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Abstract Map L-systems-based parametrization, also

referred to as the cellular division method, is a genera-

tive encoding, suitable for topology optimization. The

parametrization is compact due to its ability to reuse

its elements, and therefore capable of covering a large

design space with relatively few design variables. Map

L-systems are often evolved using genetic algorithms

(GAs). A key implementation detail of such procedures,

as with most GA-based geometry searches, is the choice

of parameters controlling the operation of the evolu-

tionary process. The optimal choice of these in con-

ventional optimization formulations is highly problem-

specific – far less so, however, when the GA evolves an

L-systems encoding and does not act directly on the

geometry. This is because the L-system encoding is, it-

self, independent of the geometry. We study the effects
of different control parameters by conducting a statisti-

cal test of over 400 parameter combinations on five test

cases, for which the global optima are known. The best-

performing parameter combinations are reported as a

Pareto front of the average number of objective func-

tion evaluations and ranking based on the average of

optimized fitnesses. Finally, three Pareto-optimal pa-

rameter combinations are selected and applied to an

optimization problem of maximizing the fundamental
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panel. The best of the resulting designs has a higher
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by a margin of 11.2%.
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1 Introduction

Evolutionary algorithms are population-based search

heuristics that mimic two revolutionary discoveries in

biology: Darwinian natural selection and the identifica-

tion of the deoxyribonucleic acid (DNA) sequence inside

the nucleus. The DNA sequence stores the genetic in-
formation, i.e. genotype, of a living organism. Instead

of explicitly encoding existence of individual cells in

the organism, the DNA sequence is a developmental

recipe that implicitly constructs the phenotype of the

organism1. However, the parameterization in evolution-

ary algorithms is often conducted using design variables

that explicitly define units of the phenotype, referred to

as direct encoding. Implicit parameterizations, referred

to as generative encodings (also developmental encod-

ings and artificial embryogeny) define a developmental

recipe that produce the phenotype. They have better

scalability and are more compact than direct encodings

due to their capability of reusing elements of the geno-

type, which enables the formation of self-similar and

hierarchical sub-parts in the phenotype [9,31,7].

Topology optimization comprises search methods to

seek the optimal material distribution in a given de-

sign domain. For an extensive review of the topic, the

1 Biological phenotypes are, in fact, also dependent on epi-
genetic and environmental factors.
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reader may wish to consult References [7], [3] and [11].

Commonly used gradient-based methods, such as SIMP

(Solid Isotropic Material with Penalization) and ESO

(Evolutionary Structural Optimization), use the direct

encoding, where each of the design variables determines

the existence/density of a single material element in

the phenotype. Thus, even in a two-dimensional de-

sign domain, the number of required design variables

increases quadratically as a function of the mesh reso-

lution. Another type of direct encoding is the so-called

ground structure approach, where a dense set of can-

didate structural members is fitted inside a design do-

main, and the optimal subset of these members is sought.

One of the drawbacks of this approach is that the ground

structure must also be defined a priori for each opti-

mization problem. Evolutionary algorithms with a gen-

erative encoding provide an alternative, designed to

mitigate these issues.

One such encoding applies Lindenmayer systems [18,

19] (L-systems) to develop the phenotype in stages.

Stanley and Miikkulainen [31] categorize the method

as a grammatical approach of artificial embryogeny, as

they are defined in a language of formal grammars [5].

Two common graphical interpretation methods of L-

systems are the turtle interpretation and map L-systems,

which were initially developed to model the growth of

plants and cellular layers, respectively.

L-systems-based parameterizations have been ap-

plied to several topology optimization studies. Hornby

and Pollack [9] applied L-systems, with the turtle in-

terpretation, as a parameterization method to the de-

sign search of a table structure. Subsequently, the au-

thors evolved robots for locomotion [10], by parameter-

izing both their body and neural controller using the

same methods. In both applications, the authors ob-

served that algorithms with generative encoding yielded

designs with higher fitness and were faster than cor-

responding algorithms with direct encoding. Rieffel et

al. [25] used map L-systems in design optimization of

irregular tensegrity structures. Kobayashi [14] evolved

venation patterns of artificial cordate leaves in multi-

objective optimization, minimizing both the mass of the

leaf and its pressure drop. He also showed that the de-

signs he obtained were robust and fault resistant, in a

similar way to their biological counterparts. Pedro and

Kobayashi [22] benchmarked the map L-systems-based

encoding against a direct encoding (also driven via an

evolutionary algorithm), on a cantilever beam problem.

Their results showed that the algorithm with generative

encoding yielded designs with similar optimized fitness

values using fewer objective function evaluations than

the algorithm with the direct encoding. Sabbatini et al.

[27] applied L-systems, with turtle interpretation, to

multi-objective stiffener layout optimization, minimiz-

ing the vibration amplitude and mass of a plate struc-

ture. Allison et al. [1] included a nested sizing routine to

a map L-systems-based algorithm, and applied the al-

gorithm to topology optimization of a truss structure.

Stanford et al. [29,30] evolved, using map L-systems,

the venation and the mechanism of a flapping wing, to

improve its aerodynamic performance. In addition, map

L-systems have been applied to various other topology

optimization studies on aircraft wings [15–17,13].

The map L-systems-based parameterization has gained

popularity among topology optimization researchers,

perhaps because map L-systems can conveniently be

mapped inside a finite two-dimensional design domain.

In the majority of the resulting publications, map L-

systems are evolved via a genetic algorithm (GA). Fur-

ther, several studies [22,29,30,13,1] use similar numeri-

cal representations to encode map L-systems into a vec-

tor format, which originate from that defined by Pedro

and Kobayashi [22]. In spite of the extensive use of evo-

lutionary algorithms to search the space of L-systems

encodings, no systematic efforts have been reported to

date to understanding the impact of evolutionary algo-

rithm parameter choices on the performance of such op-

timization processes. The identification of optimal con-

trol parameters is a notoriously difficult aspect of evo-

lutionary search heuristic design due to the problem-

specific nature of any findings. However, the starting

point of this paper is that techniques where the evo-

lutionary process operates on the encoding – such as

L-systems based methods – and not directly on the de-

sign, are less affected by this problem dependence. The

encoding can be seen as an intermediary layer of the

problem, which ‘shields’ the evolutionary search from

some of the variability resulting from the objective func-

tion of the structural design problem.

In this study we perform a statistical experiment in-

volving 432 control parameter combinations on the map

L-systems-based topology optimization method, using

the numerical representation proposed by Pedro and

Kobayashi [22]. We conduct the experiments on five

simple optimization problems, with known global op-

tima. The goal is to design a search that yields a good

objective function value in a small number of objective

function evaluations. As these performance measures

are often competing, we report our results as a Pareto

front of the two. In addition, we examine whether, or to

what extent, the rankings of parameter combinations,

based on the optimized objective function value and the

required number of function evaluations, are problem-

dependent.

Finally, we use a Pareto-optimal parameter com-

bination in the topology optimization of an integrally
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stiffened aluminum panel, in order to demonstrate the

potential impact of the technology in a ‘real-life’ engi-

neering context. The objective is to maximize the lowest

natural frequency of the structure, subject to a mass

constraint. The obtained design is compared against

corresponding results with iso- and orthogrids, often

seen in aerospace and automotive applications.

2 Map L-systems

L-systems are language-theoretic models for the devel-

opment process of living organisms [26]. The original

purpose of L-systems was to mathematically model the

developmental process of a living organism, with a par-

ticular emphasis on its topology. An example area of

application has been the modeling of plants, in which

case the topology defines how its substructures, such as

the trunk, branches, and leafs, are aligned with respect

to each other. More recently, L-systems have been ap-

plied to a variety of other fields too, such as computer

graphics, artificial intelligence and engineering.

In this study, we use map L-systems, a variation

of L-systems, which enables the production of mapped

topologies, such as cellular layers. Here, a map is defined

to consist of a finite set of regions, i.e. cells, which are

described by a circular sequence of edges, having a finite

length [24]. More precisely, we use Binary Propagating

Map OL-systems with markers (mBPMOL-systems), as

proposed by Nakamura et al. [21]. The system is binary

because, during a cell division, each cell can only split

into two offspring cells. The word ‘propagating’ defines

that, once created, the edges cannot be removed, and

therefore the cells cannot fuse or die. The letter ’O’

indicates that the cell divisions are context-free, which

means that cells do not interact with each other.

Like other types of L-systems, an mBPMOL-system

consists of an alphabet Σ, axiom ω0, and NP rewriting

rules P1, . . . PNP
. The main idea is that the axiom, de-

fined as a sequence of letters from the alphabet, is mod-

ified iteratively n times based on the rewriting rules,

where n represents the age of the organism. The result-

ing topology after n iterations is referred to as the nth

developmental stage of the system.

To illustrate the process, let us consider a map L-

system (described, for example, by Prusinkiewicz and

Lindenmayer [24]), for which the alphabet is defined as

Σ ≡ {A,B}, and the axiom as ω0 = ABAB. The axiom

is mapped into a single cell, having edges correspond-

ing to the letter sequence (Figure 1(a)). The edges are

ordered clockwise starting from the bottom edge. Fur-

ther, the following two rewriting rules are defined for

the letters A and B in the alphabet:

P1 : A→ B[−A][+A]B

P2 : B → A
(1)

The left- and right-hand sides of the rewriting rules are

referred to as the predecessor and the successor, respec-

tively. A characteristic feature for mBPMOL-systems is

the existence of markers in the successor, which are in-

dicated by square brackets. They act as start and end

points for new edges, which split cells2. The content

between the square brackets contains the side of the

marker, ‘+’ or ‘-’, and a letter that is referred to as the

label.

The transition to the next developmental stage in-

cludes two phases. In the first, the rewriting rules are

applied to all edges in the current developmental stage.

The predecessor edge is divided into equally-sized suc-

cessor edges (Figure 1(b)). The markers are assigned

to the nodes with respect to their relative location in

the successor (cf. the arrows in Figure 1(b)). Sides ‘+’

or ‘-’ indicate the location of the marker, which is ei-

ther the left or right side of the edge, respectively. In

the second, matching marker pairs are connected in-

side each cell, creating new edges to the system and

dividing cells into two offspring cells (Figure 1(c)). A

marker pair is considered to be matching if they are

located inside the same cell and have the same label3.

Only the first matching marker pair inside each cell is

connected, and the remaining markers are discarded.

The subsequent developmental stages are generated by

repeating the same procedure (Figures 1(d)-1(f)).

Later in this study we use directional markers. Pos-

sible directions for the markers are ‘←’, ‘→’ or neutral,

denoted over the marker label, e.g. [−
−→
B ]. The criteria

defined above for matching markers is amended by the

following: the start and end markers must have direc-

tions ‘→’ and ‘←’, respectively, or both directions must

be neutral. For simplicity, all edges are defined to have

a uniform direction.

The map L-systems may be amended by a dynamic

method [24], where an osmotic pressure is applied in-

side the cells and an equilibrium state is determined

for the vertex locations of the edges, which have a fi-

nite axial stiffness coefficient (Pedro and Kobayashi [22]

included the method in their design space parameteri-

zation). However, the method requires solving the equi-

librium stage iteratively at every developmental stage.

2 Markers have a counterpart in biology, preprophase bands
of microtubes [24].
3 When map L-systems are used as a parameterization

method in topology optimization, additional requirements
may be considered, such as a minimum fraction of the off-
spring cell area in comparison to the parent cell area (cf. for
example reference [22]).
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(a) n = 0 (b) n = 1 (intermediate)

(c) n = 1 (d) n = 2

(e) n = 3 (f) n = 4

Fig. 1 The axiom (n = 0) and first four developmental
stages (n = 1 . . . 4) of the example map L-system. Subfigure
(b) shows the intermediate stage before joining the matching
markers. Edges A and B are indicated by continuous blue
and dashed red lines, respectively.

We omit the dynamic method from the parameteriza-

tion, as we need to keep the computational cost low to

allow us to perform a large number of experiments.

The developmental stages in Figure 1 are only a few

example topologies that may be generated by mBPMOL-

systems. A diverse range of different topologies may be

generated by varying the axiom and the rewriting rules,

and further by including more letters in the alphabet.

In the next section, we describe how the topologies are

evolved using a genetic algorithm. In the remainder of

this paper, we will refer to the mBPMOL-systems sim-

ply as map L-systems.

2.1 Evolution via a genetic algorithm

Evolutionary algorithms are population-base optimiza-

tion heuristics that mimic Darwinian natural evolution.

In this simulated evolution paradigm a merit function

(objective function) takes the role of the environment,

and mathematical transformations are defined to rep-

resent reproduction, crossover and mutation.

As described in the introduction, the map L-systems-

based parameterization is commonly evolved via GAs,

and, recently, with numerical representations similar to

the one by Pedro and Kobayashi [22]. The purpose of

their representation is to encode a map L-system, con-

sisting of the axiom, rewriting rules and additional vari-

ables, as a vector of real numbers in the range [0, 1]. It

is designed to prevent the formation of invalid features,

such as markers with multiple labels or an axiom with

non-alphabetic characters. The design space of the rep-

resentation is determined by the length of the axiom,

Na, the number of encoded rewriting rules, NP, and Nv

additional variables. The number of encoded rewriting

rules is equal to the number of letters in the alphabet

Σ. Details of the numerical representation used in this

work, containing minor modifications to the one by Pe-

dro and Kobayashi [22], are described in Appendix A.

The genetic algorithm is implemented in Python, using

Pyevolve [23], an open-source library of genetic opera-

tors.

3 Statistical analysis of control parameters

There is, in general, a strong relationship between the

choice of the control parameters of a GA and its effec-

tiveness (its ability to find good solutions) and efficiency

(its ability to find them quickly).

In this section we conduct a series of statistical ex-

periments to quantify this relationship in the case of the

map L-systems-based topology optimization method.

In what follows, we describe the experimental plan (Sec-

tion 3.1) and the test cases (Section 3.2). We then de-

ploy these to gain an empirical understanding of the

performance of the algorithm with a range of parame-

ter choices (Section 3.3).
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Table 1 Survey of control parameters in L-systems-based topology optimization studies found in the literature.

Publication Selection
Population
size Npop

Crossover Mutation
Elitism
Ebool

Termination

Rieffel et al.
[25]

roulette
wheel

100

one-point
crossover
between rules
(cx = 0.2)

primary and
secondary
(cM = 0.4
each)i

True
terminated after 500
generations

Kobayashi
[14] ii

tournament
(Npool = 4)

200
distributed
(cx = 0.8)

Gaussian
distributed
(cM = 0.2) iii

True
terminated after 100
generations

Pedro and
Kobayashi
[22]

stochastic
universal
sampling[2]

50-100
distributed
(cx = 0.8)

Gaussian
distributed
(cM = 0.15)

True

terminated after 100
generation, or after 50
generations without
improvements

Sabbatini et
al. [27] ii

tournament
(Npool = 4)

100
distributed
(cx = 0.8)

Gaussian
distributed iii

(cM = 0.19)
True

terminated after 100
generations

Ikonen and
Sóbester [13]

tournament
(Npool = 4)

150
two-point
(cx = 0.8)

swap
(cM = 1.0,
cm = 0.02)

True
terminated after 30
generations without
improvements

i Primary mutation randomly selects one of the rules and randomly changes its right side. Secondary mutation makes a small
change to the resulting map L-system. ii In addition, the author(s) applies inversion to the axiom letters, with a probability
of 0.01. iii Gaussian distributed random mutation is added to all elements. The random distribution has a zero mean and a
decreasing standard deviation as a function of the prevailing generation. The mutation is applied to the individuals, to which
crossover was not applied.

3.1 Experimental plan

Table 1 reviews the control parameters used in the lit-

erature (where specified) in L-systems-based topology

optimization. We list the following parameters:

– selection strategy

– tournament pool size Npool

– crossover and mutation types

– crossover rate cx
– mutation rates cM and cm
– elitism Ebool

– termination criteria.

Mutation rate cm is the element-specific probability of

mutation, applied to a cM proportion of the population.

In References [14] and [27] the generation of phenotype

follows the turtle interpretation [24]. However, the tur-

tle interpretation of L-systems is still a generative en-

coding, specifying the phenotype via the axiom, rewrit-

ing rules and additional variables, and therefore we have

included it in the review. As Table 1 shows, the vari-

ation in parameters across the selection of studies we

were able to gather is significant. The only exception is

whether elitism was used, Ebool, which was ‘True’ in all

studies. We were not able to find any studies that pro-

vided a clear reasoning behind their particular choice

of parameters.

To study the effects of choosing a particular set of

control parameters, and to find suitable parameter com-

binations, we ran a statistical experiment on five simple

test cases, presented in Section 3.2. Table 2 shows our

design of experiments. Of the two mutation rate types

prevalent in the studies reported so far on L-systems

based optimization, cM and cm, our experiments vary

the latter, keeping the former fixed at cM = 1.0. We

tested all 432 control parameter combinations 70 times

on each of the five test cases. The optimization runs

were terminated when no improvements were obtained

during 30 consecutive generations. We used a mutation

operator that swaps two randomly selected elements in

an individual, and the number of elite individuals, when

applicable, was set to one. Optimization runs were ini-

tiated from a population of random individuals.

Performance of GAs may be improved, in many

cases, by seeding the initial population with a diverse

set of decent initial guesses (cf. for example Reference

[28]). However, in the vast majority of studies, using an

L-systems-based parameterization, optimization runs are

initiated from a random population4. Finding a tech-

nique to define these initial guesses with sufficient di-

4 An exception is the study by Kobayashi [14], where an
optimization process is initiated from the final population of
another optimization process with a slightly different objec-
tive function.
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Fig. 2 Representative optimization runs yielding the global optimum and a sub-optimal final result.

Table 2 Control parameter values of the statistical experi-
ment. All parameter combinations, totalling 432, are tested
separately.

Parameter Values

population size Npop {50, 100, 150, 200}
pool size Npool {2, 4, 8}
crossover rate cx {0.6, 0.8, 1.0}
mutation rate cm {0.0, 0.02, 0.04}
crossover type Xtype {two-point, distributed}
elitism Ebool {True, False}

versity for the L-systems-based parameterization falls

outside of the scope of the current study.

3.2 Test cases

This section defines the five test cases. Their objective

functions are based on the geometric features of a map

L-system. The test cases have low computational cost

and known global optima. Before going into their de-

tails, let us define the design space at the L-system level,

which is kept constant throughout the experiment.

The parameters defining the design space are listed

in Table 3. The axiom of map L-systems is mapped as

a unit square, and thus the axiom length Na = 4. Two

additional variables are used: fa defines the minimum

fraction between offspring and parent cell areas, and n

is the age of the system, i.e. the ordinal of the desired

developmental stage.

Table 3 Definition of the L-system design space. Minimum
area fraction fa and age n are additional variables.

Parameter Values

axiom length Na 4
number of rewriting rules NP 4
number of tokens Nr 6
minimum area fraction fa 0 . . . 0.5
age n 1 . . . 6
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3.2.1 Test Case 1

The first test case is inspired by the example map L-

system described in Section 2. Its goal is to find a map

L-system that produces the map of the fourth develop-

mental stage of the example system (Figure 1(f)). Thus,

the sought map has 16 equally-sized, square-shaped cells.

We use here the same objective function as in Reference

[13], defined as

f1 =
1

10
|16−Ncells|+ Se + Sa, (2)

where Ncells is the number of cells, and Se and Sa are

the standard deviations of edge lengths and cell areas in

the system, respectively. The optimization processes of

two representative runs are presented in Figure 2. The

first run yields the global optimum of f1 = 0, whereas

the optimized result of the second run is sub-optimal.

3.2.2 Test Case 2

The second test case is a variation of the first test case.

Its goal is to find a map consisting of square-shaped

cells of any size. The objective function is defined as

f2 =
1

2
PN + 2

∑Ncells

i=1 se,i
Ncells

+
1

100

∑Ncells

i=1 sα,i
Ncells

, (3)

where se,i and sα,i are the standard deviations of the

edge lengths and cell areas, respectively, of the ith cell

in the map. PN, defined as

PN =


5−Ncells, if Ncells < 5

0, if Ncells ≥ 5 ∧Ncells 6= 16

1, if Ncells = 16,

(4)

is a penalty coefficient designed to prevent the opti-

mization from converging to trivial solutions of maps

containing 1 or 4 equally-sized cells, or to the global

optimum of Test Case 1. While Test Case 1 has a sin-

gle global optimum, Test Case 2 admits multiple global

optima (f2 = 0), (as do Test Cases 3-5). An example

global optimum, produced by an optimization process,

is shown in Figure 3(a).

3.2.3 Test Case 3

The purpose of the third test case is to minimize the

fraction of the number of nodes, Nnodes, with respect

to the number of cells, Ncells, in the map. Thus, the

objective function is defined as

f3 =
Nnodes

Ncells
. (5)

(a) Test Case 2 (b) Test Case 3

(c) Test Case 4 (d) Test Case 5

Fig. 3 Example global optima in Test Cases 2-4, and the
design with the lowest objective function value in Test Case
5.

Let us derive the values of the global optima. First of

all, the global optima are maps consisting exclusively of

triangles. The reason is that the objective function f3
of a map, containing a polygon with four or more ver-

tices can always be decreased by dividing the polygon

into two or more triangles. Based on Euler’s formula for

planar graphs, and assuming that the map exclusively

consists of triangles, the number of cells

Ncells = 2Nnodes −Bnodes − 2, (6)

where Bnodes is the number of nodes laying at the con-

vex boundary of the graph5. The equation can be rewrit-

ten as

Nnodes

Ncells
=

1

2
+
Bnodes + 2

2Ncells
. (7)

Therefore, the objective function f3 (Equation 5) reaches

the global minimum, when Bnodes and Ncells reach their

minimum and maximum, respectively. The minimum

number of boundary nodes, Bnodes, is equal to number

of nodes in the map corresponding to the axiom, i.e.

Bnodes = 4. On the other hand, the maximum age n is

defined to be 6. As the number of cells at most doubles

at every developmental stage, the maximum number

of cells Ncells is 26 = 64. Thus, the global optimum is

f3 = 35
64 . An example global optimum is shown in Fig-

ure 3(b). It is noticeable that the boundary of the map

only includes the four nodes related to the axiom.

5 All developmental stages of map L-systems, initiated from
an axiom mapped onto a unit square, have a convex boundary,
if the dynamic method [24] is not used.
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3.2.4 Test Case 4

An m-equidissection of a polygon is set of m non-inter-

secting triangles, having an equal area and whose union

is the polygon. The purpose of the fourth test case is

to find a 12-equidissection of the unit square, using an

objective function defined as

f4 =
1

2
|12−Ncells|+ 10Sa +

Ncells − N̂cells

Ncells
, (8)

where N̂cells is the number of triangular cells in the

map. An example global optimum (f4 = 0) shown in

Figure 3(c).

3.2.5 Test Case 5

The fifth test case is a search for a map containing a

regular pentagon, filling at least 25% of the unit square.

If a pentagon exists in the map, the objective function

is defined as

f5 = PA +
1

100
sα,k + se,k, (9)

else f5 = 10. PA is a penalty coefficient defined as

PA =


1

4
−Ak, if Ak <

1

4

0, if Ak ≥
1

4
,

(10)

where Ak is the area of the largest pentagonal shaped

cell k. Further, sα,k and se,k are the standard deviations

of the edge angles (in degrees) and edge lengths, respec-

tively, of the cell k. The global optimum has the value

of f5 = 0, though this was not found during the exper-
iments. The design with the lowest objective function

value is shown in Figure 3(d).

3.3 Results and discussion

The statistical experiment was performed in parallel,

using 128 Central Processing Units (CPUs). The total

wall time of the experiment was around 15 days.

GAs, characterized by the parameter combinations

from Table 2, are applied to Test Cases 1-5, each run

70 times. Global optima were found for Test Cases 1-4

(see Figures 2 and 3(a)-3(c)). The lowest obtained ob-

jective function value for Test Case 5 (f5 = 2.72 · 10−2)

was encountered once among the optimized designs. Al-

though the corresponding design (Figure 3(d)) is not

the global optimum, it contains a cell that is very close

to a regular pentagon and fills more than 25% of the

unit square area. The statistical experiment included

a considerably large number of optimization runs on

each test case: 30240 (70 repeats with 432 parameter

combinations).

Let us first examine the results as a series of scatter

plots (Figure 4) of the average number of objective func-

tion evaluations, Q̄, and the completion rate in terms of

finding the global optimum, pc. As pc = 0 for all control

parameter combinations on Test Case 5, we exclude its

results from the scatter plots. Thus, a point in the scat-

ter plot represents an average of 280 optimization runs

(4 test cases with 70 repetitions). Each subplot in the

scatter plot shows the effect of the variation of control

parameters on the performance of the GA. The Pareto

front of the two objectives is marked by the dashed line.

The population size Npop has the clearest influence

on the performance of the GA (Figure 4(a)). The points

are aligned into bands, approximately parallel to the

abscissa, according to their value of Npop. It can clearly

be seen that the larger Npop is, the more objective func-

tion evaluations are required, but also more likely the

GA is to find the global optimum. All population sizes

are represented on the Pareto front.

The pool size Npool (Figure 4(b)) and the element-

wise mutation rate cm (Figure 4(d)) have a similar in-

fluence on the performance of the GA. Both of these

parameters were tested with a range of three values,

with the lowest, Npool = 2 and cm = 0.0, clearly show-

ing the poorest performance. Almost the entire Pareto

front is populated by the highest values, Npool = 8

and cm = 0.04. The relative performance differences

between these two parameters seem independent of the

population size Npop.

The two values (True/False) for the elitism Ebool

(Figure 4(f)) divide the four bands of population sizes

each into two subbands, again approximately parallel to

the abscissa of the plot. The value Ebool = True, repre-

sented by the upper subband, extends slightly further

to the positive direction of the abscissa, and its points

form most of the Pareto front.

The two-point crossover provides, on average, slightly

better completion rate than the distributed crossover

(Figure 4(e)), and its points form most of the Pareto

front. However, the performance difference between the

crossovers is small. The crossover rate cx (Figure 4(c))

has very little influence on the performance of the GA

(compared to the other tested parameter values), as its

parameters are scattered inside the cloud of points.

The completion rate as a performance measure has

a drawback. It cannot rank two optimized designs if

they both are sub-optimal, and therefore some of the

information generated by the experiment is discarded.

An alternative may be to directly compare the min-

imized objective function values. This metric also al-

lows the inclusion of incomplete searches (such as our
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Fig. 4 Results of the statistical experiment, in terms of the completion rate pc and the average number of required objective
function evaluations Q̄. Test Case 5 is excluded from the results, as its global optimum was not found. The dashed line
represents the Pareto front between minimum average number of function evaluations and maximum completion rate.
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fifth test case) in the analysis. Since the minimized ob-

jective function values are not comparable across test

cases, we use rankings as a means of direct comparison.

First, the control parameter combinations are ranked,

separately in each test case, based on the average mini-

mized objective function value attained by the GA run

with each. Second, the obtained ranks are averaged and

these values are used as a performance measure.

Figure 5 shows scatter plots using the average rank

as a performance measure, along with the average num-

ber of objective function evaluations. The broad trends

are similar to those seen in the completion rate (Figure

4), although less pronounced. Let us now extract the

Pareto front (dashed line), in the space of minimum av-

erage number of objective function evaluations versus

minimum average rank, into Table 4. The listing of non-

dominated control parameter combinations is ordered

from the lowest average rank to the highest. It is notice-

able that the population size Npop sweeps through its

tested range Npop = {50, 100, 150, 200}, in the opposite

order, along the Pareto front. These 20 Pareto-optimal

combinations selected from the set of 432 tested control

parameter combinations, can be viewed as prime can-

didates when selecting the parameters of a GA to be

deployed on a not yet seen problem.

Depending on the budget available for experimen-

tation on the ‘real’ problem, the analyst may choose to

narrow down the list further. First, combination #12

may be considered a practical limit, as points below

it provide very marginal decrease in the average num-

ber of objective function evaluations as a return of the

sacrificed average rank. Second, if we assume that the

modality of Test Cases 1-4 is representative of the prob-

lem being tackled, there is another way in which the
remaining options can be narrowed. The probability

pglobal of finding the global optimum, by performing

multiple optimization runs, is defined as

pglobal = 1− (1− pc)m, (11)

where m ∈ N is the number of repeated optimization

runs. Let us fix pglobal = 0.95, and find the parameter

combination at the Pareto front that has the smallest

estimate of required objective function evaluations

Qg = Q̄m, (12)

where m = log(1−pc)(0.05), rounded to the next natural

number. The smallest Qg(= 29.12 · 103) is obtained by

combination #7 in Table 4, and corresponds to four re-

peated runs. As a comparison, combination #1, having

the smallest average rank, requires only three repeated

runs, but these runs require on average more objective

function evaluations, and therefore Qg = 40.74 · 103.

Parameter combination #7 is, broadly, in keeping

with common quidelines for formulated in the general

GA literature. However, the tournament pool size Npool

= 8 and mutation rate cm = 0.04 may be considered

relatively high. Often used values for these parameters

are a tournament pool size of 2 [4] (or 4) and a mutation

rate of 0.005 to 0.01 [20]. In comparison to the general

guidelines, the larger tournament pool increases the se-

lective pressure of the evolutionary process, while the

increased mutation rate enhances its ability to avoid

converging to local optima.

Finally, let us examine the correlation of parameter

combination ranks in the five test cases. These ranks are

listed in Table 4 for the Pareto-optimal parameter com-

binations (using the average minimized objective func-

tion value as the ranking measure). As a measure, we

use Spearman’s rank correlation coefficient ρ [6], which

compares the relationship of ordinal or rank-ordered

variables. If ρ = 1, the correlation is perfect, i.e. the

parameter combination ranks are the same among the

two test cases. If ρ = −1, the correlation is also perfect

but the ranks are the opposite. On the other hand, if

ρ = 0, the ranks are completely independent.

Tables 5(a) and 5(b) show the matrices of pairwise

correlations of ranks between the five test cases, using

the average minimized objective function value and the

average number of objective function evaluations, re-

spectively, as ranking measures. The diagonal elements

of the matrix are trivial as the comparison is made

on the same ranks, obtained from the same test case

(ρ = 1). Excluding the diagonal elements, the corre-

lation coefficients vary from 0.645 to 0.979, indicating

strong correlations between the obtained ranks. This in-

dicates that a parameter combination performing well

on one test case is also likely to perform well on another

test case.

There is little consistency in the literature in terms

of the number of encoded rewriting rules, NP. Our goal

here is not to determine the optimal value for NP;

rather, we are interested in how sensitive our results,

described above, are to variations in NP. To study this,

we run experiments with a range of NP = {2 . . . 6} on

Test Case 1. As the optimization runs were repeated

70 times with NP = 4 earlier, we performed the same

number of repeats with the other values. The obtained

pairwise correlations of ranks between different values

of NP are listed in Tables 6(a) and 6(b), using the same

ranking measures as in Tables 5(a) and 5(b), respec-

tively. The correlation coefficients, varying from 0.800

to 0.988, show strong correlation in the ranks obtained

with different numbers of rewriting rules, NP. This in-

dicates that no radical changes are to be expected in
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Fig. 5 Results of the statistical experiment using the average rank. The parameter combinations are ranked based on their
average minimized objective function value. The dashed line represents the Pareto front between minimum average number of
function evaluations Q̄ and minimum average rank.
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Table 4 The parameter combinations lying on the Pareto front in Figure 5. The combinations are listed in increasing order of
the average rank. An extended version of the table, including all tested parameter combinations, is attached as a supplementary
data file.

# Npop Nbool cx cm Xtype Ebool ranks (in test cases) average rank pciv [-] Q̄ [103]
1 2 3 4 5

1 200 8 0.6 0.04 two-point True 4 20 5 2 3 6.8 0.6643 13.58
2 200 8 0.8 0.04 two-point True 2 9 1 24 8 8.8 0.7143 13.40
3 200 8 1.0 0.04 two-point True 1 6 11 23 20 12.2 0.6607 12.89
4 150 8 0.8 0.04 two-point True 8 7 6 51 14 17.2 0.6429 10.76
5 150 8 0.6 0.04 two-point True 9 34 17 37 6 20.6 0.5857 10.46
6 100 8 0.8 0.04 two-point True 57 51 24 29 36 39.4 0.5321 7.34
7 100 8 0.6 0.04 two-point True 50 69 15 61 11 41.2 0.5321 7.28
8 100 8 1.0 0.04 two-point True 24 40 56 77 77 54.8 0.4929 7.08
9 100 8 0.6 0.02 two-point False 120 143 93 95 31 96.4 0.2786 6.77
10 100 8 0.8 0.02 two-point False 99 147 117 99 32 98.8 0.2821 6.69
11 50 8 0.6 0.04 two-point True 87 111 113 177 47 107.0 0.3143 3.75
12 50 8 0.6 0.04 distributed True 105 132 99 136 64 107.2 0.3357 3.73
13 50 8 1.0 0.04 distributed True 147 101 90 192 89 123.8 0.2893 3.71
14 50 8 1.0 0.02 two-point True 122 176 146 166 65 135.0 0.2357 3.71
15 50 8 1.0 0.02 two-point False 137 175 157 127 136 146.4 0.2321 3.46
16 50 8 0.8 0.02 two-point False 139 178 147 174 196 166.8 0.2071 3.40
17 50 8 0.6 0.04 two-point False 138 145 101 230 242 171.2 0.2821 3.31
18 50 4 0.6 0.04 two-point False 173 160 218 314 343 241.6 0.1429 3.30
19 50 4 0.8 0.04 distributed False 247 256 278 313 318 282.4 0.0536 3.23
20 50 2 0.6 0.02 two-point False 326 302 319 331 316 318.8 0.0214 3.09

iv Test Cases 1-4

Table 5 Pairwise Spearman’s rank correlation coefficients ρ
between the test cases. The ranks are ordered based on the
average minimized objective function value (a) and average
number of objective function evaluations (b).

(a) Test Case
ρ 1 2 3 4 5

Test Case 1 1.000 0.968 0.965 0.850 0.727
2 0.968 1.000 0.949 0.846 0.645
3 0.965 0.949 1.000 0.897 0.786
4 0.850 0.846 0.897 1.000 0.841
5 0.727 0.645 0.786 0.841 1.000

(b) Test Case
ρ 1 2 3 4 5

Test Case 1 1.000 0.970 0.955 0.953 0.949
2 0.970 1.000 0.975 0.973 0.934
3 0.955 0.975 1.000 0.979 0.950
4 0.953 0.973 0.979 1.000 0.960
5 0.949 0.934 0.950 0.960 1.000

the relative performance of parameter combinations if

the number of rewriting rules is changed.

The goal of this paper is to offer practitioners of

GA-driven L-Systems-based topology search advice on

optimization setup, firmly grounded in empirical obser-

vations based on a set of test problems. In the next sec-

tion we tackle a structural geometry optimization prob-

lem using an L-systems based heuristic, demonstrating

Table 6 Pairwise Spearman’s rank correlation coefficients ρ
between a range rewriting rules NP = {2 . . . 6} on Test Case
1. The ranks are ordered in Subfigures a and b using the same
measures as in Tables 5(a) and 5(b), respectively.

(a) NP

ρ 2 3 4 5 6

NP 2 1.000 0.956 0.894 0.848 0.800
3 0.956 1.000 0.956 0.921 0.880
4 0.894 0.956 1.000 0.976 0.955
5 0.848 0.921 0.976 1.000 0.977
6 0.800 0.880 0.955 0.977 1.000

(b) NP

ρ 2 3 4 5 6

NP 2 1.000 0.975 0.914 0.864 0.847
3 0.975 1.000 0.960 0.923 0.902
4 0.914 0.960 1.000 0.981 0.967
5 0.864 0.923 0.981 1.000 0.988
6 0.847 0.902 0.967 0.988 1.000

how the results of the empirical study presented above

can be implemented in a ‘real-life’ engineering context.
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4 Application: Integrally stiffened aluminum

panel

The results we obtained from the simple test cases showed

that L-systems can generate diverse topologies contain-

ing triangular, quadrilateral and pentagonal geometries.

In structural engineering, iso- and orthogrids are inte-

grally stiffened panel structures, with topologies also

consisting of triangular and quadrilateral geometries6,

respectively [12]. Figure 6 illustrates the stiffener topol-

ogy of an isogrid structure. These structures are seen

in many aircraft and satellite structures.

Considering metal structures, integrally stiffened pan-

els are constructed using subtractive manufacturing tech-

niques, where material is successively removed from a

solid piece of material, using methods like face milling

or chemical etching. These panels are free of attachment

flanges and rivet holes, which enables lighter designs,

better damage tolerance and cheaper manufacturing in

comparison to panels constructed via traditional man-

ufacturing techniques, such as riveting [8].

The purpose of this section is to apply the map L-

systems based topology optimization method to the de-

sign search of the optimal stiffener topology in an inte-

grally stiffened aluminum panel, and to benchmark the

results against corresponding iso- and orthogrid struc-

tures, for which the optimal stiffener spacing is sought.

The map L-systems-based parameterization is well-suited

for the purpose because it produces two-dimensional

phenotypes that can be directly used to describe stiff-

ener topologies of design candidates.

Fig. 6 Integrally stiffened isogrid panel.

4.1 Optimization problem

The objective of the optimization problem is to maxi-

mize the fundamental natural frequency ωn
7 of an in-

6 More precisely, these geometries are equilateral triangles
and squares.
7 A structure is resistant to vibration caused by an ex-

ternal excitation with frequency lower than its fundamental

tegrally stiffened aluminum panel, subject to mass and

manufacturing constraints. The panel is defined to have

a square shape and is manufactured from aluminum al-

loy 2024-T3, commonly used in aircraft structures (see

Table 7 for geometrical and material properties).

Table 7 Properties of the optimization problem.

Property Value

panel dimensions 1 m × 1 m
total mass 8 kg
panel thickness 1 mm
stiffener aspect ratio 7.5 [-]
elastic modulus 73.1 GPav

Poisson’s ratio 0.33v

density 2780 kg/m3v

v www.aerospacemetals.com (accessed on 2nd August 2017)

The material is intended to be removed via face

milling. We impose two manufacturing constraints: the

minimum wall thickness is 1 mm, and all stiffeners in

a design are defined to have the same size. In addition,

all stiffeners are assigned to the same side of the panel

(assuming the other side to be wetted by flow). Sepa-

rately in each design, the stiffener size is scaled so that

the total mass of the structure is 8 kg. Therefore, the

optimization problem is about finding a suitable trade-

off between local and global stiffening. A coarse stiff-

ener layout may not provide adequate support for local

plate sections, which become critical for vibration. On

the other hand, if the stiffener layout is fine, the stiff-

ener size decreases, and therefore the global oscillation

mode involving the entire structure becomes critical.
The fundamental natural frequency ωn is solved by

finite element(FE)-based modal analysis. The analyses

are performed using FE software, Abaqus. The cre-

ation of FE models, their execution and post-processing

are automated using the Python scripting interface of

Abaqus. The boundary conditions are specified to be

pinned for all four edges of the panel.

natural frequency. Therefore, a high fundamental natural fre-
quency enables vibration-free operation of the structure un-
der a broad range of excitation frequencies.
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y x

Fig. 7 Reference designs using iso- and orthogrids with variable stiffener densities. The orthogrid with five stiffeners in both
directions has the highest fundamental natural frequency of ωn = 143.39.

4.2 Reference designs

First, we need to determine the optimal stiffener densi-

ties for reference designs with iso- and orthogrids, which

maximize the objective function ωn. We use the num-

ber of stiffeners in the x-direction (see the coordinates

in Figure 7) of the panel as a design variable. With or-

thogrids, the number of stiffeners in y-direction is the

same as in x-direction. With isogrids, the numbers of

stiffeners in the other two directions are adjusted so

that the resulting grid consists of geometries as close to

equilateral triangles, or their halves, as possible.

The number of stiffeners is varied with both iso-

and orthogrids from 0 to 10. The results are plotted in

Figure 7, where fundamental mode shapes of represen-

tative designs are shown. The maximum fundamental

natural frequency (ωn = 143.39 Hz) corresponds to the

orthogrid design with five stiffeners in both directions,

which we use as the baseline. As a comparison, the high-

est fundamental natural frequency with an isogrid is

136.93 Hz.

4.3 Topology optimization setup and results

Map L-systems produce a two-dimensional phenotype,

which in this application describe the stiffener topology

of the plate structure. The plate structure, as well as its

boundary conditions, has two perpendicular symmetry

axes. We make a priori assumption that the optimal

topology is also symmetric at least with respect to one

of these axes. Thus, we define the axiom of map L-
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Fig. 8 The best design (run 4) obtained by the map L-systems-based topology optimization. Subfigure (a) shows the optimized
map as a two-dimensional graph, where the actual map is drawn with continuous lines and the mirrored side with dashed lines.
Subfigure (b) presents the corresponding integrally stiffened panel. The contours illustrate the mode shape of its fundamental
natural frequency.

systems to be a rectangle, covering half of the plate

area (see nodes 1-4 and the continuous lines in Figure

8(a)), and the second half is generated by mirroring the

first half with respect to the vertical symmetry axis (see

the dashed lines in Figure 8(a)). The boundary edges

{1, 2}, {2, 3}, {3, 4} and their mirrored counterparts are

excluded from the stiffener topology. The existence of

edge {4, 1}, laying on the symmetry axis, is decided by

an additional, boolean design variable.

Let us now examine the choice of control parame-

ters, the matter at the core of this paper. In Section 3

we showed a systematic process for identifying the op-

timal parameter combination for a particular problem

and we demonstrated this across a set of ‘lightweight’
test functions. Ideally, we would deploy a similar strat-

egy here too, but, of course, the computational cost

of the FE analysis would render this method entirely

impractical. Using the same number of CPUs, as in

the case of the test functions, would result in a total

wall time of 520 days on this class of ‘real’ problem.

We therefore propose the next best strategy: using the

conclusions drawn from the Pareto study of the test

functions to choose the control parameters of the ex-

pensive problem. This is based on the observation that

the presence of the L-system as an intermediary level

should reduce the problem-specificity of the findings of

Section 3; we put forward the correlation analysis pre-

sented there (showing similarity of behavior across the

test set) as supporting evidence. Additionally, the ge-

ometry of this problem is very similar to that of the

test cases, even if the objective function itself is not.

Thus, we use here control parameter combination

#7 (Table 4), which we found to have the smallest esti-

mate of required objective function evaluations to dis-

cover the global optimum. The estimate is based on

the average completion rate of Test Cases 1-4, and has

a confidence of 95%. In addition, we study the trade-off

between the optimized objective function value and the

number of required objective function evaluations on

the application by also running experiments with con-

trol parameter combinations #1 and #12. These two

combinations represent the end points of the ‘practical’

Pareto front. The optimization process is repeated 10

times with each of the three combinations.

The average and standard deviation of optimized

objective function values, i.e. the fundamental natural

frequency ωn, and the average number of objective func-
tion evaluations, Q̄, are listed in Table 8. The table also

shows the corresponding values for the reference de-

signs, as well as relative differences with respect to the

best reference design, i.e. the orthogrid with four stiffen-

ers in x-direction. All three tested parameter combina-

tions yield on average better designs than the orthogrid

design.

Based on the results, tested parameter combinations

#1, #7 and #12 have a decreasing order of the aver-

age number of required objective function evaluations

– in the same way as in the statistical experiment. Fur-

ther, parameter combinations #1 and #7 yield, on av-

erage, better designs than parameter combination #12

– again in the same way as in the statistical experiment.

However, parameter combination #7 yields, on average,

better designs than parameter combination #1, which

is in contrast to that obtained from the statistical ex-

periment. Due to the high computational cost of the

application, and resulting small sample size, we are un-
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Table 8 Comparison of topology optimization (TO) results
with parameter combinations #1, #7 and #12 against the
reference designs, obtained using iso- and orthogrids. ωn and
Q̄ are the optimized, fundamental natural frequency and the
average number of required objective function evaluations,
respectively.

Method ωn [Hz] relative difference [%] Q̄ [103]

isogrid 136.93 -4.51 -
orthogrid 143.39 0.0 -

TO: #1 147.51 ± 4.61 2.87 14.78
TO: #7 149.32 ± 5.27 4.14 7.18
TO: #12 146.51 ± 7.54 2.17 3.72
TO: best 159.45 11.20 9.60

able to draw here any statistically significant conclu-

sions. Nevertheless, the results of the application have

some similar trends to those of the statistical experi-

ment.

The best design (Figure 8(b)), which convergence

history is shown in Figure 9, was obtained using the pa-

rameter combination #7. The design has 11.20% higher

fundamental natural frequency than the orthogrid de-

sign. It consists of two radial lines of stiffener, laying

at the two perpendicular symmetry axes, and three cir-

cumferential stages of stiffeners. While mirroring is ap-

plied with respect to the vertical symmetry axis, the

design is also nearly-symmetric with respect to the hori-

zontal symmetry axis. The corresponding map L-system

and its additional variables are

Axiom: ω0 = CCAC

Rules: P1 : A→ [+
−→
D ][+B]C[+

←−
D ]A

P2 : B → [−B][+D][−D]C[−
−→
D ][+

−→
B ]

P3 : C → [+D]B[−D]B[−
←−
C ]

P4 : D → [−
−→
B ]DB[+C]CD

Additional variables: fa = 0.43263

n = 3

(13)

It is also worth mentioning that the second and third

lowest natural frequencies of the design are only 0.14%

and 0.82%, respectively, higher than the fundamental

natural frequency. As a comparison, the corresponding

values of the orthogrid design are both 16.62% higher

than the fundamental natural frequency.

Let us review the obtained designs from the five

test cases (Figures 2 and 3) and the application (Fig-

ure 8). Although the designs are significantly different

from each other, depending on their objective function,

they are still obtained using the same type of genera-

tive encoding. The used methodology does not require

a priori definitions of mesh resolution or the type or

density of the ground structure.

Despite being more concise than an equivalent di-

rect encoding method, the number of design variables

in the L-systems-based parameterization is still rela-

tively large, but well within the capabilities of a GA,

as illustrated, for example, by the success of the nearly

400-variable study of Pedro and Kobayashi [22]8. In this

particular case we have 126 design variables, which is

a very concise description of a vast design space: as

shown in Table 3, the number of different L-systems in

the design space is of the order of 3 ·1036, excluding any

variation in the scalar variable fa. The effectiveness of

the GA is also underlined by the fact that we were able

to find global optima in four out of five test cases, and it

yielded better designs than the conventional engineer-

ing process in the application.
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Fig. 9 Convergence history of optimization run 4. The best
design is discovered at the 66th generation.

5 Conclusions

The main goal of this study was to examine the effects

of genetic control parameters on the performance of the

map L-systems-based topology optimization method. A

total of 432 control parameter combinations were tested

on five test cases, with known global optima. The re-

sults show that carefully chosen control parameter com-

bination can significantly increase the performance of

8 An estimate based on the fact that their design space
consists of eight rewriting rules, which each consist of eight
tokens.
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the map L-systems-based topology optimization. The

Pareto front of best performing parameter combina-

tions is reported. These parameter combinations are

recommended starting points for a designer using the

map L-systems-based topology optimization, with a nu-

merical representation similar to the one described by

Pedro and Kobayashi [22].

The pairwise comparisons of parameter combination

ranks in between the test cases show strong correlation

(the Spearman’s rank correlation coefficient ρ ranges

from 0.645 to 0.979), which indicates that a parameter

combination, performing well on one test case, is also

likely perform well on another test case. In addition, we

found strong correlation (ρ ranges from 0.800 to 0.988)

between the parameter combination ranks obtained us-

ing different numbers of rewriting rules on Test Case 1.

The result is an indication that the guidelines we give in

this paper are applicable also to studies with a number

of rewriting rules different to what we use here.

Finally, we demonstrated the application of these

findings to an engineering design problem, that of an in-

tegrally stiffened aluminum panel; specifically, we showed

how to establish the appropriate computational effort

and how to select the most suitable combination of con-

trol parameters. The best obtained design was 11.2%

better, in terms of its fundamental natural frequency,

than the baseline design obtained through conventional

means.

Appendix A Numerical representation of

map L-systems

This appendix describes the encoding of map L-systems

into a numerical representation (suitable for genetic al-

gorithms), used in this work. The encoding is similar to

that described by Pedro and Kobayashi [22]. Parts of

the description are taken from reference [13].

The axiom, rewriting rules and additional variables

are encoded sequentially into a vector x of real numbers,

with xi ∈ [0, 1]∀i, as

x = [xa,1 xa,2 . . . xa,Na︸ ︷︷ ︸
Axiom ω0

P1 P2 . . . PNP︸ ︷︷ ︸
Rewriting rules Pj

x1 x2 . . . xNv︸ ︷︷ ︸
Additional variables

].

(14)

Each letter of the axiom, having a total of Na letters,

is represented as a real number xa,i. The interval of

the real number is divided into equally sized segments

representing the letters in an alphabet Σ. For example,

if the alphabet is Σ = {A,B,C}, a real number xa,i in

the axiom is assigned the following segments: A ≡ [0, 13 ],

B ≡ [ 13 ,
2
3 ], C ≡ [ 23 , 1].

The total number of rewriting rules, NP, is equal to

the length of the alphabet. Each rewriting rule Pj is

encoded into Nr sets of real numbers, called tokens, as

Pj =
[
βj,1 βj,2 . . . βj,Nr

]
. (15)

A token is a part of the right-hand side of a rewriting

rule, and may appear as a neutral letter, a marker or an

empty token. Examples of the first two instances are A

and [−
←−
B ], respectively. The number of encoded tokens,

Nr, defines the maximum length of the rewriting rule.

The kth token of the jth rewriting rule is encoded into

a set of five real numbers as

βj,k =
[
x1 x2 x3 x4 x5

]
, (16)

where the real numbers encode the token as follows:

1. Existence of the token: an empty token if x1 in

[0, pempty], else token is non-empty. If the token is

empty, the real numbers x2, . . . x5 are ignored.

2. Edge letter: A if x2 in [0, 1
Na

], else B if x2 in [ 1
Na
, 2
Na

],

else C if x2 in [ 2
Na
, 3
Na

], . . .

3. Marker orientation9 ‘−→’ if x3 in [0, 13 ], else n (neu-

tral) if x5 in [ 13 ,
2
3 ], else ‘←−’.

4. Marker: the token is a marker if x4 in [0, pmarker],

else the token is a neutral letter.

5. Marker side: the side is ‘+’ if x5 in [0, 12 ], else the

side is ‘-’.

Pedro and Kobayashi [22] define an additional, sixth,

real number to vary a specific property of the edge (e.g.

the thickness). The edge property is redundant in our

test cases and application, and therefore omitted.

Finally, Nv additional variables are encoded into the

vector x. The additional variables always contain the

age n of the system, i.e. the number of applied develop-

mental stages, which is an integer variable with lower

and upper limits. Each integer value in the range is as-

signed an equal interval of the real number. The addi-

tional variables can be amended by additional require-

ments for new cycles. These requirements can define,

for example, the minimum angle between two edges be-

longing to a cycle, the minimum fraction for the area

of an offspring cycle in comparison to the parent cycle,

or the minimum fraction for the shortest edge in com-

parison to the longest edge in a cycle. These variables

are scaled to the encoding interval of [0, 1].

As a summary, the design variable vector x has a

total length of

Ntotal = Na + 5NrNP +Nv. (17)

9 In the encoding by Pedro and Kobayashi [22] this element
also defines the edge direction (in the case of a neutral letter).
For simplicity, we define all edges to have a uniform direction.
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