
Sequentially Testing Polynomial Model Hypotheses using Power

Transforms of Regressors

JIN SEO CHO

School of Economics

Yonsei University, 50 Yonsei-ro

Seodaemun-gu, Seoul, 120-749, Korea

PETER C.B. PHILLIPS

Yale University, University of Auckland

Singapore Management University &

University of Southampton

First version: May, 2013. This version: March, 2017

Abstract

We provide a methodology for testing a polynomial model hypothesis by generalizing the approach
and results of Baek, Cho, and Phillips (2015; BCP) which test for neglected nonlinearity using power
transforms of regressors against arbitrary nonlinearity. We use the BCP quasi-likelihood ratio test and
deal with the new multifold identification problem that arises under the null of the polynomial model.
The approach leads to convenient asymptotic theory for inference, has omnibus power against general
nonlinear alternatives, and allows estimation of an unknown polynomial degree in a model by way of
sequential testing, a technique that is useful in the application of sieve approximations. Simulations
show good performance in the sequential test procedure in both identifying and estimating unknown
polynomial order. The approach, which can be used empirically to test for misspecification, is applied
to a Mincer (1958, 1974) equation using data from Card (1995) and Bierens and Ginther (2001). The
results confirm that the standard Mincer log earnings equation is readily shown to be misspecified. The
applications consider different data sets and examine the impact of nonlinear effects of experience and
schooling on earnings, allowing for flexibility in the respective polynomial representations.
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1 Introduction

Polynomial models are popularly used in empirical work to address departures from linearity, as they are able

to detect and cope with unknown forms of neglected nonlinearity. Quadratic, cubic, quartic, and even higher

degree polynomial models are flexible, easy to estimate using least squares, and may be justified in terms of

sieve approximation techniques in the context of general nonparametric formulations of nonlinearity.

Nevertheless, the validity of a polynomial model is often verified in only a limited fashion. For any

pre-specified polynomial model, its given degree may be insufficient to detect nonlinearity in the data or it

may be redundantly too high. Test statistics that are available in the literature do not tell the researcher the

degree of nonlinearity to be included in the model without iterative testing when they reject the specified

polynomial model.

The present paper makes a twofold contribution. First, we provide a methodology for testing a poly-

nomial model hypothesis and detecting whether there is further neglected nonlinearity in the model. The

approach adopted extends recent work of Baek, Cho, and Phillips (2015, BCP henceforth) for testing ar-

bitrary nonlinearity using power transforms of regressors and a quasi-likelihood ratio (QLR) test implied

by this. The methodology is a convenient way of delivering an omnibus test for neglected nonlinearity

by simple augmented regression. Second, we exploit the flexible feature of power transforms by estimating

polynomial degree in a manner that assists in specifying a parsimonious polynomial model. For this purpose,

we sequentially test the polynomial model hypothesis by increasing the polynomial degree and controlling

the overall type-I error. The approach has a natural application in sieve nonparametric estimation for deter-

mining the dimension of a suitable sieve space that is typically estimated by information criteria. In fact, as

we discuss below, our methodology does relate to and complement the use of information criteria. Specif-

ically, the QLR statistic is designed to detect any information gain by marginally increasing the dimension

of the model, thereby providing a mechanism of evaluating the success of any particular specification, just

as in the use of information criteria.

Power transforms of regressors have been popular in the literature since Tukey’s (1957, 1977) suggestion

of the power transform as a mechanism to link the log linear model to the linear model. Many applications

were reported in the earlier paper BCP. In related work Phillips (2007) examined power transforms of time

trends and showed that estimating such models involves asymptotic collinearities which lead to complica-

tions in implementation and limit theory, some aspects of which are relevant in the current paper and are

revisited here.

The approach pursued here extends the linear null model framework of BCP to a more general polyno-
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mial class, develops omnibus tests for further neglected nonlinearity by examining the effect of the power

transform on prediction errors, and provides a statistical algorithm for estimating the degree of a polynomial

model by sequentially testing the polynomial model. While in principle this approach may seem straightfor-

ward, it has not been attempted in the prior literature using power transform methods mainly because of the

multiple identification problem that arises when testing the polynomial model assumption. Cho and Ishida

(2012) and BCP showed that testing the linear model assumption by the power transform method introduces

a trifold identification problem (bifold in the case of a location model). If the null model is an m-th degree

polynomial model, identification is aggravated by the fact that there are nowm+2 different ways to identify

the model, leading to what we call a multifold identification problem. To the best of our knowledge, this

multifold identification problem has never been addressed in the literature.

The goal of the present paper is to tackle this problem and provide a methodology for empirically test-

ing a null polynomial model and identifying polynomial degree by means of sequential testing. Specifically,

we consider two time-series models in parallel to BCP. The first case involves strictly stationary data and

the QLR test statistic of the null polynomial model here is shown to have a limit distribution in terms of a

functional of a Gaussian process induced by the presence of multifold identification under the null. As we

demonstrate below, the covariance kernel of this Gaussian process is dependent upon both the data gener-

ating process (DGP) and the model assumptions, so that the null limit critical values are case-dependent.

Next, we examine the polynomial time-trend stationary model. Although the QLR test statistic in this case

still converges weakly to a functional of a Gaussian process under the null, the covariance kernel is regular

in the sense that if the prediction error is a martingale difference sequence (MDS), the null limit distribution

is invariant to the conditional variance of the prediction error and to the degree of the null polynomial model.

This invariance has the convenient implication that asymptotic critical values can be tabulated by simulating

a certain exponential Gaussian process (as in Cho and White, 2010). For these two time series contexts,

we provide a sequential testing methodology that yields a consistent estimator of the polynomial degree by

iterative hypothesis testing without resorting to data snooping. The methodology relies on suitable control

of the overall test significance level to ensure a slow passage to zero as the sample size tends to infinity.

This estimation and inferential methodology has numerous applications in applied work. For example,

the classic Mincer (1958, 1974) equation predicts individual log earnings as the sum of a linear function

of schooling years and a quadratic function of years of potential experience. This equation has long been

influential in empirical studies of human capital and inevitably raises questions concerning the appropriate

choice of nonlinear model or polynomial degree in the specification. There are many other instances in

economic and financial research where polynomial models can be exploited to resolve empirical issues
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concerning uncertainty about the degree of nonlinearity in relationships suggested by theory or by empirical

work. Some of these further examples are reviewed in Section 5. In addition to these empirical examples,

there has been substantial interest in the use of sieve approximations in nonparametric econometrics, wherein

a primary task is the selection of a suitable degree for the approximating sieve space in empirical application.

The second degree polynomial model of the Mincer equation provides a natural platform to apply the

testing methodology developed in the current study, particularly given the fact that its form has been ques-

tioned by Murphy and Welch (1990) and Lemieux (2006) among others. Accordingly, we apply our method-

ology to the Mincer equation and test the empirical adequacy of its form for explaining log earnings, using

the national longitudinal survey data from Card (1995) and the current population survey data from Bierens

and Ginther (2001). Revisiting this application, we conclude that the standard Mincer equation fails to

capture nonlinearity in response to years of experience if the model is extended to include other explana-

tory variables and/or different data are used. Our tests therefore provide confirmatory analytic findings that

support Lemieux’s (2006) conclusions concerning suitable model specifications for earnings equations.

The paper is organized as follows. Section 2 derives the null limit distribution of the QLR test statistic

for the strictly stationary case. This section also examines a sequential testing algorithm for detecting

polynomial degree in practical applications. Section 3 extends the analysis to the polynomial time-trend

case. Section 4 reports simulations to assess finite sample performance and the adequacy of the sequential

testing algorithm. Section 5 provides an empirical application. Concluding remarks are given in Section

6. Proofs are contained in the online supplement to this study (Cho and Phillips, 2017). For notational

simplicity we use (dj/djx)f(0) to denote (dj/dxj)f(x)|x=0 for some function f and positive integer j.

Other notation is standard.

2 Sequential QLR Testing for Nonlinearity with Stationary Data

This section assumes stationary data and develops the QLR machinery for testing neglected nonlinearity and

sequential testing to determine polynomial degree.

2.1 Model Formulation

We suppose that the researcher specifies a model Mm to characterize the systematic component E[yt|zt]

of a scalar endogenous variable yt given a set of covariates zt := (xt(m)′, d′t)
′ := (1, xt, . . . , x

m
t , d

′
t)
′

that involve m-th degree polynomial components of some process xt. The model is formulated asMm :=

{E[yt|zt] = µt(·) : Ω 7→ R with µt(α, η, β, γ) := xt(m)′α + d′tη + βxγt }, in which the power transform
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component xγt is introduced to allow for possible additional nonlinearity in E[yt|zt] beyond conventional

polynomial effects. It is this mechanism that enables an omnibus test of specification to be developed.

The variables (yt, xt, d
′
t)
′ ∈ R2+k (k ∈ N) are assumed to be strictly stationary and ergodic, xt is strictly

nonnegative with probability 1, and the parameter space for ω := (α′, η′, β, γ)′ := (α0, . . . , αm, η
′, β, γ)′

is Ω ⊂ R3+m+k. It is further assumed that the signal matrix Z ′Z =
∑n

t=1 ztz
′
t is nonsingular, where

Z = [z1, ..., zn]′ is the observation matrix and n is the sample size. This model extends the framework

of BCP where it is assumed that the base model is linear and m = 1. The model Mm is motivated by

the concern that an m-th degree polynomial model may not be flexible enough to detect any remaining

nonlinearity in E[yt|zt]. This model is formulated to facilitate testing the following hypothesis:

H0,m : ∃(α′∗, η′∗)′, E[yt|xt, dt] = xt(m)′α∗ + d′tη∗ with probability 1,

so that them-th degree polynomial model becomes the null model whereasMm is treated as the alternative.

Many irregular issues of identification are entailed by transition fromMm to the null model. In partic-

ular, the null model can be separately generated fromMm by imposing a number of restrictions, each of

which bears its own model identification signature (c.f., Davies, 1977, 1987). Thus, if the parameter space

of γ, denoted by Γ, contains the elements {0, 1, . . . ,m}, there are (m+ 2) different ways to obtain the null

model from Mm. First, for each c = 0, 1, . . . ,m, if γ∗ = c, the coefficient of xct becomes (αc∗ + β∗),

thereby leading to the null model. Nevertheless, αc∗ and β∗ are not separately identified although their sum

is identified. Second, the null model is obtained by letting β∗ = 0, but γ∗ is itself not identified, leading to

a further identification problem. As a result, there are (m+ 2) different ways to obtain the null model from

Mm, and, accordingly, (m+ 2) different identification problems. We may separately state these in terms of

the explicit sub-hypotheses:

H(1)
0,m : γ∗ = 0; . . . H(m+1)

0,m : γ∗ = m; and H(m+2)
0,m : β∗ = 0.

The union of the parameter spaces under the sub-hypotheses must be the null parameter space underH0,m.

In the following subsections, we examine the limit distribution of the QLR test statistic defined as

QLRn := n(1 − σ̂2
n,A/σ̂

2
n,0) under each null hypothesis as in BCP. Here, σ̂2

n,A and σ̂2
n,0 are the means

of the squared residuals obtained respectively from the model Mm and the null model hypothesis. The

quasi-likelihood (QL) function is Ln(α, η, β, γ) := −
∑n

t=1(yt− xt(m)′α− d′tη− βx
γ
t )2, so that σ̂2

n,A :=

−n−1 maxα,η,β,γ Ln(α, η, β, γ) and σ̂2
n,0 := −n−1 maxα,η,β,γ Ln(α, η, 0, γ), where γ in the latter is simply

a placeholder whose value is irrelevant under the null.
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The null limit distribution of the QLR test statistic is different under each sub-hypothesis. Therefore,

the limit distribution of QLRn under H0,m has to be obtained by relating it to the limit distribution of the

QLRn under each hypothesis. For this purpose, we clarify our notation. For each c = 0, 1, . . . ,m, we let

QLR
(γ=c)
n be the QLR test statistic obtained by imposing H(c+1)

0,m . Likewise, we let QLR(β=0)
n be the QLR

test statistic obtained by imposeH(m+2)
0,m . Given the definition of the QLR test statistic, it has to follow that

QLRn = max[QLR(γ=0)
n , QLR(γ=1)

n , . . . , QLR(γ=m)
n , QLR(β=0)

n ], (1)

where max[·] is used to accommodate maximization across the component sub-hypotheses of the null pa-

rameter space H0,m. We examine the limit distribution of each QLR test statistic under each hypothesis

in Sections 2.2 and 2.3 and their relationship in Section 2.4 so that the null limit distribution required for

significance testing can be obtained.

The following conditions are assumed throughout this section to fix ideas and develop an asymptotic

theory of inference, and they also generalize those in BCP.

Assumption 1. (i) (yt, xt, d
′
t)
′ ∈ R2+k (k ∈ N) is a strictly stationary and absolutely regular process with

mixing coefficients β` such that for some r > 1,
∑∞

`=1 `
1/(r−1)β` <∞, E[|yt|] <∞, and xt is nonnegative

with probability 1; (ii) The model for E[yt|xt, dt] is specified asMm := {µt(·) : Ω 7→ R : µt(α, η, β, γ) :=

xt(m)′α + d′tη + βxγt }, where Ω is the parameter space of ω := (α′, η′, β, γ)′, zt := ( xt(m)′, d′t)
′, and

n is the sample size; (iii) Ω = (
∏m
i=0 Āi) × H × B̄ × Γ such that H , B̄, and Γ are convex and compact

parameter spaces in Rk, R, and R, respectively, with 0, 1, · · · ,m being interior elements of Γ, and for

i = 0, 1, · · · ,m, Āi is also a convex and compact parameter space in R; and (iv) Z ′Z =
∑n

t=1 ztz
′
t is

nonsingular with probability 1. �

Assumption 2. (i) For each ε > 0, A(γ) := E[Gt(γ)Gt(γ)′] and B(γ) := E[u2
tGt(γ)Gt(γ)′] are positive

definite uniformly on Γ(ε) := {γ ∈ Γ : γ /∈ ∪mi=0(i−ε, i+ε)}, whereGt(γ) := [z′t, log(xt)xt(m)′, xγt ]′, and

ut := yt−E[yt|zt]; (ii) {ut,Ft} is an MDS, whereFt is the smallest σ-field generated by {zt+1, ut, zt, ut−1,

· · · }; (iii) There is a strictly stationary and ergodic sequence {mt, st} such that for i = 1, 2, · · · , k, |dt,i| ≤

mt, E[m4ρ
t ] <∞, E[s8

t ] <∞, where dt,i is the i-th row element of dt, and (iii.a) |ut| ≤ mt, |xmt | ≤ st, and

| log(xt)| ≤ st; (iii.b) |xmt | ≤ mt, |ut| ≤ st, and | log(xt)| ≤ st; or (iii.c) | log(xt)| ≤ mt, |ut| ≤ st, and

|xmt | ≤ st; (iv) supγ∈Γ |x
γ
t | ≤ mt and supγ∈Γ |x

γ
t log(xt)| ≤ mt; and (v) r = ρ. �

Here,
∑n

t=1 utGt(·) stands for the score component that determines the limit distribution of the QLR test

statistic underH(m+2)
0,m as we discuss in Section 2.3. In the above notation, it would be more precise to write
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zt as zt(m),which accords more closely to the definition zt := (xt(m)′, d′t)
′ in terms of xt(m).However, we

suppress the dependence for simplicity, and it will be implicit in what follows until we examine sequential

testing. The majorization and moment conditions given in Assumption 2(iii) are alternates and do not imply

one another.

2.2 Limit Distribution of the QLR Test Statistic underH(c+1)
0,m : γ∗ = c with c = 0, 1, . . . ,m

We first examine the limit behavior of the QLR test statistic under H(c+1)
0,m : γ∗ = c, where c = 0, 1, . . . ,m.

Due to the recursive structure of the polynomial model, it turns out that there is a systematic relationship

between the null limit approximations for different values of c.

UnderH(c+1)
0,m we have E[yt|xt, dt] =

∑m
i=0, i 6=c αi∗x

i
t + (αc∗ + β∗)x

c
t + d′tη∗, and then neither αc∗ nor

β∗ is separately identified without imposing some additional condition, although (αc∗ + β∗) is an identified

composite coefficient. Thus, imposing every possible additional condition for the model identification we

examine how the resulting null limit distributions are associated with each other.

Our analysis is conducted in three steps. First, we let β be unidentified and fix its value so that αc∗ is

identified. Through this identification scheme (conditional on the fixed value β), we obtain the null limit

distribution for that fixed value β. Similarly, we select another value of β and iterate the same steps, exam-

ining how the separately obtained null limit distributions are associated with each other. By this process,

we can characterize the null limit distribution of the QLR test statistic when β is fixed. Second, we modify

the identification scheme by fixing the value αc so that β∗ is identified. By iterating steps analogous to the

β-fixed case, we can characterize the null limit distribution. Finally, we examine how the two characterized

null limit distributions are associated with each other, as obtained in the first two sequence of steps, which

leads us to derive the limit distribution under H0,m. The schema is described in full in what follows. Al-

though our analysis is parallel to the development in BCP, it generalizes the BCP approach as they do not

consider cases with m > 1.

2.2.1 When β∗ is Not Identified

We first fix β and approximate the constrained quasi-likelihood (CQL) with respect to the other identified

parameters (α′∗, η
′
∗)
′. Let the following be the CQL function: Ln(γ;β) := Ln(α̂n(γ;β), η̂n(γ;β), β, γ),

where (α̂n(γ;β), η̂n(γ;β)′)′ := arg maxα,η Ln(α, β, γ, η). Upon calculation the CQL is given by the

explicit formula Ln(γ;β) = −{Y − βX(γ)}M{Y − βX(γ)}, where M := In − Z(Z ′Z)−1Z ′, and

X(γ) := (xγ1 . . . x
γ
n)′. Note that MY = MU under H0,m, where U := (u1, u2, . . . , un)′. For notational

simplicity, define Ac := [xc1 log(x1), . . . , xcn log(xn)]′, Bc := [xc1 log2(x1), . . . , xcn log2(xn)]′, and apply a
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second-order Taylor expansion to obtain

sup
γ
{Ln(γ;β)− Ln(c;β)} =

{βA′cMU}2

β2A′cMAc − βB′cMU
+ oP(1) =

{A′cMU}2

A′cMAc
+ oP(1),

using the fact that B′cMU = oP(n) under Assumptions 1 and 2. This result follows mainly from the simple

form of the derivatives L(1)
n (c;β) := (d/dγ)Ln(c;β) = 2βA′cMU and L(2)

n (c;β) := (d2/dγ2)Ln(c;β) =

2βB′cMU − 2β2A′cMAc. We thus obtain

QLR(γ=c;β)
n := sup

β
sup
γ
n

{
1− Ln(γ;β)

Ln(c;β)

}
=

1

σ̂2
n,0

{A′cMU}2

{A′cMAc}
+ oP(1). (2)

This representation implies that the optimization process with respect to β in (2) is asymptotically innocuous

in obtaining the null limit distribution. In (2), the notation QLR(γ=c;β)
n is used to denote the QLR test

statistic that testsH(c+1)
0,m : γ∗ = c by fixing β first and subsequently maximizing with respect to γ and β.

2.2.2 When αc∗ is Not Identified

We next fix αc first and use the notation α−c to signify the vector α with all elements except αc. If αc is

fixed, the other parameters (α′−c∗, β∗, η
′
∗)
′ := (α0∗, α1∗, . . . , α(c−1)∗, α(c+1)∗, . . . , αm∗, β∗, η

′
∗)
′ are identi-

fied under the null. Therefore, we first optimize the QL function with respect to (α′−c, β, η
′)′ in the first stage

and then maximize the QL function with respect to γ and finally with respect to αc. For this purpose, we

let Ln(γ;αc) := maxα−c,β,η Ln(α, β, γ, η) and approximate this CQL by a second-order Taylor expansion

with respect to γ at c. The null limit behaviors of the first-two derivatives are given in the following result.

Lemma 1. Given Assumptions 1, 2, and H(c+1)
0,m , for each c = 0, 1, . . . ,m, we have: (i) L(1)

n (c;αc) =

2(αc∗ − αc)A′cMU + oP(
√
n); and (ii) L(2)

n (c;αc) = −2(αc∗ − αc)2A′cMAc + oP(n). �

Proofs are given in the online supplement. Lemma 1 and a second-order Taylor expansion lead to the

following representation of the statistic

QLR(γ=c;αc)
n := sup

αc

sup
γ
n

{
1− Ln(γ;αc)

Ln(c;αc)

}
=

1

σ̂2
n,0

{A′cMU}2

{A′cMAc}
+ oP(1). (3)

Here, QLR(γ=c;αc)
n is used to denote the QLR test statistic that tests H(c+1)

0,m : γ∗ = c by fixing αc first and

subsequently maximizing with respect to γ and αc.

Some remarks are warranted. First, although αc is treated as an unidentified nuisance parameter, it

asymptotically cancels out in the ratio limit, just as in the β-fixed case. Thus, the final optimization process
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in (3) with respect to αc does not affect the null limit distribution. Second, the null approximation given on

the right side of (3) is asymptotically identical to the right side of (2), implying that the limit approximation

underH(c+1)
0,m is identical irrespective of whether β or αc is optimized in the final stage. This property leads

directly to the following lemma.

Lemma 2. Given Assumptions 1 and 2, QLR(γ=c)
n = {A′cMU}2/{σ̂2

n,0(A′cMAc)}+oP(1) underH(c+1)
0,m :

γ∗ = c, where c = 0, 1, . . . ,m. �

Here, QLR(γ=c)
n denotes the QLR test statistic that tests H(c+1)

0,m : γ∗ = c. BCP obtained this result for the

special case m = 1. Third, for a different index (say, c′) the limit approximation under H(c′+1)
0,m is obtained

by simply replacing Ac in Lemma 2 with Ac′ := [xc
′

1 log(x1), . . . , xc
′
n log(xn)]′. This simple regular pattern

is produced because of the recursive structure of the polynomial model. Fourth, the derivation of Lemma

2 is virtually an immediate consequence of a second-order Taylor expansion, and this is a very convenient

feature of the power transform in comparison with other approaches, as we now explain.

Cho, Ishida, and White (2011, 2014) and White and Cho (2012) examined testing linear model hy-

potheses by adding an analytic function to the linear model following the framework of Bierens (1990)

and Stinchcombe and White (1998). They showed that higher-order Taylor expansions are necessary in

deriving the null limit distribution of the QLR test statistic. If the so-called no-zero condition holds for

the analytic function, a fourth-order Taylor expansion is needed; and if the no-zero condition does not hold,

sixth-, eighth-, or even higher-order Taylor expansions are needed, depending on the property of the analytic

function in use. This consequence is further aggravated if a polynomial model is the null model. Then, a

further higher-order Taylor expansion is needed even when the no-zero condition holds, depending on the

polynomial degree under the null model condition. In contrast, the power transform approach simplifies the

model approximation because at most a second-order Taylor expansion is needed. This feature explains the

advantage of using the power transform in detecting further neglected nonlinearity.

2.3 Limit Distribution of the QLR Test Statistic underH(m+2)
0,m : β∗ = 0

We consider the limit behavior of the QLR test statistic under H(m+2)
0,m , where γ∗ is not identified. For

notational simplicity, we let the CQL function be denoted by Ln(β; γ) := Ln(α̂n(β; γ), η̂n(β; γ), β, γ),

where (α̂n(β; γ), η̂n(β; γ)′)′ := arg maxα,η Ln(α, η, β, γ). The CQL has the following specific form:

Ln(β; γ) = −{Y − βX(γ)}′M{Y − βX(γ)}, leading to the following limit approximation:

QLR(β=0)
n := sup

γ
sup
β
n

{
1− Ln(β; γ)

Ln(0; γ)

}
= sup

γ

1

σ̂2
n,0

{X(γ)′MU}2

X(γ)′MX(γ)
. (4)
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Here, QLR(β=0)
n is used to denote the QLR test statistic that tests the hypothesisH(m+2)

0,m .

Some remarks are in order to highlight this approximation. Note that the approximation in (4) has the

same form as that in BCP. Therefore, we can apply the functional central limit theorem (FCLT) and the uni-

form law of large numbers (ULLN) to n−1/2X(·)′MU and n−1σ̂2
n,0X(·)′MX(·), respectively, as in BCP.

Nevertheless, we further note that for c = 0, 1, . . . ,m, plimγ→cX(γ)′MX(γ) = 0 and plimγ→cX(γ)′MU

= 0 because limγ→cX(γ) = [xc1, x
c
2, . . . , x

c
n]′ and M is the idempotent matrix formed from the regressor

zt := ( xt(m)′, d′t)
′. As these limits are those of the numerator and denominator constituting (4), the prob-

ability limit of the ratio in the right side of (4) is indeterminate as γ approaches c. Applying a higher-order

l’Hôpital rule, we obtain the following for c = 0, 1, . . . ,m,

plim
γ→c

1

σ̂2
n,0

{X(γ)′MU}2

X(γ)′MX(γ)
=

1

σ̂2
n,0

{A′cMU}2

A′cMAc
. (5)

Some regularity conditions are needed to justify the limit behavior of this ratio as n→∞. We first need

conditions for applying the central limit theorem (CLT) and FCLT to n−1/2[A′0MU,A′1MU, . . . , A′mMU ]′

and n−1/2X(·)′MU , respectively. In addition, a law of large numbers (LLN) and ULLN need to be applied

to n−1[A′0MA0, A
′
1MA1, . . . , A

′
mMAm]′ and n−1X(·)′MX(·), respectively. The conditions in Assump-

tions 1 and 2 are sufficient for this. It also follows from these that n−1/2
∑
utGt(·) and n−1

∑
Gt(·) Gt(·)′

obey the FCLT and ULLN, respectively because each component of Gt(·) := [z′t, log(xt)xt(m)′, x
(·)
t ]′ con-

stitutes n−1/2[X(·)′MU,A′0MU, . . . , A′mMU ]′ and n−1[X(·)′MX(·), A′0MA0, . . . , A
′
mMAm]. Note, for

example, that n−1[X(·)′MX(·), A′0MA0, . . . , A
′
mMAm] is the covariance matrix estimator of the predic-

tion error obtained by projecting [log(xt)xt(m)′, x
(·)
t ]′ on zt. As a result, the null limit of the QLR test

statistic is a functional of these components, as shown in the following lemma.

Lemma 3. Given Assumptions 1, 2, andH(m+2)
0,m , (i)QLR(β=0)

n = supγ∈Γ {X(γ)′MU}2 /{σ̂2
n,0X(γ)′MX

(γ)}; and (ii) QLR(β=0)
n ⇒ supγ∈ΓZ(γ)2 as n → ∞, where Z(·) is a mean-zero Gaussian process

whose covariance kernel for each γ, γ′ ∈ Γ is E[Z(γ)Z(γ′)] = E[G(γ)G(γ′)]/{σ2(γ, γ)σ2(γ′, γ′)}1/2,

with σ2(γ, γ′) := σ2
∗(E[x2γ

t ] − E[xγt z
′
t]E[ztz

′
t]
−1E[ztx

γ′

t ]), and G(·) is a mean-zero Gaussian process

with covariance kernel for each γ, γ′ ∈ Γ, E[G(γ)G(γ′)] = E[u2
tx
γ+γ′

t ] − E[u2
tx
γ
t z
′
t]E[ztz

′
t]
−1E[ztx

γ′

t ] −

E[u2
tx
γ′

t z
′
t]E[ztz

′
t]
−1E[ztx

γ
t ] + E[xγt z

′
t]E[ztz

′
t]
−1E[u2

t ztz
′
t]E[ztz

′
t]
−1E[ztx

γ′

t ]. �

Note that G(·) is the weak limit of n−1/2X(·)′MU , and that E[G(γ)G(γ′)] simplifies to σ2(γ, γ′) if ut is

conditionally homoskedastic on zt. Given Lemma 2, the limit result in Lemma 3(ii) is identical in form to

that of theorem 1 in BCP, and the null limit behavior of the QLR test statistic is obtained in the same way as

for the linear model case. The proof of Lemma 3 is also almost identical to that of theorem 1 in BCP, and is

9



therefore omitted.

An additional feature of interest is worth highlighting. The associated score function in the QLR test

statistic is discontinuous at c, where c = 0, 1, . . . ,m although it is smooth elsewhere in Γ. Define zn(·) :=

{σ̂2
n,0X(·)′MX(·)}−1/2{X(·)′MU},which is the sample analog ofZ(·). For each c = 0, 1, . . . ,m, it is not

hard to show that plimγ↑czn(γ) = −plimγ↓czn(γ). This discontinuity applies also to the weak limit Z(·),

generalizing the observation in BCP for the case where m = 1. However, it follows that plimγ↑cZ(γ)2 =

plimγ↓cZ(γ)2. Therefore, if we let Z(c)2 be defined as plimγ→cZ(γ)2, Z(·)2 is continuous at each c. On

the other hand, zn(·) is twice continuously differentiable elsewhere in Γ, a consequence of the fact that the

power transform is infinitely smooth for all γ ≥ 0 and positive x > 0, which in turn implies second-order

differentiability of the covariance kernel of Z(·) over the same region of Γ. Thus, Z(·)2 is continuous on Γ

almost surely, and supγ∈ΓZ(γ)2 is well defined from the fact that Γ is a compact set.

2.4 Limit Distribution of the QLR Test Statistic underH0,m

We now examine the relationships among the limit approximations obtained under each hypothesis to obtain

the null limit approximation of the QLR test statistic underH0,m.

By definition of the QLR test statistic and the equality in (1), the null limit approximation has to be

obtained as the maximum of all null approximations, and the null approximation derived under H(m+2)
0,m

dominates the other null approximants. The null approximation in (2) is identical to the right side of (5),

implying that

sup
γ∈Γ

1

σ̂2
n,0

{X(γ)′MU}2

{X(γ)′MX(γ)}
≥ max

c=0,1,...,m

1

σ̂2
n,0

{A′cMU}2

{A′cMAc}
+ oP(1).

This fact implies that for every c, QLR(β=0)
n dominates QLR(γ=c)

n under H0,m, leading to the following

result.

Theorem 1. Given Assumptions 1 and 2, QLRn ⇒ supγ∈ΓZ(γ)2 underH0,m. �

Note that the covariance kernel of Z(·) in Lemma 3 depends on the joint distribution of (ut, zt), and so a

different kernel is derived for each different model and/or conditional variance condition of ut. Even when

ut exhibits conditional homoskedasticity on zt, the kernel form is still dependent upon the distribution of zt.

This implies that the QLR test statistic is not a distribution-free test statistic. Accordingly, different models

yield different asymptotic critical values although they are specified in terms of the same data. As BCP show

by simulation, Hansen’s (1996) weighted bootstrap is useful for obtaining the asymptotic critical values in

this case.
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One of the referees suggested extending the procedure to a Wald-type test using a heteroskedasticity-

consistent covariance matrix. However, direct use of this approach does not produce a test of H0,m due

to the multifold identification problem. In particular, given Theorem 1, one might consider a Wald test

using the statistic β̂n(γ) := arg maxβ Ln(β; γ). However, for c = 0, 1, . . . ,m, β̂n(c) is not defined due to

multicollinearity, leading to a failure in constructing a well defined Wald statistic.

2.5 Sequentially Testing the Polynomial Model

We examine a sequential testing procedure in which we allow the polynomial degree m to increase and

apply a sequence of tests until the null is no longer rejected. This procedure provides a natural mechanism

for estimating the degree of a polynomial model at some given level of significance α. Modifying earlier

notation to accommodate sequential testing, we signal polynomial model degree in the QLR test statistic

by indexing the degree, so that QLR(m)
n denotes the QLR test statistic computed using a polynomial null

model of m-th degree. This modification avoids confusion when computing multiple QLR test statistics.

The testing procedure requires that a maximum degree polynomial model be specified in advance. Ac-

cordingly, we define Pd(m̄) := {1, 2, . . . , m̄} to be a subset of Γ such that each element of Pd(m̄) is an

interior element of Γ and m̄ is the upper limit polynomial degree envisaged for implementation. Sequential

testing then proceeds as follows:

• Step 1: Compute QLR(1)
n usingM1 such that Γ contains Pd(m̄) as its subset. If QLR(1)

n is less than

the critical value given by Theorem 1 and significance level α, let m̂n = 1; otherwise, move to the

next step, where m̂n denotes the estimate of the unknown polynomial degree.

• Step 2: Iterate the above steps for j = 2, 3, . . . , m̄ usingMj with the same Γ until QLR(j)
n is greater

than the asymptotic critical value in Theorem 1 and the same significance level α. We let m̂n be the

smallest polynomial degree such that the QLR test statistic does not reject the null hypothesis.

• Step 3: If for j = 1, 2, . . . , m̄, QLR(j)
n exceeds the asymptotic critical values in Theorem 1 and the

same significance level α, we conclude that an m̄-th degree polynomial model is unable to capture

the nonlinearity of E[yt|xt, dt] with respect to xt.

Several remarks are in order concerning this sequential procedure. First, testing multiple hypotheses

using multiple test statistics requires caution to avoid data-snooping problems. Thus, when a lower degree

polynomial model is not rejected, the lower degree polynomial model should be selected, which enables

estimation of a parsimonious model and avoids errors involved in testing both lower and higher degree
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polynomial models. Type-II errors become negligible for large n under test consistency and type-I error

control is primarily important, especially when both lower and higher degree polynomial models are rejected

by the above testing procedure. We discuss below how to control these errors in practice.

Second, as shown earlier, the QLR test statistic is not distribution free, so that for different j =

1, 2, . . . , m̄, different asymptotic critical values apply. Use of Hansen’s (1996) weighted bootstrap can pro-

vide consistent asymptotic critical values in this case. In Section 5, we apply this procedure in our empirical

work.

Third, to elaborate on the details, we can let Γ contain Pd(m̄), but choose another parameter space for

each j, say Γj . In particular, modelMj can be specified using different Γj such that Pd(j) is a subset of

Γj and each element of Pd(j) is an interior element of Γj . For each Γj , different asymptotic critical values

have again to be used. Finally, using Theorems 1 and the asymptotic power of the test, we are able to obtain

the following result on size control in model selection.

Corollary 1. If for each m ∈ Pd(m̄), Assumptions 1 and 2 hold and m∗ ∈ Pd(m̄), where m∗ := inf{m ∈

N : ∃ (α, η),E[yt|xt, dt] = xt(m)′α+ d′tη}, for any ε > 0 and α, limn→∞ P(|m̂n −m∗| > ε) = α. �

Thus, for a given significance level α, the estimated polynomial degree is equal to the unknown polynomial

degree with probability (1 − α)% at the limit. Here, the unknown polynomial degree m∗ is defined as

the most parsimonious polynomial model out of the correctly specified polynomial models. Corollary 1

implies that data-snooping problems are avoided by the above test procedure, but there is a type-I error: the

estimated m̂n has the limiting (size controlled) probability α that m̂n differs from m∗.

There is the opportunity for consistent estimation by m̂n if we control size to depend on n so that

α = αn → 0 slowly as n→∞. The following theorem provides conditions for such consistent estimation

of m∗.

Theorem 2. Under the same conditions as Corollary 1, if (i) there is a Gaussian process BS(·) such that

for all γ, γ′ ∈ Γ, for some δ, cov(BS(γ),BS(γ′)) = 1 − |γ − γ′|δ (1 + o(1)) and cov(BS(γ),BS(γ′)) ≤

cov(Z0(γ),Z0(γ′)), where for each γ,Z0(γ) := Z(γ)/σ0(γ) and σ0(γ) := var[Z(γ)]1/2, (ii) limn→∞αn

= 0, and (iii) limn→∞ log(αn)/n = 0, then for any ε > 0, limn→∞ P (|m̂n −m∗| > ε) = 0. �

By Theorem 2, m̂n consistently estimatesm∗. Although the null limit distribution here depends on a stochas-

tic process, we can still obtain the same result as Hosoya (1989) under the conditions given by Theorem 2.

These conditions are used to apply a suitable approximation of the distribution of the Gaussian extremum

(c.f., Piterbarg, 1996). Details are provided in the online supplement. To explain in brief here, by com-

paring the covariance kernel of Z0(·) in Theorem 1 with that of a certain stationary Gaussian process,
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Bs(·), we establish that the critical value c′n for which P(supγ∈ΓZ0(γ)2 ≥ c′n) = αn is bounded from

above by the Slepian inequality. This critical value can be compared with another critical value cn such

that P(supγ∈ΓZ(γ)2 ≥ cn) = αn and we show that the upper bound for c′n is also a upper bound for cn.

Theorem 2 is proved by associating the upper bound of cn with the conditions for αn in Theorem 2 in a

manner that if − log(αn)/n→ 0 and αn → 0, then cn/n→ 0 and cn →∞. These results are sufficient to

ensure the consistency result that limn→∞ P(m̂n > m∗) = 0 and limn→∞ P(m̂n < m∗) = 0.

The polynomial degree estimation given by the sequential testing methodology is related to order estima-

tion by information criteria. Akaike’s (1973, 1974) information criterion (AIC) and the Bayesian informa-

tion criterion (BIC) are popular methods in practical work and there is a relationship between our approach

and these methods. Heuristically, the QLR statistic tests for a decreasing form of information criterion as a

function of polynomial degree when m∗ /∈ Pd(m̄). From example, if we let BICn,j be the BIC level from

the j-th degree polynomial model, it follows that BICn,j+1 − BICn,j = log(σ̂2
n,j+1/σ̂

2
n,j) + log(n)/n,

where σ̂2
n,j is the mean of the squared residuals from the j-th degree polynomial model. If we further

suppose that m∗ /∈ Pd(m̄), it is desired that for every j, BICn,j+1 − BICn,j < 0 almost surely, so that

it can be used successfully as a test basis. Note that it is necessary for this negative difference that for

every j, limn→∞ P
(
(1− σ̂2

n,j+1/σ̂
2
n,j) > log(n)/n

)
= 1 by noting that (1 − σ̂2

n,j+1/σ̂
2
n,j) is the domi-

nant component of log(σ̂2
n,j+1/σ̂

2
n,j). Nevertheless, if BICn,j is weakly decreasing with respect to j, this

property does not necessarily hold even when m∗ /∈ Pd(m̄) because for some j the almost sure limit of

σ̂2
n,j+1/σ̂

2
n,j can be unity. Our sequential testing methodology usefully complements this feature of BIC by

noting thatQLR(j:j+1)
n := n(1− σ̂2

n,j+1/σ̂
2
n,j) is another form of QLR statistic; by usingQLR(j)

n instead of

QLR
(j:j+1)
n omnibus power can be achieved and, for every j, limn→∞ P(n−1QLR

(j)
n > log(n)/n) = 1 if

m∗ /∈ Pd(m̄), as indeed is desired in terms of strictly decreasing BIC values with respect to j. This omnibus

power is a marginal benefit of our approach that is obtained at a marginal cost requiring the use of critical

values that are obtained in a nonstandard way as in Theorem 1. Similar interpretations also apply for other

information criteria. In Section 4, we conduct simulations and compare the performances of the sequential

testing procedure and the information criteria by supposing that m∗ ≤ m̄.

3 Sequential QLR Testing for Time-Trend Stationary Data

3.1 DGP and the m-th Degree Polynomial Time-Trend Model

We now extend the analysis to include a polynomial time-trend stationary process. The focus is on testing for

further neglected nonlinearity in trend when an m-th degree polynomial time-trend model is specified. Our
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alternative model for E[yt|dt] is specified asM′m := {µt(·) : Ωn 7→ R : µt(αn, η, βn, γ) := st(m)′αn +

d′tη + βns
γ
n,t}, where dt ∈ Rk (k ∈ N) is a strictly stationary and ergodic process, yt is a polynomial

time-trend stationary process, and st(m) := [1, sn,t, s
2
n,t, . . . , s

m
n,t]
′, where for t = 1, 2, . . . , n, sn,t := t/n

is a (normalized) linear time trend. As before, the hypothesis of interest is

H̃0 : ∃(α′∗, η′∗)′, E[yt|dt] = st(m)′αn,∗ + d′tη∗ with probability 1.

The modelM′m is a reparameterized version of the following polynomial time-trend stationary model:

M′′m := {µt(·) : Ω 7→ R : µt(α, η, β, γ) := t(m)′α + d′tη + βtγ}, where t(m) := [1, t, t2, . . . , tm]′. The

parameters in M′m are related to those in M′′m through the identities αn ≡ diag[1, n, n2, . . . , nm]α and

βn ≡ βnγ . Thus, estimating the parameters in M′′m by least squares is easily converted to least squares

usingM′m, and vice versa. This equivalence implies that the QLR test statistic value obtained fromM′m is

identical to that obtained fromM′′m.

The null limit distribution has to be deduced fromM′m, although the two models yield the same level of

the QLR test statistic. The null limit distribution cannot be easily obtained fromM′′m due to the singularity

problem involved in the limit theory (see Phillips, 2007 and BCP).

3.2 Asymptotic Null Distribution of the QLR Test Statistic

We assume the following conditions which generalize those used in BCP.

Assumption 3. (i) The time series {dt} is stationary φ-mixing with mixing decay rate −`/2(` − 1) with

` ≥ 2 or α-mixing with mixing decay rate −`/(`− 2) with ` > 2, and yt is a time-trend stationary process;

(ii) The model for E[yt|dt] is specified as M′m := {µt(·) : Ωn 7→ R : µt(αn, η, βn, γ) := st(m)′αn +

d′tη + βns
γ
n,t}, where Ωn is the parameter space of ωn := (α′n, η

′, βn, γ)′, and n is the sample size; (iii)

Ωn = (
∏m
i=0 Āi,n) × H × B̄n × Γ such that H and Γ are convex and compact parameter spaces in Rk

and R, respectively, with 0, 1, · · · ,m being interior elements of Γ with inf Γ > −1/2; for i = 0, 1, · · · ,m

and for each n, Āi,n and B̄ are also convex and compact spaces in R; and (iv) Z ′Z =
∑n

t=1 zn,tz
′
n,t is

nonsingular with probability 1, where zn,t := (st(m)′, d′t)
′. �

Further conditions are needed to obtain regular null limit behavior of the QLR test statistic. Before

imposing them, we introduce the following symmetric matrices to aid notation. For each γ, let Ã(γ) be the

almost sure limit of n−1
∑
G̃t(γ)G̃t(γ)′, where G̃t(γ) := [ st(m)′, d′t, log(sn,t)st(m)′, sγn,t]

′, which exists

under mild moment conditions that are assured by Assumption 4 below. We next define B̃(γ, γ′) to be
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the almost sure limit of n−1
∑
u2
t G̃t(γ)G̃t(γ

′)′, where ut := yt − E[yt|dt], which again exists under mild

moment and other regularity conditions that are assured by the following assumption.

Assumption 4. (i) For each ε > 0, Ã(·) and B̃(·, ·) are positive definite uniformly on Γ(ε); (ii) {ut,Ft}

is an MDS, where Ft is the adapted smallest σ-field generated by {dt+1, ut, dt, ut−1, · · · }; (iii) There is a

strictly stationary and ergodic sequence {mt} such that for i = 1, 2, · · · , k, |dt,i| ≤ mt, |ut| ≤ mt, and for

some r > 1, E[m4r
t ] <∞, where dt,i is the i-th row element of dt. �

Several remarks are warranted on these conditions. First, Assumption 4 matches assumption 7 of BCP

except that Ã(·) and B̃(·, ·) in Assumption 4(i) are constructed for an arbitrary polynomial degree m rather

than m = 1. Second, some of the components in Ã(·) and B̃(·, ·) can be explicitly derived because the

covariates other than dt are nonrandom. This aspect conversely implies that Ã(·) is positive definite uni-

formly on Γ(ε) if and only if the covariance matrix of dt is positive definite, although m is unspecified.

We separately show this property in the online supplement along with the forms of Ã(·) and B̃(·, ·). Third,

Assumptions 3 and 4 imply that the regressors are now bounded processes in probability, so that the null

limit distribution of the QLR test statistic can be analyzed similarly to that of Section 2.

The main result of this section is contained in the following theorem.

Theorem 3. Given Assumptions 3, 4, and H̃0, QLRn ⇒ supγ∈Γ Z̃(γ)2, where Z̃(·) is a Gaussian process

with covariance kernel for each γ and γ′ ∈ Γ given by E[Z̃(γ)Z̃(γ′)] = cm(γ, γ′)(1 + 2γ)1/2(1 + 2γ′)1/2

(1 + γ + γ′)−1 with cm(γ, γ′) :=
∏m
i=0(γ − i)(γ′ − i)/|

∏m
i=0(γ − i)(γ′ − i)|. �

The proof of Theorem 3 can proceed along the following lines: the QLR test statistic under H̃0 is identical

to that obtained under the hypothesis that β∗ = 0 whose null limit distribution is obtained as supγ∈Γ Z̃(γ)2

as in Section 2. Furthermore, the covariance kernel of Z̃(·) is also derived from the sample analog of

Z̃(·) denoted as z̃n(·) := {σ̂2
n,0S(·)′MS(·)}−1/2{S(·)′M U}, where S(γ) := [sγn,1, s

γ
n,2, . . . , s

γ
n,n]′, M :=

In − Z(Z ′Z)−1Z ′, and U := [u1, u2, . . . , un]′. As the weak limit process is derived in the same way as

Theorem 1, we focus on deriving the covariance kernel of Z̃(·) in the proof: if we let G̃(·) and σ̃2(·, ·) be

the weak limit of n−1/2S(·)′MU and the almost sure limit of n−1σ̂2
n,0S(·)′MS(·), respectively, it follows

that for each γ and γ′,

σ̃2(γ, γ) =
σ2
∗
∏m
i=0(γ − i)2

(2γ + 1)
∏m
i=0(γ + i+ 1)2

and E[G̃(γ)G̃(γ′)] =
σ2
∗
∏m
i=0(γ − i)(γ′ − i)

(γ + γ′ + 1)
∏m
i=0(γ + i+ 1)(γ′ + i+ 1)

,

where σ2
∗ := E[u2

t ] as before. Using these results, we derive the covariance kernel of Z̃(·) in the proof of

the Theorem.
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The Gaussian process Z̃(·) is independent of the joint distribution of {dt, ut}, just as in BCP. In particu-

lar, Theorem 3 holds irrespective of whether the error is conditionally heteroskedasticity or homoskedastic,

viz., the QLR test is a distribution free test. Its applicability is therefore relatively wide. We call the Gaussian

process Z̃(·) the polynomial power Gaussian process.

The polynomial power Gaussian process is associated with some other useful Gaussian processes. First,

the polynomial power Gaussian process generalizes the power Gaussian process in BCP, which is obtained

by simply setting m = 1. Second, the distribution of the polynomial power Gaussian process depends on

the value of m. Nonetheless, the squared polynomial power Gaussian process has an identical distribution

irrespective of m because for any m, c2
m(·, ·) ≡ 1. Therefore, the critical values of the QLR test statistic

can also be obtained, just as in BCP, by simulating the truncated exponential Gaussian process in Cho and

White (2010) and Cho, Cheong, and White (2011) that is defined by the truncated representation

Z̄`(γ) :=
∑̀
i=2

[
γ4

(γ + 1)2(2γ + 1)

]−1/2(
γ

γ + 1

)i
Gi,

where Gi ∼iid N(0, 1) and ` is some given large integer. Then, the functional supγ∈Γ Z̄`(γ)2 can be

simulated in order to obtain the asymptotic critical values. We tabulate asymptotic critical values obtained

in this way for large ` and various assumptions on Γ in the online supplement.

3.3 Sequentially Testing the Polynomial Time-Trend Model

The test procedure can be used sequentially to estimate polynomial degree using the approach in Section

2.5 applied to M′j for j = 1, 2, . . . , m̄. The results given in Corollary 1 continue to hold: if we let

m∗ := inf{m ∈ N : ∃(α, η), E[yt|dt] = sn,t(m)′α + d′tη}, for any ε > 0 and significance level α,

limn→∞ P (|m̂n −m∗| > ε) = α. Furthermore, consistent estimation of m∗ is achieved if α = αn tends

to zero slowly as n→∞.

Corollary 2. Given that Assumptions 3 and 4 hold for each m ∈ Pd(m̄), if (i) m∗ ∈ Pd(m̄), (ii) there is a

Gaussian process BS(·) such that for all γ, γ′ ∈ Γ, for some δ, cov(BS(γ),BS(γ′)) = 1 − |γ − γ′|δ (1 +

o(1)) and cov(BS(γ),BS(γ′)) ≤ cov(Z̃(γ), Z̃(γ′)), (iii) limn→∞αn = 0, and (iv) limn→∞ log(αn)/n =

0, then for any ε > 0, limn→∞ P (|m̂n −m∗| > ε) = 0. �

The intuition behind Corollary 2 is identical to that of Theorem 2. The only point of difference from

Theorem 2 is that we do not have to standardize Z̃(·) as its variance is already unity, as given in Theorem 3.
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4 Simulations

We conducted an extensive simulation to assess the performance characteristics of the QLR test statistic.

The following simulation design was used for a time-trend stationary process. First, we generated data sets

{yt, dt} according to the scheme yt = α0∗+α1∗t+α2∗t
2+η∗dt+ut, where ut := cos(dt)vt, dt := ρ∗dt−1+

wt with d0 ∼ N(0, 1/(1 − ρ2
∗)) such that (vt, wt)

′ ∼iid N(02, σ
2
∗I2) and (α0∗, α1∗, α2∗, η∗, σ

2
∗, ρ∗) =

(1, 1, 1, 1, 1, 0.5). This design is a typical second degree polynomial time-trend stationary process with

conditionally heteroskedastic errors. Here, the conditional variance of ut on dt is arbitrarily selected. As

pointed out in Section 3.2, the QLR test statistic is distribution free for the polynomial time-trend model, so

that the critical values generated by the truncated exponential Gaussian process can be applied to DGPs with

arbitrary forms of conditional heteroskedasticity. The given DGP is used to affirm this property. Second,

we used the following models for testing specification: M′m := {µt(·) : Ωn 7→ R : µt(αn, η, βn, γ) :=

st(m)′αn + dtη + βns
γ
n,t} with γ ∈ Γ := [0.0, 3.5] and m = 1, 2, 3. These models have a parameter

space Γ that includes the unknown polynomial degree as an interior element. Third, we implemented the

sequential testing algorithm at significance levels of 1%, 5%, and 10%. We used sample sizes of 50, 100,

200, 300, 400, and 500, and for each sample size 5,000 replications were performed, enabling estimation of

the probability of the sequential procedure leading to a polynomial degree estimate equal to the unknown

true polynomial degree m∗ = 2.

Simulation results are reported in Table 1 and can be summarized as follows. First, when m is less than

the unknown polynomial degree 2, the model rejection rates are 100%. Even when the sample size is as

small as 50, the rejection rates are 100% for every level of significance, implying that the sequential testing

procedure underestimates the degree of the unknown polynomial with an extremely low probability. This

also implies that the power of the QLR test statistic is high even for small sample sizes. Second, for the

given significance level α, the predicted probability of ‘accepting’ the correct polynomial degree is almost

(1− α) even when the sample size is as small as 50. This implies that the overall type-I error is controlled

efficiently in estimating the polynomial degree.

Before moving to discuss the next simulation, some caveats should be mentioned. First, the procedure

assumes that the model is correctly specified with respect to other covariates. If the polynomial degrees

of other explanatory variables are incorrectly specified, the estimated polynomial degree by the procedure

can be biased. Second, in practice, a higher degree polynomial model can be rejected although a lower

degree polynomial model cannot be rejected. Although the lower degree polynomial model is nested within

the higher degree polynomial model, the decision should be made based upon the test outcome for the
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lower degree polynomial model. This is mainly because the type-II error associated with the lower degree

polynomial model becomes negligible as the sample size tends to infinity. On the other hand, the type-I error

probability associated with the higher degree polynomial model does not vanish to zero, so that it needs to

be controlled as detailed in what follows.

Next, we studied how well the type-I error probability is controlled by the sequential estimation. For this

purpose, we used the same design environment and applied Corollary 2 with the significance level αn de-

termined by the sample size so that αn → 0 and log(αn)/n→ 0 as n increases. To assess performance, we

estimated the empirical probability of m̂n equaling m∗ = 2 for each αn as P̂n(αn) := r−1
∑r

i=1 I(m̂n,i =

m∗), where I(·) is the indicator function, r is the total number of iterations, viz., 5,000, and m̂n,i denotes

the sequential estimator of m∗ for the i-th simulation. For each given αn, P̂n(αn) estimates the probability

of m̂n = m∗, so that if m̂n estimates m∗ consistently, P̂n(αn) − (1 − αn) should converge to zero as n

tends to∞. We examine how P̂n(αn) evolves as n→∞.

The simulation results are reported in Table 2. We consider three sequences for the level of significance:

αn = n−1, αn = n−3/4, and αn = n−1/2. If αn = n−1, the significance level approaches zero quickly,

whereas the approach to zero is much slower when αn = n−1/2, and αn = n−3/4 provides an intermediate

rate of approach. These rates are selected to cover significance levels between 10% and 0%, when the sample

size is greater than 100, so that type-I errors are neither too large or too small for moderately sized samples.

If the level of significance converges to zero more slowly than n−1/2, the level of significance becomes too

large to use in most practical applications. On the other hand, if the level of significance converges to zero

more quickly than n−1, the level of significance is too small for good estimates P̂n(αn).

The main results of Table 2 can be summarized as follows. First, the distance between P̂n(αn) and

(1 − αn) is close to zero for every selection of αn. This outcome suggests that m∗ can be successfully

estimated by the sequential estimation procedure. Second, as the sample size increases, the distance between

P̂n(αn) and (1 − αn) shows evidence of convergence to zero for every selection of αn, indicating, as

expected, that degree estimation by m̂n becomes more precise in large samples. Third, the distance between

P̂n(αn) and (1 − αn) is relatively small when αn = n−1 and this choice of αn appears to deliver more

desirable sequential estimation results than the other choices.

We compare these estimation results with standard information criterion-based estimators using the

same DGP. Three information criteria are examined, viz., AIC, BIC, and small sample-size corrected AIC.

These methods are applied to the following models: M′0,m := {µt(·) : Ωn 7→ R : µt(α0, . . . , αm, η) :=

α0 +α1t+ . . .+αmt
m+dtη} withm = 1, 2, 3. Note thatM′0,m differs fromM′m in the fact that the power

transform of the time trend is omitted from the right side of the model. The motivation for usingM′0,m lies
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in the fact that these information criteria are typically defined to apply to identified models, whereas ifM′m
were attempted for use with m = m∗, the model would be unidentified. Instead, to apply the information

criteria as degree selectors, we first follow the usual procedure of working with identified models. We let

m̃n be the polynomial degree estimated by the smallest information criterion value out of m = 1, 2, 3.

The penultimate lower panel of Table 2 shows simulation results based on the information criteria. The

performances of the information criteria are measured by P̃n := r−1
∑r

i=1 I(m̃n,i = m∗), where m̃n,i is the

estimator of m∗ for the i-th simulation using the information criteria. The results are as follows. First, the

performance measure P̃n × 100 converges to 100% for BIC as the sample size increases, whereas those for

AIC and AICc do not converge to 100% as fast as BIC. Second, BIC performs overall better than AIC and

AICc. If the sample size is as high as 1,000, most of the estimates obtained give m∗ = 2. In fact, 99.06%

of 5,000 iterations are correctly estimated. Third, the overall performance of the BIC-based estimator is,

nevertheless, inferior to those of the sequential test procedure. In particular, if αn = n−3/4 or n−1, the

sequential estimation of the polynomial degree is more often precise than the BIC-based estimator, whereas

if αn = n−1/2, the BIC-based estimator shows better performance than the sequential estimation procedure.

These results show that the sequential estimation procedure generally estimates polynomial degree better

than information criteria, especially when faster approach rates to zero are selected for αn.

We also apply the information criteria to M′m despite the presence of the identification problem and

report the simulation results in the lower panel of Table 2. To distinguish the earlier information criteria,

we added the superscript ‘′’ to the information criteria labels. The overall simulation results differ from the

results usingM′0,m. First, the performance measures steadily converge to 100% for all of the criteria AIC′,

BIC′, and AICc′, as the sample size increases. Second, it is not recommended to use these information

criteria in small samples. If the sample size is less than 500, performance of all of the information criteria

is poor. But if the sample size is as large as 600, performance of these criteria are more or less similar to

those performed by AIC, BIC, and AICc. Third, the best performing information criterion is BIC′, although

it is inferior to BIC, implying that the sequential estimation procedure outperforms BIC
′

when αn = n−1

or n−3/4, and the dominance of the sequential procedure now applies even when n−1/2.

5 Empirical Applications

Economic hypotheses that involve nonlinear responses are commonly evaluated by using polynomial model

specifications in empirical work. For example, Mincer (1958, 1974) provides a theoretical background

that specified a quadratic function between log of earnings and potential work experience. Murphy and
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Welch (1990) and Lemieux (2006) empirically examine this hypothesis by estimating polynomial models.

Another example is the environmental Kuznets curve hypothesis relating the level of pollution to GDP per

capita, whose shape is typically inferred by estimating a quadratic function. The inverse-U curve Kuznets

hypothesis has been questioned by the more recent re-linking hypothesis that posits instead an N-curve

relationship in which pollution levels deteriorate again as GDP per capita increases further (e.g., De Bruyn

and Opschoor, 1997). Empirical work on this hypothesis typically estimates cubic models to capture shape.

Many other empirical studies estimate polynomial models to assess the implications of various economic

theories about shape characteristics. The U-bent hypothesis of life-long welfare and the J-curve hypothesis

between trade balance and the real exchange rate are other common examples in the economic literature.

In all of these models concerning shape features in the data, important empirical issues arise concerning

the selection of polynomial model degree and whether there is neglected nonlinearity in chosen polynomial

model specification. Our methodology serves to address these issues.

This section examines one such empirical examples using our methods. Since Mincer (1958, 1974)

first introduced the earnings equation using schooling years and potential work experience, the following

equation has been the most influential empirical model for human capital earnings

log(wt) = α0∗ + η∗st + α1∗xt + α2∗x
2
t + ut, (6)

where wt is earnings, st is schooling years, and xt is potential work experience of individual t. Most

empirical models on earnings data since Mincer (1958, 1974) are specified by adding more explanatory

variables to the right side of (6) or by modifying the model in (6) into a structural equation.1 Unless

structural interpretations are involved, the unknown parameters are estimated by least squares for most

available earnings data across countries. The main reasons for the popularity of this model are its power to

fit earnings data well despite its simple structure and its useful theory underpinnings. According to Card

(1999), about 20–35% of earnings variation are explained by this simple equation.

Against this successful background of empirical work, persistent questions have been raised over the

possibility that the earnings equation in (6) is misspecified. Murphy and Welch (1990) empirically examined

the usefulness of the functional form in (6) using the current population survey (CPS) data from 1964 to 1987

and concluded that the quadratic functional form in (6) is unacceptable and argued instead for a quartic

functional form in the experience variable. Heckman, Lochner, and Todd (2006) and Lemieux (2006),

motivated by the same question, both found that recent earnings data do not fit the Mincer equation as well as

1See Card (1999) for a survey of the empirical literature on Mincer’s equation.

20



1960’s and 1970’s earnings data. Lemieux (2006), in particular, recommends a quartic model by graphically

showing that most of the quartic model predictions belong to the confidence band on unrestricted profiles

that are obtained by estimating an unrestricted earnings equation using dummies of experience and schooling

years. He also points out that the Mincer equation in recent years needs to accommodate different cohort

effects and potential misspecification in terms of schooling years that may be corrected by including squared

schooling years. Heckman, Lochner, and Todd (2006) estimated the earnings equation nonparametrically,

so that a polynomial degree was not estimated. Finally, Bierens and Ginther (2001) examined the robustness

of the model assumptions using least absolute deviation (LAD) estimation and found that even the quartic

model is misspecified using 1988 CPS data. With the exception of Heckman, Lochner, and Todd (2006), all

these empirical contributions estimate polynomial models.

The need for econometric methods to assist in such empirical modeling exercises with polynomial func-

tions motivates us to revisit recent findings for the Mincer equation. We focus on the following research

questions: (i) is there any remaining nonlinearity with respect to experience that cannot be detected by the

quartic function advocated by Murphy and Welch (1990) and Lemieux (2006)? (ii) do different sampling

periods of data follow different DGPs? and (iii) with recent data, do satisfactory empirical models of earn-

ings require convex function specifications involving schooling years? These questions are addressed to

assess the empirical findings by Lemieux (2006) using the methodology of our sequential testing procedure.

In considering these questions, we use the same data sets used in earlier studies and seek to discover

whether the empirical results are corroborated using the new methods. Specifically, we use the same data as

Card (1995) and Bierens and Ginther (2001). The national longitudinal survey (NLS) data constructed by

Card (1995) involve men aged 24–34 years in 1976, so that different cohort effects do not affect estimation

of the Mincer equation. The sample size is 3,010. Bierens and Ginther’s (2001) CPS data set was drawn

from males aged between 18 and 70 with annual income greater than US$50 in 1992. For our analysis, we

select only the samples that satisfy the data conditions in Card (1995), so that different cohort effects do not

affect the estimation. The resulting sample size is 8,775. Readers can refer to Card (1995) and Bierens and

Ginther (2001) for more information on the data. These two different data sets are intentionally selected to

examine whether there is any DGP change between 1976 and 1988.

Our empirical models follow the specifications in Card (1995). We focus on estimating the following

model in addition to the conventional Mincer equation in (6)

log(wt) = α0∗ + η1∗st + α1∗xt + α2∗x
2
t + η2∗bt + sm′tη3∗ + ut, (7)

21



where bt is a dummy variable for black/white, smt is a set of dummy variables for residence in the South and

in a metropolitan area in the year of 1976. This model is the first Mincer equation model estimated by Card

(1995) modified by racial and residential features. Note that all variables besides experience and schooling

years are dummy variables, so that the functional form in the conditional mean equation is otherwise linear.

In addition to these models, Card (1995) estimated various other models by including additional regressors,

but we focus here on the models in (6) and (7) as the other model estimation results are very similar.2

We apply the QLR test in the following manner. First, we test for further neglected nonlinearity with

respect to experience xt. The parameter space of the power coefficient was set to [−0.25, 6.50], which

enables tests up to 6-th degree polynomial models as the null model. Hansen’s (1996) weighted bootstrap

is applied to our QLR tests to obtain p-values. The bootstrap iteration number is 500. In cases where the

p-values obtained this way were close to the level of significance, we increased the bootstrap iterations

to 1,000 to obtain more precise p-value estimates. In another extension, we expanded the null models in

(6) and (7) to include higher polynomial degrees in schooling years. This modification accommodates the

possibility that the QLR test may reject the null model because of nonlinearity with respect to schooling

years, which was one of Lemieux’s (2006) concerns. The models in (6) and (7) are therefore extended as

follows:

log(wt) = α0∗ +

m1∑
j=1

βj∗s
j
t +

m2∑
j=1

αj∗x
j
t + ut, (8)

log(wt) = α0∗ +

m1∑
j=1

βj∗s
j
t +

m2∑
j=1

αj∗x
j
t + η1∗bt + sm′tη2∗ + ut, (9)

with m1, m2 = 1, 2, 4, and 6. Here, integer settings of m1,m2 = 3 and 5 are excluded because theory

underlying the log earnings equation does not support for odd-degree polynomials, as pointed out by a

referee. The models (8) and (9) are treated as the null specification in our tests. Second, we reverse the

roles of schooling years and experience and conduct the same procedures of the first step, testing for further

neglected nonlinearity now with respect to schooling years st.

The test results using 1976 NLS data are contained in Table 3. The left- and right-side panels report

the p-values from testing for further neglected nonlinearity with respect to experience and schooling years,

respectively. The p-values with affix “†” indicate that the number of bootstrap iterations is 1,000. The

inferential findings depend on the data, models, and levels of significance. Despite these differences, we

can draw some consistent features of the data from these specification tests. We summarize the results as

2For example, we also conducted the same tests using residential dummies in 1966 as additional regressors, just as in Card
(1995), and obtained results identical to those using Model (7).
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follows.

The first implication of these specification tests is that all models that are linear in experience are re-

jected when testing for neglected nonlinearity in experience at the 1% level of significance. Nonlinearity in

experience is further corroborated by testing the null models with respect to schooling years. All p-values

in the right-side panel of Table 3 imply that neglected nonlinear terms with respect to schooling years are

hard to detect if squared or higher degree terms in experience are included in the regression. Moreover, even

if schooling years are squared or further higher degree terms in schooling are included, all models are still

found to be nonlinear with respect to experience. This feature implies that the nonlinear specifications in

schooling years in Lemieux (2006) may arise from omitted nonlinearity in experience, given that different

cohort effects could be present in his data and that linearity is assumed with respect to either experience or

schooling years but not both.

Second, the results in Table 3 imply that the original Mincer hypothesis is statistically supported by

sequential estimation in some cases. For the original Mincer equation, we focus on (8) and sequentially

estimate both m1 and m2 in the following manner. In the first-left panel reported in Table 3, for given

m2 = 1, say, we sequentially tested m1 = 1, 2, 4, 6 at the 1% level of significance. If the null is rejected for

allm1 = 1, 2, 4, 6, the next levelm2 = 2 is considered, and testing continues with respect tom1 = 1, 2, 4, 6

as before until the hypothesis cannot be rejected. In this process, m2 is raised through the integers 1, 2, 4,

and 6. The first-left panel of Table 3 shows that the resulting estimates are m1 = 1 and m2 = 2, which are

the same degrees specified by the Mincer equation. The model found in this way is indicated by the italic

font in Table 3. This finding is also consistent with Heckman, Lochner, and Todd’s (2006) conclusion that

the Mincer equation fits well the 1960’s and 1970’s earnings data.

Third, the evidence suggests that different polynomial models for different set of explanatory variables

are required to address nonlinearity in specification. The original Mincer equation does not include explana-

tory variables beyond schooling years and experience. Model (9) is specified with additional explanatory

variables. Our findings using the same sequential testing procedure support use of m1 = 1 and m2 = 4 in

Model (9) to eliminate the need for further nonlinearity in schooling years and experience. This finding is

consistent with the empirical results on the use of a quartic specification by Murphy and Welch (1990) and

Lemieux (2006).

Fourth, the quartic specification has economic implications different from those of the quadratic model.

In particular, extreme log earning profiles are better fitted by a quartic function than a quadratic because

the higher degree polynomial magnifies the effect of experience on earnings. A scatter plot of the data and

regression curves endorses this interpretation. Figure 1(a) shows the scatter diagram between experience and
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the concentrated log wage3 together with the quadratic and quartic regression curves . The major differences

in the regression curves arise in the left- and right-tails. When experience is low, the quadratic fit tends to

overestimate the concentrated log wage with more observations below the quadratic fit. When experience is

high, the quadratic fit tends to underestimate the concentrated log wage, with more observations above the

quadratic fit. The quartic regression appears to correct this unbalanced feature of the quadratic fit near the

data boundaries, implying that most experienced (or unexperienced) workers are more highly (or less well)

paid than the earning profiles captured by the quadratic model. This finding from sequential testing affirms

the earlier empirical conclusion of Lemieux (2006).

We next examine test results obtained from the 1988 CPS data, which are reported in Table 4. The empir-

ical findings are summarized as follows. First, our specification analysis shows that the most parsimonious

polynomial orders selected for every model and data set are m1 = 1 and m2 = 4. If the polynomial degree

in experience is less than 4, the null models are rejected, showing that the Mincer equation does not hold for

the 1988 CPS data, but that the quartic model advocated by Murphy and Welch (1990) and Lemieux (2006)

is supported by our formal testing procedure. In addition, this analysis reveals that the convex functional re-

lationship between log earnings and schooling years found in Lemieux (2006) could arise from nonlinearity

in experience, as discussed above.

Second, the respective degrees of polynomial nonlinearity with respect to schooling years and experience

in the original Mincer equation are not invariant to the data. Note that the standard Mincer equation was

preferred in analyzing the 1976 NLS data in terms of Model (8), whereas this is not the case for the 1988

CPS data. This finding supports the empirical conclusion in Heckman, Lochner, and Todd (2006) that the

Mincer equation does not fit recent earnings data well.

Finally, the same economic implications about the impact of experience on earnings are obtained as

with the 1976 NLS data. In particular, Figure 1(b) shows the analogous sample plot and fitted regression

curves as for Figure 1(a). The same underestimation and overestimation at the boundaries by the quadratic

specification is found for the 1988 CPS data, revealing that the quartic curve provides a more balanced fit to

these data.

Although we do not report the results here, we conducted the same tests and estimated polynomial

degrees for models using all observations in the Bierens and Ginther (2001) data, thereby ignoring different

cohort effects and introducing a higher level of heterogeneity. The sample size was 25,631 when only

fulltime workers were included. In these regressions, we observed higher levels of nonlinearity to be present

3The concentrated log wage is defined by the prediction errors obtained from regressing log earnings against schooling years,
the race dummy (bt), and dummies for residence (smt) (the explanatory variables in Model (9) other than experience) with the
setting m1 = 1, which was determined according to the sequential estimation procedure, as discussed.
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both for experience and schooling in explaining earnings. The estimated polynomial degrees were m2 = 6

and m1 = 4 with respect to experience and schooling years, results that are consistent with the findings of

Bierens and Ginther (2001). The higher degree polynomial function is needed to accommodate the irregular

profiles involved in extreme log earnings at the tails, in much the same way as the quartic model compensated

for deficiencies in the quadratic fits of tail behavior of log earnings. This additional analysis is reported in

the online supplement. These results together with those of the main text together imply that the general

conditional mean equation can be different, depending on the data and/or the model employed, indicating

the need for some flexibility in treating potential nonlinearity in key explanatory variables. This flexibility is

attainable, as we have seen, with polynomial specifications and is possible, more generally, with other sieve

space approximants.

6 Conclusion

Testing for misspecification is now a standard feature of empirical econometric work. The methodology

developed here provides a convenient mechanism for testing for an arbitrary presence of neglected nonlin-

earity in models that already involve polynomial functions of covariates or time trends. Given the extensive

use of such polynomial specifications in empirical applications, it is especially useful to have simple tools to

test directly for omitted nonlinearities. Our approach relies on QLR statistics that are constructed explicitly

to evaluate the impact of including additional power transforms of the regressors in the regression. This ap-

proach provides for convenient implementation to assess specification in practice and further enables direct

estimation of polynomial degree along with its consistent power against arbitrary alternatives. While the

methods have been developed here for parametric models, they may be used in the context of nonparametric

sieve approximations in assessing choice of a polynomial approximant degree.

Of particular interest is the fact that the null limit distribution of the QLR statistic resolves the multifold

identification problem inherent in polynomial and power transform regressions. Moreover, when the predic-

tion errors in the equation form an MDS the QLR test statistic is asymptotically distribution free for testing

further neglected nonlinearity with respect to time trends, so it is well suited for convenient application in

models where the nature of the time trend is uncertain. Simulations confirm that these tests have good finite

sample performance and relate well to the limit theory. The sequential testing procedure for consistently

estimating unknown polynomial degree also works well in simulations, comparing favorably with and fre-

quently dominating the performance of information criteria. Simulations show that this procedure controls

overall type-I error efficiently. Empirical application of these methods to earnings data studied by Card
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(1995) and Bierens and Ginther (2001) show that the methods are informative about specification weak-

nesses in conventional Mincer equation modeling, indicating that more flexible specifications are needed to

capture the impact of schooling and experience on earnings.
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(a) 1976 NLS Data (b) 1988 CPS Data

Figure 1: QUADRATIC, QUARTIC FITS AGAINST EXPERIENCES AND CONCENTRATED LOG WAGES. This
figure shows the quadratic and quartic fits of concentrated log wages with respect to experience. The concentrated
log wages are the prediction errors obtained by regressing log wages against schooling years and the other dummy
variables in (7): bt and smt.
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α m \ n 50 100 200 300 400 500 600 700 800 900 1,000

10%

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2∗ 89.42 90.90 90.76 91.66 90.46 90.18 91.22 91.06 91.96 91.40 92.02
3 8.08 7.00 7.02 6.36 7.48 7.54 6.86 7.36 6.24 6.72 6.28
≥ 4 2.50 2.10 2.22 1.98 2.06 2.28 1.92 1.58 1.80 1.88 1.70

5%

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2∗ 94.68 95.20 95.42 95.98 95.32 95.18 95.48 95.80 96.00 95.46 95.64
3 4.28 3.90 3.82 3.24 3.84 3.98 3.82 3.76 3.46 3.90 3.74
≥ 4 1.04 0.90 0.76 0.78 0.84 0.84 0.70 0.44 0.54 0.64 0.62

1%

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2∗ 98.98 99.08 99.16 99.06 99.22 99.04 99.08 99.08 99.20 99.26 98.92
3 0.84 0.80 0.70 0.86 0.68 0.80 0.86 0.88 0.70 0.68 0.96
≥ 4 0.18 0.12 0.14 0.08 0.10 0.16 0.06 0.04 0.10 0.06 0.12

Table 1: ESTIMATED POLYNOMIAL DEGREES BY THE QLR TEST STATISTIC (IN PERCENT). NUMBER

OF REPLICATIONS: 5,000. This table shows the portion of the estimated polynomial degrees by sequentially
applying the QLR test statistic. DGP: yt = α0∗ + α1∗t + α2∗t

2 + η∗dt + cos(dt)vt, dt := ρ∗dt−1 + wt, and
(vt, wt)

′ ∼iid N(0, σ2
∗I2) such that (α0∗, α1∗, α2∗, η∗, σ

2
∗, ρ∗) = (1, 1, 1, 1, 1, 0.5). MODEL:M′m := {µt(·) : Ωn 7→

R : µt(αn, η, βn, γ) := st(m)
′
αn + dtη + βns

γ
n,t}, where m = 1, 2, 3, and γ ∈ Γ := [0.0, 3.5].

Methods \ n 50 100 200 300 400 500 600 700 800 900 1,000
Seqnt. Estmtn. 85.56 90.90 93.44 95.22 95.32 95.74 96.12 96.78 97.26 97.06 97.00

with αn = n−1/2 (85.85) (90.00) (92.92) (94.22) (95.00) (95.52) (95.91) (96.22) (96.46) (96.66) (96.83)
Seqnt. Estmtn. 94.34 97.28 98.22 98.78 99.02 99.10 99.20 99.28 99.44 99.58 99.32

with αn = n−3/4 (94.68) (96.83) (98.11) (98.61) (98.88) (99.05) (99.17) (99.26) (99.33) (99.39) (99.43)
Seqnt. Estmtn. 97.78 99.08 99.58 99.64 99.84 99.82 99.82 99.86 99.88 99.92 99.90
with αn = n−1 (98.00) (99.00) (99.50) (99.66) (99.75) (99.80) (99.83) (99.85) (99.87) (99.88) (99.90)

AIC 81.70 83.12 83.42 84.10 83.32 83.88 83.80 84.24 84.28 83.38 84.46
BIC 93.94 96.18 97.58 98.16 98.34 98.76 98.58 99.06 99.20 99.18 99.06
AICc 85.94 84.86 84.80 84.78 83.74 84.38 84.18 84.52 84.52 83.64 84.70
AIC′ 1.94 2.08 2.42 2.76 5.80 81.00 85.60 82.56 82.20 85.50 86.76
BIC′ 0.44 0.16 0.18 0.10 0.12 0.94 89.66 92.18 90.76 94.86 95.82
AICc′ 1.50 1.60 2.22 2.54 5.44 81.20 85.76 82.72 82.40 85.76 86.98

Table 2: PORTION OF SEQUENTIALLY ESTIMATED POLYNOMIAL DEGREES BY THE QLR TEST STATIS-
TIC (IN PERCENT). NUMBER OF REPLICATIONS: 5,000. This table shows the percentages of the correctly esti-
mated polynomial degree by the sequential application of the QLR test statistic and information criteria: P̂n(αn)×100

and P̃n × 100. Figures in parentheses denote (1 − αn) × 100. The level of significance αn is a function of
the sample size n that satisfies the conditions in Corollary 2, and P̂n(αn) := 1

r

∑r
i=1 I(m̂n,i = m∗), where

r is the number of iterations, and m̂n,i is the sequential estimator of m∗ for the i-th simulation. Similarly,
P̃n := 1

r

∑r
i=1 I(m̃n,i = m∗), where m̃n,i is the information criterion-based estimator of m∗ for the i-th simula-

tion. DGP: yt = α0∗ + α1∗t + α2∗t
2 + η∗dt + cos(dt)vt, dt := ρ∗dt−1 + wt, and (vt, wt)

′ ∼iid N(0, σ2
∗I2) such

that (α0∗, α1∗, α2∗, η∗, σ
2
∗, ρ∗) = (1, 1, 1, 1, 1, 0.5). MODEL: M′m := {µt(·) : Ωn 7→ R : µt(αn, η, βn, γ) :=

st(m)
′
αn + dtη + βns

γ
n,t}, where m = 1, 2, 3, and γ ∈ Γ := [0.0, 3.5]. AIC, BIC, and AICc are applied to

M′0,m := {µt(·) : Ωn 7→ R : µt(α0, . . . , αm, η) := st(m)′αn + dtη}, and AIC′, BIC′, and AICc′ are applied to
M′m, where m = 1, 2, 3.
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Null Model 1: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t

m2 \m1 1 2 4 6 m2 \m1 1 2 4 6

1 54.95 38.11 31.86 31.63 1 19.22 3.24 0.52 0.20
(0.00) (0.00) (0.00) (0.00) (0.00) (39.80) (67.00) (83.60)

2 3.71 4.67 3.67 2.45 2 1.41 5.67 0.49 0.09
(9.00) (5.00) (1.60) (5.60) (56.00) (23.00) (71.40) (93.40)

4 3.32 2.95 3.51 2.32 4 2.62 1.59 0.02 0.02
(8.80) (15.00) (7.00) (13.00) (30.60) (57.20) (100.0) (99.00)

6 0.64 1.16 0.94 1.53 6 2.56 1.97 0.01 0.05
(60.60) (49.20) (41.00) (35.80) (30.40) (50.00) (99.80) (98.60)

Null Model 2: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t + η1∗bt + sm′tη2∗

m2 \m1 1 2 4 6 m2 \m1 1 2 4 6

1 51.27 43.96 38.52 38.48 1 7.72 0.61 0.38 0.03
(0.00) (0.00) (0.00) (0.00) (1.05)† (77.80) (76.00) (97.80)

2 5.86 5.41 5.37 4.19 2 0.83 0.73 0.13 0.12
(0.80) (0.40) (0.60) (0.70)† (73.20) (77.00) (92.00) (92.00)

4 3.40 5.30 3.19 4.10 4 0.06 0.24 0.06 0.02
(5.60) (1.80) (4.20) (2.00) (99.20) (89.80) (99.00) (99.00)

6 2.81 2.23 2.95 2.81 6 0.07 0.38 0.01 0.02
(9.40) (13.60) (11.40) (5.80) (97.80) (83.60) (99.80) (98.80)

Table 3: INFERENCES FOR THE MINCER EQUATION USING ALL OBSERVATIONS. This table shows the
QLR test statistic and its p-values that are obtained by the data set in Card (1995). The sample size is 3,010. Figures
are the QLR test statistics, and figures in parentheses are the p-values of the QLR tests measured in percent that are
computed by the weighted bootstrap with 500 number of bootstrap iterations. The left- and right-side panels test for
neglected polynomial degrees with respect to experience and schooling years, respectively. Boldface p-values indicate
significance levels less than 1%, and “†” indicates the p-values were obtained by 1,000 number of bootstrap iterations.

Null Model 1: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t

m2 \m1 1 2 4 6 m2 \m1 1 2 4 6

1 35.01 38.64 35.26 36.21 1 5.70 11.98 13.60 0.58
(0.00) (0.00) (0.00) (0.00) (4.60)† (0.00) (0.00) (58.20)

2 31.15 26.82 17.01 14.11 2 6.96 (13.27) 5.93 0.24
(0.00) (0.00) (0.00) (0.00) (2.20)† (0.00) (3.40)† (76.40)

4 0.42 1.59 0.27 0.25 4 0.65 3.62 2.61 0.23
(91.80) (54.00) (95.20) (91.20) (60.80) (12.40) (18.40) (81.40)

6 0.00 0.00 0.00 0.00 4 0.27 2.72 2.79 0.12
(99.80) (99.80) (100.0) (100.0) (79.40) (16.80) (17.20) (89.60)

Null Model 2: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t + η1∗bt + sm′tη2∗

m2 \m1 1 2 4 6 m2 \m1 1 2 4 6

1 44.26 35.74 32.23 32.23 1 13.72 9.75 14.20 0.20
(0.00) (0.00) (0.00) (0.00) (0.00) (0.30)† (0.00) (83.20)

2 22.86 24.45 16.19 12.96 2 1.87 10.37 5.01 0.43
(0.00) (0.00) (0.00) (0.20)† 25.40 (0.10)† (7.20) (68.00)

4 2.29 0.37 0.23 0.26 4 3.15 2.43 6.63 0.18
(40.40) (89.60) (96.80) (90.80) (10.60) (19.80) (2.70)† (86.20)

6 0.00 0.00 0.00 0.01 4 2.02 1.94 7.13 0.26
(100.0) (100.0) (100.0) (100.0) (24.80) (25.60) (1.60)† (78.80)

Table 4: INFERENCES FOR THE MINCER EQUATION USING ALL OBSERVATIONS. This table shows the
QLR test statistic and its p-values that are obtained by the data set in Bierens and Ginther ( 2001). The sample size is
8,775. Refer to Table 3 for more information.
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