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Abstract
Map L-systems-based parametrization, also referred to as the cellular division method, is a generative encoding, suitable
for topology optimization. The parametrization is compact due to its ability to reuse its elements, and therefore capable
of covering a large design space with relatively few design variables. Map L-systems are often evolved using genetic
algorithms (GAs). A key implementation detail of such procedures, as with most GA-based geometry searches, is the choice
of parameters controlling the operation of the evolutionary process. The optimal choice of these in conventional optimization
formulations is highly problem-specific—far less so, however, when the GA evolves an L-systems encoding and does not
act directly on the geometry. This is because the L-system encoding is, itself, independent of the geometry. We study the
effects of different control parameters by conducting a statistical test of over 400 parameter combinations on five test cases,
for which the global optima are known. The best-performing parameter combinations are reported as a Pareto front of the
average number of objective function evaluations and ranking based on the average of optimized fitnesses. Finally, three
Pareto-optimal parameter combinations are selected and applied to an optimization problem of maximizing the fundamental
natural frequency of an integrally stiffened aluminum panel. The best of the resulting designs has a higher fundamental
natural frequency than the baseline design by a margin of 11.2%.

Keywords Topology optimization · Generative encoding · L-systems · Genetic algorithm · Control parameters

1 Introduction

Evolutionary algorithms are population-based search
heuristics that mimic two revolutionary discoveries in
biology: Darwinian natural selection and the identification
of the deoxyribonucleic acid (DNA) sequence inside the
nucleus. The DNA sequence stores the genetic information,
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i.e. genotype, of a living organism. Instead of explicitly
encoding existence of individual cells in the organism, the
DNA sequence is a developmental recipe that implicitly
constructs the phenotype of the organism.1 However, the
parameterization in evolutionary algorithms is often con-
ducted using design variables that explicitly define units
of the phenotype, referred to as direct encoding. Implicit
parameterizations, referred to as generative encodings (also
developmental encodings and artificial embryogeny) define
a developmental recipe that produce the phenotype. They
have better scalability and are more compact than direct
encodings due to their capability of reusing elements of
the genotype, which enables the formation of self-similar
and hierarchical sub-parts in the phenotype (Hornby and
Pollack 2001; Stanley and Miikkulainen 2003; Deaton and
Grandhi 2014).

Topology optimization comprises search methods to
seek the optimal material distribution in a given design
domain. For an extensive review of the topic, the reader

1Biological phenotypes are, in fact, also dependent on epigenetic and
environmental factors.
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may wish to consult References Deaton and Grandhi
(2014), Bendsøe and Sigmund (2003) and Huang and
Xie (2010). Commonly used gradient-based methods, such
as SIMP (Solid Isotropic Material with Penalization) and
ESO (Evolutionary Structural Optimization), use the direct
encoding, where each of the design variables determines
the existence/density of a single material element in
the phenotype. Thus, even in a two-dimensional design
domain, the number of required design variables increases
quadratically as a function of the mesh resolution. Another
type of direct encoding is the so-called ground structure
approach, where a dense set of candidate structural
members is fitted inside a design domain, and the
optimal subset of these members is sought. One of the
drawbacks of this approach is that the ground structure
must also be defined a priori for each optimization problem.
Evolutionary algorithms with a generative encoding provide
an alternative, designed to mitigate these issues.

One such encoding applies Lindenmayer systems (Lin-
denmayer 1968a, b) (L-systems) to develop the phenotype
in stages. Stanley and Miikkulainen (2003) categorize the
method as a grammatical approach of artificial embryo-
geny, as they are defined in a language of formal grammars
(Chomsky 1956). Two common graphical interpretation
methods of L-systems are the turtle interpretation and map
L-systems, which were initially developed to model the
growth of plants and cellular layers, respectively.

L-systems-based parameterizations have been applied to
several topology optimization studies. Hornby and Pollack
(2001) applied L-systems, with the turtle interpretation,
as a parameterization method to the design search of a
table structure. Subsequently, the authors evolved robots for
locomotion (Hornby and Pollack 2002), by parameterizing
both their body and neural controller using the same
methods. In both applications, the authors observed
that algorithms with generative encoding yielded designs
with higher fitness and were faster than corresponding
algorithms with direct encoding. Rieffel et al. (2009) used
map L-systems in design optimization of irregular tensegrity
structures. Kobayashi (2010) evolved venation patterns of
artificial cordate leaves in multi-objective optimization,
minimizing both the mass of the leaf and its pressure drop.
He also showed that the designs he obtained were robust
and fault resistant, in a similar way to their biological
counterparts. Pedro and Kobayashi (2011) benchmarked the
map L-systems-based encoding against a direct encoding
(also driven via an evolutionary algorithm), on a cantilever
beam problem. Their results showed that the algorithm with
generative encoding yielded designs with similar optimized
fitness values using fewer objective function evaluations
than the algorithm with the direct encoding. Sabbatini
et al. (2015) applied L-systems, with turtle interpretation,
to multi-objective stiffener layout optimization, minimizing

the vibration amplitude and mass of a plate structure.
Allison et al. (2013) included a nested sizing routine to a
map L-systems-based algorithm, and applied the algorithm
to topology optimization of a truss structure. Stanford et al.
(2012, 2013) evolved, using map L-systems, the venation
and the mechanism of a flapping wing, to improve its
aerodynamic performance. In addition, map L-systems have
been applied to various other topology optimization studies
on aircraft wings (Kobayashi et al. 2010; Kolonay and
Kobayashi 2010, 2015; Ikonen and Sóbester 2017).

The map L-systems-based parameterization has gained
popularity among topology optimization researchers, per-
haps because map L-systems can conveniently be mapped
inside a finite two-dimensional design domain. In the major-
ity of the resulting publications, map L-systems are evolved
via a genetic algorithm (GA). Further, several studies (Pedro
and Kobayashi 2011; Stanford et al. 2012, 2013; Ikonen
and Sóbester 2017; Allison et al. 2013) use similar numer-
ical representations to encode map L-systems into a vector
format, which originate from that defined by Pedro and
Kobayashi (2011). In spite of the extensive use of evolution-
ary algorithms to search the space of L-systems encodings,
no systematic efforts have been reported to date to under-
standing the impact of evolutionary algorithm parameter
choices on the performance of such optimization processes.
The identification of optimal control parameters is a notori-
ously difficult aspect of evolutionary search heuristic design
due to the problem-specific nature of any findings. How-
ever, the starting point of this paper is that techniques where
the evolutionary process operates on the encoding—such as
L-systems based methods—and not directly on the design,
are less affected by this problem dependence. The encoding
can be seen as an intermediary layer of the problem, which
‘shields’ the evolutionary search from some of the variabil-
ity resulting from the objective function of the structural
design problem.

In this study we perform a statistical experiment
involving 432 control parameter combinations on the map
L-systems-based topology optimization method, using the
numerical representation proposed by Pedro and Kobayashi
(2011). We conduct the experiments on five simple
optimization problems, with known global optima. The
goal is to design a search that yields a good objective
function value in a small number of objective function
evaluations. As these performance measures are often
competing, we report our results as a Pareto front of the
two. In addition, we examine whether, or to what extent,
the rankings of parameter combinations, based on the
optimized objective function value and the required number
of function evaluations, are problem-dependent.

Finally, we use a Pareto-optimal parameter combination
in the topology optimization of an integrally stiffened
aluminum panel, in order to demonstrate the potential



Statistical analysis of control parameters in evolutionary map L-systems-based topology optimization

impact of the technology in a ‘real-life’ engineering context.
The objective is to maximize the lowest natural frequency
of the structure, subject to a mass constraint. The obtained
design is compared against corresponding results with iso-
and orthogrids, often seen in aerospace and automotive
applications.

2Map L-systems

L-systems are language-theoretic models for the develop-
ment process of living organisms (Rozenberg and Salomaa
2012). The original purpose of L-systems was to mathemati-
cally model the developmental process of a living organism,
with a particular emphasis on its topology. An example area
of application has been the modeling of plants, in which
case the topology defines how its substructures, such as the
trunk, branches, and leafs, are aligned with respect to each
other. More recently, L-systems have been applied to a vari-
ety of other fields too, such as computer graphics, artificial
intelligence and engineering.

In this study, we use map L-systems, a variation
of L-systems, which enables the production of mapped
topologies, such as cellular layers. Here, a map is defined
to consist of a finite set of regions, i.e. cells, which
are described by a circular sequence of edges, having a
finite length (Prusinkiewicz and Lindenmayer 2012). More
precisely, we use Binary Propagating Map OL-systems with
markers (mBPMOL-systems), as proposed by Nakamura
et al. (1986). The system is binary because, during a cell
division, each cell can only split into two offspring cells.
The word ‘propagating’ defines that, once created, the edges
cannot be removed, and therefore the cells cannot fuse or die.
The letter ’O’ indicates that the cell divisions are context-free,
which means that cells do not interact with each other.

Like other types of L-systems, an mBPMOL-system
consists of an alphabet �, axiom ω0, and NP rewriting rules
P1, . . . PNP . The main idea is that the axiom, defined as a
sequence of letters from the alphabet, is modified iteratively
n times based on the rewriting rules, wheren represents the age
of the organism. The resulting topology after n iterations is
referred to as the nth developmental stage of the system.

To illustrate the process, let us consider a map L-system
(described, for example, by Prusinkiewicz and Lindenmayer
(2012)), for which the alphabet is defined as � ≡ {A, B},
and the axiom as ω0 = ABAB. The axiom is mapped
into a single cell, having edges corresponding to the letter
sequence (Fig. 1a). The edges are ordered clockwise starting
from the bottom edge. Further, the following two rewriting
rules are defined for the letters A and B in the alphabet:

P1 : A → B[−A][+A]B
P2 : B → A (1)

The left- and right-hand sides of the rewriting rules
are referred to as the predecessor and the successor,
respectively. A characteristic feature for mBPMOL-systems
is the existence of markers in the successor, which are
indicated by square brackets. They act as start and end
points for new edges, which split cells.2 The content
between the square brackets contains the side of the marker,
‘+’ or ‘−’, and a letter that is referred to as the label.

The transition to the next developmental stage includes
two phases. In the first, the rewriting rules are applied to all
edges in the current developmental stage. The predecessor
edge is divided into equally-sized successor edges (Fig. 1b).
The markers are assigned to the nodes with respect to their
relative location in the successor (cf. the arrows in Fig. 1b).
Sides ‘+’ or ‘−’ indicate the location of the marker, which
is either the left or right side of the edge, respectively. In
the second, matching marker pairs are connected inside each
cell, creating new edges to the system and dividing cells into
two offspring cells (Fig. 1c). A marker pair is considered
to be matching if they are located inside the same cell and
have the same label.3 Only the first matching marker pair
inside each cell is connected, and the remaining markers
are discarded. The subsequent developmental stages are
generated by repeating the same procedure (Fig. 1d–f).

Later in this study we use directional markers. Possible
directions for the markers are ‘←’, ‘→’ or neutral, denoted
over the marker label, e.g. [−−→

B ]. The criteria defined above
for matching markers is amended by the following: the
direction of the start marker must be ‘→’ or neutral, and the
direction of the end marker ‘←’ or neutral. For simplicity,
all edges are defined to have a uniform direction.

The map L-systems may be amended by a dynamic
method (Prusinkiewicz and Lindenmayer 2012), where
an osmotic pressure is applied inside the cells and an
equilibrium state is determined for the vertex locations of
the edges, which have a finite axial stiffness coefficient
(Pedro and Kobayashi 2011) included the method in
their design space parameterization). However, the method
requires solving the equilibrium stage iteratively at every
developmental stage. We omit the dynamic method from the
parameterization, as we need to keep the computational cost
low to allow us to perform a large number of experiments.

The developmental stages in Fig. 1 are only a few
example topologies that may be generated by mBPMOL-
systems. A diverse range of different topologies may be
generated by varying the axiom and the rewriting rules, and

2Markers have a counterpart in biology, preprophase bands of
microtubes (Prusinkiewicz and Lindenmayer 2012).
3When map L-systems are used as a parameterization method in
topology optimization, additional requirements may be considered,
such as a minimum fraction of the offspring cell area in comparison
to the parent cell area (cf. for example reference Pedro and Kobayashi
2011).
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 The axiom (n = 0) and first four developmental stages
(n = 1 . . . 4) of the example map L-system. Subfigure (b) shows the
intermediate stage before joining the matching markers. Edges A and
B are indicated by continuous blue and dashed red lines, respectively

further by including more letters in the alphabet. In the next
section, we describe how the topologies are evolved using
a genetic algorithm. In the remainder of this paper, we will
refer to the mBPMOL-systems simply as map L-systems.

2.1 Evolution via a genetic algorithm

Evolutionary algorithms are population-base optimization
heuristics that mimic Darwinian natural evolution. In this
simulated evolution paradigm a merit function (objec-
tive function) takes the role of the environment, and

mathematical transformations are defined to represent
reproduction, crossover and mutation.

As described in the introduction, the map L-systems-
based parameterization is commonly evolved via GAs,
and, recently, with numerical representations similar to
the one by Pedro and Kobayashi (2011). The purpose
of their representation is to encode a map L-system,
consisting of the axiom, rewriting rules and additional
variables, as a vector of real numbers in the range
[0, 1]. It is designed to prevent the formation of invalid
features, such as markers with multiple labels or an axiom
with non-alphabetic characters. The design space of the
representation is determined by the length of the axiom,
Na, the number of encoded rewriting rules, NP, and Nv

additional variables. The number of encoded rewriting rules
is equal to the number of letters in the alphabet �. Details of
the numerical representation used in this work, containing
minor modifications to the one by Pedro and Kobayashi
(2011), are described in Appendix A. The genetic algorithm
is implemented in Python, using Pyevolve (Perone 2009),
an open-source library of genetic operators.

3 Statistical analysis of control parameters

There is, in general, a strong relationship between the choice
of the control parameters of a GA and its effectiveness (its
ability to find good solutions) and efficiency (its ability to
find them quickly).

In this section we conduct a series of statistical
experiments to quantify this relationship in the case of
the map L-systems-based topology optimization method.
In what follows, we describe the experimental plan
(Section 3.1) and the test cases (Section 3.2). We then
deploy these to gain an empirical understanding of the
performance of the algorithm with a range of parameter
choices (Section 3.3).

3.1 Experimental plan

Table 1 reviews the control parameters used in the
literature (where specified) in L-systems-based topology
optimization. We list the following parameters:

– selection strategy
– tournament pool size Npool

– crossover and mutation types
– crossover rate cx
– mutation rates cM and cm
– elitism Ebool

– termination criteria.

Mutation rate cm is the element-specific probability of
mutation, applied to a cM proportion of the population. In
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Table 1 Survey of control parameters in L-systems-based topology optimization studies found in the literature

Publication Selection Population size Npop Crossover Mutation Elitism Epool Termination

Rieffel et al. Roulette 100 One-point Primary and True Terminated after

(2009) wheel crossover secondary 500 generations

between rules (cM = 0.4

(cx = 0.2) each)a

Kobayashi Tournament 200 Distributed Gaussian True Terminated after

(2010)b (Npool = 4) (cx = 0.8) distributed 100 generations

(cM = 0.2)c

Pedro and Stochastic 50–100 Distributed Gaussian True Terminated after

Kobayashi universal (cx = 0.8) distributed 100 generation,

(2011) sampling (cM = 0.15) or after 50

(Baker 1987) generations

without

improvements

Sabbatini et al Tournament 100 Distributed Gaussian True Terminated after

(2015)b (Npool = 4) (cx = 0.8) distributedc 100 generations

(cM = 0.19)

Ikonen and Tournament 150 Two-point Swap True Terminated after 30

Sóbester (Npool = 4) (cx = 0.8) (cM = 1.0, generations without

(2017) cm = 0.02) improvements

aPrimary mutation randomly selects one of the rules and randomly changes its right side. Secondary mutation makes a small change to the resulting
map L-system
bIn addition, the author(s) applies inversion to the axiom letters, with a probability of 0.01
cGaussian distributed random mutation is added to all elements. The random distribution has a zero mean and a decreasing standard deviation as
a function of the prevailing generation. The mutation is applied to the individuals, to which crossover was not applied

References Kobayashi (2010) and Sabbatini et al. (2015)
the generation of phenotype follows the turtle interpretation
(Prusinkiewicz and Lindenmayer 2012). However, the turtle
interpretation of L-systems is still a generative encoding,
specifying the phenotype via the axiom, rewriting rules and
additional variables, and therefore we have included it in
the review. As Table 1 shows, the variation in parameters
across the selection of studies we were able to gather is
significant. The only exception is whether elitism was used,
Ebool, which was ‘True’ in all studies. We were not able to
find any studies that provided a clear reasoning behind their
particular choice of parameters.

To study the effects of choosing a particular set of control
parameters, and to find suitable parameter combinations,
we ran a statistical experiment on five simple test cases,
presented in Section 3.2. Table 2 shows our design of
experiments. Of the two mutation rate types prevalent in
the studies reported so far on L-systems based optimization,
cM and cm, our experiments vary the latter, keeping the
former fixed at cM = 1.0. We tested all 432 control
parameter combinations 70 times on each of the five
test cases. The optimization runs were terminated when
no improvements were obtained during 30 consecutive

generations. We used a mutation operator that swaps two
randomly selected elements in an individual, and the
number of elite individuals, when applicable, was set to
one. Optimization runs were initiated from a population of
random individuals.

Performance of GAs may be improved, in many cases,
by seeding the initial population with a diverse set of decent
initial guesses (cf. for example Reference Simpson and
D’souza 2004). However, in the vast majority of studies,
using an L-systems-based parameterization, optimization

Table 2 Control parameter values of the statistical experiment

Parameter Values

Population size Npop {50, 100, 150, 200}
Pool size Npool {2, 4, 8}
Crossover rate cx {0.6, 0.8, 1.0}
Mutation rate cm {0.0, 0.02, 0.04}
Crossover type Xtype {two-point, distributed}
Elitism Epool {True, False}

All parameter combinations, totalling 432, are tested separately
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Table 3 Definition of the L-system design space

Parameter Values

Axiom length Na 4

Number of rewriting rules NP 4

Number of tokens Nr 6

Minimum area fraction fa 0 . . . 0.5

Age n 1 . . . 6

Minimum area fraction fa and age n are additional variables

runs are initiated from a random population.4 Finding a
technique to define these initial guesses with sufficient
diversity for the L-systems-based parameterization falls
outside of the scope of the current study.

3.2 Test cases

This section defines the five test cases. Their objective
functions are based on the geometric features of a map L-
system. The test cases have low computational cost and
known global optima. Before going into their details, let us
define the design space at the L-system level, which is kept
constant throughout the experiment.

The parameters defining the design space are listed in
Table 3. The axiom of map L-systems is mapped as a unit
square, and thus the axiom length Na = 4. Two additional
variables are used: fa defines the minimum fraction between
offspring and parent cell areas, and n is the age of the
system, i.e. the ordinal of the desired developmental stage.

3.2.1 Test Case 1

The first test case is inspired by the example map L-system
described in Section 2. Its goal is to find a map L-system
that produces the map of the fourth developmental stage of
the example system (Fig. 1f). Thus, the sought map has 16
equally-sized, square-shaped cells. We use here the same
objective function as in Reference Ikonen and Sóbester
(2017), defined as

f1 = 1

10
|16 − Ncells| + Se + Sa, (2)

where Ncells is the number of cells, and Se and Sa are
the standard deviations of edge lengths and cell areas in
the system, respectively. The optimization processes of two
representative runs are presented in Fig. 2. The first run
yields the global optimum of f1 = 0, whereas the optimized
result of the second run is sub-optimal.

4An exception is the study by Kobayashi (2010), where an
optimization process is initiated from the final population of another
optimization process with a slightly different objective function.

3.2.2 Test Case 2

The second test case is a variation of the first test case. Its
goal is to find a map consisting of square-shaped cells of
any size. The objective function is defined as

f2 = 1

2
PN + 2

∑Ncells
i=1 se,i

Ncells
+ 1

100

∑Ncells
i=1 sα,i

Ncells
, (3)

where se,i and sα,i are the standard deviations of the edge
lengths and cell areas, respectively, of the ith cell in the map.
PN, defined as

PN =

⎧
⎪⎨

⎪⎩

5 − Ncells, if Ncells < 5

0, if Ncells ≥ 5 ∧ Ncells �= 16

1, if Ncells = 16,

(4)

is a penalty coefficient designed to prevent the optimization
from converging to trivial solutions of maps containing 1
or 4 equally-sized cells, or to the global optimum of Test
Case 1. While Test Case 1 has a single global optimum, Test
Case 2 admits multiple global optima (f2 = 0), (as do Test
Cases 3-5). An example global optimum, produced by an
optimization process, is shown in Fig. 3a.

3.2.3 Test Case 3

The purpose of the third test case is to minimize the fraction
of the number of nodes, Nnodes, with respect to the number
of cells, Ncells, in the map. Thus, the objective function is
defined as

f3 = Nnodes

Ncells
. (5)

Let us derive the values of the global optima. First of
all, the global optima are maps consisting exclusively of
triangles. The reason is that the objective function f3 of a
map, containing a polygon with four or more vertices can
always be decreased by dividing the polygon into two or
more triangles. Based on Euler’s formula for planar graphs,
and assuming that the map exclusively consists of triangles,
the number of cells

Ncells = 2Nnodes − Bnodes − 2, (6)

where Bnodes is the number of nodes laying at the convex
boundary of the graph.5 The equation can be rewritten as

Nnodes

Ncells
= 1

2
+ Bnodes + 2

2Ncells
. (7)

Therefore, the objective function f3 (5) reaches the global
minimum, when Bnodes and Ncells reach their minimum and
maximum, respectively. The minimum number of boundary
nodes, Bnodes, is equal to number of nodes in the map

5All developmental stages of map L-systems, initiated from an axiom
mapped onto a unit square, have a convex boundary, if the dynamic
method (Prusinkiewicz and Lindenmayer 2012) is not used.
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Fig. 2 Representative
optimization runs yielding the
global optimum and a
sub-optimal final result

corresponding to the axiom, i.e. Bnodes = 4. On the other
hand, the maximum age n is defined to be 6. As the number
of cells at most doubles at every developmental stage, the
maximum number of cells Ncells is 26 = 64. Thus, the
global optimum is f3 = 35

64 . An example global optimum is
shown in Fig. 3b. It is noticeable that the boundary of the
map only includes the four nodes related to the axiom.

3.2.4 Test Case 4

An m-equidissection of a polygon is set of m non-inter-
secting triangles, having an equal area and whose union is
the polygon. The purpose of the fourth test case is to find
a 12-equidissection of the unit square, using an objective
function defined as

f4 = 1

2
|12 − Ncells| + 10Sa + Ncells − N̂cells

Ncells
, (8)

where N̂cells is the number of triangular cells in the map. An
example global optimum (f4 = 0) shown in Fig. 3c.

3.2.5 Test Case 5

The fifth test case is a search for a map containing a
regular pentagon, filling at least 25% of the unit square. If a
pentagon exists in the map, the objective function is defined
as

f5 = PA + 1

100
sα,k + se,k, (9)

else f5 = 10. PA is a penalty coefficient defined as

PA =

⎧
⎪⎨

⎪⎩

1

4
− Ak, if Ak <

1

4

0, if Ak ≥ 1

4
,

(10)

where Ak is the area of the largest pentagonal shaped cell k.
Further, sα,k and se,k are the standard deviations of the edge
angles (in degrees) and edge lengths, respectively, of the cell
k. The global optimum has the value of f5 = 0, though this
was not found during the experiments. The design with the
lowest objective function value is shown in Fig. 3d.

3.3 Results and discussion

The statistical experiment was performed in parallel, using
128 Central Processing Units (CPUs). The total wall time of
the experiment was around 15 days.

GAs, characterized by the parameter combinations from
Table 2, are applied to Test Cases 1–5, each run 70 times.
Global optima were found for Test Cases 1–4 (see Figs. 2
and 3a–c). The lowest obtained objective function value for
Test Case 5 (f5 = 2.72 ·10−2) was encountered once among
the optimized designs. Although the corresponding design
(Fig. 3d) is not the global optimum, it contains a cell that is
very close to a regular pentagon and fills more than 25% of
the unit square area. The statistical experiment included a
considerably large number of optimization runs on each test
case: 30240 (70 repeats with 432 parameter combinations).

Let us first examine the results as a series of scatter
plots (Fig. 4) of the average number of objective function
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(a) (b)

(c) (d)

Fig. 3 Example global optima in Test Cases 2–4, and the design with
the lowest objective function value in Test Case 5

evaluations, Q̄, and the completion rate in terms of finding
the global optimum, pc. As pc = 0 for all control parameter
combinations on Test Case 5, we exclude its results from
the scatter plots. Thus, a point in the scatter plot represents
an average of 280 optimization runs (4 test cases with 70
repetitions). Each subplot in the scatter plot shows the effect
of the variation of control parameters on the performance of
the GA. The Pareto front of the two objectives is marked by
the dashed line.

The population size Npop has the clearest influence on
the performance of the GA (Fig. 4a). The points are aligned
into bands, approximately parallel to the abscissa, according
to their value of Npop. It can clearly be seen that the
larger Npop is, the more objective function evaluations are
required, but also more likely the GA is to find the global
optimum. All population sizes are represented on the Pareto
front.

The pool size Npool (Fig. 4b) and the element-wise
mutation rate cm (Fig. 4d) have a similar influence on the
performance of the GA. Both of these parameters were
tested with a range of three values, with the lowest, Npool =
2 and cm = 0.0, clearly showing the poorest performance.
Almost the entire Pareto front is populated by the highest
values, Npool = 8 and cm = 0.04. The relative performance
differences between these two parameters seem independent
of the population size Npop.

The two values (T rue/False) for the elitism Ebool

(Fig. 4f) divide the four bands of population sizes each into
two subbands, again approximately parallel to the abscissa
of the plot. The value Ebool = T rue, represented by
the upper subband, extends slightly further to the positive
direction of the abscissa, and its points form most of the
Pareto front.

The two-point crossover provides, on average, slightly
better completion rate than the distributed crossover
(Fig. 4e), and its points form most of the Pareto
front. However, the performance difference between the
crossovers is small. The crossover rate cx (Fig. 4c) has very
little influence on the performance of the GA (compared
to the other tested parameter values), as its parameters are
scattered inside the cloud of points.

The completion rate as a performance measure has a
drawback. It cannot rank two optimized designs if they
both are sub-optimal, and therefore some of the information
generated by the experiment is discarded. An alternative
may be to directly compare the minimized objective
function values. This metric also allows the inclusion of
incomplete searches (such as our fifth test case) in the
analysis. Since the minimized objective function values are
not comparable across test cases, we use rankings as a
means of direct comparison. First, the control parameter
combinations are ranked, separately in each test case, based
on the average minimized objective function value attained
by the GA run with each. Second, the obtained ranks
are averaged and these values are used as a performance
measure.

Figure 5 shows scatter plots using the average rank as
a performance measure, along with the average number of
objective function evaluations. The broad trends are similar
to those seen in the completion rate (Fig. 4), although less
pronounced. Let us now extract the Pareto front (dashed
line), in the space of minimum average number of objective
function evaluations versus minimum average rank, into
Table 4. The listing of non-dominated control parameter
combinations is ordered from the lowest average rank to the
highest. It is noticeable that the population size Npop sweeps
through its tested range Npop = {50, 100, 150, 200}, in the
opposite order, along the Pareto front. These 20 Pareto-
optimal combinations selected from the set of 432 tested
control parameter combinations, can be viewed as prime
candidates when selecting the parameters of a GA to be
deployed on a not yet seen problem.

Depending on the budget available for experimentation
on the ‘real’ problem, the analyst may choose to narrow
down the list further. First, combination #12 may be
considered a practical limit, as points below it provide
very marginal decrease in the average number of objective
function evaluations as a return of the sacrificed average
rank. Second, if we assume that the modality of Test
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Fig. 4 Results of the statistical
experiment, in terms of the
completion rate pc and the
average number of required
objective function evaluations
Q̄. Test Case 5 is excluded from
the results, as its global
optimum was not found. The
dashed line represents the Pareto
front between minimum average
number of function evaluations
and maximum completion rate

(a) (b)

(c) (d)

(e) (f)

Cases 1–4 is representative of the problem being tackled,
there is another way in which the remaining options can
be narrowed. The probability pglobal of finding the global
optimum, by performing multiple optimization runs, is
defined as

pglobal = 1 − (1 − pc)
m, (11)

where m ∈ N is the number of repeated optimization
runs. Let us fix pglobal = 0.95, and find the parameter
combination at the Pareto front that has the smallest estimate
of required objective function evaluations

Qg = Q̄m, (12)
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Fig. 5 Results of the statistical
experiment using the average
rank. The parameter
combinations are ranked based
on their average minimized
objective function value. The
dashed line represents the Pareto
front between minimum average
number of function evaluations
Q̄ and minimum average rank

(a) (b)

(c) (d)

(e) (f)

where m = log(1−pc)
(0.05), rounded to the next natural

number. The smallest Qg(= 29.12 · 103) is obtained by
combination #7 in Table 4, and corresponds to four repeated
runs. As a comparison, combination #1, having the smallest
average rank, requires only three repeated runs, but these

runs require on average more objective function evaluations,
and therefore Qg = 40.74 · 103.

Parameter combination #7 is, broadly, in keeping with
common quidelines for formulated in the general GA
literature. However, the tournament pool size Npool =
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Table 4 The parameter combinations lying on the Pareto front in Fig. 5

# Npop Npool cx cm Xtype Ebool Ranks (in test cases) Average rank pc
a [-] Q̄ [103]

1 2 3 4 5

1 200 8 0.6 0.04 Two-point True 4 20 5 2 3 6.8 0.6643 13.58

2 200 8 0.8 0.04 Two-point True 2 9 1 24 8 8.8 0.7143 13.40

3 200 8 1.0 0.04 Two-point True 1 6 11 23 20 12.2 0.6607 12.89

4 150 8 0.8 0.04 Two-point True 8 7 6 51 14 17.2 0.6429 10.76

5 150 8 0.6 0.04 Two-point True 9 34 17 37 6 20.6 0.5857 10.46

6 100 8 0.8 0.04 Two-point True 57 51 24 29 36 39.4 0.5321 7.34

7 100 8 0.6 0.04 Two-point True 50 69 15 61 11 41.2 0.5321 7.28

8 100 8 1.0 0.04 Two-point True 24 40 56 77 77 54.8 0.4929 7.08

9 100 8 0.6 0.02 Two-point False 120 143 93 95 31 96.4 0.2786 6.77

10 100 8 0.8 0.02 Two-point False 99 147 117 99 32 98.8 0.2821 6.69

11 50 8 0.6 0.04 Two-point True 87 111 113 177 47 107.0 0.3143 3.75

12 50 8 0.6 0.04 Distributed True 105 132 99 136 64 107.2 0.3357 3.73

13 50 8 1.0 0.04 Distributed True 147 101 90 192 89 123.8 0.2893 3.71

14 50 8 1.0 0.02 Two-point True 122 176 146 166 65 135.0 0.2357 3.71

15 50 8 1.0 0.02 Two-point False 137 175 157 127 136 146.4 0.2321 3.46

16 50 8 0.8 0.02 Two-point False 139 178 147 174 196 166.8 0.2071 3.40

17 50 8 0.6 0.04 Two-point False 138 145 101 230 242 171.2 0.2821 3.31

18 50 4 0.6 0.04 Two-point False 173 160 218 314 343 241.6 0.1429 3.30

19 50 4 0.8 0.04 Distributed False 247 256 278 313 318 282.4 0.0536 3.23

20 50 2 0.6 0.02 Two-point False 326 302 319 331 316 318.8 0.0214 3.09

The combinations are listed in increasing order of the average rank. An extended version of the table, including all tested parameter combinations,
is attached as a supplementary data file
aTest Cases 1–4

8 and mutation rate cm = 0.04 may be considered
relatively high. Often used values for these parameters are
a tournament pool size of 2 (Blickle and Thiele 1995) (or
4) and a mutation rate of 0.005 to 0.01 (Mitchell 1998). In
comparison to the general guidelines, the larger tournament
pool increases the selective pressure of the evolutionary
process, while the increased mutation rate enhances its
ability to avoid converging to local optima.

Finally, let us examine the correlation of parameter
combination ranks in the five test cases. These ranks
are listed in Table 4 for the Pareto-optimal parameter
combinations (using the average minimized objective
function value as the ranking measure). As a measure, we
use Spearman’s rank correlation coefficient ρ (Corder and
Foreman 2014), which compares the relationship of ordinal
or rank-ordered variables. If ρ = 1, the correlation is
perfect, i.e. the parameter combination ranks are the same
among the two test cases. If ρ = −1, the correlation is also
perfect but the ranks are the opposite. On the other hand, if
ρ = 0, the ranks are completely independent.

Table 5a and b show the matrices of pairwise correlations
of ranks between the five test cases, using the average

minimized objective function value and the average number
of objective function evaluations, respectively, as ranking
measures. The diagonal elements of the matrix are trivial
as the comparison is made on the same ranks, obtained
from the same test case (ρ = 1). Excluding the
diagonal elements, the correlation coefficients vary from
0.645 to 0.979, indicating strong correlations between the
obtained ranks. This indicates that a parameter combination
performing well on one test case is also likely to perform
well on another test case.

There is little consistency in the literature in terms of
the number of encoded rewriting rules, NP. Our goal here
is not to determine the optimal value for NP; rather, we
are interested in how sensitive our results, described above,
are to variations in NP. To study this, we run experiments
with a range of NP = {2 . . . 6} on Test Case 1. As the
optimization runs were repeated 70 times with NP = 4
earlier, we performed the same number of repeats with the
other values. The obtained pairwise correlations of ranks
between different values of NP are listed in Table 6a and
b, using the same ranking measures as in Table 5a and
b, respectively. The correlation coefficients, varying from
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Table 5 Pairwise Spearman’s rank correlation coefficients ρ between
the test cases

ρ Test Case

1 2 3 4 5

(a)

Test Case 1 1.000 0.968 0.965 0.850 0.727

2 0.968 1.000 0.949 0.846 0.645

3 0.965 0.949 1.000 0.897 0.786

4 0.850 0.846 0.897 1.000 0.841

5 0.727 0.645 0.786 0.841 1.000

(b)

Test Case 1 1.000 0.970 0.955 0.953 0.949

2 0.970 1.000 0.975 0.973 0.934

3 0.955 0.975 1.000 0.979 0.950

4 0.953 0.973 0.979 1.000 0.960

5 0.949 0.934 0.950 0.960 1.000

The ranks are ordered based on the average minimized objective
function value (a) and average number of objective function
evaluations (b)

0.800 to 0.988, show strong correlation in the ranks obtained
with different numbers of rewriting rules,NP. This indicates
that no radical changes are to be expected in the relative
performance of parameter combinations if the number of
rewriting rules is changed.

The goal of this paper is to offer practitioners of GA-
driven L-Systems-based topology search advice on opti-
mization setup, firmly grounded in empirical observations

Table 6 Pairwise Spearman’s rank correlation coefficients ρ between
a range rewriting rules NP = {2 . . . 6} on Test Case 1

ρ NP

2 3 4 5 6

(a)

NP 2 1.000 0.956 0.894 0.848 0.800

3 0.956 1.000 0.956 0.921 0.880

4 0.894 0.956 1.000 0.976 0.955

5 0.848 0.921 0.976 1.000 0.977

6 0.800 0.880 0.955 0.977 1.000

(b)

NP 2 1.000 0.975 0.914 0.864 0.847

3 0.975 1.000 0.960 0.923 0.902

4 0.914 0.960 1.000 0.981 0.967

5 0.864 0.923 0.981 1.000 0.988

6 0.847 0.902 0.967 0.988 1.000

The ranks are ordered in Subfigures a and b using the same measures
as in Table 5a and b, respectively

Fig. 6 Integrally stiffened isogrid panel

based on a set of test problems. In the next section we
tackle a structural geometry optimization problem using an
L-systems based heuristic, demonstrating how the results of
the empirical study presented above can be implemented in
a ‘real-life’ engineering context.

4 Application: integrally stiffened aluminum
panel

The results we obtained from the simple test cases showed
that L-systems can generate diverse topologies containing
triangular, quadrilateral and pentagonal geometries. In
structural engineering, iso- and orthogrids are integrally
stiffened panel structures, with topologies also consisting
of triangular and quadrilateral geometries,6 respectively
(Huybrechts et al. 2002). Figure 6 illustrates the stiffener
topology of an isogrid structure. These structures are seen
in many aircraft and satellite structures.

Considering metal structures, integrally stiffened panels
are constructed using subtractive manufacturing techniques,
where material is successively removed from a solid piece
of material, using methods like face milling or chemical
etching. These panels are free of attachment flanges and
rivet holes, which enables lighter designs, better damage
tolerance and cheaper manufacturing in comparison to
panels constructed via traditional manufacturing techniques,
such as riveting (El-Soudani 2006).

The purpose of this section is to apply the map L-
systems based topology optimization method to the design
search of the optimal stiffener topology in an integrally
stiffened aluminum panel, and to benchmark the results
against corresponding iso- and orthogrid structures, for
which the optimal stiffener spacing is sought. The map
L-systems-based parameterization is well-suited for the
purpose because it produces two-dimensional phenotypes
that can be directly used to describe stiffener topologies of
design candidates.

6More precisely, these geometries are equilateral triangles and squares.
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Table 7 Properties of the optimization problem

Property Value

Panel dimensions 1 m × 1 m

Total mass 8 kg

Panel thickness 1 mm

Stiffener aspect ratio 7.5 [−]

Elastic modulus 73.1 GPaa

Poisson’s ratio 0.33a

Density 2780 kg/m3a

awww.aerospacemetals.com (accessed on 2nd August 2017)

4.1 Optimization problem

The objective of the optimization problem is to maximize
the fundamental natural frequency ωn

7 of an integrally stiff-
ened aluminum panel, subject to mass and manufacturing
constraints. The panel is defined to have a square shape and
is manufactured from aluminum alloy 2024-T3, commonly
used in aircraft structures (see Table 7 for geometrical and
material properties).

The material is intended to be removed via face milling.
We impose two manufacturing constraints: the minimum
wall thickness is 1 mm, and all stiffeners in a design are
defined to have the same size. In addition, all stiffeners are
assigned to the same side of the panel (assuming the other
side to be wetted by flow). Separately in each design, the
stiffener size is scaled so that the total mass of the structure
is 8 kg. Therefore, the optimization problem is about finding
a suitable trade-off between local and global stiffening. A
coarse stiffener layout may not provide adequate support for
local plate sections, which become critical for vibration. On
the other hand, if the stiffener layout is fine, the stiffener
size decreases, and therefore the global oscillation mode
involving the entire structure becomes critical.

The fundamental natural frequency ωn is solved by
finite element(FE)-based modal analysis. The analyzes
are performed using FE software, Abaqus. The creation
of FE models, their execution and post-processing are
automated using the Python scripting interface of Abaqus.
The boundary conditions are specified to be pinned for all
four edges of the panel.

4.2 Reference designs

First, we need to determine the optimal stiffener densities
for reference designs with iso- and orthogrids, which

7A structure is resistant to vibration caused by an external excitation
with frequency lower than its fundamental natural frequency.
Therefore, a high fundamental natural frequency enables vibration-
free operation of the structure under a broad range of excitation
frequencies.

maximize the objective function ωn. We use the number of
stiffeners in the x-direction (see the coordinates in Fig. 7) of
the panel as a design variable. With orthogrids, the number
of stiffeners in y-direction is the same as in x-direction.
With isogrids, the numbers of stiffeners in the other two
directions are adjusted so that the resulting grid consists of
geometries as close to equilateral triangles, or their halves,
as possible.

The number of stiffeners is varied with both iso- and
orthogrids from 0 to 10. The results are plotted in Fig. 7,
where fundamental mode shapes of representative designs
are shown. The maximum fundamental natural frequency
(ωn = 143.39 Hz) corresponds to the orthogrid design
with five stiffeners in both directions, which we use as the
baseline. As a comparison, the highest fundamental natural
frequency with an isogrid is 136.93 Hz.

4.3 Topology optimization setup and results

Map L-systems produce a two-dimensional phenotype,
which in this application describe the stiffener topology
of the plate structure. The plate structure, as well as its
boundary conditions, has two perpendicular symmetry axes.
We make a priori assumption that the optimal topology
is also symmetric at least with respect to one of these
axes. Thus, we define the axiom of map L-systems to be
a rectangle, covering half of the plate area (see nodes 1–
4 and the continuous lines in Fig. 8a), and the second
half is generated by mirroring the first half with respect
to the vertical symmetry axis (see the dashed lines in
Fig. 8a). The boundary edges {1, 2}, {2, 3}, {3, 4} and
their mirrored counterparts are excluded from the stiffener
topology. The existence of edge {4, 1}, laying on the
symmetry axis, is decided by an additional, boolean design
variable.

Let us now examine the choice of control parameters, the
matter at the core of this paper. In Section 3 we showed
a systematic process for identifying the optimal parameter
combination for a particular problem and we demonstrated
this across a set of ‘lightweight’ test functions. Ideally, we
would deploy a similar strategy here too, but, of course,
the computational cost of the FE analysis would render
this method entirely impractical. Using the same number
of CPUs, as in the case of the test functions, would result
in a total wall time of 520 days on this class of ‘real’
problem. We therefore propose the next best strategy: using
the conclusions drawn from the Pareto study of the test
functions to choose the control parameters of the expensive
problem. This is based on the observation that the presence
of the L-system as an intermediary level should reduce the
problem-specificity of the findings of Section 3; we put
forward the correlation analysis presented there (showing
similarity of behavior across the test set) as supporting

www.aerospacemetals.com
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Fig. 7 Reference designs using iso- and orthogrids with variable stiffener densities. The orthogrid with five stiffeners in both directions has the
highest fundamental natural frequency of ωn = 143.39 Hz

evidence. Additionally, the geometry of this problem is very
similar to that of the test cases, even if the objective function
itself is not.

Thus, we use here control parameter combination
#7 (Table 4), which we found to have the smallest

estimate of required objective function evaluations to
discover the global optimum. The estimate is based on
the average completion rate of Test Cases 1-4, and has
a confidence of 95%. In addition, we study the trade-
off between the optimized objective function value and

Fig. 8 The best design (run 4)
obtained by the map L-systems-
based topology optimization.
Subfigure a shows the optimized
map as a two-dimensional
graph, where the actual map is
drawn with continuous lines and
the mirrored side with dashed
lines. Subfigure b presents the
corresponding integrally
stiffened panel. The contours
illustrate the mode shape of its
fundamental natural frequency

(a) (b)
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Table 8 Comparison of topology optimization (TO) results with
parameter combinations #1, #7 and #12 against the reference designs,
obtained using iso- and orthogrids

Method ωn [Hz] relative difference [%] Q̄ [103]

Isogrid 136.93 −4.51 –

Orthogrid 143.39 0.0 –

TO: #1 147.51 ± 4.61 2.87 14.78

TO: #7 149.32 ± 5.27 4.14 7.18

TO: #12 146.51 ± 7.54 2.17 3.72

TO: best 159.45 11.20 9.60

ωn and Q̄ are the optimized, fundamental natural frequency and the ave-
rage number of required objective function evaluations, respectively

the number of required objective function evaluations on
the application by also running experiments with control
parameter combinations #1 and #12. These two combi-
nations represent the end points of the ‘practical’ Pareto
front. The optimization process is repeated 10 times with
each of the three combinations.

The average and standard deviation of optimized
objective function values, i.e. the fundamental natural
frequency ωn, and the average number of objective function
evaluations, Q̄, are listed in Table 8. The table also shows
the corresponding values for the reference designs, as well
as relative differences with respect to the best reference
design, i.e. the orthogrid with four stiffeners in x-direction.
All three tested parameter combinations yield on average
better designs than the orthogrid design.

Based on the results, tested parameter combinations
#1, #7 and #12 have a decreasing order of the average
number of required objective function evaluations—in
the same way as in the statistical experiment. Further,
parameter combinations #1 and #7 yield, on average, better
designs than parameter combination #12—again in the same
way as in the statistical experiment. However, parameter
combination #7 yields, on average, better designs than
parameter combination #1, which is in contrast to that
obtained from the statistical experiment. Due to the high
computational cost of the application, and resulting small
sample size, we are unable to draw here any statistically
significant conclusions. Nevertheless, the results of the
application have some similar trends to those of the
statistical experiment.

The best design (Fig. 8b), which convergence history
is shown in Fig. 9, was obtained using the parameter
combination #7. The design has 11.20% higher fundamental
natural frequency than the orthogrid design. It consists
of two radial lines of stiffener, laying at the two
perpendicular symmetry axes, and three circumferential
stages of stiffeners. While mirroring is applied with
respect to the vertical symmetry axis, the design is also
nearly-symmetric with respect to the horizontal symmetry

Fig. 9 Convergence history of optimization run 4. The best design is
discovered at the 66th generation

axis. The corresponding map L-system and its additional
variables are

Axiom: ω0=CCAC

Rules: P1 :A→[+−→
D ][+B]C[+←−

D ]A
P2 :B →[−B][+D][−D]C[−−→

D ][+−→
B ]

P3 :C →[+D]B[−D]B[−←−
C ]

P4 :D→[−−→
B ]DB[+C]CD

Additional variables: fa=0.43263
n=3

(13)

It is also worth mentioning that the second and third
lowest natural frequencies of the design are only 0.14% and
0.82%, respectively, higher than the fundamental natural
frequency. As a comparison, the corresponding values of
the orthogrid design are both 16.62% higher than the
fundamental natural frequency.

Let us review the obtained designs from the five test
cases (Figs. 2 and 3) and the application (Fig. 8). Although
the designs are significantly different from each other,
depending on their objective function, they are still obtained
using the same type of generative encoding. The used
methodology does not require a priori definitions of mesh
resolution or the type or density of the ground structure.

Despite being more concise than an equivalent direct
encoding method, the number of design variables in the
L-systems-based parameterization is still relatively large,
but well within the capabilities of a GA, as illustrated, for
example, by the success of the nearly 400-variable study
of Pedro and Kobayashi (2011).8 In this particular case

8An estimate based on the fact that their design space consists of eight
rewriting rules, which each consist of eight tokens.
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we have 126 design variables, which is a very concise
description of a vast design space: as shown in Table 3,
the number of different L-systems in the design space is of
the order of 3 · 1036, excluding any variation in the scalar
variable fa. The effectiveness of the GA is also underlined
by the fact that we were able to find global optima in four
out of five test cases, and it yielded better designs than the
conventional engineering process in the application.

5 Conclusions

The main goal of this study was to examine the effects
of genetic control parameters on the performance of the
map L-systems-based topology optimization method. A
total of 432 control parameter combinations were tested
on five test cases, with known global optima. The results
show that carefully chosen control parameter combination
can significantly increase the performance of the map L-
systems-based topology optimization. The Pareto front of
best performing parameter combinations is reported. These
parameter combinations are recommended starting points
for a designer using the map L-systems-based topology
optimization, with a numerical representation similar to the
one described by Pedro and Kobayashi (2011).

The pairwise comparisons of parameter combination
ranks in between the test cases show strong correlation (the
Spearman’s rank correlation coefficient ρ ranges from 0.645
to 0.979), which indicates that a parameter combination,
performing well on one test case, is also likely perform well
on another test case. In addition, we found strong correlation
(ρ ranges from 0.800 to 0.988) between the parameter
combination ranks obtained using different numbers of
rewriting rules on Test Case 1. The result is an indication
that the guidelines we give in this paper are applicable also
to studies with a number of rewriting rules different to what
we use here.

Finally, we demonstrated the application of these
findings to an engineering design problem, that of
an integrally stiffened aluminum panel; specifically, we
showed how to establish the appropriate computational
effort and how to select the most suitable combination of
control parameters. The best obtained design was 11.2%
better, in terms of its fundamental natural frequency, than
the baseline design obtained through conventional means.
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Appendix A: Numerical representation
of map L-systems

This appendix describes the encoding of map L-systems into
a numerical representation (suitable for genetic algorithms),
used in this work. The encoding is similar to that described
by Pedro and Kobayashi (2011). Parts of the description are
taken from reference Ikonen and Sóbester (2017).

The axiom, rewriting rules and additional variables are
encoded sequentially into a vector x of real numbers, with
xi ∈ [0, 1]∀i, as

x = [ xa,1 xa,2 . . . xa,Na
︸ ︷︷ ︸

Axiom ω0

P1 P2 . . . PNP
︸ ︷︷ ︸
Rewriting rulesPj

x1 x2 . . . xNv
︸ ︷︷ ︸
Additional variables

].

(14)

Each letter of the axiom, having a total of Na letters, is
represented as a real number xa,i . The interval of the real
number is divided into equally sized segments representing
the letters in an alphabet �. For example, if the alphabet
is � = {A, B, C}, a real number xa,i in the axiom is
assigned the following segments: A ≡ [0, 1

3 ], B ≡ [ 13 , 2
3 ],

C ≡ [ 23 , 1].
The total number of rewriting rules, NP, is equal to the

length of the alphabet. Each rewriting rule Pj is encoded
into Nr sets of real numbers, called tokens, as

Pj = [
βj,1 βj,2 . . . βj,Nr

]
. (15)

A token is a part of the right-hand side of a rewriting rule,
and may appear as a neutral letter, a marker or an empty
token. Examples of the first two instances are A and [−←−

B ],
respectively. The number of encoded tokens, Nr, defines the
maximum length of the rewriting rule. The kth token of the
j th rewriting rule is encoded into a set of five real numbers
as

βj,k = [
x1 x2 x3 x4 x5

]
, (16)

where the real numbers encode the token as follows:

1. Existence of the token: an empty token if x1 in
[0, pempty], else token is non-empty. If the token is
empty, the real numbers x2, . . . x5 are ignored.

2. Edge letter: A if x2 in [0, 1
Na

], else B if x2 in [ 1
Na

, 2
Na

],
else C if x2 in [ 2

Na
, 3

Na
], . . .

https://doi.org/10.5258/SOTON/D0431
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http://creativecommons.org/licenses/by/4.0/
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3. Marker orientation9 ‘−→’ if x3 in [0, 1
3 ], else n (neutral)

if x5 in [ 13 , 2
3 ], else ‘←−’.

4. Marker: the token is a marker if x4 in [0, pmarker], else
the token is a neutral letter.

5. Marker side: the side is ‘+’ if x5 in [0, 1
2 ], else the side

is ‘−’.

Pedro and Kobayashi (2011) define an additional, sixth,
real number to vary a specific property of the edge (e.g. the
thickness). The edge property is redundant in our test cases
and application, and therefore omitted.

Finally, Nv additional variables are encoded into the
vector x. The additional variables always contain the age
n of the system, i.e. the number of applied developmental
stages, which is an integer variable with lower and upper
limits. Each integer value in the range is assigned an equal
interval of the real number. The additional variables can be
amended by additional requirements for new cycles. These
requirements can define, for example, the minimum angle
between two edges belonging to a cycle, the minimum
fraction for the area of an offspring cycle in comparison to
the parent cycle, or the minimum fraction for the shortest
edge in comparison to the longest edge in a cycle. These
variables are scaled to the encoding interval of [0, 1].

As a summary, the design variable vector x has a total
length of

Ntotal = Na + 5NrNP + Nv. (17)
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