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Abstract: The dynamic response of a curved railway track subjected to moving and non-moving 

harmonic loads is studied in this paper. The track is considered as a curved Timoshenko beam 

supported by periodically-spaced discrete fasteners. The displacement and rotation of the curved 

rail are expressed as the superposition of track modes in the frequency domain. Periodic structure 

theory is applied to the equations of motion of a curved track, allowing the dynamic response of the 

track to be calculated efficiently in a reference cell. The effect of the stiffness and damping of the 

fasteners, the fastener spacing and the radius of curvature on the mobility and decay rate of the track 

is analysed for non-moving loads on the rail head. The vibration of the rail under moving loads is 

also discussed. It is found that the dynamic response of a curved rail with a large radius has the 

same characteristics as that of a straight track. However, the dynamic response of the track is 

significantly affected when the radius of curvature becomes small. The radius affects the mobility, 

the decay rate below 2000 Hz and the velocity of the rail in the vertical direction when the radius is 

smaller than about 15 m and for the lateral direction when it is less than about 30 m. Moreover, the 

curvature has a significant influence on the vertical/lateral cross mobility, the magnitude of which 

increases as the radius is reduced. When the radius is larger than 10 m, the lateral vibration 

amplitude under a moving vertical load and the vertical response to a moving lateral load 

are inversely proportional to the radius. 
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1 Introduction    

 

Vibration induced by railway or metro trains running in urban areas and transmitted through the 

ground can cause annoyance to residents, and may also affect historic buildings and sensitive 

instruments. The vibration levels are often higher in curved sections of line where the dynamic 

responses in the tunnel and on the ground surface are often greater than those for straight tracks1. 

The higher vibration levels are caused by the dynamic interaction of the train and the curved tracks. 

In the literature there are many models reported for the dynamic behaviour of railway tracks. Most 

of these focus on the response of straight tracks, whereas much less attention has been paid to 

curved tracks because of the higher complexity associated with the modelling of a curved track 

compared with a straight one. 

The dynamic behaviour of rails is often studied by representing them as Euler-Bernoulli or 

Timoshenko beams. An Euler-Bernoulli beam has been found to be acceptable for frequencies 

below 500 Hz and a Timoshenko beam for frequencies up to at least 2 kHz2,3. A model based on a 

curved beam is required for a curved track. The dynamic response of curved beams has been 

studied for many years. Both analytical methods and the finite element method have been employed 

in these previous studies. Generally, the finite element method is more applicable to studies of the 

dynamic response of curved beams with complicated structures than the analytical methods. The 

finite element method, however, remains an approximate approach, and its calculation results are 

affected by some factors such as the element types and the boundary conditions. Moreover, for a 

railway track, an infinite length should generally be considered, which is more difficult to 

implement in a finite element approach. Although it is sometimes difficult or even impossible to 

solve some problems using analytical methods, for example the response of a beam with an 

irregular cross-section, the analytical methods can provide more theoretical insight into the dynamic 

behaviour. In the analytical models, some assumptions are made to allow solution of the equations 

of motion. Provided that the beam cross-section is symmetric, the motion of a curved beam can be 

decoupled into in-plane (i.e. in the plane of curvature) and out-of-plane motions.  

There have been a number of analytical studies on curved beams in recent years. For example, 

Yang et al. established a complete theory for treating the vibration of a horizontally curved 

Euler-Bernoulli beam subjected to a series of moving masses, each of which was simulated as a 

combination of a gravitational force and a centrifugal force4. Kang et al. provided a concise and 

efficient method for determining the free vibration of a multi-span circular curved beam with 

general boundary conditions and supports5. Yu et al.6 carried out an analytical study of the free 

vibration of a naturally curved and twisted beam with uniform cross-sectional shape using spatial 
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curved beam theory based on Washizu’s static model7. Çalım performed the forced vibration 

analysis of a curved beam on a two-parameter elastic foundation subjected to impulsive loads based 

on the Timoshenko beam theory8. Lee analyzed the in-plane free vibration of circularly curved 

Timoshenko beams through the pseudospectral method9. Howson and Jemah calculated the exact 

out-of-plane natural frequencies of curved Timoshenko beams by the dynamic stiffness method10.  

Although the dynamic response of curved beams has been extensively studied, the application 

to curved railway tracks is limited, which is mainly attributed to the higher complexity of curved 

track models. Kostovasilis et al. established a finite element model of a curved track and compared 

the dynamic response obtained using straight beam elements and curved beam elements11. The 

curved beam model used in their study added complexity without giving substantial improvement 

for the specific application and therefore the straight element method was preferred. In another 

paper, Kostovasilis et al. used an analytical model to discuss the vertical/lateral coupling of the rail 

on a continuous elastic foundation including the effects of initial curvature12. In this model, the 

track is subjected to a non-moving harmonic load and the solution is obtained in the wavenumber 

domain using the Fourier transform method. Ang and Dai gave an analytical solution to the 

response of a curved railway track resting on a viscoelastic foundation subjected to a moving 

load13,14. In this work, trigonometric functions were employed as the trial functions to approximate 

the displacement of the curved rail. Li et al. performed an analytical study of the dynamic response 

of a curved track subjected to moving loads, and presented a model of a curved Timoshenko beam 

periodically supported by double-layer spring-damping elements15,16. In this model, the 

displacement of the rail under moving loads is expressed as the product of the load and the transfer 

function for the curved track based on the Duhamel integral and the dynamic reciprocity theorem. 

The transfer function was derived by using the transfer matrix method in the frequency domain. 

Zhang et al. discussed the dynamic response of a curved rail subjected to a moving train based on 

Li’s research by coupling a two-dimensional vehicle model to the track model17.  

Because most railway tracks are periodically supported by the sleepers, researchers have 

developed models of a straight track in which the periodicity of the track is exploited to increase the 

calculation efficiency. Some papers discuss the dynamic behaviour of track due to non-moving 

loads. Grassie et al. developed a model of a track represented as a periodically supported 

Timoshenko beam18. Gry and Gontier presented a periodic railway track model including 

cross-section deformation based on the notion of generalized cross-section displacements of a 

beam19. In this model, the deformation of the beam’s cross-section is described approximately in 

terms of cross-section modes, so the periodic analysis can be efficiently made using a small sized 

matrix equation. Sheng et al. gave a detailed discussion on the propagation and resonance properties 
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of the track modelled as an infinitely long periodic Euler-Bernoulli beam20. Degrande et al. and 

Clouteau et al. presented a periodic track model as part of a periodic finite element-boundary 

element model based on the Floquet transform21,22. The dynamic response of track, tunnel and 

ground were calculated first in a reference cell, and then the response in other cells could be 

obtained through the inverse Floquet transformation. 

The dynamic response of the track under moving loads has also been calculated through some 

models based on the periodicity of the track. Based on the work in [21, 22], Gupta et al. discussed 

the dynamic response of track, tunnel and ground due to moving loads23,24. Chebli et al. established 

a periodic track-ground model based on Floquet decomposition to predict the vibration of the track 

and ground25. Sheng et al. proposed a more general, wavenumber-based approach to study the 

response of an infinite periodic track under moving harmonic loads26. In this approach the 

periodically supported structure is represented as either a multiple-beam model or a 

two-and-half-dimensional finite-element model. Ma et al. considered a subway track as an infinite 

periodically supported Euler-Bernoulli beam and set up an analytical model; the vibration of a 

floating slab track and a general non-ballast track was calculated through this model27,28. In this 

model, the displacement of the track in the frequency domain was expressed as the superposition of 

track modes. In all the above studies, however, only straight tracks were considered.  

This paper presents an analytical model of a curved, periodically supported track based on 

periodic structure theory. The periodicity of the track structure is applied to the equations of motion 

of a curved track to obtain efficiently the dynamic response in a reference cell of the track. The 

analytical solutions for a curved track under non-moving and moving harmonic loads are derived by 

separating the in-plane and out-of-plane motions. The effect of various parameters on the frequency 

response and decay rate of the track due to a non-moving load is analysed, and the vibration of the 

track under a moving load is also discussed. 

 

2 Dynamic response of a periodic curved track 

 

2.1 Equations of motion of a curved track 

 

The curved rail is considered as a curved Timoshenko beam, as shown in Fig. 1, in which   

denotes the subtended angle, and R is the radius of curvature. A right-handed coordinate system is 

used, the x- and y-axis of which coincide with the principal axes of the cross-section, and the z-axis 

is tangential to the centroidal axis of the beam. 
xu , yu and

zu denote the displacements of the centroid 

of each cross-section of the curved beam along the three axes, and 
x , y and 

z are the rotations 
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about the three axes. All the deformations are assumed to be small so that linear theory applies. The 

curved beam is assumed to have a constant cross-section with negligible warping resistance.  

 

Fig. 1 Coordinates of curved beam 

 

Let vertical and lateral harmonic forces i
e F t

vF
 and i

e F t

lF
 , where 

F  is the excitation 

frequency, move along the rail head of the curved track at a speed v , as shown in Fig. 2. It should 

be noted that the vertical and lateral forces can be applied at any point on the rail head. The lateral 

force on the rail head is equivalent to a lateral force at the centroid and a moment i

1 e F t

lh F


 acting 

about the z-axis, similarly a vertical force and a moment i
e F t

vb F


  for the vertical force (see Fig. 3). 

The rail is supported by a finite number Ns of periodically-spaced discrete fasteners. The fasteners 

are considered as springs and dashpots connected to the rail foot in the vertical, lateral and axial 

directions and torsional springs and dashpots connected at the shear centre of the rail.  
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Fig. 2 Periodic curved track subjected to harmonic loads 

vk vc

,rk rc

,hk hc

i
e F t

vF


1h

i
e F t

lF


x

y

2h C

3h
S

AB

b

 

Fig. 3 Cross section of a rail (C is the centroid, S the shear centre, A and B the force locations) 
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According to the theory of curved Timoshenko beam, the equations of motion can be divided 

into those for the in-plane (lateral bending and axial) and the out-of-plane (vertical bending and 

torsional) motions. The equations for the in-plane motion of the curved track can be written as 

follows9,29. 
2 2
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where E and G denote the Young’s modulus and shear modulus, respectively, of the rail, A  the 

cross-sectional area, yI the second moment of area about the y-axis, 
xK the cross-sectional shape 

factor about the x-axis,  the density of the rail, 0

Fz  the initial position of the moving load, and 

sjz  the position of the jth fastener. The fasteners have been replaced by forces: hjf  and zjf
 
are the 

lateral and axial forces applied on the rail by the jth fastener. Equations (1), (2) and (3) correspond to 

the lateral displacement, the axial displacement along the z-axis and the rotation about the y-axis, 

respectively. 

 The equations for the out-of-plane motion of the curved track can be written as follows10,29. 
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where
xI denotes the second moment of area about the x-axis, 

0I the polar moment of area, 
dI the 

torsional constant, yK  the cross-sectional shape factor about y-axis, vjf and jT  the vertical force 

and torsional moment applied on the rail by the jth fastener respectively. Equations (4), (5) and (6) 

correspond to the vertical displacement, and the rotations about the x-axis and z-axis, respectively. 

 Equations (1)-(3) for the in-plane displacements and rotation of the curved track are 

independent of equations (4)-(6) for the out-of-plane displacement and rotations apart from the 

forcing terms, so the in-plane and out-of-plane dynamic responses can be determined separately. 
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2.2 Transformation to the frequency domain 

 

Based on the Fourier transformation, the frequency spectrum of a dynamic response can be 

analysed. Applying the Fourier transformation with respect to time to equations (1)-(3), and 

introducing the support stiffnesses, the in-plane equations can be obtained in the frequency domain: 
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where “^” is used to indicate expressions in the frequency domain; damping is introduced by 

making * (1 i )E E    and * (1 i )G G    complex, in which   is the damping loss factor of the rail; 

the lateral forces applied by the fasteners have been replaced by introducing the dynamic stiffnesses

ih h hk k c   and iz z zk k c   , in which hk  and zk are the lateral and axial stiffnesses of the 

fastener, and hc and zc are the corresponding lateral and axial damping coefficients.  

 Similarly the out-of-plane equations in the frequency domain are obtained as follows. 
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where the vertical and rotational forces applied by the fasteners have been replaced by introducing 

the dynamic stiffnesses iv v vk k c   , ir r rk k c   , in which vk and rk  are the vertical and 

torsional stiffnesses of the fastener, and vc and rc are the vertical and torsional damping coefficients 

of the fastener. 

 If the curved rail is supported by a continuous elastic foundation, the response of the rail can 

also be calculated. The forces applied on the rail by the fasteners in equations (7)-(12) can be 

replaced with product of the dynamic stiffness of the foundation and the displacement of the rail, 
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for example ˆf

h xk u  in equation (7), where f

hk  is the lateral dynamic stiffness of the foundation per 

unit length. In this calculation, the stiffness and damping of the foundation per unit length are equal 

to those of the fastener divided by the fastener spacing. 

 

2.3 Periodic structure theory and mode function of the track  

 

In this subsection, the periodic structure theory and the mode function of the track are 

introduced to solve the above equations of motion.  

Based on the periodicity of the track structure along the z-axis, periodic structure theory can be 

used. Assume that the infinitely long track is composed of cells, each with the same properties, and 

any cell can be chosen as the reference cell. The rail displacements due to a moving harmonic unit 

load in another cell can be linked to those in the reference cell30,31, 

   i( ) / ˆˆ , , e , ,F cn L v

c F Fz n L z
    

 u u ,                                              (13) 

where “⌒” is used to indicate the expression in the reference cell,  , , , , ,
T

x y z x y zu u u  u , L  is the 

length of each cell, and cn is the index of the cells. A function  ˆ
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    i( / / )ˆ ˆ, , , , e F v v z

F Fz z       
P u .                                                  (14) 

Substituting equation (13) into equation (14), we can obtain: 

   ˆˆ , , , ,c F Fz n L z    P P .                                                      (15) 

Because  ˆ
, , Fz  P  is a periodic function, it can be decomposed as a Fourier series. 
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, , , e n z

F n F
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z
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where 2 /n n L  , and  , , , , ,
T

x y z x y zU U U   C  is a vector of coefficients. 

Specifically, the displacements of the rail can be written as 

ˆˆ ( , , ) ( , ) ( , , )F F n F

n

nz V z     




  Cu .                                                 (17) 

where i( / / )ˆ
( , , ) e n F v v z

n FV z
     

 , which can be called the mode function of the track.  

In the calculation, 2N+1 modes can be considered, so the displacements are written as 

ˆˆ ( , , ) ( , ) ( , , )
N

F n F n F

n N

z V z     




 u C .                                                 (18) 

N should be enough large to ensure the accuracy of the calculation. 

Based on equation (13), the following boundary conditions of the reference cell should be satisfied. 

i( ) /
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in z L in z

 

 F F                                                             (19) 
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 u u                                                               (20) 

where  , , , , ,
T

in x y z x y zQ M N M Q TF  represents the internal force vector including the shear force Qx, 

the bending moment My and the axial force Nz, which are the in-plane terms, and the bending 

moment Mx, the shear force Qy and the twisting moment Tz, which are the out-of-plane terms. 

According to the theory of a curved Timoshenko beam, these internal forces can be written as9,32 
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Substituting equation (18) into equations (21) and (22), it can be found that equations (19) and (20) 

are easily satisfied for each value of n and hence for the overall response. 

 

2.4 Solution to equations of motion 

 

Fig. 4 shows the solution process diagrammatically. The specific vectors and matrices in Fig. 4 

will be explained in the following derivation. 
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Property of periodic structure

   i( ) / ˆˆ , , e , ,F cn L v

c F Fz n L z
    

 u u

Define a periodic function

    i( / / )ˆ ˆ, , , , e F v v z

F Fz z
      

P u

    iˆ
, , , e n z

F n F

n

z
   





 P C

ˆˆ ( , , ) ( , ) ( , , )F F n F

n

nz V z     




  Cu

ˆˆ ( , , ) ( , ) ( , , )
N

F n F n F

n N

z V z     




 u C

Motion equations in the 

time domain

Motion equations in the 

frequency domain
( ) /

F
v   

ˆˆ ( , , ) ( , ) ( , , )
N

F n F n F

n N

z V z     




 u C

Motion equations for track 

modes

1ˆ
mV 

     ˆ
, , ,F F F     K U F

i 1 ˆˆ ( , , ) e ( , , ) ( , ) ( , )cn L

F F F Fz z
       u B K F

-

Multiplying equations by        and 

integrating the equations over the 

reference cell [0,L]

Fourier series

Fourier transform

i1
e d

2π
F v t

F F
z t z v

    




 
( )ˆu( , , ) u( , , )

＋

Inverse Fourier transform

 

Fig. 4 Solution process of equations of motion of a curved track 

 

Writing ( ) /
F

v    , the displacements of the rail from equation (17) can also be written as 

ˆˆ ( , , ) ( , ) ( , , )
N

F n F n F

n N

z V z     




 u C .                                                 (23) 

Multiplying both sides of the in-plane equations (7)-(9) by i( )1ˆ
( , , ) e m z

m FV z
        ,m N N   , 

and integrating the equations over the length  0, L of the reference cell, we can obtain: 

       

0

* **
2 2* *

2

i i1

0
1

i i

1ˆ ˆ( , , ) e e
s

F
m

x

x m F xm x m ym m zm

N
L

z z

h m rj F x l

j

K AG E AE A
K AG A v LU K AG L LU

RR

k V z u F dz
v

 

        

  



  
          
 

    ,    (24) 

     
* * *

2 2* *

1

1

i

ˆ ˆ( , , ) 0
s

x x

F x m zm m xm ym

N

z m rj F z

j

K AG E A K AG
A v K AG E A LU LU L

R R

k V z u

      

  




        
 

 
,           (25) 

     
*

2 2* * *i 0x

y F x y m ym x m xm zm

K AG
I v K AG E I L K AG LU L

R
                
 

,             (26) 

 Similarly, the out-of-plane equations become: 
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     

0

2 2* *

i i1

0
1

i

1ˆ ˆ( , , ) e e
s

F
m

y m F ym y m xm

N
L

z z

v m rj F y v

j

K AG A v LU K AG L

k V z u F dz
v

 

      

  



       
 

   
,                              (27) 

     

 

* * *
2 2* *

2

*

i

i 0

d x d

y x F x m xm m zm

y m ym

G I E I G I
K AG I v E I L L

RR

K AG LU

      

 

  
         

 

  

,                  (28) 

   

0

* * *
22 * 1

0 2
1

i i1

0

ˆ ˆi ( , , )

e e

s

F
m

N

x x d

d m zm m xm r m rj F z

j

L
z zl v

E I E I G I
I G I L L k V z

RR

h F bF
dz

v

 

        





  
        

 


 



 .             

(29) 

 In equations (24), (27) and (29), the integral on the right-hand side can be evaluated as 

0

0

0

, ( 0)1

0, ( 0)

F

F
m

z
L

z z l

l

L
F m

F dz v
v

m



 


 

 
 


i

i i e
e e = .                                               (30) 

Because  ,m N N   , in equation (24) 

1

1

1 1 1

1 2 1

1 1 1

1 1 1 2 1

1 1 1

1 2

ˆ ˆ( , , )

ˆ ˆ ˆ ˆ( ) ( ) ... ( ) (

ˆ ˆ ˆ
( ) ( ) ... ( )

...

ˆ ˆ ˆ
( ) ( ) ... ( )

s

s

s

s

N

h m rj F x

j

N r N r N rN N r

N r N r N rN
h

N r N r N rN

k V z u

V z V z V z V z

V z V z V z
k

V z V z V z

  



  

   

  

     

  

  



 
 
 
 
 
 
 
 



 

 

 

1 1 1

12 1 2 2

1

ˆ ˆ
) ( ) ... ( )

ˆ ˆ ˆ
( ) ( ) ... ( )

...

ˆ ˆ ˆ
( ) ( ) ... ( )

s s s

x NN r N r

x NN r N r N r

x N
N rN N rN N rN

UV z V z

UV z V z V z

UV z V z V z

  

    


   

   
   
   
   
   
   
    

.        (31) 

A similar expression can be obtained for the terms related to the fastener in equations (25), (27) and 

(29). The in-plane equations (24)-(26) can be written as 

     ˆ
, , ,in F in F in F     K U F ,                                                    (32) 

where    
T

( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , ,in F x N x N y N y N z N z NU U U U        U = ;  ,in F K  is the generalized 

stiffness matrix;  ˆ
,in F F  is the force vector, which can also be written as 

  0iˆ
, e /

Fz

in F inL v
  F F ,                                                           (33) 

where the jth element of in
F  is 

( )

, ( 1)

0, ( )

l

in j

F j N
F

j others

 
 


= .                                                           (34) 

Similarly, the out-of-plane equations (27)-(29) can be written as 

     ˆ
, , ,out F out F out F     K U F ,                                                  (35) 

where    
T

( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , ,out F x N x N y N y N z N z NU U          U = . 
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  0iˆ
, e /

Fz

out F out L v
  F F ,                                                          (36) 

where the jth element of out
F  is 

( ) 1

, ( 1)

, ( 5 3)

0, ( )

v

out j l v

F j N

F h F bF j N

j others

 


   
 

= .                                                     (37) 

The frequency responses of the rail at any point can be obtained: 

i 1 ˆ
ˆ ( , , ) e ( , , ) ( , ) ( , )cn L

in F F in F in Fz z
       u B K F

- ,                                       (38) 

i 1 ˆ
ˆ ( , , ) e ( , , ) ( , ) ( , )cn L

out F F out F out Fz z
       u B K F

- ,                                     (39) 

where ( , , )Fz  B  is the mode matrix, given by 

i( ) i( )

i( ) i( )

i( ) i( )

e e 0 0 0 0

( , , ) 0 0 e e 0 0

0 0 0 0 e e

N N

N N

N N

z z

z z

F

z z

z

   

   

   

 

 

 

 

       
 

        
        

B

－ －

－ －

－ －

.                (40) 

Through the inverse Fourier transformation, the dynamic responses of the rail in the time domain 

due to a moving harmonic force can be obtained as: 

0

ii

i i1 i

1 1
e d e d

2π 2π

1
e e d e

2π

F

F
c F

v tt

F F F

n L z tv t

F F

z t z z v

L z

 

 

      

    

 

 



 



 

 
  
 

 



( )

( ) '

ˆ ˆu( , , ) u( , , ) u( , , )

B( , , )K( , ) F

＋

-

,                                  

(41) 

where 
F

 K( , )  can be 
in F
 K ( , )  or 

out F
 K ( , ) , and F  can be in

F  or out
F . 

Equation (41) gives the dynamic response of the rail subjected to the moving harmonic load. If we 

set 0v  , the response of the rail due to a non-moving harmonic load applied at z=0 can be 

expressed as 

0i i11
e d e

2π

F
c Fn L z t

F F F
z t L z

      


 



 
  
 


( ) '

u( , , ) B( , , )K( , ) F
- .                                    (42) 

From equation (42), the amplitude of the harmonic response of the rail can be calculated by 

numerical integration: 

0i 1

1

1
e

2π

F
j c

M
n L z

F j j F j F

j

z L a z


     
 



 
( ) '

u( , ) B( , , )K( , ) F
-

                                       
(43) 

where 1 0.5a  , 0.5Ma   and 1 ( (1, ))ja j M  .  should be sufficiently small to ensure the 

required accuracy. 
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3 Model validation 

 To verify the validity of the analytical model described above, two comparisons are made 

between this model and solutions provided in the literature, [11] and [13]. 

In [11], the vertical displacement of the rail due to a moving load on a curved track was 

calculated using a finite element model. The parameters of this calculation are shown in Table 1.  

 

Table 1 Parameters of calculation from [11] 

Young’s modulus of rail E  2.1×1011 N/m2 

Shear modulus of rail G  7.956 ×1010 N/m2 

Cross-sectional area A  7.672×10-3 m2 

Second moment of area of rail for vertical bending 
xI  3.038×10-5 m4 

Second moment of area of rail for lateral bending 
yI  0.5123×10-5 m4 

Polar moment of inertia of rail 
0I  3.551×10-5 m4 

Damping loss factor of rail   0.1 

Density of rail   7850 kg/m3 

Vertical stiffness of fastener 
vk  20 MN/m 

Fastener spacing L  0.6 m 

Radius of curvature R  20 m 

Speed of load v  20 m/s 

Load magnitude 
vF  1 N 

 

The results are compared with those from [11] in Fig. 5. This shows the displacement at 

mid-span between two fasteners due to a harmonic moving load in two excitation frequency cases 

of 0 Hz and 20 Hz. It can be seen that the results calculated by the present model show a good 

agreement with the numerical solutions from [11]. 
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Fig. 5 Displacement at mid-span due to a harmonic moving load at (a) 0 Hz and (b) 20 Hz 

 

A second comparison is made with results from Reference [13]. This gave an analytical 

solution of response of a curved track continuously supported by a Winkler foundation under 

moving loads. Unlike [11], the results include the lateral and torsional response. The calculation 

parameters from [13] are shown in Table 2. 

 

Table 2 Parameters of calculation in [13] 

Young’s modulus of rail E  2.0×1011 N/m2 

Shear modulus of rail G  8.33×1010 N/m2 

Cross-sectional area A  7.69×10-3 m3 

Second moment of area of rail for vertical bending 
xI  3.055×10-5 m4 

Second moment of area of rail for lateral bending 
yI  0.513×10-5 m4 

Torsional constant of rail 
dI  0.423×10-5 m4 

Density of rail   7800 kg/m3 

Vertical stiffness of foundation 
vk  10 MN/m 

Vertical damping coefficient of foundation 
vc  2.45kNs/m 

Lateral and axial stiffnesses of foundation, 
hk  and 

zk  5.5 MN/m 

Lateral and axial damping coefficients of foundation, 
hc  and 

zc  1.82kNs/m 

Torsional stiffness of foundation 
rk  71kNm/rad 

Torsional damping coefficient of foundation 
rc  4.84Nms/rad 

Radius of curvature R  1000 m 

Speed of load v  250 km/h 
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The lateral, vertical and torsional displacements of the rail under a combination of moving 

loads of gravity and centrifugal forces are compared in Fig. 6. As can be seen from Fig. 6, excellent 

agreement is found for responses of the curved rail calculated by models in [13] and proposed in 

this paper.  

(a)                                      (b) 
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Fig. 6 (a) Lateral, (b) vertical and (c) torsional displacements of the rail under a moving load 

calculated by models in [13] and proposed in this paper 

 

4 Mobility and decay rate of the track due to non-moving harmonic loads 

 

In this section, the response of the track subjected to non-moving vertical and lateral harmonic 

unit forces is discussed. The response at the excitation point is expressed as the mobility, that is the 

velocity due to a unit harmonic force. In addition the decay rates of vibration along the track are 
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determined. The vertical response at Position A and the lateral one at Position B on the rail head  

due to a vertical force applied at Point A or a lateral one at Point B (Fig. 3) are calculated. In this 

calculation, Point A is placed on the centreline of the rail head (b=0). Parameters are chosen to 

correspond to a general non-ballast metro track. In this track, the GB60 rail and the DTVI2 fastener 

are used. A fastener spacing of 0.6 m and a track radius of 300 m are considered in the following 

calculations. Unless otherwise stated the parameters are as listed in Table 3. The fastener is 

modelled as a single layer of springs and dashpots. The length of the reference cell is chosen as the 

fastener spacing, so a single fastener is included in the reference cell. 

Table 3 Parameters of the metro track 

Young’s modulus of rail E  2.059×1011N/m2 

Shear modulus of rail G  7.919×1010N/m2 

Cross-sectional area A  7.725×10-3m3 

Second moment of area of rail for vertical bending 
xI  3.217×10-5m4 

Second moment of area of rail for lateral bending 
yI  0.528×10-5m4 

Torsional constant of rail 
dI  0.215×10-5m4 

Polar moment of inertia of rail 
0I  3.714×10-5m4 

Cross-sectional shear factor for vertical bending 
xK  0.4507 

Cross-sectional shear factor for lateral bending 
yK  0.5329 

Damping loss factor of rail   0.01 

Density of rail   7850kg/m3 

Vertical stiffness of fastener 
vk  60MN/m 

Vertical damping coefficient of fastener 
vc  0.04MNs/m 

Lateral and axial stiffnesses of fastener, 
hk  and 

zk  25 MN/m 

Lateral and axial damping coefficients of fastener, 
hc  and 

zc  16.7 kNs/m 

Torsional stiffness of fastener 
rk  337.5 kNm/rad 

Torsional damping coefficient of fastener 
rc  0.225 kNms/rad 

Fastener spacing L  0.6 m 

Radius of curvature R  300 m 

 

If a vertical harmonic force is applied on the centreline of the rail head, only out-of-plane 

dynamic responses of the rail are obtained, which include vertical and torsional responses. However, 

the torsional response around the shear centre of the rail leads to a lateral response at the rail head. 

On the other hand, a lateral force applied on the rail head can be decomposed into a lateral force at 
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the centroid and a torsional moment, so the dynamic response consists of both in-plane and 

out-of-plane responses according to Fig. 3. 

The vertical and lateral point mobilities and the cross mobility at the rail head are shown in Fig. 

7. In each case the mobility is shown at mid-span between two fasteners and directly above a 

fastener. From Fig. 7a, the vertical mobility has a peak at about 200 Hz, which corresponds to the 

resonance of the rail mass on the vertical fastener stiffness. At about 1100 Hz there is a sharp peak 

at mid-span and a corresponding dip above a fastener, which is the pinned-pinned resonance3,18 at 

which half a bending wavelength fits within one sleeper span. Moreover, the mobility of the curved 

rail supported by a continuous elastic foundation is also shown. Compared with the result for 

discrete fasteners, the results from this model show the mean trend; the pinned-pinned resonance 

disappears for the continuous foundation, while the first peak has the same frequency. Fig. 7c shows 

the corresponding lateral mobility. This has a higher amplitude than the vertical mobility due to the 

smaller lateral fastener stiffness, lower bending stiffness and additional flexibility introduced by the 

torsion of the rail. The first peak in this case corresponds to the resonance of the rail mass on the 

lateral stiffness of the fastener. Two peaks are found at mid-span, at about 530 and 640 Hz, caused 

by the pinned-pinned resonances of lateral and torsional motions of the rail. Again, corresponding 

dips are found above a fastener. Higher order pinned-pinned modes are seen at higher frequencies. 

The result for the continuously supported rail is again shown. Fig. 7b shows the vertical/lateral 

cross mobility of the rail. The magnitude is much smaller than either vertical or lateral point 

mobilities. The first peak here occurs at a similar frequency to those found in the vertical and lateral 

mobility. Both the vertical and torsional pinned-pinned modes of the rail appear in the cross 

mobility.  
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Fig.7 (a) Vertical and (b) lateral mobility at rail head under a vertical force, and (c) lateral mobility 

under a lateral force (0.6 m fastener spacing, 300 m radius) 

 

The effects on the frequency response of changes in the fastener stiffness, the fastener damping, 

the fastener spacing and the curvature of the track are next discussed. 

The vertical and lateral (cross) mobility at the rail head, both above a fastener and at mid-span, 

due to a vertical force are shown for different values of vertical fastener stiffness in Fig. 8. From Fig. 

8a, the frequency of the first peak rises with increasing stiffness and the response amplitude at the 

peak becomes larger. However, the frequency and amplitude at the pinned-pined resonance are not 

affected. Fig. 8b shows the vertical/lateral cross mobility of the rail which shows similar trends.  

The vertical and lateral responses at the rail head under a lateral force are shown for changes in 

lateral fastener stiffness in Fig. 9a and 9b. Similar trends are found to those seen in Fig. 8 for the 

effect of vertical stiffness. Again, the fastener stiffness has little influence on the pinned-pinned 

resonances of the rail. 
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Fig.8 (a) Vertical and (b) lateral mobility (cross) at rail head under a vertical force, with changes of 

the vertical fastener stiffness (0.6 m fastener spacing, 300 m radius) 
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Fig.9 (a) Vertical (cross) and (b) lateral mobility at rail head under a lateral force, with changes of 

the lateral fastener stiffness (0.6 m fastener spacing, 300 m radius) 

 

Fig. 10 shows the effect of changes in the fastener damping coefficient on the vertical and 

lateral mobility at the rail head. As the damping is increased, the amplitude of the mobility at the 

first peak is reduced. The pinned-pinned resonance frequencies become sharper with increasing 

damping as the fastener constrains the rail more. For low damping some oscillation can be seen in 

the mobility which is caused by the truncation of the number of fasteners. 
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Fig.10 (a) Vertical mobility at rail head under a vertical force, and (b) lateral mobility under a lateral 

force, with changes of the fastener damping (0.6 m fastener spacing, 300 m radius) 

 

The effect of changing the fastener spacing on the vertical and lateral point mobility of the rail 

is shown in Fig. 11. The fastener spacing affects the pinned-pinned frequencies significantly. These 

frequencies drop and the corresponding amplitudes rise as the spacing is increased. Moreover, as 

the fastener spacing is increased, the effective stiffness (per unit length) of the support is reduced so 

that the frequency of the first peak reduces and the mobility amplitude at the first peak increases. 
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Fig.11 (a) Vertical mobility at rail head under a vertical force, (b) lateral mobility under a lateral 

force, with changes of the fastener spacing (300 m radius) 

 

From the above results, which are all for a curved track with a radius 300 m, it can be seen that 

the effects of changes to the stiffness, the damping and the spacing of the fasteners are similar to the 

effects seen for a straight track26. 
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The effect of changing the curvature on the mobility of the rail is shown in Figs 12 and 13. The 

radius of curvature has a negligible influence on the vertical and lateral mobility of the rail when the 

radius is larger than about 15 m and 30m, respectively. The result for a straight track is not shown 

but has almost the same mobility as the curved track with 300 m radius in Figs 12 and 13b. 

Additionally, the torsional pinned-pinned resonance appears in the vertical mobility at about 640 Hz 

in the case of very small radii (Fig. 12a and 12b). The radius of curves on metro or railway lines is 

usually at least 100 m, in which case changes of the radius do not affect the mobility of the track. 

On tram tracks smaller radii are found but they are still in the region where the influence is 

negligible. For very small radii there are some changes, although such small radii are not found in 

practice. However, the cross mobility at the rail head is influenced greatly by the curvature (Fig. 

13a). The amplitude of this mobility increases significantly as the radius is reduced. The cross 

mobility for the straight track is also shown in Fig. 13a. This is much lower than the results for a 

curved track. The lateral force at the rail head causes a moment about the z-axis (see Fig. 3). The 

vertical displacement and rotation of the rail are produced for the curved track, while only the 

rotation of the rail occurs for the straight track. Therefore the cross mobility has a different trend for 

the curved and straight tracks.  
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Fig.12 Vertical mobility at rail head at (a) mid-span and (b) above a fastener under a vertical force 

with changes of the curvature (0.6 m fastener spacing) 
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Fig. 13 (a) Vertical (cross) and (b) lateral mobility at rail head at mid-span under a lateral force with 

changes of the curvature (0.6 m fastener spacing) 

 

Fig. 14 shows the track decay rates obtained for different radii of curvature. The decay rate 

(dB/m) is evaluated here according to the standard EN 1546133 by determining the transfer mobility 

to positions along the rail due to a point force at mid-span. The decay rate is given by: 

 

 

max

2

2

0
0

4.343






n

n

n

n

DR
A x

x
A x

                                                             (44) 

where  nA x  is the mobility at position nx  along the track,  0A x is the mobility at the excitation 

point 0x at mid-span, and nx  is the distance between nx
 and 0x . The curvature has an effect on 

the decay rates below 2000 Hz to some extent, while they are unaffected at high frequencies. The 

decay rates appear to increase as the radius reduces. There is a peak at about 640 Hz in the vertical 

decay rate due to the torsional pinned-pinned resonance of the rail for small radii. However, when 

the radius is greater than about 15 m it does not affect the vertical decay rate any more; similarly 

when the radius is greater than about 30 m it does not affect the lateral decay rate. These effects are 

mainly determined by the influence of the curvature on the point mobility, which appears in the 

equation for the decay rate (equation (44)). The track decay rates for a straight track, not shown, are 

virtually identical to those for a curved track with 300 m radius in Fig. 14. 
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Fig. 14 (a) Vertical and (b) lateral decay rates with changes of the curvature (0.6 m fastener spacing) 

 

5 Velocity of the rail due to moving harmonic loads 

 

The vibration velocity of the rail subjected to moving vertical and lateral harmonic unit forces 

is discussed in this section. The vertical velocity at Position A and the lateral velocity at Position B 

under a vertical moving load at Point A or a lateral one at Point B (Fig. 3) are calculated. The 

vertical load moves along the centreline of the rail head. The parameters of the track used in these 

calculations are the same as in the previous section, as listed in Table 3. A fastener spacing of 0.6m 

and a track radius of 300 m are considered. Unless otherwise stated the load speed is 100 km/h and 

the excitation frequency is 200 Hz, which is chosen to correspond to the peak in the vertical rail 

mobility. 

Figs 15 and 16 show the frequency content of the velocity at the mid-span point on the rail for 

different load speeds 50 and 100 km/h. Fig 15 shows the results due to a vertical moving load and 

Fig. 16 shows the corresponding results for a lateral load. The frequency content of the response of 

a curved rail has similar characteristics to that of straight track under a moving harmonic load28. 

The rail has a relatively large dynamic response at and near the excitation frequency of the moving 

load, and the velocity away from this frequency attenuates quickly. There are two peaks, above and 

below the excitation frequency, due to the Doppler effect in the rail. For example, the frequencies of 

the two peaks are 193 Hz and 207 Hz for the load speed 100 km/h in Fig. 15. The velocity in the 

vicinity of the excitation frequency drops as the load speed increases, while the width of the two 

peaks increases and the level rises at other frequencies. Moreover, some other small peaks can be 
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found as well as the above-mentioned two large peaks. These small peaks are caused by the discrete 

fasteners. 
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Fig.15 Frequency content of (a) vertical and (b) lateral velocity of rail under a vertical moving load 

at 200 Hz, with changes of the load speed (0.6 m fastener spacing, 300 m radius) 
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Fig.16 Frequency content of (a) vertical and (b) lateral velocity of rail under a lateral moving load at 

200 Hz, with changes of the load speed (0.6 m fastener spacing, 300 m radius) 

 

The rail velocity obtained in the case of periodically-spaced discrete fasteners is compared with 

the result for a continuous foundation in Fig. 17. They have the similar dynamic behaviour at and 

near the excitation frequency. However the small peaks away from this frequency are not found for 

the continuous foundation, which confirms that they are the result of the discrete property of the 

fasteners. 
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Fig. 17 Frequency content of (a) vertical and (b) lateral velocity of rail under a vertical moving load 

at 200 Hz in the cases of periodically discrete fasteners and the continuous foundation (0.6 m 

fastener spacing, 300 m radius, 100 km/h load speed) 

 

To show the effect of different excitation frequencies, the maximum vertical and lateral velocity 

amplitudes obtained in the time domain for a vertical moving load are shown in Fig. 18 as a 

function of excitation frequency. It can be seen that these velocity amplitudes have a similar 

tendency to the mobility under the non-moving harmonic load (Fig. 7). However, as a result of the 

moving load, the peak at the pinned-pinned frequencies for the mid-span case is split into two peaks, 

whereas above a fastener the peaks and dips associated with the pinned-pinned frequencies that 

were found in the mobility disappear.  

 

(a)                                    (b) 

10 100 1000
10

-6

10
-5

10
-4

V
e
rt

ic
a
l 
v
e

lo
c
it
y
 (

m
/s

)

Excitation frequency (Hz)

 mid-span           

 above a fastener

   

10 100 1000
10

-9

10
-8

10
-7

10
-6

L
a

te
ra

l 
v
e

lo
c
it

y
 (

m
/s

)

Excitation frequency (Hz)

 mid-span           

 above a fastener

 

Fig. 18 Maximum of (a) vertical and (b) lateral rail velocity amplitude for different excitation 

frequencies under a vertical moving load in the time domain (0.6 m fastener spacing, 300 m radius, 

100 km/h load speed) 
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To see the effect if changing the radius of the curvature, the frequency content of the rail 

velocity for a moving vertical load at 200 Hz is shown in Fig. 19 for different values of the radius. 

Equivalent results for a moving lateral load are given in Fig. 20. The curvature has little influence 

on the vertical rail velocity for a vertical load (Fig. 19a) or the lateral rail velocity for a lateral load 

(Fig 20b). However, the lateral response to a vertical load (Fig. 19b) and vertical response to a 

lateral load (Fig. 20a) are greatly affected by the curvature. For a straight track, different from the 

vertical response to a lateral load, the lateral response to a vertical load is zero as the vertical load at 

the centreline of the rail head does not cause a moment about the z-axis. 
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Fig. 19 Frequency content of (a) vertical and (b) lateral velocity of rail under a vertical moving load 

at 200 Hz, with changes of the curvature (0.6 m fastener spacing,100 km/h load speed) 
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Fig. 20 Frequency content of (a) vertical and (b) lateral velocity of rail under a lateral moving load 

at 200 Hz, with changes of the curvature (0.6 m fastener spacing, 100 km/h load speed) 
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Fig. 21 shows the maximum velocity amplitudes from the time domain at the mid-span position 

under a vertical and a lateral moving load, with an excitation frequency of 200 Hz. These results are 

plotted against the radius of curvature. The maximum velocity amplitude becomes larger for small 

radii of curvature apart from the lateral response to a lateral load which reduces. The maximum 

velocity is greater for a larger fastener spacing due to the reduction in support stiffness per unit 

length of track. For the vertical velocity under the vertical load, the maximum response is 

independent of the curvature for radii greater than about 15m, while for the lateral velocity under 

the lateral load it is affected significantly by curvature for radii less than about 30 m. The curvature 

has the same effect on the velocity of the rail as on the mobility due to a non-moving harmonic load 

(see Figs 12 and 13). When the radius of curvature is larger than 10 m, the maximum vertical 

responses to a lateral force (and vice versa) are inversely proportional to the radius. 
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Fig. 21 Maximum of time history of (a) vertical and (b) lateral velocity amplitude of rail under a 
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vertical moving load at 200 Hz, and (c) vertical and (d) lateral velocity amplitude under a lateral 

moving load at 200 Hz, with changes of the curvature (100 km/h load speed) 

 

6 Conclusions 

 

An analytical approach has been proposed to determine the response of a curved track subject 

to a non-moving or a moving harmonic load. The rail is modelled as a curved Timoshenko beam 

supported by periodically spaced discrete fasteners, and the dynamic responses in the vertical and 

lateral directions are taken into account. The displacement of the curved track in the frequency 

domain is expressed as the superposition of track modes which are associated with the Fourier 

series representation. The dynamic response of the curved track can be calculated efficiently using 

the periodic structure theory. The effect of various parameters on the dynamic behaviour of the 

track under non-moving and moving harmonic loads is discussed; these include the stiffness and 

damping of the fasteners, the fastener spacing, the radius of curvature, and the excitation speed. 

The effects of varying the stiffness, damping and spacing of the fasteners on the dynamic 

response of the curved track with a large radius are similar to those found by previous authors for a 

straight track. However, when the radius of curvature is very small it has some influence on the 

dynamic behaviour of the track to some extent. Specifically, the radius significantly affects the 

vertical mobility of the curved rail when it is smaller than about 15 m and the lateral mobility when 

it is smaller than about 30 m. Coupling between the vertical bending and torsion of the rail affects 

the vertical mobility for the curved track when the radius is less than about 15 m. Moreover, the 

curvature has a significant influence on the vertical/lateral cross mobility, the magnitude of which 

increases as the radius becomes small. The curvature leads to coupling of vertical and torsional 

motions and of lateral and longitudinal motions. 

The curvature has an effect on the track decay rate below 2000 Hz. The decay rates increase as 

the radius is reduced for both vertical and lateral excitation. Because the track decay rate (according 

to the standard [33]) depends on the point mobility of rail, these effects are mainly determined by 

the influence of the curvature on the point mobility.  

The frequency content of the dynamic response of the curved rail under moving harmonic loads 

has similar characteristics to those of a straight track. The curvature has little influence on the 
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vertical or lateral velocities of the rail for forces in the corresponding direction, whereas it has 

significant effect on the vertical velocity due to a lateral force and vice versa. When the radius is 

larger than 10 m, the maximum vertical/lateral cross amplitudes in the time domain are found to be 

inversely proportional to the radius. Furthermore, the amplitude of the vertical rail velocity for a 

vertical load is affected by the curvature when the radius is less than about 15 m, and the lateral 

vibration under a lateral load is affected when the radius is less than about 30 m.  
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