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Density Functional Theory (DFT) calculations with computational effort which increases linearly
with the number of atoms (linear-scaling DFT) have been successfully developed for insulators,
taking advantage of the exponential decay of the one-particle density matrix. For metallic systems,
the density matrix is also expected to decay exponentially at finite electronic temperature and linear-
scaling DFTmethods should be possible by taking advantage of this decay. Here we present a method
for DFT calculations at finite electronic temperature for metallic systems which is effectively linear-
scaling (O(N)). Our method generates the elements of the one-particle density matrix and also
finds the required chemical potential and electronic entropy using polynomial expansions. A fixed
expansion length is always employed to generate the density matrix, without any loss in accuracy
by the application of a high electronic temperature followed by successive steps of temperature
reduction until the desired (low) temperature density matrix is obtained. We have implemented
this method in the ONETEP linear-scaling (for insulators) DFT code which employs local orbitals
that are optimised in situ. By making use of the sparse matrix machinery of ONETEP, our method
exploits the sparsity of Hamiltonian and density matrices to perform calculations on metallic systems
with computational cost that increases asymptotically linearly with the number of atoms. We
demonstrate the linear-scaling computational cost of our method with calculation times on Palladium
nanoparticles with up to ∼13,000 atoms.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Density Functional Theory (DFT) calculations are now
routinely applied to all sorts of materials as they offer a
good combination of computational efficiency and accu-
racy. Most commonly the Kohn-Sham variant of DFT is
used for applications and a lot of effort has been expended
in developing increasingly accurate exchange-correlation
functionals for such calculations. These calculations are
performed for insulators (i.e. materials with a finite band
gap) but DFT is also used for calculations on metallic sys-
tems (zero band gap) following the extension to metals by
Mermin [1] , which calculates the electronic free energy
rather than the energy and utilizes fractional occupancies
for the molecular orbitals. DFT calculations with compu-
tational effort which increases linearly with the number
of atoms (linear-scaling DFT) have been successfully de-
veloped for insulators[2–6], taking advantage of the ex-
ponential decay of the one-particle density matrix - as
formulated in the nearsightedness of electronic matter
principle of Walter Kohn [7]. For metallic systems, the
density matrix is also expected to decay exponentially at
finite electronic temperature[8] and linear-scaling DFT
methods should be possible by taking advantage of this
decay[9].

To compute a density matrix in DFT calculations, an
occupancy function is applied to the Hamiltonian matrix.

∗Electronic address: c.skylaris@soton.ac.uk

In DFT calculations for metallic systems, the Mermin fi-
nite electronic temperature formulation of Kohn-Sham
DFT leads to the density matrix being obtained by diag-
onalizing the Hamiltonian matrix, applying a sigmoidal
function, such as the Fermi-Dirac function to the energy
eigenvalues and then using the Hamiltonian eigenvectors
to transform these occupancy eigenvalues back into the
original space of the Hamiltonian. This direct approach
is, however, dependent on a cubically scaling diagonal-
ization, so it becomes rapidly intractable as the number
of basis states increases.

In the case where the Hamiltonian matrix is very large
and sparse, many operations, including matrix products
and even inversions may be performed in a much re-
duced computational complexity [3]. In such cases, it
could be beneficial to avoid the eigendecomposition com-
pletely by forming a matrix function analogue of the
scalar occupation function which constructs a density
matrix from a Hamiltonian matrix. The sigmoidal func-
tion is likely to be non-linear, so an approximation to it
can be made based on linear operations (matrix prod-
ucts, for instance) which is accurate within a pre-defined
domain of Hamiltonian eigenvalues. Such methods are
often known as Fermi operator expansions (FOE) [10],
when the Fermi-Dirac function is used as the occupancy
function, though they are generalizable to any occupancy
smearing function[11]. The functional form of the expan-
sion is also flexible, with options including Taylor expan-
sions, among various more efficient alternatives. These
improved alternatives [10–16], have been developed with
the aim that the pre-factors involved in computing the
resultant matrices are lower. The pre-factors of these
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methods are, however, still larger than for eigendecompo-
sition, meaning that these methods are unattractive for
systems with fewer than thousands of electronic states
(bands or molecular orbitals). It is also worth mention-
ing that FOE based techniques have also been applied
successfully to insulators, such as in the recursive TC2
method of Niklasson[17]. The combined recursive and di-
vide and conquer method of Ozaki has also been applied
to insulators and tested on metallic systems [18].

We must point out, however, that for performing large-
scale calculations of metallic systems, there are many op-
tions. These include FOE approaches as well as KKR-
style approaches and orbital-free DFT. We have pre-
sented a review of such methods as well as current tech-
niques for energy minimization of metals and FOE tech-
niques in our perspective article [19] . Orbital-free DFT
has been applied in specific cases such as to calculate the
physical properties of liquid lithium [20]. KKR / Multi-
scattering approaches are also competitive with DFT in
specific cases, such as bulk metals with defects and slabs.
These methods used to require comparatively homoge-
nous systems, however, KKR has since been applied to
layered slabs [21] and multicomponent systems, such as
in the combined real/reciprocal space approach of John-
son et al [22]. Research is ongoing in both OF-DFT[23]
and KKR.

In this work, we present a new method for DFT cal-
culations on metallic systems where a fixed expansion
length of the FOE is always employed, without any loss
in accuracy. This is achieved by the application of a
high electronic temperature followed by successive steps
of temperature halving until the desired (low) temper-
ature density matrix is obtained via a quenching ap-
proach. We call this method the Annealing and QUench-
ing Algorithm FOE or AQuA-FOE and we have imple-
mented it in the ONETEP [3] linear-scaling (for insu-
lators) DFT code which employs local orbitals that are
optimised in situ (Non-orthogonal Generalised Wannier
Functions, NGWFs) so that it provides large basis set
accuracy in the calculations. Making use of the sparse
matrix machinery of ONETEP [24–26], our method ex-
ploits the sparsity of Hamiltonian and density matrices
(which is expected to decay exponentially for metallic
systems at high temperatures [8, 27]) to perform calcu-
lations on metallic systems with reduced computational
cost. Our method is expected to be linear-scaling with
the number of atoms, for large enough systems, and we
attempt to reach this limit in this work, with timings for
self-consistent iterations on metallic nanoparticles with
up to ˜13,000 atoms. An integral part of our method is a
sparse matrix algorithm for finding the chemical poten-
tial and for calculating the electronic entropy, as these
are also essential to finite temperature DFT. ONETEP
is a parallel code and continuous effort has been put into
improving its parallel performance, as described in the
paper by Wilkinson et al [26], where the MPI/OpenMP
parallelism of the code is presented. The method pre-
sented in this work is fully MPI/OpenMP parallel as it

utilizes the parallel libraries developed in ONETEP over
many years.

In sections II-V we describe the general theory behind
our new method without yet introducing the complexities
associated with non-orthogonal bases and sparse matri-
ces. These are introduced in sections VI and VII. In sec-
tion VII we provide numerical validation by comparing
calculations against the standard diagonalisation-based
EDFT approach of ONETEP on metallic nanoparticles
and then in section VIII explore the timings of AQUA-
FOE on Pd nanoparticles ranging from ˜2,400 to ˜13,000
atoms. We finish with some conclusions and thoughts for
future applications of this method.

II. KOHN-SHAM DFT IN THE MERMIN
FINITE TEMPERATURE FORMULATION

For calculations of metallic systems, we must work
with electrons with fractional occupancy distribution.
This can be achieved by using the finite temperature
Kohn-Sham equations [28] inspired by the Mermin for-
mulation of DFT[1]. In this prescription, we minimize
the Helmholtz free energy of the interacting electronic
system, which is expressed as:

A[T, {εi}, {ψi}] =
∑
i

fi ⟨ψi| T̂ |ψi⟩+
∫
υext(r)n(r)dr

+ EH [n] + Exc[n]− TS[{fi}],
(1)

this consists of the kinetic energy of the non-interacting
electrons, expressions for the external potential energy
and Hartree energy of the electrons and the unknown
exchange-correlation energy expression. The entropic
contribution to the electronic free energy −TS[{fi}] is
included.

To calculate the occupancies of the electronic states
with finite temperature, the Fermi-Dirac (F-D) distribu-
tion can be used

f(ϵ, µ, β) =
1

1 + e(ϵ−µ)β
. (2)

Comparing this with the logistic function;

l(x) =
1

1 + ex
, (3)

it can be seen that the F-D function can be written in
terms of the logistic function where x → (ϵ − µ)β. This
is useful because the logistic function can, in turn, be
written in terms of the hyperbolic tangent. This rep-
resentation allows the use of trigonometric identities to
simplify computations, as we will see later.

l(x) =
1

2

(
1 + tanh

(x
2

))
. (4)

The finite temperature formulation of Kohn-Sham den-
sity functional theory results in occupancies of states
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which follow the F-D distribution. The energies of the
orbitals are the eigenvalues of the Hamiltonian matrix
which is often non-diagonal. Their occupancies, which
follow the F-D distribution are the eigenvalues of the
density matrix, which is also non-diagonal and it is es-
sentially the matrix F-D function of the Hamiltonian.
If we have a Hamiltonian H, then its eigenvalue ex-

pansion is:

H = QΛQ†, (5)

where Q is a unitary matrix of eigenvectors, and Λ is a
diagonal matrix of eigenvalues. If we know the largest
absolute eigenvalue (|ϵ|max = α), we can say that the
eigenspectrum of H lies in the interval [−α, α]. As the
occupancy function will be applied to all eigenvalues, any
approximation to it must be accurate to some tolerance
within this interval.
In this work, we show that in order to compute ef-

ficiently an FOE-type expansion, the range of energy
eigenvalues can be scaled to reduce its spectral radius
and then the resulting density matrix can be quenched
to have the occupancy eigenvalues corresponding to the
original energy eigenvalues. This is effectively an an-
nealing and quenching procedure on the electronic tem-
perature of the system and is done using solely matrix
multiplication and without a need for any matrix diag-
onalisation or inversion. So this approach could result
in linear-scaling computational effort if the matrices in-
volved have sufficient sparsity and sparse matrix storage
and multiplication algorithms are employed.

III. ELECTRONIC QUENCHING

Whichever FOE method is used to generate density
matrices from Hamiltonian matrices, the expansion is
valid only within a given energy eigenvalue interval. For
accurate results, a large number of terms in the expan-
sion must be used, such that the expansion is valid over
the full range of energy eigenvalues of the system. It has
been shown recently that far fewer terms are necessary,
however, at high temperature [29].
We propose that rather than increasing the number

of terms for systems of increasing eigenvalue spectrum
width (which is exacerbated by low electronic temper-
ature), a fixed-length FOE is used which is valid on a
predefined interval, but the electronic temperature is in-
creased by a sufficient multiples of the target temperature
so that the full spectrum of the hot-electron Hamiltonian
lies within the interval of validity of the FOE. Then, the
low (target) temperature density matrix can be recovered
by quenching steps, as we will show in this section.
The Hamiltonian matrix is firstly shifted so that the

trial chemical potential is at zero and scaled into units of
smearing widths,

H′ = (H− µI)β . (6)

In multiplying the Hamiltonian matrix by β = 1/kBT ,
this matrix is unit-less, but we refer to it as the “scaled
and shifted Hamiltonian matrix” in this section. The
scaled and shifted Hamiltonian matrix is then annealed
by dividing by a sufficiently large power of 2:

Hhot = H′/2n, (7)

so that its spectrum lies on the desired interval as the
implicit temperature of this “hot” Hamiltonian goes from
β = 1/kBT to βhot = 1/(2nkBT ). The exponent, n can
be determined as

n = ceiling (log2(ρH′/c)) , (8)

where ρH′ is the spectral radius (largest absolute eigen-
value) of H′ and c is the domain of energy eigenvalues
within which the FOE is valid. ρH′ can be determined
either by using the Gershgorin circle theorem or using a
power series iteration, as we do in this work. The chosen
FOE is then applied to Hhot to obtain Khot. Then Khot

is annealed n times to obtain the density matrix corre-
sponding to the low (target) temperature Hamiltonian
matrix at β.

Following equation 4, the density matrix is firstly
transformed in such a way that it has eigenvalues of the
hyperbolic tangent function:

Rhot = 2Khot − I , (9)

or in other words, the range of the eigenvalues of the den-
sity matrix is scaled from [0,1] to [-1,1]. To this trans-
formed density matrix, the matrix analogue of the hy-
perbolic double angle formula can be applied, to obtain
a matrix with half the electronic temperature of the Rold

:

Rnew =
2Rold

(I+R2
old)

. (10)

This formula is first applied to Rold = Rhot and repeated
n times to give the desired density matrix. With each it-
eration of the above formula, the temperature of the den-
sity matrix is halved. The way this works is by noting
that in the argument to the exponential in the Fermi-
Dirac function: (ε − µ)β, the energies are effectively di-
vided by the temperature in energy units. By implicitly
multiplying H′ by 2 as happens with the application of
the hyperbolic double angle formula, the temperature is
effectively halved with each application. We should note
that the high temperature is simply a device for reducing
the number of terms in the FOE expansion but the ac-
tual temperature which is used in the DFT is the “low”
target temperature. Equation 10 is exactly the same as
the scalar double angle formula given by

tanh(2x) =
2 tanh(x)

1 + tanh2(x)
, (11)

where we have already calculated the value at higher tem-
perature, i.e. tanh(x).
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The target temperature density matrix can eventually
be recovered as

K = (R+ I)/2. (12)

It is worth noting that to apply equation 10 requires an
inversion or to compute the solution to a system of linear
equations. To avoid this, we take a Chebyshev expansion
of equation 10 which requires 37 terms to reach machine
precision, although an accuracy of 10−9 can be obtained
with only 25 terms and this can be evaluated with as few
as 12 matrix multiplications using the divide and conquer
approach of Head-Gordon [11]. We should note here that
the Chebyshev expansion of the hyperbolic double angle
formula that we discuss here is different from the Cheby-
shev expansion of the Fermi-Dirac distribution which can
be used to compute Khot. It is also interesting to note
that here we use a recursion in the temperature scaling
of the FOE, which is itself computed using a Chebyshev
expansion, while Niklasson et al proposed a recursion
method directly for the FOE[16, 30] , which however re-
quires many explicit matrix inversions, which are absent
from our approach.
For a given chemical potential, the scaling in terms

of number of matrix products to apply this algorithm is
given by:

NMP = NFOE(c) + nNHI, (13)

whereNFOE is the number of matrix products required to
compute the FOE, NHI is the number of matrix products
required to compute an application of the hyperbolic dou-
ble angle formula as a Chebyshev expansion. The number
of matrix products required to apply the FOE depends
on c, but in practice this is constant and we always use a
value of 15 smearing widths (βhot) as there is no need to
change this aside from optimization of the total number
of matrix multiplications. This is a compromise between
the FOE length and number of hyperbolic double angle
formula evaluations. The hyperbolic double angle for-
mula is always evaluated with a fixed number of terms in
the Chebyshev expansion and hence, a fixed number of
matrix multiplications. So, the only variable in the total
number of matrix products is the spectral width of the
scaled and shifted Hamiltonian matrix, ρH′ .
As the number of atoms increases, if the material is

homogeneous, we do not expect the spectral width of
the Hamiltonian matrix to increase as it asymptotically
reaches the bulk value. However, as an extreme upper
bound, if the spectral width were to increase linearly with
system size, then the number of matrix multiplications
required to apply this algorithm would only increase log-
arithmically, according to equation 8. In practice, this
increase will be somewhere between zero and logarithmic.
So, with a non-increasing, or logarithmically increasing
number of matrix multiplications for an increase in sys-
tem size (number of atoms), if the matrix multiplication
can be made to be linear-scaling with dimension, as is the
case for sparse matrices in the ONETEP linear-scaling

DFT program for sufficient sparsity, then the annealing
algorithm should have linear-scaling computational cost
with system size.

IV. COMBINING HAMILTONIAN ANNEALING
AND QUENCHING WITH CHEBYSHEV FERMI

OPERATOR EXPANSION

The Chebyshev FOE, as described originally by
Goedecker and Teter [31] is achieved by taking a Cheby-
shev expansion of the 1D Fermi-Dirac function:

{ai} = DCT

(
1

1 + ecos(xi)

)
, (14)

where xi = 2(((ϵi − µ)β) − ϵmin)/(ϵmax − ϵmin) − 1 so
that the range of equispaced grid points ei covers at least
the interval of the negative to positive spectral radius
of the Hamiltonian matrix ( ϵmin,ϵmax ). The interval
is scaled and shifted to cover the useful interpolative
range of Chebyshev polynomials [−1, 1]. DCT() refers
to the Discrete Cosine Transform operation. {ai} are
the Chebyshev expansion coefficients. The density ma-
trix is formed by taking Chebyshev polynomials of the
Hamiltonian matrix and summing using the weights, ai:

K(H′) =
P∑
i=0

aiTi(H
′), (15)

where {Ti} are the Chebyshev matrices of the first kind,
of degree i. The Chebyshev matrices are in the standard
form:

T0(H
′) = I

T1(H
′) = H′ (16)

Tn+1(H
′) = 2H′Tn(H

′)−Tn−1(H
′).

This assumes that either H′ is in an orthogonal basis
or it has been orthogonalized prior to application. If non-
orthogonal basis functions are used, then H′

αβ is a covari-

ant quantity and Kαβ should be contravariant. This can
be achieved by raising one index of the Hamiltonian ma-
trix, H′α

β either by multiplying by the inverse overlap

matrix or solving SγαH
′α
β = H′

γβ , to make it contra-
covariant. In so doing, the Chebyshev products are all
well defined and the resultant Kα

β matrix is also contra-
covariant. To make the density matrix fully contravari-
ant in the form necessary for computing the electronic
density, the column index can be raised by, for instance
multiplying by the inverse overlap matrix on the right, or
solving another linear matrix equation – this is explored
in more detail in section VI.

This way of performing the expansion requires approx-
imately P terms for a given accuracy, where P is a func-
tion of the smearing width, β, the required accuracy
10−D and the Hamiltonian spectral width, ρ. An alter-
native form to determine the number of terms required
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in the expansion depends on the chemical potential and
is given in Suryanarayana [15] .
As we did for equation 10, here we once again use

the improvement to the original Chebyshev series of
Goedecker, proposed by Liang and Head-Gordon in 2003
[11] which reduces the cost of a Chebyshev representa-

tion of the Fermi operator to O(
√
N) number of matrix

multiplications. In the best case scenario of a local or-
bital method where sufficient matrix sparsity leads to a
cost of matrix multiplication being O(N) this would lead
to a cost per SCF iteration proportional to O(N3/2).
In order to reduce this cost from O(N3/2) to O(N)

we limit the width of the FOE to the constant interval
[−c, c] as we mention in section III. We apply this FOE to
a high temperature Hamiltonian, with a spectral radius
less than c. In effect this means that we keep on raising
the temperature with Hamiltonian spectral radius while
keeping the FOE expansion length small and independent
of ρH′ . Then the quenching formula of equation equation
10 is applied n times which is proportional to the system
by equation 8 so the overall scaling per SCF iteration is
O(N log2(ρH′/c)). So both the quenching procedure of
section III and the FOE procedure of this section have
O(N) computational cost, and as a result the overall cost
of the method scales as O(N).

V. ELECTRONIC ENTROPY

Since we have a finite electronic temperature, the en-
ergy which is minimised to find the ground state of a
system is the Helmholtz free energy. Therefore, an elec-
tronic entropy term must be calculated.
The entropic contribution of the ith state is well

known, as we are dealing with non-interacting, finite tem-
perature Fermions:

si = filn(fi) + [1− fi]ln(1− fi), (17)

on a state-by-state basis where fi is the occupancy of
the ith state. So, if the eigenvalues of the Hamiltonian
matrix and hence the occupancies were easily accessible,
then calculating the entropy would be simply a matter
of using (17) for every occupancy, fi and then summing
them to get the contribution to the entropy:

S =
∑
i

si . (18)

In the case where we are performing a Fermi-operator-
expansion and eigenvalues are not available, another ap-
proach must be taken. In this case we aim to calculate an
entropy matrix, in the same basis as the density matrix,
with eigenvalues si.
This can be achieved in a number of ways but concep-

tually, using a matrix logarithm is the simplest method.
Analogously to (17), the entropy matrix can be calcu-
lated as:

S = tr[K ln(K) + [I−K] ln(I−K)] , (19)

which concentrates all of the computation to the matrix
logarithm function and the entropic contribution to the
free energy can be written as

−T
∑
i

si = −TS. (20)

The difficulty arises when attempting to compute the
matrix logarithm, two of which must be performed to
evaluate (19). Firstly, in order to calculate a matrix log-
arithm, the matrix argument must be positive definite,
but K necessarily has eigenvalues close to zero by con-
struction, which may be indistinguishable from zero on a
finite precision computer.

In order to overcome this limitation, those eigenvalues
closer to zero than some pre-defined threshold can be
projected out, with the justification that the correspond-
ing eigenvalue from the pre-multiplicative matrix, K or
I − K, would have zeroed out this very large negative
number.

Performing this operation adds a good deal of com-
putation onto an already expensive calculation, as two
extra step function projection operations must be per-
formed for every electronic entropy calculation.

Computing the matrix logarithm is a very computa-
tionally demanding operation in itself. One way to cal-
culate a matrix logarithm is by using the Mercator series

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · , (21)

which can be applied to a general matrix A by linearity:

ln(A) = ln(I+X) = X− X2

2
· · · (22)

Doing this in practice is ill-advised due to the poor con-
vergence properties of the series. An alternative proposed
by Kenney and Laub[32], which has been rigorously ex-
plored and revised in [33] is to use an inverse scaling
and squaring approach. This is roughly the scaling and
squaring algorithm for calculating matrix exponentials
with the operations in reverse order.

The steps in the inverse scaling and squaring algorithm
are firstly to calculate B = A1/(2m), where m is suffi-
ciently large that the result B is arbitrarily close to an
identity matrix. ln(B) can then be approximated by an
nth order Padé approximant to ln(1 + x) as

ln(B) ≈ pa[m/m](B− I), (23)

so that the final result may be calculated as:

ln(A) = 2mln(B). (24)

Applying this algorithm, presented by Higham[34]
costs (12+ 2m− 2/3) matrix multiplications, which may
be a huge expense, depending on the cost of matrix prod-
ucts.

An alternative to the direct approach of calculating
(19) with matrix logarithms is to find a function which
approximates (19) with reduced computational overhead.
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One possible form, which we propose here, is:

s(x) ≃ ax2 +
b

c+ dx− dx2
− e− ax = y(x), (25)

where a = 1.96056, b = 0.0286723, c = 0.114753, d =
1.98880 and e = 0.249860.
This is an inverse quadratic with a quadratic fit to the

error subtracted from it. This form approximates the
entropy expression, and it has a mean squared error of
1.0× 10−6 for each si approximated, as demonstrated in
figure 1. A further refinement can be made to this by
fitting to the error of this expression with another Padé
approximant, such as

s(x) ≃ y +
a′y + y4 + b′y3 + c′y2 − d′

e′ − h′y − b′y2 − k′y3
= z(y), (26)

where a′ = 0.01548792, b′ = 1.1542349, c′ = 0.3418894,
d′ = 4.964447 × 10−6, e′ = 0.04446540, h′ = 1.806607,
k′ = 5.0611405 and where y are values calculated with
(25). This form approximates the entropy expression,
and it has a mean squared error of 1.0 × 10−8, for each
si approximated, as shown in figure 1. We use equation
26 in all of our calculations.
In order to avoid the inversions which can be seen

in equations 25 and 26 we take these expressions and
compute Chebyshev expansions of them. We apply such
Chebyshev expansions to the density kernel to get the
entropy matrix, from which we can compute the entropy
as the trace. In this way we avoid the need for matrix
inverses in applying equations 25 and 26.

VI. IMPLEMENTATION IN TERMS OF
NON-ORTHOGONAL LOCAL ORBITALS IN THE

ONETEP CODE

A major problem in applying the techniques described
in the previous sections is that the orthogonalization of
the Hamiltonian matrix prior to application of the ex-
pansion method is costly and severely limits the spar-
sity of the orthogonalized Hamiltonian matrix. This has
the knock-on effect that each of the matrix products in
the expansion method is more expensive than using non-
orthogonal matrices and the feasibility of the method is
limited to systems where the full or almost fullN2 Hamil-
tonian matrix may be stored in memory.
We aim to implement our approach within the frame-

work of the ONETEP [3] linear-scaling (up to now for in-
sulators) DFT code which is based on a representation of
the molecular orbitals in terms of a set of non-orthogonal
strictly localised orbitals {ϕα} which are optimised in situ
[35], and remain atom centered throughout the calcula-
tion. These localised orbitals are called Non-orthogonal
Generalised Wannier Functions (NGWFs) and are ex-
pressed in a basis set of psinc functions [36] which are
equivalent to a plane wave basis set. In the conven-
tional diagonalisation-based EDFT method implemented

in ONETEP [37] the covariant Hamiltonian matrix Hαβ

in the representation of the NGWFs is optimised in the
inner loop (the EDFT loop) of a two nested loop proce-
dure, while the NGWFs are optimised in the outer loop
using a conjugate gradients approach. We have used this
energy minimizer unmodified in this work, because it has
been pre-validated in [37] , where it has been shown that
with increasing NGWF radii the calculations converge to
plane-wave basis set results.

The implementation of EDFT in ONETEP prior to
this work can be used to calculate any property that
the linear-scaling implementation of LNV can be used
to calculate. This includes forces, including Pulay terms
[38] for MD and structure relaxations, as well as proper-
ties calculations including local and projected density of
states calculations. In previous work geometry optimisa-
tions were shown on large metallic clusters [39] .

ONETEP constructs the density matrix as an expan-
sion in the NGWFs as:

ρ(r, r′) =
∑
αβ

ϕα(r)K
αβϕ∗β(r

′), (27)

where Kαβ is the generalized occupancy of the NGWFs,
i.e. its eigenvalues are {fi} and is known as the density
kernel. In ONETEP EDFT, the free energy functional is
optimized firstly with respect to the Hamiltonian matrix,
{Hαβ} while keeping the NGWFs {ϕα} fixed. The orbital
contribution to the free energy can then be minimized by
optimising a projected Helmholtz functional,

A′[T; {ϕα}] = min
{Hαβ}

A[T; {Hαβ}; {ϕα}] (28)

with respect to {ϕα}. In conventional EDFT the den-
sity kernel can be generated explicitly as a function of
the eigenvalues εi (obtained by diagonalisation) of the
Hamiltonian as:

Kαβ =
N∑
i

Mα
if(εi)M

† β
i , (29)

where the eigenvalues (band occupancies) of the finite-
temperature density kernel, Kαβ are given in terms of
the F-D smearing function and the matrix M contains
the eigenvectors of the Hamiltonian eigenproblem:

HαβM
β
i = SαβM

β
i εi. (30)

Such eigenvalue based approaches will always scale as
O(N3) as they employ matrix diagonalization algo-
rithms.

The aim of this work is to replace the diagonalisation,
the building of the density kernel, the chemical poten-
tial search and the computation of the entropy in EDFT
with our new AQuA-FOE method. Up to now ONETEP
has used internally fully covariant and fully contravariant
tensors but for our work here we will follow the contra-
covariant approach suggested by Gibson, Haydock and
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FIG. 1: The two entropy approximations suggested in this work are overlayed in (a) and the relative errors shown in (b)

LaFemina [40]. This involves working directly with the
Hamiltonian in the natural representation, which is the
contra-covariant Hamiltonian matrix, or Hα

β .
Hα

β can be used in place of the H in any of the matrix
products described and the result is tensorially correct,
and as both matrices have the same eigenvalues, the re-
sulting contra-covariant density matrix has the correct
eigenvalues. The standard contravariant density matrix
can then be formed by either multiplying on the right
by the inverse overlap matrix to raise the index, or by
solving

Kα
β = KαγSγβ , (31)

for Kαγ .
The method of Gibson, et al works by assuming that

the Hamiltonian is a local operator, and that when ap-
plied to a state, the value of the result at position r de-
pends only upon the value in a small localization region
surrounding the state at position r. This must be the
case because when applying the Hamiltonian operator,

the contra-covariant form is the correct matrix repres-
ntation of the operator and this preserves the locality of
the states. Hence, Hα

β is a sparse matrix, if Hαβ is sparse

even if Sαβ is not. Using this logic, the authors suggest
solving the matrix equation

SγαH
α
β = Hγβ , (32)

for Hα
β , without constructing the inverse overlap matrix,

Sγα. This can be done in practice approximately us-
ing the same locality arguments as above by taking the
sparsity pattern of the resultant contra-covariant Hamil-
tonian matrix as the subspace of local interactions: that
is to construct small matrices for each column of the re-
sulting matrix from the non-zero elements of Hγβ on the
mask:

Mi = viv
T
i , (33)

where vi is the column vector of nonzero elements from
the ith column of Hαβ . This “nonzero elements of the ith
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column squared matrix problem” can be solved to give
the ith column of the resultant matrix:

(i)S (i)
γα Hα

β = (i)Hγβ , (34)

and then the elements are put back into the sparsity pat-

tern to produce the approximate H
(A)α

β .
The accuracy of the approximation can be checked

trivially by using

∆ = SγαH
(A)α

β −Hγβ . (35)

and the norm of ∆ gives an estimate for the error. This
can be minimized by increasing the size of the localization
regions of the local functions.
In practice, we use the same sparsity pattern forHα

β as
we do for Hαβ , as was suggested in Gibson et al. In the
calculations we have performed so far, this has proved
adequate based on the error estimate given by taking
||∆||F , but if this error ever proved too large, we have
the option to reduce the sparsity of Hα

β by multiplying
the radii of the spherical localization regions by a value
> 1.0 and constructing a more accurate sparsity pattern
from these more delocalized regions.
The sparsity pattern of the contra-covariant Hamilto-

nian matrix is only one of the considerations for sparsity,
however. We must also pay close attention to the sparsity
pattern of the density matrices. In most linear-scaling
DFT packages, the single particle density matrices are
kept sparse through either a geometric cutoff between
atomic centres, or a truncation by estimating the abso-
lute magnitude of matrix elements and setting to zero,
those elements which are smaller than the threshold.
In this work, we have opted to use an alternative

method based on the nature of the FOE-type approaches.
Since we perform a power series expansion, we opt to
limit the sparsity of the contra-covariant density matrix
to be no more dense than the Hα

βH
β
γ term. In so doing,

we limit the accuracy of small systems, but calculations
on these systems are likely to be possible with conven-
tional methods, or with dense matrices so the compro-
mise is worth it. In large systems, where resulting spar-
sity may be adequate for linear or near-linear scaling, care
must be taken to ensure that an appropriate electronic
smearing is used, as the error induced by the sparsity is
reduced when raising the electronic temperature.
This sparsity pattern is set at the beginning of a calcu-

lation (or at the beginning of each geometry iteration, if
performing a structural relaxation) based on the overlap
of the spheres containing the NGWFs. In ONETEP, the
sparsity patterns are based on such geometric considera-
tions, so the sparsity pattern of the Hamiltonian matrix
will not change through the calculations and hence, nei-
ther will the density kernel matrix. We find that with
our Hamiltonian squared sparsity pattern that the non-
zero elements correlate particularly well with the largest
elements of the density kernel when compared with a
density kernel calculated with no sparsity enforced (see
figure 2).

The sparsity pattern chosen for a given system type
should be tested on that system as it may not be trans-
ferrable in general. The sparsity pattern in this work
gets less sparse with increasing NGWF radius, which is
the main parameter which controls the accuracy of this
approximation in our metals method calculations.

We find that for a truncated octahedral Al2406
nanoparticle that electronic temperature has a large ef-
fect on the achievable accuracy (fig. 2). At 2.5 eV smear-
ing, we reach a maximum error of about 10−4 in the ele-
ments of the density kernel , whereas if we increase to 25
eV or 250 eV, we get maximum errors of 10−6 and 10−8,
respectively.

VII. CHEMICAL POTENTIAL SEARCH

When applying the Fermi-Dirac distribution at a par-
ticular electronic temperature to the eigenvalues of a
Hamiltonian matrix, the chemical potential µ is found
trivially by applying the Fermi function to all of the
eigenvalues with a trial value of chemical potential µ0,
summing all of the results of these applications. The
resulting scalar (number of electrons) is compared with
the desired number of electrons. This process is repeated
with a modification to the chemical potential until the
difference between calculated and desired number of elec-
trons is below some arbitrary threshold.

This approach is equivalent to using a root finding
method on the following equation, with the chemical po-
tential µ as the independent variable:

∆Ne = Ne −
N∑
i=1

1

1 + e(ϵi−µ)β
, (36)

where Ne is the target number of electrons, N is the size
of the eigenspace, ϵi are the eigenvalues of the Hamilto-
nian matrix, µ is the chemical potential and β is thermo-
dynamic temperature β = 1/kT .

This direct approach is efficient if the eigenvalues are
known. However, when performing a Fermi-operator-
expansion (FOE) in the non-diagonal space, the eigen-
values are not known, but the number of particles can
still be calculated as the trace of the density matrix. A
similar approach could then be used:

∆Ne = Ne − trace

(
I

I+ e(H−µI)β

)
, (37)

where H is the Hamiltonian matrix (which is assumed
to be orthogonal or be contra-covariant as described in
section VI) and I is the identity matrix of dimension N .
The problem with this approach is that each evaluation
of the density matrix is a relatively expensive operation,
which one would not want to perform many times per
SCF iteration.

A solution can be found by referring again to equation
4 and 9 and noticing that a density matrix calculated at
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FIG. 2: A comparison showing the sparsity pattern of the
Hα

βH
β
γ matrix (above) and the sparsity pattern resulting

from a 2.5 eV smeared density kernel calculated without trun-
cation and then having a truncation applied to its elements
which are smaller than a threshold of 10−4 (below). These are
calculations on a truncated octahedral Al nanoparticle with
2406 atoms (4 NGWFs per atom). The axes labels in this fig-
ure represent matrix row and column indices and the number
beneath each of them shows the number of non-zero elements
in each.

a particular chemical potential can be modified to be at
a different chemical potential at a lower cost than recal-
culation.

With this in mind, hyperbolic, trigonometric identi-
ties can be used to provide increments to the chemical
potential, using

tanh(x± y) =
tanh(x)± tanh(y)

1± tanh(x)tanh(y)
, (38)

or for matrices, where ρH,µ,β is the scaled and shifted
density matrix of equation, as in equation 9 calculated
for a Hamiltonian, H, at a chemical potential µ, we can
use

tanh

(
((H− µI)β)

2
± β∆µI

2

)
=
ρH,µ,β ± tanh(β∆µ

2 )I

I± tanh(β∆µ
2 )ρH,µ,β

.

(39)

Provided that I ± tanh(β∆µ
2 )ρH,µ,β can be inverted effi-

ciently, this method should involve far less computation
than recalculation of the density matrix.

If the matrix is inverted with a Newton-Shulz-Hotelling
algorithm, then each time the root-finding algorithm calls
for a new trial chemical potential, then the inverse can be
initialised with the inverse from the previous trial point
saving significant calculation effort.

What we do in practice is to actually to use a further
Chebyshev expansion of equation 39. The coefficients for
this expansion have to be computed every time a new
∆µ is used, but this is a relatively inexpensive operation.
When computing the expansion we take the scalar form
of equation 39 as:

q(x) =
x+ c

1 + xc
, (40)

on the domain [-1,1], where c is β∆µ/2. We then eval-
uate the Chebyshev expansion of ρH,µ,β using these co-
efficients, again using the divide and conquer algorithm
of Liang and Head-Gordon, et al. to provide us with
the density matrix at the updated chemical potential,
ρH,µ+∆µ,β .

We can go further than this, however, and use deriva-
tives with respect to the chemical potential to speed up
the root search. The first derivative of the density matrix
with respect to chemical potential, is:

∂ρ

∂µ
= −β

4

(
I− ρ2

)
, (41)

because

d(tanh(x))

dx
= sech2(x) = 1− tanh2(x). (42)

Furthermore, because the trace operator commutes with
the differential operator, we can write:

∂Ne

∂µ
= −β

4

(
1− trace(ρ2)

)
. (43)
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As Ne(µ) is a monotonic function (when using the Fermi-
Dirac distribution), the root finding ought to be simple
with Newton’s method. It is complicated slightly, how-
ever, because Ne(µ) has multiple stationary points which
increase in breadth with Hamiltonian eigenvalue-spacing
and decreasing temperature.
Using Newton’s method at one of these points would

send the next trial point off to±infinity, so a safe-guarded
version is used in practice, where a trust-region is de-
fined and if Newton’s method is going to send the next
point outside of these bounds, then a bisection step is
performed.

VIII. VALIDATION TESTS

In ONETEP, we have implemented the Annealing and
QUenching Algorithm - FOE (AQuA-FOE) approach
that we present in this paper for calculating the density
matrix from a given Hamiltonian matrix and also to cal-
culate an electronic entropy matrix. This type of FOE
is applied at every step of the ensemble-DFT (EDFT)
approach, which is used as the electronic energy mini-
mization technique.
To test the AQuA-FOE method we have carried

out numerical comparisons against the conventional
diagonalisation-based EDFT method which is available
in ONETEP [37]. For this we use small cuboctahedral
platinum nanoparticles. We performed all of these cal-
culations in ONETEP with EDFT, at 500 eV kinetic
energy cut-off, 9.0 Bohr radius localization spheres for
the NGWFs, and with PAW[41], using the data from
the GBRV pseudopotential dataset [42]. The platinum-
platinum distance was set to the bulk value of 2.8 Å. We
ran the AQuA-FOE scheme where the chemical potential
search was configured to halt once the chemical potential
had been found to within 10−6EH - 10−8EH . We also
used the refined approximation to the entropy which was
described in section V and an electronic smearing width
of 0.1 eV. We want to make clear that these systems
are too small for demonstrating linear-scaling behaviour,
because we do not have any sparsity in the density ker-
nel, but are effectively tests of the methodology against
exactly the same EDFT scheme, but with diagonalisa-
tion. These calculations have been done to demonstrate
convergence of the energy with respect to our chemical
potential search stopping criterion.
With this prescription for a cuboctahedral platinum

nanoparticle with 55 atoms, the convergence in energy of
the AQuA-FOE scheme with chemical potential search
stopping criterion can be seen in Table I. We observe
rapid convergence (shown in table I) of the energy to a
value of -4914.74445 EH while the the same converged to-
tal energy with diagonalization is -4914.74442 EH . With
a 147-atom Pt nanoparticle we calculated an energy of
-13137.33174 EH with a diagonalization based technique
and the converged AQuA-FOE value is -13137.33169 EH .
There was also no difference in the number of iterations

TABLE I: The convergence in total energy in EH of AQuA-
FOE for cuboctahedral platinum nanoparticles with respect
to chemical potential search stopping criterion (tolerance)

µ tolerance Pt55 Pt147
10−6 -4914.74211 -13137.32070
10−7 -4914.74475 -13137.33179
10−8 -4914.74445 -13137.33169

(either optimization of the Hamiltonian in the inner loop
or optimization of the NGWFs in the outer loop) be-
tween all the AQuA-FOE and the diagonalisation cal-
culations. The tightest chemical potential convergence
criterion value of 10−8EH has been used for all of the
rest of the calculations in this paper.

Next we examined the scaling of the AQuA-FOE
method with system size using truncated octahedral Pd
nanoparticles with 2406, 4033, 6266, 9201, 12934 atoms.
We chose these as truly 3-dimensional examples as they
are a much more stringent test of density matrix decay as
compared to 1- and 2-dimensional systems which can be
more straightforward to demonstrate reduced or linear-
scaling performance with the number of atoms due to
a lower crossover point with cubic-scaling methods. We
chose to run with the Hamiltonian matrix squared spar-
sity for the 1-particle density matrix, as described in sec-
tion VI and an electronic smearing of 0.5 eV. We also
used the refined approximation to the entropy which was
described in section V. A psinc basis set kinetic energy
cut-off of 500 eV was used and 9 NGWFs per Pd atom
were employed, with NGWF radii of 6.0 a0.

We ran all of these calculations on Archer, the UK’s
national supercomputer using 2400 MPI processes with
2 OpenMP threads per process. The calculations were
compared against the timings of ONETEPs diagonaliza-
tion based EDFT method for each system with the same
number of processes and threads. The eigendecomposi-
tion was performed by the Scalapack implementation in
the Intel MKL library and all of the sparse matrix op-
erations in the AQuA-FOE calculations were performed
using the SPAM3 sparse matrix algebra library which is
an integral part of the ONETEP code. We did not have
sufficient computing resources to perform all of the calcu-
lations to convergence, running instead a fixed number of
four inner and four outer loop iterations to assess average
time per outer loop iteration. From previous experience
with the EDFT approach, we expect a small increase in
the number of outer loop iterations with system size [37].

With ONETEP, the current implementation of EDFT
with AQuA-FOE and Hamiltonian matrix squared spar-
sity has crossover point with ONETEPs highly optimized
dense-matrix, diagonalization based EDFT scheme at
∼2000 atoms (see figure 3). The observed linear-scaling
(O(N), to be precise) of the AQuA-FOE method shows
that is it 5 times quicker when we reach Pd9201 (4 hours
per EDFT outer loop iteration (1 hour per inner loop it-
eration) than the cubically scaling diagonalization tech-
nique (20 hours per EDFT outer loop iteration). Figure
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FIG. 3: A comparison of EDFT in ONETEP using both Di-
agonalization with Scalapack (deep purple) and AQuA-FOE
(light blue). We have performed calculations with 4 inner and
4 outer loop (EDFT) iterations for regular truncated octahe-
dral nanoparticles of Palladium with 2406, 4033, 6266, 9201
and 12934 atoms. The average run-times (per outer loop iter-
ation) are presented on the y-axis, a cubic fit is shown through
the diagonalization timings (deep green) and a linear fit is
shown though the AQuA-FOE timings (orange). The geome-
tries of the Pd2406 and Pd12934 nanoparticles are inset.
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FIG. 4: A breakdown of the average run-times (per outer
loop iteration) into the times taken to compute the contra-
covariant solve as described by Haydock et al, the time taken
to compute the energy derivatives with respect to the chemical
potential and the time taken to compute all of the Chebyshev
expansions used in this method.

4 presents a breakdown of the timings into component
parts for the FOE calculations. This linear scaling results
from exploitation of the exponential decay properties of
the metal density matrix at finite electronic temperature
[27], by imposing a sparsity pattern on the density ma-
trix throughout our calculations. The 12934 atom system
with diagonalization was excessively demanding in terms

of computational expense and so we were not able to run
it for comparison.

We expect that with the ever increasing performance of
computational resources, and after further optimization
of the AQuA-FOE method and code (perhaps through
the use of the SelInv[43] algorithm rather than Cheby-
shev expansion to perform the quenches), that this
method will become increasingly useful for calculations of
industrially important large, metallic systems in techno-
logical applications in fields such as heterogeneous catal-
ysis and biosensing.

We expect the cross-over point to the linear-scaling
regime to be different for different materials and meth-
ods. For palladium we found the cross-over point to
be around 2000 atoms, but this is not representative
of crossover against methods that contain cubic scaling
components, because the EDFT of ONETEP already has
several components (e.g. Hamiltonian matrix construc-
tion) which are sparse due to NGWF localisation even
though the method involves a cubic scaling diagonaliza-
tion as the bottleneck. So a cross-over with a fully cubic-
scaling method at around 1000 atoms is more plausible
as mentioned by Suryanarayana et al [9].

IX. CONCLUSIONS

We have presented the AQuA-FOE method for run-
ning DFT calculations on large metallic systems with
a computational cost which increases effectively linearly
with the number of atoms. The ONETEP code, which
has already supported linear-scaling DFT calculations
on insulators for many years provided the framework
for developing our new method. Most of the machin-
ery of ONETEP such as non-orthogonal local orbitals
optimised in situ (strictly localized orbitals, which we
call NGWFs ), and sparse, CPU-distributed matrices was
used within our method. As in linear-scaling calculations
on insulators, the exponential decay in the one-particle
density matrix, which is also exhibited in finite temper-
ature metallic systems was exploited to achieve reduced
scaling.

The AQuA-FOE method works by running a Fermi
Operator Expansion (FOE) on a Hamiltonian at sev-
eral times the desired temperature. The resultant “hot”
density matrix is then quenched repeatedly until the de-
sired (lower) temperature is reached. This means that
only a fixed, constant number of matrix multiplications
is required to perform the FOE. Since each temperature-
halving quenching operation also has a fixed cost, in-
crease in the number of matrix products for different sys-
tems can only come from increase in the required number
of quenches. However, for a given material, the Hamil-
tonian spectral width is asymptotically constant with in-
creasing number of atoms. Hence, the number of quench-
ing operations will also remain constant with the number
of atoms and the full method is effectively linear-scaling
with system size as the cost of each matrix product is
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linear-scaling with system size in the limit of sufficient
matrix sparsity for large systems.
Our method finds the elements of the one-particle

density matrix along with the electron number conserv-
ing chemical potential, and also electronic entropy using
polynomial expansions which also have a constant num-
ber of terms with system size. We have shown validation
calculations of AQuA-FOE inside the EDFT procedure
by comparing numerically with the diagonalisation based
EDFT that is already in ONETEP showing agreement
in the energies to better than 10−5 EH per atom. We
have also demonstrated the linear-scaling computational
cost of our method with calculation times on Palladium
nanoparticles ranging from 2,406 to 12,934 atoms.
We expect that this method will become increasingly

useful as supercomputing power becomes greater and
more available. Complex metallic materials are possi-
ble to study with this approach, including large metallic
nanoparticles which have a growing number of applica-
tions in important technological areas such as catalysis

and biomolecular markers. We should note that we have
not yet run calculations with the AQuA-FOE method on
bulk metallic systems. Other methods based on the FOE
concept have been tested successfully on bulk metallic
systems[29, 44], so we intend to explore how AQuA-FOE
performs for bulk metallic systems in future work, in-
cluding further developments as necessary.
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land, Damien Calistẽ, Oded Zilberberg, Mark Rayson,
Anders Bergman, and Reinhold Schneider. Daubechies
wavelets as a basis set for density functional pseudopo-
tential calculations. The Journal of Chemical Physics,
129(1), 2008.

[7] Emil Prodan and Walter Kohn. Nearsightedness of elec-
tronic matter. Proceedings of the National Academy of
Sciences of the United States of America, 102(33):11635–
11638, 2005.

[8] S Goedecker. Decay properties of the finite-temperature
density matrix in metals. Physical Review B, 58(7):3501,
1998.

[9] Phanish Suryanarayana. On nearsightedness in metallic
systems for o (n) density functional theory calculations:
A case study on aluminum. Chemical Physics Letters,

679:146–151, 2017.
[10] Stefan Goedecker. Low complexity algorithms for elec-

tronic structure calculations. Journal of Computational
Physics, 118(2):261–268, 1995.

[11] WanZhen Liang, Chandra Saravanan, Yihan Shao, Roi
Baer, Alexis T Bell, and Martin Head-Gordon. Im-
proved Fermi operator expansion methods for fast elec-
tronic structure calculations. The Journal of chemical
physics, 119(8):4117–4125, 2003.

[12] S Goedecker. Integral representation of the Fermi distri-
bution and its applications in electronic-structure calcu-
lations. Physical Review B, 48(23):17573, 1993.

[13] Lin Lin, Jianfeng Lu, Lexing Ying, and E Weinan. Pole-
based approximation of the Fermi-Dirac function. Chi-
nese Annals of Mathematics, Series B, 30(6):729–742,
2009.

[14] Michele Ceriotti, Thomas D Kühne, and Michele Par-
rinello. An efficient and accurate decomposition of
the Fermi operator. The Journal of chemical physics,
129(2):024707, 2008.

[15] Phanish Suryanarayana. On spectral quadrature for
linear-scaling density functional theory. Chemical
Physics Letters, 584:182 – 187, 2013.

[16] Anders MN Niklasson, Marc J Cawkwell, Emanuel H
Rubensson, and Elias Rudberg. Canonical density matrix
perturbation theory. Physical Review E, 92(6):063301,
2015.

[17] Anders MN Niklasson. Implicit purification for
temperature-dependent density matrices. Physical Re-
view B, 68(23):233104, 2003.

[18] Taisuke Ozaki. O (n) krylov-subspace method for large-
scale ab initio electronic structure calculations. Physical
Review B, 74(24):245101, 2006.

[19] Jolyon Aarons, Lewys Jones, Aakash Varambhia,
Katherine E MacArthur, Dogan Ozkaya, Misbah Sarwar,
Chris-Kriton Skylaris, and Peter D Nellist. Predicting the
oxygen-binding properties of platinum nanoparticle en-
sembles by combining high-precision electron microscopy

http://dx.doi.org/10.1063/1.5001340


13

and density functional theory. Nano Letters, 17(7):4003–
4012, 2017.

[20] Mohan Chen, Linda Hung, Chen Huang, Junchao Xia,
and Emily A. Carter. The melting point of lithium:
an orbital-free first-principles molecular dynamics study.
Molecular Physics, 111(22-23):3448–3456, 2013.

[21] K Wildberger, R Zeller, and PH Dederichs. Screened kkr-
green’s-function method for layered systems. Physical
Review B, 55(15):10074, 1997.

[22] A. V. Smirnov and D. D. Johnson. Accuracy and limita-
tions of localized Green’s function methods for materials
science applications. Phys. Rev. B , 64(23):235129, De-
cember 2001.

[23] Johannes M Dieterich and Emily A Carter. Opinion:
Quantum solutions for a sustainable energy future. Na-
ture Reviews Chemistry, 1:0032, 2017.

[24] Nick DM Hine, Peter D Haynes, Arash A Mostofi, C-
K Skylaris, and Mike C Payne. Linear-scaling density-
functional theory with tens of thousands of atoms: Ex-
panding the scope and scale of calculations with onetep.
Computer Physics Communications, 180(7):1041–1053,
2009.

[25] NDM Hine, PD Haynes, AA Mostofi, and MC Payne.
Linear-scaling density-functional simulations of charged
point defects in alo using hierarchical sparse matrix alge-
bra. The Journal of chemical physics, 133:114111, 2010.

[26] Karl A Wilkinson, Nicholas DM Hine, and Chris-
Kriton Skylaris. Hybrid mpi-openmp parallelism in the
onetep linear-scaling electronic structure code: Applica-
tion to the delamination of cellulose nanofibrils. Journal
of chemical theory and computation, 10(11):4782–4794,
2014.

[27] Michele Benzi, Paola Boito, and Nader Razouk. Decay
properties of spectral projectors with applications to elec-
tronic structure. SIAM Review, 55(1):3–64, 2013.

[28] Walter Kohn and Lu Jeu Sham. Self-consistent equations
including exchange and correlation effects. Physical re-
view, 140(4A):A1133, 1965.

[29] Phanish Suryanarayana, Phanisri P. Pratapa, Abhiraj
Sharma, and John E. Pask. SQDFT: Spectral quadrature
method for large-scale parallel O(n) Kohn-Sham calcu-
lations at high temperature. Computer Physics Commu-
nications, 2017.

[30] Petros Souvatzis and Anders M. N. Niklasson. Extended
lagrangian born-oppenheimer molecular dynamics in the
limit of vanishing self-consistent field optimization. The
Journal of Chemical Physics, 139(21):214102, 2013.

[31] Stefan Goedecker and M Teter. Tight-binding electronic-
structure calculations and tight-binding molecular dy-
namics with localized orbitals. Physical Review B,
51(15):9455, 1995.

[32] Charles Kenney and Alan J. Laub. Condition estimates
for matrix functions. SIAM Journal on Matrix Analysis
and Applications, 10(2):191–209, 1989.

[33] Awad H. Al-Mohy and Nicholas J. Higham. Improved
inverse scaling and squaring algorithms for the ma-
trix logarithm. SIAM Journal on Scientific Computing,
34(4):C153–C169, 2012.

[34] Sheung Hun Cheng, Nicholas J Higham, Charles S Ken-
ney, and Alan J Laub. Approximating the logarithm of
a matrix to specified accuracy. SIAM Journal on Matrix
Analysis and Applications, 22(4):1112–1125, 2001.

[35] Chris-Kriton Skylaris, Arash A. Mostofi, Peter D.
Haynes, Oswaldo Diéguez, and Mike C. Payne.
Nonorthogonal generalized wannier function pseudopo-
tential plane-wave method. Phys. Rev. B, 66:035119, Jul
2002.

[36] Arash A Mostofi, Peter D Haynes, Chris-Kriton Sky-
laris, and Mike C Payne. Preconditioned iterative min-
imization for linear-scaling electronic structure calcula-
tions. The Journal of chemical physics, 119(17):8842–
8848, 2003.
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