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Abstract: The current advances in new generation X-ray sources are calling for the development
and improvement of high-performance optics. Techniques for high-sensitivity phase sensing
and wavefront characterisation, preferably performed at-wavelength, are increasingly required
for quality control, optimisation and development of such devices. We here show that the
recently proposed unified modulated pattern analysis (UMPA) can be used for these purposes.
We characterised two polymer X-ray refractive lenses and quantified the effect of beam damage
and shape errors on their refractive properties. Measurements were performed with two different
setups for UMPA and validated with conventional X-ray grating interferometry. Due to its
adaptability to different setups, the ease of implementation and cost-effectiveness, we expect
UMPA to find applications for high-throughput quantitative optics characterisation and wavefront
sensing.
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1. Introduction

The current trend towards extremely brilliant and coherent X-ray beams has initiated a new era for
X-ray science, in particular in the fields of X-ray imaging and diffraction, allowing unprecedented
spatial and temporal resolution [1,2]. To fully exploit the coherence properties of the X-ray beam,
precise and aberration-free optical elements, such as refractive lenses, mirrors and diffractive
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optics, are desired. The need for testing and continuously improving these components has led to
an increasing demand for accurate, precise and sensitive methods for optics characterisation and
wavefront measurement.

Many established ex-situ metrology techniques, mostly in the visible light regime, such as
the Fizeau interferometer [3, 4] and slope-measuring profilers [5–7], can provide detailed and
accurate information about some types of optics, e.g. mirrors, while they are less suitable for
others, such as X-ray refractive lenses. Furthermore, it is important to analyse the performance of
the optical elements in-situ and at-wavelength, under the same or similar conditions as they are
typically used. In particular, mechanical stress, beam-induced heat load, vibrations and drifts
can have an influence on the performance of the optics and should hence be comparable to the
experimental conditions when performing the quality assessment.
Methods like the Hartmann [8] or Shack-Hartmann [9] sensor have been translated from the

visible to the soft [10,11] and hard X-ray regimes [12,13]. However, due to the limited spatial
resolution and elaborate calibration procedure, other techniques have proven more suitable for
at-wavelength metrology and wavefront measurements in the hard X-ray regime.
Ptychographic coherent diffractive imaging [14,15] and X-ray grating interferometry (XGI)

[16–21] are successfully being used for metrology and provide high sensitivity. Drawbacks of the
techniques include the need for elaborate alignment procedures of the setup components, as well
as the computational expense and vast number of frames for the former and the limited sensitivity
in only one direction for the latter. Despite these limitations, XGI has become a popular method
to analyse the quality of X-ray refractive lenses that are challenging to measure using ex-situ
visible light methods [17, 22–25]. Two-dimensional information can be achieved with grating
interferometry by taking two data sets with the grating oriented in orthogonal directions [17] – at
the cost of doubling the acquisition time. Alternatively, a 2D grating can be used [22, 26], which
is, however, very costly due to the elaborate production process.

Other approaches for 2D phase-sensitive imaging with a periodic pattern have been proposed,
e.g. using an absorption grid with an analysis in Fourier space [27] or a phase grid with a
correlation analysis in real space [28]. These methods allow fast single-shot acquisition, which,
however, comes at the cost of reduced spatial resolution.
In the last five years, X-ray speckle-based phase-contrast imaging (SBI) [29, 30] has found

increasing use as a cost-effective, easily implemented alternative to XGI. Compared to the other
methods, SBI is more relaxed on alignment requirements and does not rely on a high degree of
longitudinal nor lateral coherence of the X-ray beam. It furthermore simultaneously delivers the
differential phase in two orthogonal directions. SBI has successfully been applied to wavefront
measurements and metrology of X-ray refractive lenses, mirrors and Fresnel zone plates [30–38].

Recently, the unified modulated pattern analysis (UMPA) has been proposed, which overcomes
some of the main drawbacks of the common implementations of XGI and SBI and allows flexible
tuning of signal sensitivity and spatial resolution [39]. These properties make UMPA a suitable
candidate for wavefront measurements and metrology applications with a simple setup that can be
adapted to most experimental conditions. UMPA, furthermore, does not impose strong restrictions
on the properties of the investigated optics as it is often the case for grating interferometry [25].
A first demonstration of optics characterisation using the UMPA method has been presented

recently on a polymer X-ray refractive lens [39]. Here, we study in more detail the results of beam
damage on the performance of this lens and we investigate shape errors of another undamaged
polymer lens using the UMPA technique with a random as well as a periodic reference pattern.

2. Experimental setup and data acquisition

Measurements were conducted at the beamline I13-1 at Diamond Light Source, UK [40]. A
horizontally deflecting monochromator was used to select a beam with an X-ray energy of
18.4 keV from the undulator spectrum. The results presented here were acquired with three
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Fig. 1. Experimental arrangements for the characterisation of the refractive lenses. Setups
using the UMPA method with (a) a 1D phase grating rotated around the optical axis in
46 steps and (b) a piece of sandpaper, which was translated perpendicular to the beam
directions on a spiral pattern in 24 steps. (c) X-ray grating interferometry setup for validation,
consisting of a 1D phase grating and a 1D absorption grating placed in front of the detector.
Phase-stepping was performed with five steps over one grating period.

different setups: (a) A setup using the UMPA method with a one-dimensional (1D) beam-splitter
grating (material: SU-8 photoresist polymer, period: 5.4 µm, line height: 26.7 µm, fabricated by
KIT/IMT, Germany) as a phase modulator, (b) a setup using the UMPA method with a piece of
sandpaper (combination of granularities P800 and P5000 [41]) as a phase modulator, and (c) for
comparison a common X-ray grating interferometer consisting of a 1D phase grating (material:
nickel, period: 2.4 µm, line height: 3 µm, fabricated by KIT/IMT, Germany) and a 1D absorption
grating (material: gold, period: 2.4 µm, line height: 80 µm, fabricated by microworks, Germany).
A schematic drawing of the three setups is shown in Fig. 1.

The sample, here a refractive lens, was located about 220m downstream of the X-ray source.
For the UMPA setups the detector was placed at a distance of ds1 = 0.34m downstream of the
sample. For the first setup in Fig. 1(a) the 1D grating was placed 0.16m downstream of the lens,
i.e. dg = 0.18m upstream of the detector, while for the second setup in Fig. 1(b) the sandpaper
was situated 0.17m upstream of the lens. For practical reasons the lens-detector distance was kept
constant for the two setups, while the order and distance between lens and phase modulator was
changed. This does not affect the absolute refraction angle values, but can have an influence on
the sensitivity. For the grating interferometer in Fig. 1(c) an inter-grating distance of dT = 0.22m
was chosen, corresponding to the 5th fractional Talbot distance [42]. The refractive lens was
located at a distance of 0.07m upstream of the phase grating G1 (giving a lens-detector distance
of ds2 = 0.29m) and the absorption grating G2 was placed as close as possible to the front of the
detector.

The detector system consisted of a scintillation screen, a 10x objective lens, a magnifying relay
optics system and a pco4000 CCD camera (pixel size: 9 µm), leading to an effective pixel size of
peff = 0.40 µm.
Data acquisition with the UMPA method was performed for the setup in Fig. 1(a) by rotating
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the grating around the beam axis from 0 to 90 degrees in increments of 2 degrees between each
of the 46 acquired projections. For the setup in Fig. 1(b) the sandpaper was moved to 24 diffuser
positions on a spiral pattern in the plane perpendicular to the beam direction with step sizes of
about 28 µm. The X-ray grating interferometer in Fig. 1(c) was operated in phase-stepping mode,
scanning the phase grating in the horizontal direction, perpendicular to the grating lines, in five
steps over one grating period. For each of the scans, a set of reference projections without the
lens in the beam and a set of sample projections with the lens in the beam were acquired. The
differential phase shift signal was obtained by analysing the displacement of the interference
pattern created by the phase modulator in the detector plane as described in more detail in the
next section.
Two parabolic refractive lenses made from SU-8-based photo-resist polymer [43] (refractive

index decrement: δSU8 =
(
2.7142 × 10−4) /E2 with E being the X-ray energy in keV [44]) were

tested with the setups in Fig. 1: A line-focus lens (in the following referred to as lens A) with a
radius of curvature RA = 6.000 µm and a point-focus compound refractive lens (in the following
referred to as lens B) with a radius of curvature RB = 19.625 µm, consisting of two crossed
line-focussing elements each mounted with an angle of 45 degrees to the substrate surface. Lens
A was intact and functional, while lens B had experienced beam damage due to intense X-ray
exposure (see information in Sec. 6.2 in the Appendix).

3. Signal reconstruction

Both imaging methods, UMPA and classic XGI, allow the reconstruction of multimodal signals:
The differential phase shift or the refraction angle in the sample, the transmission through
the specimen and the dark-field signal, which is a measure of small-angle scattering in the
sample [39, 45]. For this study, we only analyse the differential phase signal as it is the relevant
modality for characterising optical elements such as X-ray refractive lenses.

UMPA – as operated here – can deliver the refraction information in the horizontal as well as
the vertical direction, while XGI in its most common implementation with a 1D grating in phase
stepping mode only delivers the refraction in the direction perpendicular to the grating lines.

3.1. Unified modulated pattern analysis

For the measurements using the UMPA setups in Figs. 1(a) and 1(b) with the rotating grating or
the sandpaper, respectively, data analysis was performed following the formalism described in
detail in [39]. The reference interference pattern produced by the phase modulator (grating or
sandpaper) is modulated in position, intensity and amplitude by the refraction, absorption and
small-angle scattering occurring in the sample. Direct comparison of the interference patterns
with and without the sample allows one to obtain the differential phase shift, transmission and
dark-field signals of the specimen under investigation. The UMPA reconstruction approach uses
a model of the sample interference pattern Ij(m, n) at a diffuser position j for each pixel (m, n),
expressed as a modulation of the corresponding reference interference pattern I0j(m, n):

Ij(m, n) = T(m, n)
[
〈I〉 + D(m, n)

(
I0j(m + ux, n + uy) − 〈I〉

) ]
(1)

where T(m, n) is the transmission through the sample, D(m, n) the visibility contrast or dark-field
signal, related to small-angle scattering, ux, uy the displacement of the interference pattern in the
horizontal and vertical directions, respectively, and 〈I〉 the mean intensity of the reference pattern.
This model assumes a rigid translation of the interference pattern and distortions of the pattern
are not considered here. A least-squares minimisation between model and measured intensity
with a sum over all diffuser positions is used to retrieve ux, uy , T and D. This is performed
pixel-wise with an analysis window of extent w × w around each pixel (m, n) and the information
from the N different phase modulator positions is combined. The extent of the window can be
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chosen depending on the desired resolution and signal sensitivity. From the displacement (ux, uy)
of the pattern, the refraction angle (αx, αy) in the sample can be determined in small-angle
approximation using the relation: (

αx, αy
)
=

(
ux, uy

) peff
d
, (2)

where d = ds1 for the sandpaper setup and d = dg for the grating case. The refraction angle is
furthermore directly related to the differential phase shift (∂Φ/∂x, ∂Φ/∂y) through the X-ray
wavelength λ: (

∂Φ

∂x
,
∂Φ

∂y

)
=

2π
λ

(
αx, αy

)
. (3)

3.2. X-ray grating interferometry

The grating interferometry measurements were performed with a two-grating setup in phase-
stepping mode and the data was analysed with the commonly used approach based on Fourier
series representation [46]. From the measured data a sample phase-stepping curve Is(m, n; xg)
with the lens, as well as a reference curve Ir (m, n; xg) without the lens in the beam are obtained
for each pixel (m, n), mapping the measured intensity oscillations to the grating position xg.
These oscillations can be approximated by sinusoidal curves, equivalent to a Fourier series with
only the zeroth and first order components [45]:

Ir,s(m, n; xg) = ar,s0 (m, n) + ar,s1 (m, n) cos
(
2π
p

xg + φ
r,s
1 (m, n)

)
, (4)

with the zeroth and first order amplitude coefficients ar,s0 and ar,s1 , the phase coefficients φr,s1 and
the period p of the analyser grating. The differential phase shift ∂Φ/∂x and refraction angle αx

in the direction perpendicular to the grating lines can be determined from the difference in the
reference and sample phases φ1,s and φ1,r , respectively:

∂Φ

∂x
=

2π
λ
αx =

p
λdT
(φ1,s − φ1,r ), (5)

where dT is the inter-grating distance and λ the X-ray wavelength. The transmission signal T
is given by the ratio of zeroth order Fourier coefficients of the sample and reference scans:
T = as

0/a
r
0 . The ratio vr,s = ar,s1 /a

r,s
0 is commonly defined as the visibility of the interference

pattern. The small-angle scattering or dark-field signal D, which shows as a reduction in visibility
v of the pattern, can hence be quantified with the expression D = vs/vr = as

1/(Tar1).

3.3. Phase integration

The absolute phase shift of the X-rays induced by the lens was obtained by Fourier integration
of the horizontal and vertical differential phase signals [47] for the UMPA reconstructions. For
the XGI case, the phase shift was determined by simple 1D integration of the differential phase
signal in the horizontal direction.

4. Lens characterisation

State-of-the-art X-ray refractive lenses typically have a parabolic shape to achieve line- or
point-focussing of the beam without spherical aberrations [48, 49]. The refraction angle α in the
lens is then a linear function along the lens profile in the focussing direction and the focal length
f is directly related to the refraction angle:

1/ fx =
∂αx

∂x

1/ fy =
∂αy

∂y

(6)
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for the focal lengths fx , fy in the horizontal direction x and vertical direction y, respectively. For
a perfect point-focussing parabolic lens without astigmatism, fx and fy should have the same
value. Furthermore, the focal length f is given by the radius of curvature R at the apex of the
lens parabola and the refraction index decrement δ of the lens material [50]:

f =
R
2δ
. (7)

In the last decade, SU-8 polymer lenses fabricated via deep X-ray lithography [51,52] have
found increasing applications [43, 53–57]. The fabrication step allows high aspect ratios and
precise alignment of the lens elements. Its transparency and stability to X-ray radiation make
SU-8 a suitable material for compound refractive lenses (CRLs).
Here, we look at two X-ray refractive lenses fabricated from SU-8 polymer: a line-focussing

lens (lens A) that had not been subject to any external damage and a point-focussing lens (lens
B) that had experienced prolonged exposure to an intense X-ray beam at SPring-8 synchrotron,
see Sec. 6.2 of the appendix. Using the UMPA technique, we quantify the changes in focussing
behaviour of the two lenses caused by extreme X-ray beam exposure and by shape errors and
investigate their implications on the focussing properties.

4.1. Refraction angle and wavefront

The refraction angle signals in the horizontal (focussing) direction of the line-focus lens A
are presented in Figs. 2(a) and 2(b) for the UMPA sandpaper setup and UMPA grating setup,
respectively. Figure 2(c) shows the phase shift integrated from the UMPA grating differential
phase results. The horizontal line profiles through the middle of the lens in Figs. 2(d) and 2(e)
show a globally linear behaviour of the refraction angle along the lens aperture and a parabolic
shape of the phase shift. Excellent agreement between the results of the two setups can be
observed.

The structures visible on the left and right side of the focussing aperture are support elements
for stabilisation of the lens.
Figure 3 shows the refraction angle signals and integrated phase shift of the inner focussing

aperture of the point-focus CRL (lens B) for the different imaging setups. The refraction angles in
the horizontal direction measured with the UMPA sandpaper setup, the UMPA grating setup and
the XGI setup, respectively, in Figs. 3(a)-3(c) show good agreement between the different data
sets, as confirmed by the line plots through the centre of the lens in Fig. 3(j). Slight deviations are
due to the fact that the lens was removed from the sample stage between the scans causing small
differences in its position. Furthermore, it should be noted that the propagation distance from
the lens to the detector was different for the UMPA setups (ds1 = 0.34m) and the XGI setup
(ds2 = 0.29m) due to practical limitations. This leads to a small difference in the demagnification
of the lens aperture caused by the focussing effect of the lens, which hence appears slightly
wider for the XGI case. This, however, does not affect the quantitative analysis of the refraction
properties. Furthermore, it can be observed that the images obtained from the setups using
gratings (Figs. 3(b)-3(d) and 3(f), 3(h)) appear more blurred than for the UMPA sandpaper setup.
This is likely to be caused by the beam splitting effect of the grating, which leads to a reduced
resolution when the resolving power of the detector system is better than the separation of the
first order diffracted beams.
The line profiles in Figs. 3(j) and 3(k) through the refraction angle in the horizontal and

vertical directions, shown in Figs. 3(a)-3(c) and Figs. 3(e)-3(f), respectively, clearly demonstrate a
deviation from the expected linear focussing behaviour, in particular for the vertical case. Due to
the limitation of the phase sensitivity in the horizontal direction, the strong defects in the vertical
focussing direction cannot be measured using XGI in this configuration, while UMPA can deliver
the information in both directions. This also leads to an improved integrated phase signal with
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Fig. 2. Refraction angle αx in the horizontal direction of the line-focus lens A measured with
UMPA using (a) a piece of sandpaper, (b) a periodic phase grating as a phase modulator, and
(c) total phase shift integrated from (b). Line profiles along the mid-line of the lens for (d)
the horizontal refraction angles and (e) the integrated phase shift signals. Support elements
can be observed on both sides of the lens aperture.

significantly reduced artefacts for the UMPA setups, see Figs. 3(g) and 3(h), compared to the
phase signal obtained from XGI in Fig. 3(d). The parabolic shape of the wavefront after the lens
is visualised in Fig. 3(i) as a surface plot of the integrated phase signal from the UMPA grating
setup in Fig. 3(h).

4.2. Lens defects and aberrations

In the previous section, the refraction behaviour of the X-ray lenses was analysed qualitatively.
While by visual inspection of the line profiles lens A showed an overall linear refraction angle
along the lens profile as expected, deviations from the design refraction behaviour were observed
for the damaged lens B. In this section, the effects of defects and shape errors of the lenses on the
wavefront gradient are investigated in a quantitative manner.

4.2.1. Deviations from the expected refraction behaviour

The lenses are designed to produce a known parabolic phase shift of the X-ray beam, i.e. a linear
refraction angle. A straightforward way to analyse defects and errors is to look at the deviation
from this expected refraction signal, i.e. the wavefront gradient error. Here, we calculated the
residuals from a linear fit to the reconstructed refraction angle, as proposed in [25]. Figures
4(a), 4(d), and 4(g) show the measured deviation in the aperture of the damaged point-focus
lens B from the expected linear refraction in the horizontal direction for the UMPA sandpaper,
the UMPA grating and the XGI setups, respectively. The results agree well for the different
setups, confirming the validity and reproducibility of the UMPA method. The same analysis was
performed for the refraction in the vertical direction for the two UMPA setups in Figs. 4(b) and
4(e), revealing even stronger aberrations from a linear behaviour. Figures 4(c), 4(f), and 4(h)
display the absolute deviation, i.e. the square root of the summed squares of the contributions

Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4997 



-11 11α [μrad]

100 μm

(e) (f)

XGI
UMPA grating
UMPA sandpaper

0 100 200 300 400
pixel number

0

10

5

α
x 

[μ
ra

d]

-5

-10
500 600 700 0 100 200 300 400

pixel number

0

10

5

α
y 

[μ
ra

d]

-5

-10
500 600 700

UMPA grating
UMPA sandpaper

-51 0Φ [rad]

(i)

(j) (k)

(a) (b) (c)

-11 11α [μrad] -11 11α [μrad]

-51 0Φ [rad] -51 0Φ [rad]

(d)

(g) (h)

0
100

200
300

400
500 0

100
200

300
400

500
600

600

0.0

-10.4

-20.8

-31.2

-41.6

-52.0

0

-52

-13
-26

-39

Φ
 [r

ad
]

αx

αy

αxαx

αy

ΦΦ

Φ

UMPA sandpaper UMPA grating XGI

Fig. 3. Refraction angle signals α and integrated phase shifts Φ of the point-focus lens B.
Refraction angle αx in the horizontal direction measured with UMPA using (a) sandpaper,
(b) a periodic phase grating and (c) conventional two-grating XGI. (d) Absolute phase shift
determined by 1D integration of (c). Refraction angle αy in the vertical direction measured
with UMPA using (e) sandpaper, (f) a periodic phase grating and (g), (h) absolute phase
shift signals integrated from (a) and (e) or (b) and (f), respectively. (i) 3D surface plot of the
beam phase profile after lens B in panel (h) measured in the detector plane with the UMPA
grating setup. (j), (k) Profile plots through the horizontal and vertical refraction angle signals
in (a)-(c) and (e)-(f), respectively.

                                                                              Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4998 



-2

-1

0

1

2

Δ
α

x 
[μ

ra
d]

Δ
α

y  [μ
rad] |Δ

α
| [
μ

ra
d]

0

1

2

50 μm

(a) (b) (c)

-2

-1

0

1

2

Δ
α

x 
[μ

ra
d]

Δ
α

y  [μ
rad] |Δ

α
| [
μ

ra
d]

0

1

2(d) (e) (f)

|Δ
α

| [
μ

ra
d]

0

1

2

-2

-1

0

1

2

Δ
α

x 
[μ

ra
d] point-focus lens

(h)(g)

UMPA
sandpaper

50 μ
m

|Δ
α

| [
μ

ra
d]

0

1

2line-focus lens (i) (j)

UMPA
grating

XGI XGI

UMPA
grating

UMPA
grating

UMPA
sandpaper

UMPA
sandpaper

Δαx Δαy |Δα|

Δαx

Δαx

Δαy |Δα|

|Δα|

UMPA
sandpaper

UMPA
grating

|Δα||Δα|

Fig. 4. Residuals from a linear fit to the refraction angle of lens B (wavefront gradient
error) in (a), (d) the horizontal, (b), (e) the vertical direction, and (c), (f) absolute deviation,
measured with the UMPA sandpaper and grating setups, respectively. Residuals from (g) the
horizontal refraction angle and (h) absolute deviation in the horizontal, obtained from the
two-grating interferometer. (i), (j) Absolute deviation from the horizontal refraction angle
signal of lens A for the UMPA sandpaper and grating setups, respectively.

                                                                              Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4999 



from the horizontal and vertical signals. For the XGI case the absolute of the deviation in the
horizontal is shown, as the setup is only sensitive in one direction.

The small grain-like artefacts visible in Figs. 4(a)-4(f) are a result of remaining features of the
reference pattern in the reconstructed refraction signals. This is caused by the demagnification
effect of the lens on the interference pattern, which is here neglected, but could in the future be
included in the analysis for further improvement of the technique.

Large discrepancies from the expected focussing behaviour of lens B can be observed in both
directions. Thanks to the two-dimensional sensitivity of the UMPA approach, the change in the
lens properties can be fully characterised from a single data set. The deviations, which reach
up to 3.0 µrad, are more pronounced in the vertical direction and largest in the areas around the
centre of the aperture, indicating an alteration of the refractive index and/or thickness of the lens
material in this region. This significant divergence within the lens aperture would result in strong
changes of the desired focussing behaviour making the lens useless for further applications as an
optical element.

The absolute deviation is also shown for lens A in Figs. 4(i) and 4(j) for the UMPA sandpaper
and grating setups, respectively. The linear fit to the refraction angle was performed in the
upper part of the lens. It can clearly be seen that the divergence from the expected refraction is
significantly smaller than for the damaged lens. However, in the lower part deviations can be
noted, which strongly increase when moving closer to the substrate. This has been observed
previously for refractive lenses made from SU-8 material and has been attributed to shape errors
of the lens due to tilted side walls and thermal stress during the manufacturing process [25, 58].
These effects are more pronounced close to the substrate, where as a consequence the refraction
behaviour cannot be modelled as a linear curve anymore, which leads to significant deviations of
the measured refraction angle data from a linear fit. It has been shown that the shape errors result
in a decrease of the measured focal length from the top to the bottom of the lens [25,58,59]. This
effect can clearly be observed for lens A. Figure 5 illustrates the variation of the focal length
over the height of the lens. The focal length f was determined by performing a linear fit of the
refraction angle for each row of the image and applying Eq. (6) to obtain f . As seen from Fig. 5,
the focal length clearly decreases from the top to the bottom of the lens.
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Fig. 5. Variation of the measured focal length along the height of lens A (line-focus lens). The
decrease of the focal length closer to the substrate is due to shape errors more pronounced in
this area.

4.2.2. Influence of the deviations on the focal spot

The imperfections in the wavefront created by the lenses caused by beam damage or shape errors
led to deviations from the desired point or line focus. To visualise this, the measured wavefront
was propagated along the beam direction z starting from the detector plane using an angular
spectrum approach [60], in which the Fourier transform of the wave field is multiplied with the
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transfer function:
H = exp

(
ikz

√
1 − q2λ2

)
, (8)

where z is the propagation direction of the wavefront, λ the wavelength, k = 2π/λ the wave
vector and q2 the sum of the squared spatial frequencies in x and y, transverse to the propagation
direction. Subsequently, an inverse Fourier transform is applied to the product.
Figure 6 shows cuts of the propagated wavefronts, obtained from the UMPA setup using
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the phase signal measured with the UMPA grating setup in the detector plane. (a), (c)
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                                                                              Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 5001 



the rotating grating, through the centre of the lens position. For lens B an asymmetry of the
longitudinal cuts in the horizontal and vertical directions in Figs. 6(a) and 6(c), respectively,
can be observed. Theoretically a single focal length of fB = 12.24m would be expected in both
focussing directions for the point-focussing lens B according to Eq. (7). The beam damage,
however, gave rise to astigmatism of the lens, i.e. the focal planes in the two directions are located
at different distances. The minimum beam size was found at 11.91m (orange line) downstream
of the lens, i.e. 11.57m from the detector, for the horizontal and at 12.40m (cyan line) from the
lens, i.e. 12.06m from the detector, for the vertical focussing direction. The transverse beam
profiles at these distances are shown in Figs. 6(b) and 6(d). Furthermore, the diameter of the
focal spot differs for the horizontal and vertical directions as visible in the transverse cuts in
Figs. 6(b) and 6(d). Some spurious features can be observed in these images around the area of
highest intensity, which are caused by the astigmatism. The size of the focal spot was estimated
separately in the horizontal and the vertical directions by fitting a Gaussian curve to the line
profile of the propagated wave field through the centre of the lens in the respective focussing
direction, while neglecting the spurious features around the spot. The full width at half maximum
of the fitted Gaussian can be seen as an estimate for the spot size. It is 4.7 µm for the horizontal
and 5.4 µm for the vertical direction.
The propagation of the wave field of lens A is shown as a longitudinal cut in the xz-plane

through the top part of the lens in Fig. 6(e). As discussed in the previous section, the z-position
of the focal plane decreases over the height of the lens due to shape errors. It is located at 3.72m
downstream of the lens (3.38m from the detector) for the upper part of the lens as indicated
by the magenta line in Fig. 6(e). The transverse cut through the propagated wave field at this
distance can be found in Fig. 6(f), which shows a sharp focus at the top of the lens. The change
of the position of the focal line for different heights of the lens is illustrated in more detail by
the propagated wave field cuts through different heights of the lens in Fig. 7 in Sec. 6.1 of the
appendix. The nominal focal length of the lens calculated with Eq. (7) is given by fA = 3.74m.
The width of the focal line, estimated by fitting of a Gaussian line as above, is approximately
1.3 µm.

5. Conclusions and outlook

We have demonstrated that the recently proposed UMPA method is suitable for X-ray wavefront
sensing and optics characterisation. Beam damage and shape errors of two polymer X-ray
refractive lenses were successfully detected by analysing the wavefront downstream of the lens
qualitatively as well as quantitatively. We have furthermore shown the excellent agreement of
the results obtained from an UMPA setup with a periodic and a random reference interference
pattern and have validated them with conventional X-ray grating interferometry measurements.
Combined with the flexibility and ease of implementation, this illustrates that UMPA is readily
adaptable to many existing X-ray phase-sensitive setups and we expect it to find widespread
applications for wavefront analysis and optics characterisation. As UMPA is a robust technique
that does not require a high degree of spatial and lateral coherence and does not impose stringent
restrictions on the setup length or alignment, it is suitable for the investigation of various kinds of
optics and could in the future be transferred to laboratory sources without major efforts. This
makes UMPA a perfect candidate for cost-effective routine inspection and quality testing of
optics such as refractive lenses, allowing near at-wavefront characterisation without the need for
costly and limited synchrotron access. This will be an important step for the improvement and
development of optics fabrication.
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6. Appendix

6.1. Focussing properties of the line focus lens A

As observed above, the line focus lens A shows some shape errors caused by the manufacturing
process that lead to a decrease of the focal length from the top to the bottom part of the lens.
The effect on the focussing behaviour of the lens can be visualised by propagating the wavefront
measured in the detector plane in a simulation using an angular spectrum propagator (see Eq. (8)).
Figure 7 shows longitudinal and transverse cuts through the propagated wave field of lens A
for different heights of the lens and different propagation distances. It can be seen from the
longitudinal sections through the top, middle and bottom (close to the substrate) of the lens in
Figs. 7(a), 7(c), and 7(e), respectively, that the position of the focal line changes over the height
of the lens. The magenta dashed lines indicate the distance of the focal line from the detector
for each height, which decreases closer to the substrate. Figures 7(b), 7(d), and 7(f) show the
transverse cuts of the wave field at the corresponding focal lengths.
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6.2. Information about the X-ray exposure of the damaged lens B

Beam damage occurred in the point-focussing SU-8 refractive lens (lens B) due to intense
X-ray radiation over a prolonged period of time prior to the characterisation measurements
presented here. It was used at beamline BL10XU at SPring-8 synchrotron as part of a CRL
array for beam focussing at an energy of 30 keV. Pre-focussing of the X-ray beam upstream of
the lens under study was performed with a 2mm-diameter beryllium CRL resulting in a beam
diameter of 150 µm. The beam was then cut down using a pair of slits, so that an X-ray beam of
100 × 100 µm2 effectively impinged onto the SU-8 lens. The photon flux on the investigated lens
was 1013 photons/(s·mm2). The CRL remained in the X-ray beam for 523 days with a daily X-ray
irradiation of approximately 4 hours, summing up to about 2100 hours of exposure. The total
dose absorbed by the lens during this time was approximately 27.3 kJ/mm3. This accumulated
dose led to a change in the properties of the lens material and hence the refraction behaviour,
resulting in deviations of the wavefront from a parabolic shape, broadening of the focal spot and
astigmatism, as investigated in the previous sections.
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