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ABSTRACT Inspired by the success of classical turbo codes, quantum turbo codes (QTCs) have also
been conceived for near-hashing-bound transmission of quantum information over memoryless quantum
channels. However, in real physical situations, the memoryless channel assumption may not be well justified
since the channel often exhibits memory of previous error events. Here, we investigate the performance of
QTCs over depolarizing channels exhibiting memory and we show that they suffer from a performance
degradation at low depolarizing probability values. In order to circumvent the performance degradation is-
sue, we conceive a new coding scheme termed as quantum turbo coding scheme exploiting error-correlation
(QTC-EEC) that is capable of utilizing the error-correlation while performing the iterative decoding at the
receiver. The proposed QTC-EEC can achieve convergence threshold at a higher depolarizing probability
for channels with a higher value of correlation parameter and achieve performance near to the capacity.
Finally, we propose a joint decoding and estimation scheme for our QTC-EEC relying on correlation
estimation (QTC-EEC-E) designed for more realistic quantum systems with unknown correlation parameter.
Simulation results reveal that the proposed QTC-EEC-E can achieve the same performance as that of the
ideal system of known correlation parameter and hence, demonstrate the accurate estimation of the proposed
QTC-EEC-E.

INDEX TERMS Quantum channels with memory, quantum turbo codes, iterative decoding, quantum error-
correction codes, Markovian correlated-noise, Markov process.

. INTRODUCTION of quantum error-correction codes (QECCs) [2].

UANTUM computing and communication exploit the QECCs make use of redundant auxiliary (also called an-

unique properties of quantum mechanics, such as the
superposition of states and entanglement [1] to provide
inherently fast and secure data processing. However, the
quantum bits (qubits) are intrinsically fragile and suscep-
tible to quantum decoherence imposed by the unavoidable
interaction between the qubits and the environment, inflicting
qubit errors. Therefore, the practical realization of a quantum
system relies on the preservation of the quantum coherence
of a quantum state. In order to mitigate the detrimental ef-
fects of quantum decoherence, several approaches have been
proposed [2]-[5], including the most well-known approach
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cilla) qubits to protect the data qubits. The first quantum code
was introduced by Shor in 1995 [2] that was only capable
of correcting a single qubit error in a nine-qubit block code.
Since then, many other QECCs have been developed that
can outperform the Shor’s nine-qubit code, with the goal
of approaching the quantum channel’s capacity. Inspired by
the near-capacity performance of the classical turbo codes
[6], quantum serial turbo codes or also known as quantum
turbo codes (QTCs) were conceived in [7], [8] and later
extended for entanglement-assisted coding schemes in [9]—
[12]. The superiority of QTCs in the context of memoryless
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depolarizing channels was demonstrated in [7]-[12], where
the QTCs were shown to exhibit a similar turbo-cliff region to
their classic counterparts in the vicinity of the quantum chan-
nel’s capacity. Another near-capacity quantum code family
is constituted by low density parity check (QLDPC) codes
[13]-[15]. However, it has been shown that there are several
decoding issues associated with QLDPC codes. Firstly, the
belief propagation decoding algorithm of QLDPC codes is
not capable of exploiting the degenerate errors. Furthermore,
the unavoidable length-4 cycles found in QLDPC codes
degrade their performance [8], [11]. Fortunately, all these
weaknesses of QLDPC codes can be circumvented by QTCs
can also offer a higher flexibility in terms of choosing the
code parameters such as the frame length, coding rate, con-
straint length and interleaver type.

The designers of QECCs have typically assumed that
the channels are memoryless, where the errors inflicted on
the transmitted qubits are identically and independently dis-
tributed (i.i.d). However, in real physical situations, the mem-
oryless channel assumption may only be valid upon applying
an external magnetic field to reset the channel’s memory
or by transmitting the successive signals at a sufficiently
low rate to allow the channels to naturally subside before
transmitting the next signal [16], [17]. Despite that, this is
not justified in a high-rate communication system where
the signals follow each other in quick succession. Physical
examples of channels exhibiting a memory in quantum in-
formation processing are constituted by unmodulated spin
chains [18], [19], micromasers [20], and fibre optics [21],
[22].

The quantum channel’s memory effect were first studied
in 2002 by Macchiavello et al. [23] for classical informa-
tion transmission over a depolarizing channel and it was
demonstrated that for a certain correlation value, encoding
the classical information into maximally entangled quantum
states is capable of enhancing the channel capacity over the
product quantum states encoding for two successive channel
uses. This work was then extended to quasi-classical depo-
larizing channels [24], to Pauli channels [25], to more than
two successive uses of Pauli channels [26] and to superdense-
coded qudit! Pauli channels [27]. A model and a unitary rep-
resentation of quantum channels with memory for classical
and quantum information was introduced by Bowen et al.
in [28]. In 2005, a unified framework for quantum channels
exhibiting memory was developed by Kretschmann et al. in
[17], where the upper bounds of classical and of quantum
channel capacities were derived for various scenarios, de-
pending on whether the transmitter, the receiver or the eaves-
dropper has the control on the initial and final memory states.
Most of the theoretical contributions on discrete quantum
channels with memory assume contamination by Markovian
correlated noise, since the properties of typical sequences
generated by a Markov process are well understood [23]-

'Qudit is the generalization of a qubit for a d-level quantum state where a
qubit corresponds to a 2-level quantum state.

2

[35].

Since most of the existing QECCs including QTCs [7]-
[12] are designed for memoryless channels, these QECCs
may not perform well for channels with memory. There
have been several studies on the performance of the exist-
ing QECCs in the context of quantum channels exhibiting
memory, specifically using the 3-qubit repetition code [31],
[32], [35], [36], CSS codes [36] and stabilizer codes [33].
The performance degradation of the existing QECCs became
more severe as the error-correlation of the quantum channels
became higher. In [35], [36], the authors proposed concate-
nated coding schemes relying on the 3-qubit repetition code
and a specific code based on the decoherence-free subspace
formalism of [5] which was investigated in the context of
a bit-flip (or a phase-flip) quantum channel. Although the
performance of this concatenated code improved upon in-
creasing the error-correlation, but for memoryless channels
and channels associated with low error-correlation, the stand
alone 3-qubit code outperformed the concatenated code. For
a recent review on quantum channels with memory please
refer to [16].

Against this background, we design a new QTC-based
coding scheme for depolarizing channels exhibiting memory.
The correlated errors are modeled by a 4-state Markov chain
and the error-correlation characterized by the transition prob-
abilities are exploited using our modified maximum a pos-
teriori (MAP) algorithm employed by the inner decoder. In
contrast to the concatenated coding schemes of [35], [36] that
are only suitable for a certain range of error-correlations, our
proposed coding scheme is capable of achieving performance
gains over the existing QTCs for the entire range of error-
correlations and does not suffer from any performance degra-
dation for transmission over memoryless channels. Hence,
our novel contributions can be summarized as follows:

1) We conceive a quantum turbo coding scheme exploiting
the error-correlation (QTC-EEC), when performing
syndrome-based iterative decoding. This is realized by
modifying the MAP algorithm employed by the inner
decoder to capitalize on the statistics of the error-
correlation. The proposed QTC-EEC outperforms the
existing QTCs and achieves higher performance gains
over the existing QTCs, when the error-correlation is
increased. Moreover, we demonstrate the accuracy of
extrinsic information transfer (EXIT) charts of QTC-
EEC, which is important for EXIT-chart based code
design/optimization.

2) We propose a joint decoding and estimation tech-
nique for our QTC-EEC relying on correlation estima-
tion (QTC-EEC-E). We demonstrate that the proposed
QTC-EEC-E is capable of accurately estimating the
unknown correlation parameter |1 and achieves the
same performance as that when p is perfectly known
at the receiver.

It is worth mentioning that although we specifically con-
sider unassisted transmission over a depolarizing channel in
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this paper, the proposed QTC-EEC and QTC-EEC-E can also
be applied for entanglement-assisted transmissions [10] as
well as for communicating over any Pauli channels, even
in conjunction with asymmetric error probabilities [37]. The
remainder of this paper is organized as follows. Our sys-
tem model and the channel capacity of quantum channels
associated with Markovian correlated noise are described in
Section II. Section III investigates the performance of the
existing QTCs for transmission over a quantum channel with
memory. The proposed QTC-EEC is detailed in Section IV.
Joint decoding and estimation of the correlation parameter
is proposed and analyzed in Section V. Finally, concluding
remarks are provided in Section VL.

Il. QUANTUM CHANNELS EXHIBITING MEMORY

In many contributions related to quantum channels exhibit-
ing memory, a class of quantum channels subjected to dis-
crete Markovian correlated noise was considered [23]-[35].
Similarly, in this paper we also consider the same class
of channels characterizing the temporal correlation between
the errors introduced by the quantum channels. The error
model presented in this section is based on the general Pauli
channels, which include the family of depolarizing channels.

A. MODEL OF QUANTUM CHANNELS EXHIBITING
MEMORY

For a memoryless Pauli channel, the completely positive
trace-preserving mapping of an input quantum state having
a density operator p in its operator-sum (or Kraus) represen-
tation [38] is given by [39]:

o(p) = >

AS{LX,Y,Z}
= pilpl+pxXpX + pyYpY + pzZpZ, (1)

paApA

where I, X, Y, and Z are Pauli operators defined by [39]:

10 01
(o 1) x=(00):
0 —i 10
Y:(i 0)’ Z:(o 1)’ @

and {pr, px, v, pz} are the probabilities of the Pauli opera-
tors {I, X, Y, Z} that are imposed on the input density oper-
ator p, respectively. Naturally, the sum of all the probabilities,
i.e. p1+px +py +pz is equal to 1. For depolarizing channels,
we have px = py = pz = p/3 and pr = 1 — p, where
p is the depolarizing probability. Here, we define the set of
{I,X,Y,Z} Pauli operators as the effective Pauli group G,
applied to a single qubit, while the general effective Pauli
group Gy applied to N qubits is an N-fold tensor product of
G1 8], [11].

VOLUME 4, 2016

P(X|X)

A\

FIGURE 1: The state diagram of a Markov chain where
{I,X,Y, Z}-state correspond to the {I,X,Y,Z} Pauli op-
erators, respectively.

P(Y[Y)

Let us now consider IV successive uses of the memoryless
channel described by Eq. (1) yielding

)= 5
A1 As.. ., ANEGN

(AR A .. @AN)P N (A @ Ay ® ... @ An),
3)

PALAs. Ay

where A; € G is the Pauli operator acted on the i-th use
of the channel with ¢ € {1,2,..., N}. The joint probability
obeys pA, A,.. Ay = PA, - PA, - --- - DAy, Since the errors
are imposed independently on each successive channel use.
In this case, Eq. (3) can be expressed as an N-fold tensor
product of Eq. (1) to yield &~ (o)) = [®(p)]*".

For channels with memory, the correlation of the errors on
each successive channel use can be described by the 4-state
Markov chain illustrated in Fig. 1, where the 4 states cor-
respond to the I, X, Y and Z Pauli operators imposed on the
transmitted qubits. The probability of traversing from a previ-
ous state A’ to the current state A is denoted as g 4|4/, which
is equal to the conditional probability of P(A|A’), where
{A’, A} € G;. The error-correlation can be characterized by
the correlation parameter p where p € [0,1], with 4 = 0
indicating zero correlation (memoryless channels) and 1 = 1
indicating perfect correlation. In reality, ;1 can be quantified
from the time delay At between two successive channel uses
and the typical relaxation time constant 7 of the channel
environment, which can be expressed as p ~ exp(—At/T)
[40], [41]. The relationship between the transition probability
g4 and the correlation parameter y is given by

qaja =1 —p) pa+tp-daa, “)

where 4/ 4 is the Kronecker delta function and p4 is the
probability of the Pauli operator A being imposed on the
transmitted qubits. The joint probability in Eq. (3) can be

ComPUted A PALAs... An T PAL "GA3 A - dAN| AN and

3
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therefore, the completely positive trace-preserving mapping
for channels with memory can be represented as [23], [28]

Py
A1 Asz... An€EGN

(A @A @ .. @ AN) PN (AL @ A ® ... @ Ap).
(5

p.Al : QA2|A1 Teee Q.ANlANfl

B. CHANNEL CAPACITY OF DEPOLARIZING
CHANNELS EXHIBITING MEMORY

The maximum amount of information that can be reliably
sent over the quantum channel at an arbitrarily low probabil-
ity of error is given by the channel capacity [42]. In general,
there are two types of capacities for quantum channels,
namely the classical and the quantum channel capacities that
correspond to the transmission of classical and of quantum
information through the quantum channels, respectively. In
this treatise, we particularly consider the transmission of
quantum information over the quantum channels with mem-
ory. However, at the time of writing, the exact quantum
capacity for the transmission of quantum information over
the quantum channels with memory has only been found for a
few specific channel models, as exemplified by the dephasing
channels [30], the amplitude-damping channels [43], and the
bit/phase-flip channels [34]. The exact quantum capacity of
the general Pauli channels including the depolarizing chan-
nels has not been found, hence we will use the lower capacity
bound derived in [34].

The lower bound of the quantum capacity derived for the
depolarizing channel with memory and having the correlation
coefficient i as well as the depolarizing probability p is given
by [34]

1
CY(np) = Jim — [IV(m) + (N =1)- 12 (. p)|
N—oc0

1 2 ©
where I )(p) and I )(u, p) represent the coherent informa-
tion associated with the first and subsequent transmissions
after the first, respectively. These coherent information con-

tributions can be computed using the equations below [34]:

IY(p) =1 — Hy(p) — p-logy(3), (7

I (p,p) = 1410 - (1 —p) -logy(ro) +r1 - p- logy(r1)
+ 79 (3—p)-logy(re) + 13- p-logy(rs),

®)
where we have the binary entropy function Hy(p) = —p -
logy(p) = (1 —p) -logy(1 —p),ro = (1 —p) - (1 = p) + p,
ri=0-p)-I—p)ro=%-1—-p)andrs="5-(1-
i) + p. In the case of a memoryless channel, substituting
i = 0 into Eq. (8) will yield I1?(0,p) = 1 — Hy(p) —
p - log,(3). Hence, the corresponding quantum capacity of
Eq. (6) becomes Cy (0, p) = 1 — Hy(p) — p - logy(3) for any
value of N. The resultant C3'(0, p) value is the same as the
hashing bound of Cq(p) = 1 — Hyp(p) — p - log,(3), which
sets the lower bound of communicating over a memoryless
depolarizing channel [44].

4
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FIGURE 2: Quantum capacity for depolarizing channels
exhibiting memory associated with various p and N values.

Fig. 2 depicts the effect of both the correlation coefficient
1 and of the number of channel uses IV on the lower bound of
the quantum capacity of the depolarizing channel subjected
to the Markovian correlated noise of Eq. (6). An increased
capacity is observed for a channel having a higher value
of p. Furthermore, when relying on more channel uses for
transmitting more qubits over the quantum channels would
also increase the attainable capacity, as shown for the channel
having i = 0.8 in Fig. 2, when the value of N increases from
3 to 3 x 10%. However, the difference in capacity becomes
insignificant for large values of N such as, for example
N = 3 x 102 to N = 3 x 10*. For a desired quantum
coding rate, the increase in capacity can also be viewed as
an increase in the noise limit p*, where reliable quantum
communications can be guaranteed. For example, a quantum
system with a coding rate of Ry = 1/9, the noise limit
improves from p* = 0.175 for the quantum channel having
u = 0.2 to p* = 0.297 for that associated with 4 = 0.6,
which tells us that a quantum system communicating over a
more correlated channel has a higher noise-tolerance.

lll. EXISTING QTCS TRANSMITTED OVER A QUANTUM
CHANNEL EXHIBITING MEMORY

In this section, we will first give an overview of the existing
QTCs [8], [11] and then evaluate the performance of the
existing QTCs for transmission over depolarizing channels
with memory using Monte Carlo simulations.

A. EXISTING QUANTUM TURBO CODES

Fig. 3 illustrates the block diagram of a QTC relying on
the serial concatenation of two stabilizer codes. An [n, k]
quantum code maps k logical qubits (uncoded qubits) onto
n physical qubits (encoded qubits) using (n — k) auxiliary
qubits |0,,_x), where n > k. For an [n, k] quantum convo-
lutional code (QCC) with m memory qubits, the parameter
set can be presented as [n, k, m]. In this work, we employ an
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FIGURE 3: System model of a quantum communication system relying on a QTC transmitted over a depolarizing channel

exhibiting memory.

[Mouts Kout, Mout] QCC as the outer code and an [Ny, Kin, Min]
QCC as the inner code. At the transmitter, the logical qubits
|9ou) are first encoded to physical qubits |t)oy) using the
outer encoder V¢ before being interleaved by the quantum
interleaver II. The interleaved qubits |¢i,) which correspond
to the logical qubits for the inner encoder Vi, are then
encoded to n = ngy X Nj, physical qubits |1Zm). The physical
qubits |1/;,) are serially transmitted over a depolarizing chan-
nel having a depolarizing probability p. The channel inflicts
an n-tuple error P;, € G,, on the transmitted qubits |t/ ).

At the receiver, the corrupted physical qubits P |1 )
are passed to the inverse encoder Vi’; to yield the cor-
rupted logical qubits of the inner encoder Li, |¢i,) and the
(nin — kin) syndrome qubits Siy |0y, %, ). The syndrome
sequence |0y, —k,) is invariant to the Z-component of S,
and therefore, the syndrome qubits Si, |0y, —k,,) collapse to
the X-component of the classical syndrome bits S{, upon
measurement [8], [11]. The erroneous logical qubits L, [1)i,)
are deinterleaved by IT~! to result in the erroneous physical
qubits of the outer inverse encoder Vgut, which are then
processed by vjut. This results in the potentially erroneous
decoded logical qubits of the outer encoder Loy [tou) and
the (nout — kour) syndrome qubits Syt |Op,, — ke, ) that collapse
to the classical syndrome bits S, upon measurement.

A degenerate iterative decoding scheme [8] is invoked for
the pair of classic syndrome-based SISO decoders, namely
the inner SISO decoder D;, and the outer SISO decoder
Dy for estimating the error coset Eom inflicted on the
logical qubits of the outer encoder. The channel information
Peh(Pin). the classic syndrome bits S and the a priori
information P§ (Li,) (equiprobable for the first iteration)
are processed by Dj, to compute the extrinsic information
P, (Lin), which is related to the error inflicted on the log-
ical qubits of the inner encoder. The extrinsic information
P% (Lin) is then de-interleaved by I17! and fed to Dy as
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oL . a
the a priori information Py,

(Lout). The computation of the
a posteriori information PS, (Loy) and the extrinsic infor-
mation P, (Pou) is performed by Dgy using the a priori
information P&, (Lo ), and the classic syndrome bits SZ,.

The extrinsic output Pg, (Pout) is then interleaved by II to
yield P, (Lin), which is fed back to D;, for the next iteration.
This process is repeated until convergence is achieved or
the preset number of iterations is reached. Finally, based
on the a posteriori information P, (Lou), @ MAP decision
is performed to determine the most likely error coset Eom,
which is then used by the recovery operation R to yield the
estimated logical qubits |z/~10ut>. The a posteriori and extrinsic
information outputs from both the SISO decoder Dy, and
Doy are computed using the degenerate MAP algorithm [8],

[11].

B. QBER PERFORMANCE EVALUATION

A rate-1/9 QTC consisting of two serially concatenated iden-
tical rate-1/3, memory-3 [3,1,3] QCCs is considered in all our
simulations throughout this paper. More explicitly, the [3,1,3]
QCC employed as both the outer and inner component codes
correspond to the code configuration termed as “PTO1R" in
[10].2 The seed transformation for the “PTO1R" configura-
tion in decimal notation is given by [10]:

U = {1355,2847, 558, 2107, 3330,

739,2009, 286, 473, 1669, 1979, 189}10,  (9)

and we define the overall configuration of the QTC as
“PTO1R-PTO1R" where the first and second “PTO1R" terms
correspond to the “PTO1R" configuration employed by the
outer code and inner code, respectively.

2The “PTOIR" term was denoted in [10] referring to the first code
configuration suggested in [8] by D. Poulin (“P"), J-P. Tillich (“T") and H.
Ollivier (“O").
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FIGURE 4: QBER performance of the rate-1/9 QTC (using
the “PTO1R-PTO1R" configuration of [10]) transmitted over
depolarizing channels associated with different p for a max-
imum of 8 iterations and an interleaving depth of 3 x 103
qubits.

The qubit error rate (QBER) performance of the existing
QTC in the face of depolarizing channels associated with
different y is depicted in Fig. 4. The performance of the
existing QTC is slightly improved for a higher ;1 value, but
only in the high p-value region, for example for p > 0.14
in Fig. 4. On the other hand, in the low p-value region, we
can see that the performance of the existing QTC is degraded
upon increasing the p value. If we consider the QBER of
1075, the existing QTC encountering the memoryless chan-
nels (1 = 0) has the best performance. However, the existing
QTC does not seem to work well for channels exhibiting
memory (x> 0), since the performance of the existing QTC
becomes worse for higher values of . This is expected due
to the assumption of ;4 = 0 used in existing QTCs and as the
actual p deviates away from 0, the performance degradation
of existing QTCs becomes more significant. Therefore, a new
QTC-based coding scheme has to be designed for exploiting
the error-correlation characterized by different values of p.

IV. QUANTUM TURBO CODING DESIGN EXPLOITING
THE ERROR-CORRELATION

In Section II-B, it was shown that the capacity of the depo-
larizing channels increases with ;. However, the results of
Fig. 4 suggest that the existing QTCs encountering a channel
exhibiting memory perform worse than over the memoryless
channel especially for channels associated with a higher
value of u. Therefore, a new quantum turbo coding scheme
known as QTC-EEC is conceived for exploiting the error-
correlation imposed by the channel and for circumventing
the performance degradation exhibited by the existing QTCs.
The proposed QTC-EEC relies on the appropriate modifica-
tion of the MAP algorithm employed by the inner decoder
to incorporate the memory state of the previous error. In this

6

section, we shall first present the modified MAP algorithm,
followed by its EXIT chart analysis and by the performance
evaluation of the proposed QTC-EEC.

A. MODIFIED MAP ALGORITHM CONCEIVED FOR
EXPLOITING THE ERROR-CORRELATION

The degenerate MAP algorithm [8], [11] employed for the
existing QTC assumes that the quantum channels are mem-
oryless. In order to exploit the memory of the depolarizing
channels, the algorithm employed by the inner decoder has to
be modified. Based on the Markovian correlated-error model
described in Section II-A, the Markov state of the previous
error can be incorporated into the existing trellis states of the
QCC and this results in an increase of the total number of
trellis states from 4™ to 4™n+! states. The modified MAP
algorithm is based on this trellis expansion, which is the price
paid for exploiting the correlation p for the computation of
the a posteriori probabilities.

The correlated errors of depolarizing channels with mem-
ory can be characterized by the transition probabilities given
in Eq. (4), which depend on the value of the depolarizing
probability p and on the correlation parameter . We will
exploit these transition probabilities in our modified MAP
algorithm and since the transition probabilities have already
included p, we can omit the contribution from the channel’s
output information P.,. Instead, we include it along with the
transition probabilities g 4 o+ in the modified MAP algorithm,
where A’ and A are the binary-representations of the Pauli
operators A’ and A, respectively and {4, A} € G123 In
the proposed QTC-EEC, the modified MAP algorithm is
only employed by the inner SISO decoder Dj,, while the
outer SISO decoder D, still employs the original degenerate
MAP algorithm [8], [11]. The modification of the degenerate
MAP algorithm is based on a similar technique of modifying
the MAP algorithm for correlated binary sources in the
classical domain [45]-[47].

The degenerate MAP algorithm is executed in the classic
domain, hence we will replace the Pauli operators P, L, S
and G by the classic binary-representation P, L, S, and G,
respectively using the Pauli-to-binary isomorphism, which
maps each qubit onto two classical bits [8], [11]. For the
sake of generalization, we will omit the subscript ‘in’ and
‘out’ whenever our discussions apply for both the inner and
outer decoders throughout the following discussions. For a
sequence of 1" blocks of k logical qubits (correspondingly, n
physical qubits),* let L = [Ly, Lo, ..., L, ..., L] and P =
[Py, Ps,..., Py, ...Pr] where Ly € Gy and P, € G,,. More
explicitly, L; = [L},L?,...,L¥] and P, = [P}, P?, ..., P!].
Based on the circuit representation of a QCC [11], we have

(Mt : Pt) = (Mt—l : Lt : St)U, (10)

3Since A’ and A are the binary-representation of Pauli operators A’ and

A, respectively, we have g4 47 = g4 and similarly, pa = p4 for
{A’, A} € G;.

4The T number of blocks may include the block(s) of terminated qubits.
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where the colon (:) represents the concatenation operation,
U is the 2(n + m) x 2(n + m) seed transformation matrix
and M € G,, is the memory state having a length of
2m bits. The seed transformation U can be decomposed as
U = (Up : Up), where Uy and Up are binary matrices
constructed by the first 2m columns and the last 2n columns
of U, respectively. Hence, we have

My = (Mtfl : Ly

:S)Uw,s an

Pt = (Mttht : St)UP (12)

We have derived the a posteriori probabilities, P°(Liy ;)
and P°(Py,,;) using the modified degenerate MAP algorithm
as follows:

P°(Lint) £ P (Lin|SE)
X Z P Liy t Oét_1(l/, f) : Bt <Mn7t’ Rn";)
v,0,§
K HqP,“lP,if (13)
and

PO(Pin,t) éP( in t| in t)

x> P
v,\,0,€

MNin

ary e 1] e e (14)
=2

where v € Gy, A € Gg, 0 € G and £ € Gy,
while 0 = (0, : 0,) having 0, = S7. The variable &
corresponds to all possible errors imposed on the n;,-th qubit
at time instant t — 1, i.e. P, | = & Based on Eq. (11)

in,t—
and Eq. (12), we have Mi,; = (v : L, : o)Up and
P = (v @ Lin gt )UP’ where Py ¢ = [Pm t’Ple1 t Plglﬂ
and Lin; = [L},, L2 ,,...,Li"]. The o sign indicates that

the left-hand-side term is proportlonal to the corresponding
right-hand side term, with the proportionality factor for a
fixed ¢ being given by normalization. This ensures that for
a fixed t, the sum of probabilities of the left-hand-side term,
e.g., P°(Lin¢) in Eq. (13) and P°( P, ;) in Eq. (14) is always
equal to 1.

The forward recursive coefficient «; and the backward
recursive coefficient 8;_, are formulated as:

Qi (Min,t; P;,L"{g)
é P (Min,tv an

in,t

m<t)

X Z Pa(Limt = )\) . Oét_l(

v,A,0,8

TNin
)apy e H Ip] ,1Pi"
(15)
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Ling = A) - a1 (v, §) - 5t( mtaPl:f‘i)

and
n
67& 1( in,t— 1,Pm1; 1)
A ST
_P(M“t 1’13111[2‘5 1| in>t—1)’

O(ZPG mt— 5t (Mnt7 mt)
Min

1
Hqut\P,ﬁt ’

respectively, where Min ; = (Min¢—1 : A : 0)Ups and Py p =
(Mint—1: A :0)Up.

The boundary conditions for o; at ¢ = 0 and 5, at t = Tj,
can be computed as:

qu P tin

mf‘ in,t—1

(16)

LA ifyT = SE
g (MimO 7 Pl = A) =gz o (17)
07 if ng # Singl,O
and
ﬂTm ( inT, = 7> Plz”&’m = A) = qyt|A- H Qryi|yi=1 (13)
j=2
respectively, where A € G1, v € G,, and +” is the X-

component of .

The marginal a posteriori probabilities P° (Lfnt> for
Jj € {1,.. k}andPO( )fOl‘]E{l
computed from P°(Li, ;) and P°(P,.), respectively. The
) forj € {1,....k}

n} can then be computed

it .,n} are then

marginal extrinsic probabilities P¢ (Lfn '
and P° Plfl ) for j € {1,..,
by taking out the a priori information from the resultant a
posteriori information, i.e. we have

L (t) (19)
)
I R

P (Poe)

It is worth noting that at ;4 = 0 (memoryless channels),
we have g4 40 = pa for {A’, A} € G and hence, the term
ar: e [T} Gps | po-+ in Bq. (13), Eq. (14) and Eq. (15) can
be simplified to '

Min Min
E Hq PP T HPP,;t
= P (Pnyt), 2D
and similarly in Eq. (16),
Nin Min
apy 1P, HqP.;tP.,i# - HPP,L
= P%Pin,t). (22)
7
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Therefore, the computation of the a posteriori probabilities
using the modified degenerate MAP algorithm is equivalent
to the computation of the a posteriori probabilities using the
original degenerate MAP algorithm [8], [11] at = 0.

B. EXIT CHART ANALYSIS AND QBER PERFORMANCE
EVALUATION

EXIT-charts constitute an essential tool that has been widely
used for the design of near-capacity classical codes as a
benefit of its capability of visualizing the convergence be-
havior of iterative decoding schemes [48], [49]. The classical
non-binary EXIT chart technique of [50], [51] was adapted
to the quantum syndrome decoding approach in [12] which
was realized by exploiting the equivalent classical represen-
tation of the quantum code and based on the analogy of the
memoryless depolarizing channel with the binary symmetric
channel. The EXIT chart conceived for the quantum domain
models the a priori information related to the error-sequence
imposed on the logical qubits (or physical qubits), unlike its
classical counterpart where the a priori information concern-
ing the uncoded (or encoded) bits is modeled.

In this treatise we adopt the quantum-domain EXIT charts
[12] to evaluate the EXIT characteristics of the inner SISO
decoder Dj, and of the outer SISO decoder D, in Fig. 3 for
depolarizing channels with memory. There are four informa-
tion terms involved in the exchange of information between
Di, and Dy and the information is given in terms of the
average mutual information (MI) for the EXIT chart analysis.
The four information quantities involved are the average a
priori MI of Dy, corresponding to L;, denoted as I,(Li,),
the average extrinsic MI of Dj, corresponding to L;, denoted
as I.(Liy), the average a priori MI of D, corresponding to
P,y denoted as I,( Py, ) and lastly, the average extrinsic MI
of Doy corresponding to Py, denoted as I ( Py ). The EXIT-
functions Ti, for Dy, and 7oy for Dy, are given by

Ie(Lin) = ﬂn(la(Lin)ap» ,u) (23)
and
Ie(Pout) = %ut(Ia(Pout))a (24)

respectively. The value of I.(L;,) is affected not only by
the I,(Liy) value but also by the depolarizing probability
p and by the Markovian correlation p of the depolarizing
channel exhibiting memory. Meanwhile, the value of I (Pyy)
depends only on the value of I,(Poy)-

The EXIT curves of the inner SISO decoder employing the
original MAP algorithm (for QTC) and the modified MAP
algorithm (for QTC-EEC) for transmission over depolarizing
channels having different ;4 values are portrayed in Fig. 5.
It can be observed that as the channels exhibiting stronger
error-correlation, the EXIT curves of the QTC emerge from a
higher I.(L;,) value at I,(Li,) = 0 and terminated at a lower

8

—O— Inner QTC @ p=0

0.2F =T mT —FE— Inner QTC @ p=0.2
—A— Inner QTC @ p=0.6
{ —— Inner QTC-EEC @ p=0
{ :g: Inner QTC-EEC @ u=0.2
0 : : Inner QTC-EEC @ p=0.6
0 0.2 0.4 0.6 0.8 1
Ia(Lin)

FIGURE 5: EXIT curves of the inner decoder of the existing
QTC and the proposed QTC-EEC for the “PTO1R" config-
uration of [10] for transmission over depolarizing channels
having different x4 evaluated at p = 0.23.

I.(Li,) value at I,(Li;,) = 1.° On the other hand, extrinsic
MI I.(Li,) gains are observed for the QTC-EEC across all
I,(L;y,) values, as u increases. The proposed QTC-EEC using
the modified MAP algorithm achieves higher extrinsic MI
I.(L;,) values than the existing QTC that uses the original
MAP algorithm for ; > 0. At y = 0, our proposed inner
decoder (QTC-EEC) has identical EXIT curves to the exist-
ing inner decoder (QTC)® since our modified MAP algorithm
is simplified to the original MAP algorithm at ¢ = 0. The
I.(L;,) gains achieved by our proposed inner decoder (QTC-
EEC) over the existing inner decoder (QTC) would improve
the decoding convergence threshold at a higher depolarizing
probability p.

Fig. 6 shows the matching between the EXIT curves of the
proposed inner decoder at different p values and of the outer
decoder for a depolarizing channel associated with 1 = 0.6.
It can be deduced from Fig. 6 that the convergence threshold
pb is at p = 0.225, since the tunnel between the curves
corresponding to the inner and outer decoders is marginally
open at this point and increasing p beyond p = 0.225, to
say p = 0.23 closes the EXIT tunnel. Fig. 6 also depicts
two snapshot decoding trajectories at p = 0.225 using an

STt was found in [7] that the QCCs without pre-shared entanglement
cannot be simultaneously recursive and non-catastrophic. All QCCs includ-
ing the “PTOIR" code have non-recursive and non-catastrophic properties.
Hence, QTCs with a QCC as the inner code have a bounded minimum
distance and the EXIT curve for the inner decoder is only capable to reach
(z,y) = (1,1) point at very low values of p, whereas the classical recursive
inner codes can reach (z,y) = (1, 1) point for any p value [12].

In the simulations, we deliberately used the same samples for both
decoders to show the similarity of both decoders at © = 0.
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FIGURE 6: EXIT chart and two snapshot decoding trajec-
tories of the rate-1/9 QTC-EEC for the “PTO1R-PTO1R"
configuration of [10] transmitted over depolarizing channels
having p = 0.6. An interleaving depth of 3 x 10* qubits was
used.

TABLE 1: Distance to capacity for the QTC-EEC over depo-
larizing channels having p = {0,0.2,0.6}

Correlation parameter, /1 0 0.2 0.6

Convergence threshold, pE 0.125 0.135 0.225
Noise limit, p* 0.160 | 0.175 0.297
Distance-to-limit, pF /p* 0.78 0.77 0.76

interleaver length of 3 x 10* qubits. The trajectories are based
on the actual performance and it can be seen in Fig. 6 that the
trajectories are well-matched with the corresponding EXIT
curves. Therefore, the accuracy of our EXIT chart predictions
is verified.

The convergence threshold p® at g = 0 and pp = 0.2 is
given in Table 1. The noise limit p* for p = {0,0.2,0.6}
is obtained from the corresponding capacity curve seen in
Fig. 2. The distance from the limit given as pt/p* [37] is
then determined as tabulated in Table 1 for the depolarizing
channels associated with ;1 = {0,0.2,0.6}. The memoryless
channel at ¢ = 0 has the shortest distance from the limit,
which is 0.78 and the distance from the limit for ;x = 0.2 and
u = 0.6 is not far from that of the memoryless channel sce-
nario associated with the distance of 0.77 and 0.76, respec-
tively. The “PTO1R" configuration was specifically designed
for memoryless channels in [8], [10]. This suggests that the
performance of the proposed QTC-EEC can be potentially
improved by using different code configurations in order to
approach the capacity limit. The search for the optimal inner
and outer component codes of the QTC-EEC for different p
values remains an open problem for future investigations.
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FIGURE 7: QBER performance of the rate-1/9 existing QTC

and of the proposed QTC-EEC for transmission over depo-

larizing channels exhibiting memory relying on the “PTO1R-

PTOIR" configuration of [10] for a maximum of 8 iterations

and an interleaving depth of 3 x 103 qubits.

0.135@ =02
pF=0.225@ 1i=0.6

/
/
/

pE
E

The QBER performance of the proposed QTC-EEC in
the face of depolarizing channels associated with y =
{0,0.2,0.6} is depicted in Fig. 7. The turbo-cliff region starts
around the p = pF (pf value, as seen in Table 1), since a rapid
QBER drop can be observed as p decreases beyond p = pF.
Therefore, our EXIT chart predictions are consistent with
the QBER simulation results. The performance curves can
be improved to closely approach p = pF by increasing the
number of iterations and by using higher interleaving depths
[48]. Fig. 7 also compares the performance of the proposed
QTC-EEC to that of the existing QTC at = {0,0.2,0.6}.
We have deliberately used the same set of samples for the
QTC-EEC at ;v = 0 to demonstrate that the same perfor-
mance is achieved at . = 0 as that of the existing QTC. As
increases, we can observe the performance degradation of the
existing QTC especially in the error-floor region, whereas,
the performance of QTC-EEC is significantly improved and
better performance gains were achieved than by the existing
QTC at x = 0.

Fig. 8 compares the QBER performance between the pro-
posed QTC-EEC and the QTC relying on the Markov de-
coder (QTC-MD) at ;x = 0.2 and 0.6. The QTC-MD scheme
is a three-stage serially concatenated decoding scheme con-
sisting of two component decoders of the existing QTC,
where a Markov decoder is invoked for exploiting the error-
correlation. The Markov decoder is based on the MAP algo-
rithm designed for the classical soft-bit source decoding in
[52], [53], but here we consider the soft decoding benefits of
error-correlation instead of source-correlation. The proposed
QTC-EEC has an increased computational complexity as the
number of trellis states at the inner decoder is expanded by a
factor of 4 compared to the existing QTC, i.e., from 4™ to

9
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FIGURE 8: QBER performance of the proposed QTC-EEC

and of the QTC-MD for transmission over depolarizing chan-

nels exhibiting memory relying on the “PTOI1R-PTOIR"

configuration of [10] having a coding rate of 1/9 and an

interleaving depth of 3 x 10% qubits.

4mint1 trellis states, where we have m;, = 3 for the “PTOIR"
configuration. The decoding complexity is proportional to
the product of the total number of trellis states (both com-
ponent decoders) and the number of iterations. Therefore,
the QTC-EEC associated with § iterations has a complexity
proportional to (4% 4+ 4%) x 8 = 2560. For the sake of a
fair comparison in terms of the complexity, 20 iterations are
invoked for the existing QTC ( resulting in a complexity of
o (4% 4 4%) x 20 = 2560) and the QTC-MD (resulting in a
complexity o (4% 443 +4) x 20 = 2640). It can be observed
that at a QBER of 10~4, the proposed QTC-EEC outperforms
the QTC-MD schemes for depolarizing channels associated
with ¢ = 0.2 and 0.6.

V. JOINT DECODING AND ESTIMATION OF THE
CORRELATION PARAMETER

In the previous section, we have shown the efficiency of the
proposed QTC-EEC in exploiting the error-correlation from
quantum channels exhibiting memory given, that we have
the knowledge of u. However, the value of y is unknown
in practical communication systems and it may vary from
one transmission to another, depending on the condition of
the channel at the point of the transmission. In this section,
we propose a joint decoding and estimation scheme termed
as QTC-EEC-E for the simultaneous estimation of p while
performing the iterative decoding.

The estimation is performed every time the modified
MAP algorithm employed by the inner decoder is acti-
vated. Before invoking iterative decoding, we assume that
the initial value of p is given by [, = 0.5. The error
imposed on the physical qubits of the inner code is given
by Pn = [Pni1,Pag2, . Puyt,---Pnr,] Where we have
Pn: = [PL,, P2 P’ P'"]. Hence the total num-

in,¢>Lin,tr o Lingeo - Linyt

10

ber of qubits transmitted for the whole frame is N = Tj, X njy,
which corresponds to N channel uses. The error imposed on
the j-th qubit at time instant ¢ of Py, i.e. P} , corresponds to
the error corrupting the (ni, (¢ — 1) 4 j)-th qubit of the whole
frame. Therefore, we denote ]Dii,t as Ap,(t—1)+; and can
alternatively represent P, as P, = [A1, Ao, ..., 4;, ..., AN],
where we have i = n,(t — 1) + j.
The procedure of estimating the correlation parameter y is
as follows:
o Step-1: Compute the joint a posteriori probability
P°(A;_1 = ALA; = A) for {A,A} € G and
i € {2,3,..., N}. This can be carried out by comput-
ing the joint a posteriori probability P° (PﬁjLD P
from Eq. (14) (used in the modified MAP algorithm) as

follows:
PO (Plrg:%fl = A/, Pin,t)
£p (Pﬂ_";_l =A" Pn: Sigﬁ,t) )
x Z P (Ling = A) - o1 (v, A') - By (M““PIZ:Q
v\, 0
cary i [Lam mre *)
j=2 ’

Let us now represent P° (Pﬂj‘g_l, Pm,t) as

p° (An;“(t—l)u Anin(t—1)+17 Ani“(t—1)+27 ) An;n(t—l)—i-nin) .
(26)

We can then obtain the marginal probabilities
P (Apyt-1)s Ani(t—1)+1)> P (A t=1)415 A (t—1)42)5
e @Nd PP (A 1) i —15 Ani (4—1)4nsy ) from Eq. (26).

o Step-2: Find the transition probabilities Gq4r =
P(A; = A|A;—y = A’) from the a posteriori proba-
bilities using

N
STPY(A;q = AL A = A)
=2

qajar = N - @n
S PO(Ar 1 = A)

=2

o Step-3: The relationship of g4 4+ and the correlation
parameter p is given by gajar = (1 — p)pa + pdara.
Hence, the correlation parameter [1 4+ 4 that corresponds
to each 4|4/ can be expressed as follows:

ifA'=A

daja’ —PA
ap =1 172a ’ 28
praa {1—‘1;:, w4

where p4 is the probability of the Pauli operator A
imposed on the transmitted qubits.

Step-4: Obtain the estimated [ by finding the mean of
the set {{ias4}. Since € [0,1],if & < 0, then i = 0
andif i > 1, then o = 1.

Step-5: Update the transition probabilities using the es-
timated /i, where the updated transition probabilities de-
fined as G| - are given by Gajar = (1 —fi)pa + /0.
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FIGURE 9: QBER performance of the QTC-EEC-E with un-
known p, of the QTC-EEC with unknown p and of the ideal
system of QTC-EEC with known g after 20 iterations. All the
coding schemes rely on the “PTO1R-PTOIR" configuration
of [10] having a coding rate of 1/9 and an interleaving depth
of 3 x 102 qubits.

The inner SISO decoder will then use the updated
transition probabilities G4 4+, when invoking the MAP
decoding during the next iteration.

o Step-6: Step-1 to Step-5 is repeated at every iteration to
re-estimate i and correspondingly, G|

The performance comparison when y is unknown between
the QTC-EEC-E and QTC-EEC (1 = 0.5 is assumed) for
transmission over depolarizing channels associated with 1 =
{0.2,0.6,0.7} after 20 iterations is portrayed in Fig. 9. The
superiority of the QTC-EEC-E is demonstrated, since we can
observe that the QTC-EEC-E equipped with the estimation
capability outperforms the QTC-EEC having no estimation
capability for all the evaluated cases, when the knowledge
of u is not available at the receiver. Since the QTC-EEC
always assumes p = 0.5 regardless of the actual i value, the
performance gap between the QTC-EEC-E and QTC-EEC
becomes more significant, when the actual y of the channel
is further away from p = 0.5. Moreover, it can be observed
that there is almost no performance loss between the QTC-
EEC-E with unknown g and the ideal system of QTC-EEC
with known p. Therefore, a near-perfect estimation using the
proposed QTC-EEC-E is demonstrated.

Fig. 10 shows the QBER performance of both the QTC-
EEC-E (with unknown p) and of the QTC-EEC (with known
1) as a function of the number of iterations at p = 0.6.
The performance of the QTC-EEC-E converges to the QBER
level of the ideal QTC-EEC having a known g after a
number of iterations for all the evaluated cases at p =
{0.19,0.20,0.21}. This suggests that the QTC-EEC-E is
capable of achieving the same performance as the ideal
system but it requires more iterations to reach the steady-state
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FIGURE 10: QBER as a function of the decoding itera-
tion number for the QTC-EEC-E with unknown p and the
ideal system of QTC-EEC with known p over depolarizing
channels having © = 0.6. All the coding schemes rely on
the “PTOIR-PTO1R" configuration of [10] associated with a
coding rate of 1/9 and an interleaving depth of 3 x 10 qubits.

QBER. The number of additional iterations required depends
on the value of fi;y; (the initial value of /i). Observe in Fig. 10
that [i;,; = 0.5 can reach the steady-state of the QBER much
faster than when fi;,; = 0. This is simply because fii,; = 0.5
is closer to the actual ;x = 0.6 and therefore the closer the
value of [, to the actual p, the less iterations are required
for reaching the steady-state of the QBER.

VI. CONCLUSIONS

In this paper, the design of QTCs for depolarizing channels
exhibiting memory has been considered. The performance
of an existing QTC over depolarizing channels exhibiting
memory has been investigated and it has been shown that the
performance of the existing QTC in the low p-value region is
degraded for channels having a higher correlation. In order to
circumvent the performance degradation problem, QTC-EEC
has been proposed for exploiting the error-correlation when
performing iterative decoding. The proposed QTC-EEC is
capable of achieving the convergence threshold at a higher
depolarizing probability for channels with a higher value
of the correlation parameter and furthermore, sharp turbo-
cliff without significant error-floor can be seen exhibited by
the proposed QTC-EEC. We have shown that the proposed
QTC-EEC achieves a performance near to the capacity and
outperforms the relevant benchmark systems, i.e. both the
existing QTC and the QTC-MD in all the evaluated cases.
For systems with unknown correlation parameter, we have
conceived a joint decoding and estimation scheme based on
the QTC-EEC scheme termed as QTC-EEC-E. Simulation
results have revealed that the proposed QTC-EEC-E achieves
the same performance as that the ideal system having perfect
knowledge of the correlation parameter and hence, demon-
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strate the accurate estimation of the proposed QTC-EEC-E.
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