xt − µ) + εt. (6)

Note that β
′
µ = −ρ′ represents the mean of the stationary cointegrating relations.

2.3 Test of fractional cointegration

We now test hypotheses to establish fractional cointegration. The two hypotheses are Hr =

rank(Π, µ) = r and Hp = rank(Π, µ) = p. Let L(d, b, r) be the profile likelihood function given

rank r, where (α, β,Γ) have been concentrated out by regression and reduced rank regression (Jo-

hansen and Nielsen 2012). In this case the profile likelihood function is maximized both under the

hypothesis Hr and under Hp and the LR test statistic is defined as follows:

LRT (q) = 2 log(
L(d̂p, b̂p, p)

L(d̂r, b̂r, r)
) (7)

Where q = p− r, 0ler ≤ p− 1, L(d̂p, b̂p, p) = maxL(d, b, p) and L(d̂r, b̂r, r) = maxL(d, b, r) Asymp-

totic distribution of LRT (q) depends on the parameter b. Hence if 0 < b < 0.5 the cointegration

relation is accounted as weak and therefore, to define the acceptance or rejection of critical value,

chi-squared distribution with q2 degree of freedom is used where q = p − r. For 0.50 < b < 2 the

cointegration relation is accounted as strong and the following LR test statistics is used:

LRT (q)→ Tr{
∫ 1

0
dw(s)F

′
(s)(

∫ 1

0
F (s)F

′
(s)ds)

∫ 1

0
F (s)dw

′
(s)} (8)

The vector process dW is the increment of ordinary vector Brownian motion of dimension

q = p − r. The vector process F depends on the deterministic similar to the cointegrated VAR

model in Johansen (Johansen, 1995). Computer programs are available for computing asymptotic

critical values and asymptotic P -values for the LR rank tests in the fractional models. The results

were obtained using the computer software by Nielsen and Morin (Nielsen & Morin, 2014).
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3 Results

3.1 (A) Long memory in individual Bitcoin market

For each returns series we have computed both Phillips (1999) and the Two-step Exact Local

Whittle (ELW) Estimator of Shimotsu and Phillips (2005) (see Table 2). The results are reported

for three bandwidths, viz., m = T 0.6, m = T 0.7 and m = T 0.8 so that we can confirm that

the presence of a long-memory is not sensitive to the choice of a specific bandwidth only. For

the ELW estimator, the asymptotic standard error is computed as (4m)−1/2. For example, when

m = T 0.6, the asymptotic standard error (S.E.) is 0.061, whereas for m = T 0.7 and m = T 0.8, they

are 0.043 and 0.030, respectively. The results from the ELW estimation suggest that each series

is significantly fractionally integrated. For instance, in case of m = T 0.6, the d̂ varies between

0.416-0.546 across markets. Phillips’ modified log periodogram estimates provide similar inferences

although the estimates are slightly smaller than the EWL estimation. The standard errors for

Phillip’s estimates confirm that the estimated d values are statistically significant at 5% level. Thus,

estimation using both approaches conclude that individual price series are fractionally integrated.

Table 2: Estimates of fractional integration parameter, d for returns (100 ∗ ln( Pt
Pt−1

))

d̂ELW d̂ELW d̂ELW d̂Phillips d̂Phillips d̂Phillips

m = T 0.6 m = T 0.7 m = T 0.8 m = T 0.6 m = T 0.7 m = T 0.8

GBP 0.498
(0.061)

0.489
(0.043)

0.481
(0.030)

0.423
(0.024)

0.370
(0.020)

0.337
(0.019)

USD 0.443
(0.061)

0.421
(0.043)

0.453
(0.030)

0.522
(0.020)

0.382
(0.017)

0.346
(0.014)

CANADA 0.416
(0.061)

0.378
(0.043)

0.367
(0.030)

0.394
(0.011)

0.288
(0.009)

0.267
(0.005)

AUSTRALIA 0.546
(0.061)

0.560
(0.043)

0.586
(0.030)

0.682
(0.024)

0.590
(0.014)

0.521
(0.016)

EURO 0.535
(0.061)

0.508
(0.043)

0.522
(0.030)

0.474
(0.020)

0.358
(0.018)

0.321
(0.012)

Note: T = 1057. The standard errors are in brackets and are reported under each estimate. For ELW the asymptotic
standard error is (4m)−1/2, where the bandwidth m is given as m = T 0.6, m = T 0.7 and m = T 0.8, respectively.

3.2 (B) Evidence from system estimation: the FCVAR results

We begin by determining lag, k, and rank of the 5-variables FCVAR system (four relative prices and

uncertainty). Tables 3 and 4 summarize these results, respectively. A general-to-specific testing

strategy of lag length in Table 3 revealed that the null hypothesis of zero lag was rejected until

we reached k = 2 following AIC criteria. The likelihood ratio (LR) test statistic for each k with a

p−value shows that for k = 2, the p−value = 0.019 and the p-value for the multivariate Ljung Box

Q-test (pmvQ) is 0.25 implying that for this lag length, there was no evidence of serial correlation.

The estimated d for k = 2 is 0.510 implying that the Bitcoin markets possess a system-wide long-

memory. We determine now the number of cointegrating rank of the FCVAR system. Results in
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Table 4 (meant to be read top to bottom) reveals that we reject the null of rank 0 against rank 5.

The sequential testing leads us to choose 4 where the p-value is 0.363. For this rank, the estimated

d is 0.510 indicating that the Bitcoin market has a system long-memory and that such a memory

implies high-inefficiency in the Bitcoin market.

In the final stage, we estimate an unrestricted FCVAR to test if the cross-market Bitcoin

prices are fractionally cointegrated VAR (results are presented in Table 4). In general, the system

depicts a cointegration pattern where the disequilibrium correction is slower. This can be tested

by imposing a restriction on d. We expect a rejection of the null hypothesis if we believe that

the system is actually characterized by fractional dynamics. The null hypothesis we test is d = 1;

i.e. that the model is a Cointegrated VAR. The alternative hypothesis is FCVAR. We impose an

identification restriction which normalizes the β matrix. This provides added benefit in terms of

the interpretation of the equilibrium relations as it is more intuitive while analyzing the long-run

dynamics of each Bitcoin variable separately.

Equation 9 summarizes the unrestricted FCVAR results corresponding to the pre-selected k =

2 and r = 4. The equilibrium relations are presented in equations 10-12. The estimate of d is

0.510 with a standard error 0.018. The residuals appear well-behaved with no evidence of serial

correlation; the Ljung-Box Q-test has a p-value of 0.251 (reported in parenthesis). On the right-

hand side of equation 9, the estimated adjustment coefficients α̂ are shown in the vector preceding

νt, which is the stationary long-run equilibrium defined by νt = β̂
′
(Xt − µ̂). The coefficients that

characterize this long-run equilibrium are normalized and presented in equations (10-12), with the

constant term given by β̂
′
µ. This relation suggests that Euro/GBP relative price, for instance, are

increasing in Canadian/GBP prices and decreasing in uncertainty.

Table 3: Lag-selection in the FCVAR Model

k r d b LR P-value AIC BIC pmvQ
3 5 0.309 0.309 153.41 0.411 -846.33 -775.44 0.66
2 5 0.510 0.510 316.72 0.019 -890.75* -844.22 0.54
1 5 0.975 0.975 535.45 0.000 -864.87 -865.44* 0.25
0 5 1.022 1.022 0.00 0.000 -822.39 -856.90 0.00

Note: Total number of observations, T = 1057.

Table 4: Cointegration rank determination in the FCVAR model

Rank d b LR statistic P-value
0 0.601 0.541 178.220 0.000
1 0.524 0.564 100.015 0.000
2 0.580 0.555 77.112 0.000
3 0.596 0.574 40.319 0.000
4 0.510 0.611 8.555 0.301
5 0.589 0.605 1.018 0.555
Note: Total number of observations, T = 1057.
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∆d̂




Euro/GBP

USD/GBP

AUD/GBP

CANADA/GBP

Uncertainty

−


7.579

6.305

13.767

−4.081

30.317



 = Ld̂


−0.100

−0.099

0.688

−0.242

0.371

 νt +
2∑
i=1

+Γ̂i∆
d̂Li

d̂
(Xt − µ̂) + ε̂t (9)

d̂ = 0.510(p = 0.018), Qε(30) = 281.050(p = 0.251), LogL = 886.390

Euro/GBP = 1.231 + 0.548 ∗ (Canadian/GBP )− 0.029 ∗ Uncertainty + νt (10)

USD/GBP = 1.1771 + 0.804 ∗ (Canadian/GBP )− 0.038 ∗ Uncertainty + νt (11)

AUD/GBP = 2.649 + 0.762 ∗ (Canadian/GBP )− 0.152 ∗ Uncertainty + νt (12)

4 Robustness

4.1 Identification of break-points

How robust are our results to the consideration of a break point in the sample? It is well-known that

structural breaks can leave a long and non-stationary impact on a time series, leading to a wrong

inference on the overall stability of the parameters. As Bitcoin prices display significant fluctuations,

these may point to both shifting mean and variances over time (see Figure 1). Therefore, it is

necessary to identify the significant change points in the data. A multiple-break test with unknown

change point is suitable for our purpose, because imposition of an exogenous known break-point may

further induce measurement bias. We use Andrews’ (1993) critical value and perform a Sup-Wald

test in each Bitcoin market.

The sup-Wald test identified 2/12/2013 as the break point for Euro, USD and Australia, whereas

for Canada and the UK, the identified break point is 25/02/2014; the Sup-Wald values are 42.850

and 47.210, respectively with a p-value of 0.000 implying a rejection of no-break point in the data.

Given that Bitcoin markets are highly integrated and are largely detached from the dynamics

of the real economy, many markets may share common dates of break-points as is the case in

our context. Do these identified change points correspond to any known historical antecedents?5

Our investigation revealed that in the first week of December, 2013, the People’s Bank of China

5Many thanks to the anonymous referee for pointing this out.
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prohibited Chinese financial institutions from using Bitcoins. After the announcement, the value

of Bitcoins dropped, and Baidu no longer accepted Bitcoins for certain services.6 Similarly, in the

early February, 2014, one of the largest Bitcoin exchanges, Mt. Gox, suspended withdrawals citing

technical issues. By the end of the month, Mt. Gox had filed for bankruptcy protection in Japan

amid reports that 744,000 Bitcoins had been stolen.7

4.2 FCVAR implementation after break-point identification

Having identified the two break-points for different markets, we now present estimates of univariate

long-memory. Prior to 2/12/2013, the ELW estimates of d for bandwidth 0.6 are 0.535 for Euro,

0.458 for USD and 0.513 for Australia. For UK and Canada (before 25/02/2014), the estimates are

0.499 for GBP and 0.586 for Canadian dollar. In the post-break point period, we found that d̂ are

0.285 for Euro, 0.612 for Australia, 0.354 for USD, 0.292 for GBP and 0.148 for Canada. While

both sub-sample periods depict significant long-memory, the post break point sample produces

lower persistence.

Our next step is to estimate an unrestricted FCVAR for the two sub-sample periods. For ease

of reference and to minimizing repetition, we denote the samples before (after) 2/12/2013 and

25/02/2014 as pre- (post)-break point period. As before, we need to define the dimension of the

FCVAR system. For both periods, the AIC criterion led to us to choose k = 1 as the dimension

of the system. By setting k = 1, we now determine the cointegration rank of the system. The

likelihood ratio test for sequential rank testing (i.e., testing the null hypothesis of no cointegration

relationship against the highest order cointegration relationship) led us to choose rank = 4 for both

periods. However, the system long-memory estimates produced heterogeneous values for d; the d̂

is 0.524 in the pre-change point sample. For this period, we now estimate an unrestricted FCVAR

having set k = 1 and rank = 4. The d̂ = 0.323 with a p-value of 0.031). If the FCVAR system

presents no evidence of serial correlation, then the above estimates of cointegration rank and the

d would be unbiased. We find that the in our case, the multivariate Q-statistic = 622.391 with

a p-value of 0.122 implying that the null hypothesis of no serial correlation in the data could not

be rejected. In other words, the estimates from the unrestricted FCVAR for the pre-break point

sample are reliable.

We carry out similar exercise for the post-break point sample. With k = 1 and rank = 4

(determined earlier), the estimation of unrestricted FCVAR produced the following results. The d̂

= 0.446 (p=0.004) and the p-value of the multivariate Q-statistic = 0.28. Once again, the unre-

stricted FCVAR estimation confirms that there is a system long-memory and that the cointegration

relationship accommodates a disequilibrium correction component that is slowly-adjusting to the

long-run mean. Comparing the results from both pre- and post-break points lead us to infer that the

Bitcoin markets possess significant long-memory and are fractionally cointegrated. Although, the

6See https : //www.theguardian.com/technology/2013/dec/18/bitcoin − plummets − china − payment −
processors− digital − cryptocurrencyfordetails.

7See https : //www.theguardian.com/technology/2014/feb/28/bitcoin−mtgox−bankruptcy−japan for details.
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presence of structural break impacted the magnitude of d̂, yet, we found no evidence of insignificant

system long-memory.

5 Conclusions and implications

In this note, we have proposed a new mechanism to understand dynamic interdependence of Bitcoin

prices in a cross-market context. Due to the unique nature of the Bitcoin market (especially, the

feature that it is least affected by the regulations of the real economy), it is highly probable that

the determination of equilibrium prices in this market can be significantly guided by the strength

of the ‘memory’. This long-memory, for which we found significant evidence across markets, can

cause a ‘system failure’ in the event of the introduction of new regulations in the financial markets.

It appears to be the case because the spiraling new highs of Bitcoin prices has forced many govern-

ments (for example, India) to impose certain regulatory restrictions on the acceptance of Bitcoin

as a legal currency (see the following link for details: https://www.coindesk.com/bitcoin-not-legal-

tender-in-india-finance-minister-says/).

Our results also indicate that Bitcoin markets are moderate to highly inefficient where the

estimated memory in prices can help investors capture speculative profits. There is also an evidence

of slow adjustment of disequilibrium error implying that the interdependent Bitcoin markets can

be significantly affected by movement of a stochastic shock. Finally, we find that uncertainty has a

general negative effect on Bitcoin markets. The overall policy implication is the following. While

there is a general claim of virtual detachment of Bitcoin market from the real economy leading

to the assumption that economic fluctuations should have least impact on its equilibrium price

determination, we showed that it is actually inherently tied to the dynamics of the real economic

system. The observed inefficiency in the Bitcoin market (as reflected by our system memory

estimates) can therefore be, at least partially, regulated and tightly interlinked to the real economy.
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Appendix

Figure 1: Trend in Closing Prices
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Figure 2: Autocorrelation functions
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Figure 3: Estimated spectral density functions
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