
UNIVERSITY OF SOUTHAMPTON
Faculty of Physical Sciences and Engineering

Electronics and Computer Science

Optimizing Resource Allocation using
Multi-Objective Particle Swarm

Optimization in Cloud Computing
Systems

by
Entisar Alkayal

Supervisors: Professor Nicholas Jennings and Doctor Maysoon Abulkhair

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Physical Sciences and Engineering

Electronics and Computer Science
 Agents, Interaction and Complexity Group

January 2018

i

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

 by Entisar Alkayal

Allocating resources in data centers is a complex task due to their increase in size,

complexity, and consumption of power. At the same time, consumers' requirements

regarding execution time and cost have become more sophisticated and demanding.

These requirements often conflict with the objectives of cloud providers. Set against

this background, this thesis presents a model of resource allocation in cloud computing

environments that focuses on developing the allocation process in three phases: (i)

negotiation between consumers and providers to select the data center, (ii) scheduling

tasks inside data centers, and (iii) scheduling virtual machines (VMs) to physical

machines. The proposed model attempts to optimize each phase by applying multi-

objective optimization (MOO) and many-objective optimization (MaOO) using a

particle swarm optimization (PSO) algorithm.

In more detail, a parallel PSO (PPSO) algorithm based on multi-objective was therefore

developed to improve the SLA negotiation process between consumers and providers.

The main insight of this algorithm is that SLA negotiation can be automated and the

PSO can be parallelized to minimize negotiation time and to maximize system

throughput, thus increasing the profits of providers.

A many-objective PSO (MaOPSO) algorithm based on a modified ranking strategy was

developed to improve the task scheduling problem in each data center. The novelty of

this algorithm lies in using a modified ranking strategy to minimize evaluation time and

improve the quality of the results. The algorithm was executed within the constraints

of the tight deadline to improve performance in terms of both waiting time and

completion time.

ii

Finally, VM allocation was improved by applying a many-objective PSO to allocate

VMs in physical machines after clustering the hosts. Here the novelty lies in applying

PSO and K-means when clustering hosts to improve VM allocation and migration, thus

maximizing resource utilization and performance whilst reducing power consumption.

Most notably, SLA Negotiation reduced waiting time and completed time by up to 20%.

Additionally, it increased the throughput by about 20%. The proposed SLA negotiation

reduced the rates of SLA violations by about 25%. On the other hand, the proposed

MaOPSO task algorithm reduced the waiting time and completed time by 15% and 20%

respectively. It increased the throughput up to 15% and the profits up to 15%.

With respect to MaOPSO VM allocation, it improved resource utilization by up to 20%.

Additionally, it reduced the power consumption by 25% compared to other algorithms.

Profits are indirectly increased by improving utilization up to 20%. Finally, the

MaOPSO VM algorithm led to an increased throughput of 20%, a reduced waiting time

of 15%, and reduced the completed time up to 15%.

iii

Contents

List of Figures vi
List of Tables viii
List of Algorithms x
Declaration of Authorship xi
Acknowledgements xii
List of Abbreviations xiii

1 Introduction 1
1.1 Resource Allocation in Cloud Computing……...….………………........1

1.1.1 Cloud computing Overview…………….…..………………........1
1.1.2 Resource Allocation Overview ………….….……………….......4
1.1.3 Resource Allocation issues in Cloud Environments…..……........7
1.1.4 Optimization Algorithms in Resource Allocation………..…......11

1.2 Challenges in Optimizing Resource Allocation ………………………17
1.2.1 Service Level Agreement Negotiation……...………….……….17
1.2.2 Task Scheduling in Cloud Computing………………………….18
1.2.3 Virtual Machine Allocation……………………...……………..20

1.3 Research Contributions ……..………………………………………….21
1.4 Thesis Structure………………………………………………........25

2 Related Work 27

2.1 Meta-Heuristic Optimization Algorithms……..…………………….…27
2.1.1 Overview……………………………………...……………….. 27
2.1.2 Swarm Intelligence Algorithms……………………………...…30

2.1.2.1 Particle Swarm Optimization Algorithm……..…….…31
2.1.2.2 Ant Colony Optimization Algorithms ………….….…32

2.1.3 Evolutionary Algorithms………………………………………. 33
2.1.3.1 Genetic Algorithms………………………………..….33

2.1.4 Methods of Evaluating Multiple Objectives…...………………..35
 2.2 Particle Swarm Optimization……..…………...……………………….. 37

 2.2.1 Overview……..………………….……………………………. 37
 2.2.2 Improvements on Particle Swarm Optimization Algorithms 41

2.2.2.1 Modifying the Initializing of Particles……………...... 41
2.2.2.2 Modifying Based on the Number of Objectives………42

 2.2.3 Parallel Particle Swarm Optimization……………………........ 44
 2.2.4 Clustering Based Particle Swarm Optimization…………....…..48

2.3 Service Level Agreement Negotiation ………………………………… 51
 2.3.1 Overview.……………………………………………..……..... 51
 2.3.2 Automated SLA Negotiation Based on Multiple Agents……....56
 2.3.3 SLA Negotiation Based on Particle Swarm Optimization…...…58
 2.3.4 SLA Negotiation Based on Parallel Algorithms……..….……...59
 2.3.5 SLA Monitoring………………………………………………..60
 2.3.6 Discussion of SLA Negotiation work …..………………….......61

iv

2.4 Task Scheduling in Cloud Computing 62
 2.4.1 Overview...……………………………………………………. 63
 2.4.2 Task Scheduling Based on Particle Swarm Optimization...….... 66
 2.4.3 Task Scheduling Based on Meta-Heuristic Algorithms …….....69
 2.4.4 Task Scheduling Based on Heuristic Algorithms….…………...70
 2.4.5 Real-Time Task Scheduling Algorithms………………….…....71
2.4.6 Discussion of Task Scheduling Algorithms………..…………...72

2.5 Virtual Machine Allocation ………………………………….…………74
 2.5.1 Virtual Machine Scheduling ………………………………….. 76
 2.5.2 Virtual Machine Migration …………………………………… 79

2.5.2.1 Host Detection Strategies……………………………. 80
2.5.2.2 Virtual Machine Selection…………………………… 82
2.5.2.3 Virtual Machine Placement………………….………. 83

2.5.3 Discussion of VM Allocation Related Work……………………84
2.6 Summary………………………………………………………………... 85

3 A Resource Allocation Model 88

3.1Overview………...…………………………………………………..…... 88
3.2 Design of an Optimized Resource Allocation Model...……………… 91
3.3 General Resource Allocation Architecture …….……....…………… 92
3.4 General Resource Allocation Implementation………...……………... 97

3.4.1 Configurations and Specifications of Resources…………….. 100
3.4.2 Evaluation Parameters ………………………………………. 103

3.5 Summary ………………………………...…………………………… 109

4 SLA Negotiation Based on Parallel Particle Swarm Optimization 110

4.1 Overview…………………………………...……………..…………… 110
4.2 SLA Negotiation Algorithm Formation…………………………..… 113
4.3 Sequential PSO Negotiation Algorithm…………………………...… 117
4.4 Parallel PSO Negotiation Algorithms……………………………….. 120

 4.5 SLA Monitoring Algorithms……...…………………………...…...… 123
4.6 Parallel PSO Implementation…….……………………………….… 124
4.7 Experimental Evaluation………….……………………………….… 125

4.7.1 Experimental Methodology ……………………..…………… 125
4.7.2 Experimental Results ………………………………………… 128

 4.8 Summary……………………………………………………………… 137

5 Task Scheduling Based on Many Objectives Particle Swarm Optimization 139

5.1 Overview………………………………………………………………. 139
5.2 MaOPSO Task Scheduling Algorithm ……….……………………… 142
5.3 MaOPSO Task Scheduling Implementation …...…………………… 149
5.4 Experimental Evaluation ………...………………………………..… 149

 5.4.1 The MaOPSO Algorithm: Analysis Results…..…………….… 151
 5.4.2 Evaluating Ranking Method Efficiency in MaOPSO …………. 152

 5.4.3 Evaluating MaOPSO Compared to Other Scheduling ……...…. 154
 5.4.4 Evaluating MaOPSO Compared to Simple Ranking ………….. 158
 5.5 Summary …...………………………………………………………… 161

v

6 Virtual Machine Allocation using Particle Swarm Optimization 162
6.1 Overview………………………………………………………………. 162
6.2 Clustering Hosts Based on PSO and K-means Algorithms………… 164
6.3 Virtual Machine Scheduling Algorithm……………………………... 168
6.4 Virtual Machine Migration Algorithm……………….……………... 173
6.5 Experimental Evaluation…………………………………………….. 176

6.5.1 Experimental Methodology ………………………………….. 177
6.5.2 Experimental Results ………………………………………… 178

6.6 Summary ……………………………………………………………… 188

7 Conclusions and Future Work 190

7.1 Conclusions…….……………………………………………………… 190
7.2 Future Work …..……………………………………………………… 191

References 196

vi

List of Figures

1.1: Cloud Computing Technologies 2

1.2: Resource Allocation Levels in Cloud Computing. 5

1.3: Resource Allocation Optimization Objectives. 13

1.4: Resource Allocation Modules. 22

1.5: Proposed Resource Allocation Objectives. 23

2.1: Main Classification of Optimization Techniques. 29

2.2: Flowchart illustrating Parallel Particle Swarm Optimization. 46

2.3: PPSO Topologies. 48

2.4: SLA Management Life Cycle. 53

3.1: Optimized Resource Allocation Phases 90

3.2: General Architecture of Resource Allocation in Cloud 95

3.3: Manager Module Architecture. 96

3.4: Architecture of Provider Module. 96

3.5: The Entity Relationship Diagram for the Proposed Database. 97

3.6: CloudSim Architecture (Calheiros et al. (2011)). 100

3.7: Proposed Model Layers 100

4.1: SLA Negotiation Processes. 113

4.2: Flowchart for the SPSO Algorithm. 119

4.3: Negotiation Time Results (data shown with 95% confidence intervals). 129

4.4: Average Waiting Time Results (data shown with 95% confidence intervals). 129

4.5: Throughput Results (data shown with 95% confidence intervals). 130

4.6: Average Fitness Value Results (data shown with 95% confidence intervals). 131

4.7: Negotiation Time Results (data shown with 95% confidence intervals). 132

4.8: Speedup Results (data shown with 95% confidence intervals). 132

4.9: Average Waiting Time (data shown with 95% confidence intervals). 133

4.10: Average Completed Time (data shown with 95% confidence intervals). 134

4.11: Throughput Results (data shown with 95% confidence intervals). 135

4.12: SLA Violation Rate Results (data shown with 95% confidence intervals). 136

4.13: Total Profit Results (data shown with 95% confidence intervals). 137

vii

5.1: Task Scheduling Phase. 141

5.2: Results of MaOPSO in terms of Minimizing Objectives. 151

5.3: Results of MaOPSO in terms of Maximizing Objectives. 152

5.4: Processing Time Results (data shown with 95% confidence intervals). 153

5.5: Average Fitness Results (data shown with 95% confidence intervals). 154

5.6: Waiting Time Results (data shown with 95% confidence intervals). 155

5.7: Completed Time Results (data shown with 95% confidence intervals). 156

5.8: Average Utilization of Resources (data shown with 95% confidence intervals). 157

5.9: Total Profits (data shown with 95% confidence intervals). 158

5.10: Processing Time Results (data shown with 95% confidence intervals). 159

5.11: Waiting Time Results (data shown with 95% confidence intervals). 160

5.12: Throughput Results (data shown with 95% confidence intervals). 160

6.1: Average Completion Time (data shown with 95% confidence intervals). 179

6.2: Average Waiting Time (data shown with 95% confidence intervals). 180

6.3: Throughput Results (data shown with 95% confidence intervals). 181

6.4: Average Resource Utilization (data shown with 95% confidence intervals). 182

6.5: Profit Results (data shown with 95% confidence intervals). 183

6.6: Power Consumption Results (data shown with 95% confidence intervals). 184

6.7: Imbalance Factor Results (data shown with 95% confidence intervals). 185

6.8: SLA Violation Rate Results (data shown with 95% confidence intervals). 186

6.9: Clustering Time Results (data shown with 95% confidence intervals). 187

6.10: Average Waiting Time Results (data shown with 95% confidence intervals). 187

6.11: Throughput Results (data shown with 95% confidence intervals). 188

viii

List of Tables

3.1. Specification of Data centers 101

3.2. Specification of Host Types. 101

3.3: Specification of VM Types. 102

4.1: Setting of the Parameters for Experiments. 126

4.2: Setting of the Parameters for PSO. 126

4.3: Negotiation Time and Average Waiting Time Results (in seconds). 128

4.4: Throughput Results. 129

4.5: Average Fitness Value Results. 130

4.6: Negotiation Time (in Seconds) and Speedup Results. 131

4.7: Average Waiting Time and Average Completed Time Results (in seconds). 133

4.8: Throughput Results. 135

4.9: SLA Violation Rate Results. 136

4.10: Total Profit Results. 137

5.1: Particle Vector Direct Representation. 143

5.2: Task Execution Time (TET). 147

5.3: Task Execution Cost (TEC). 147

5.4: Data Transfer Time (DTT). 147

5.5: Data Transfer Cost (DTC). 148

5.6: VM Capacity (VMC). 148

5.7: VMs Rank Values. 148

5.8: The Setting of the Parameters for PSO. 149

5.9: Results of MaOPSO in terms of Minimizing and Maximizing Objectives. 151

5.10: Processing Time Results. 153

5.11: Average Fitness Results. 154

5.12: Waiting Time Results. 155

5.13: Completed Time Results. 156

5.14: Average Utilization of Resources. 157

5.15: Total Profits Results. 158

ix

6.1: Average Completion Time Results (in seconds). 178

6.2: Average Waiting Time Results (in seconds). 179

6.3: Throughput Results. 180

6.4: Average Resource Utilization Results. 181

6.5: Profit Results. 182

6.6: Power Consumption Results. 183

6.7: Imbalance Factor Results. 184

6.8: SLA Violation Rate Results. 185

6.9: Waiting time Results. 186

6.10: Average Waiting Time Results. 187

6.11: Throughput Rate Results. 188

x

List of Algorithms

2.1: General Meta-Heuristic Algorithm 30

2.2: Ant Colony Optimization Algorithm 33

2.3: The pseudo code of the Genetic Algorithm 34

2.4: Pseudo code of a Standard PSO Algorithm 40

2.5: Pseudo code of a MOPSO Algorithm based on Pareto set. 43

2.6: K-means Clustering Algorithm. 50

4.1: SLA Negotiation Algorithm. 118

4.2: Sequential PSO Negotiation Algorithm. 120

4.3: Parallel PSO Negotiation Algorithm. 121

4.4: PSO Negotiation Algorithm in data center. 122

4.5: SLA Monitoring Algorithm. 123

5.1: Task scheduling algorithm. 143

5.2: MaOPSO Task scheduling algorithm. 144

5.3: Modified Ranking Strategy Algorithm. 147

6.1: VM Allocation Algorithm. 164

6.2: Clustering Hosts Algorithm. 166

6.3: KPSO Clustering Algorithm. 167

6.4: PSO Clustering Algorithm. 168

6.5: VM Scheduling Algorithm. 169

6.6: MaOPSO VM Scheduling Algorithm. 172

6.7: Updating Utilization after VM Scheduling. 172

6.8: VM Migration Algorithm. 174

6.9: Migration from under-loaded host. 175

6.10: Migration from high-loaded host. 175

6.11: Migration from high-loaded host. 176

6.12: Select Host for migration VM. 176

xi

Declaration of Authorship

I declare that this thesis and the work presented in it are my own and has been generated
by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at
this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published in a number of conference (see
Section 1.3 for a list).

xii

Acknowledgements

At the beginning, praise and gratitude be to ALLAH almighty, without His gracious

help, it would have been impossible to accomplish this work. Working with this thesis

has been a very interesting and valuable experience to me and I have learned a lot. I

want to express my thanks to the people who have been very helpful during the time it

took me to finish this thesis.

First, I would like to thank my supervisor Professor Dr. Nicholas Jennings who helped

me with guidance, supervision, and constructive comments until I completed this work.

My PhD has been an amazing experience and I thank him wholeheartedly, not only for

his tremendous academic support, but also for giving me so many wonderful

opportunities.

Similar, profound gratitude and deeply thankful goes to my supervisor Dr.Maysoon

Abu Al-Khair for her efforts with me and for her unlimited help.

My special gratitude goes to my parents whose love and affection is the source of

motivation and encouragement for my studies. I would like to thank all my family, all

my sisters and all my brothers for unconditional support, and for simply being there.

They were always supporting me and encouraging me with their best wishes.

Finally, I would like to thank my husband, Abdulaziz Alzanbagi. He was always there

cheering me up and stood by me through the good times and bad. I thank my daughter

Gala and my son Faisal, and I would like to give them this work to express my love

for them and to motivate them for success.

Thank you all!

Entisar Alkayal, November 2017

xiii

List of Abbreviations

ACO Ant Colony Algorithms

ASPPSO Asynchronous Parallel Particle Swarm Optimization

CPU Central Processing Unit

CSA Cuckoo Search Algorithm

DTC Data Transfer Cost

DTT Data Transfer Time

EC2 Elastic Compute Cloud

ECT Expected Completed time

EDF Earliest Deadline First

FCFS First Come First Serve

FF First Fit

FFD First Fit Decreasing

GA Genetic Algorithm

IaaS Instruction as a Service

MBFD Modified Best Fit Decreasing

MI Machine Instruction

MIPS Million Instruction Per Second

MOO Multi-objective Optimization

MOPSO Multi-objective Particle Swarm Optimization

MaOO Many Objective Optimization

MaOPSO Many-Objective Particle Swarm Optimization

MCT Minimum Completion Time

xiv

MET Minimum Execution Time

Max-min Maximum-Minimum Completion Time

Min-min Minimum-Minimum Completion Time

NIST National Institute of Standards and Technology

NP Non-Polynomial

PaaS Platform as a Service

PSO Particle Swarm Optimization

PPSO Parallel Particle Swarm Optimization

QoS Quality of Service

RAM Random Access Memory

SaaS Software as a Service

SLA Service Level Agreement

SI Swarm Intelligence

SPPSO Synchronous Parallel Particle Swarm Optimization

SPV Small Position Value

TEC Task Execution Cost

TET Task Execution Time

TPC Task Processing Cost

VMC Virtual Machine Capacity

VM Virtual Machine

1

Chapter 1

Introduction

This chapter introduces the key problems addressed in this research: resource allocation

in cloud computing and motivations for optimized solutions. An overview of this

research is presented in Section 1.1, which includes brief definitions of cloud

computing, benefits and structure layers. The main challenges regarding resource

allocation are discussed along with general issues in cloud computing. The motivations

and challenges regarding optimizing resource allocation are then addressed in Section

1.2. Section 1.3 focuses on the main contributions and objectives of the research. The

last section provides a summary of the outline of the thesis.

1.1 Resource Allocation in Cloud Computing

In this section, an overview of the main concepts pertinent to cloud computing will be

presented including its definition, structures and models (see section 1.1.1). In addition,

Section 1.1.2 discusses the definition of resource allocation while Section 1.1.3

discusses the main issues related to resource allocation in cloud computing

environments. An overview of methods for optimizing resource allocation in cloud

computing along with the techniques for applying these will be presented in Section

1.1.4.

1.1.1 Cloud Computing Overview

Cloud computing is not an especially new concept; it has long been associated with

other distributed systems such as grid computing, utility computing, and cluster

computing (Foster et al. (2008)). It is also frequently associated with virtualized

infrastructure or hardware on demand, IT outsourcing, platforms and software services,

2

and other IT industry technologies. Cloud computing should not be viewed as a new

technology; it is a combination of many technologies and paradigms that communicate

with each other to form a cloud model, as shown in Figure 1.1.

Figure 1.1: Cloud Computing Technologies.

Cloud computing is defined in a variety of ways, the most general of which,

incorporating all cloud technologies and characteristics, is presented by the National

Institute of Standards and Technology (NIST). NIST define the cloud computing

environment as: " a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction"(Mell and Grance (2011)).

Cloud service models are divided into three layers, based on the models of services

providers supply to consumers. These include Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) layer, each of which is

defined as follows (Zhang et al. (2010)):

• IaaS: This layer comprises the infrastructure of cloud environment that includes

data center resources providing infrastructure services for consumers. The

capability provided to the consumer is that of renting these resources to run

software. Two examples of this layer are Amazon Elastic Compute Cloud

Cloud Computing

Virtualization

Autonomic
Computing

Internet
Technology

Grid
Computing

Utility
Computing

3

(Amazon EC2) and Amazon Simple Storage Service (Amazon S3) (Buyya et

al. (2013)).

• PaaS: Middleware provides a runtime environment that allows developers to

create applications and run them in the infrastructure provided by the provider.

It responsible for creating applications and frameworks by supporting

programming languages and tools hosted in the cloud.

• SaaS: This layer is responsible for delivering services to the consumers. SaaS

provides full services to the customer rather than requiring customers to install

software on their computer.

In this research, the focus is on the IaaS layer of cloud computing because managing

this layer is an efficient way to improve the performance of all systems. Cloud

computing has several characteristics that provide benefits for both cloud service

consumers and cloud service providers. Its main characteristics are on-demand access,

scalability, pay-per-use, power efficiency, reliability and virtualizing resources (Buyya

et al. (2013)). Most notably, on-demand access means that the resources are available

to the customers when they are needed and are in line with their requirements.

Scalability to meet consumers' needs refers to the ability of the system to continue

working as the number of consumers changes. A scalability feature enables cloud

computing to scale resources up or down based on consumers' requirements. Pay-per-

use in cloud computing means that the consumer only pays for the resources they use.

Power efficiency refers to the strategies that can be applied to use energy more

efficiently and reduce consumption. Reliability means that the consumer will be

provided with uninterrupted services and resources in line with the agreed Quality of

Services (QoS). These services include virtualization, which allows multiple instances

of operating systems to run in parallel on a single physical machine (host), and thus

defines the concept of virtual machines (VMs) (Ahmad et al. (2015)). This functionality

is achieved through the creation of multiple VMs that host different operating systems,

thus providing flexible cloud applications.

The NIST definition lists four deployment structures that describe models for delivering

cloud services to consumers (Mell and Grance (2011)). These configuration models

4

vary in management complexity, security implications and their associated costs

(Zhang et al. (2010)). The details of these models are as follows:

• Private: In a private cloud, one organization manages and maintains the

resources. A drawback of this approach is that the benefits of multitenancy, the

economy of scale and associated cost savings, are not realized. This deployment

model is preferred when data privacy and security are of paramount importance.

• Public: In a public cloud, resources are provided to the public and a pay-per-

use policy is implemented. The resources are therefore managed and monitored

by an external provider. This deployment model is chosen when there are large

numbers of users. Organizations can therefore use public clouds to reduce the

cost of resources.

• Hybrid: A hybrid cloud combines both private and public clouds and is

managed and controlled by one organization. This deployment model provides

the benefits of enhanced scalability and reduced cost offered by public clouds,

along with the security provided by private clouds, thus facilitating the

deployment of certain sensitive applications internally.

• Community: In a Community cloud, several organizations share infrastructure

to implement the same terms of service as well as access policies.

This work focuses on the private cloud model because only one provider will be used

to manage and control the distributed data centers. This model is chosen because it is

secure and is preferable for use in small organizations such as universities and

institutions. The model can be extended to apply in public cloud and adding some

procedures for authentication and security.

1.1.2 Resource Allocation Overview

Resource allocation has been an issue of concern for many areas of computing,

including operating systems, grid computing, and data center management (Anuradha

and Sumathi (2014)). Regarding cloud computing, resource allocation describes the

process of mapping available resources to cloud services over the Internet. Specifically,

the term resource allocation in a cloud context is defined as the process of finding hosts

in the infrastructure of cloud providers to run the applications for consumers in a way

5

that utilizes resources efficiently based on predefined goals (Jayanthi et al. (2014)). It

therefore describes any mechanism that aims to guarantee the requirements of

applications are correctly met by the provider’s infrastructure (Singh and Chana

(2016)).

Data centers in the infrastructure of cloud computing are designed with the capability

of applying virtualization. Virtualization is a mechanism for dividing computational

resources into multiple isolated executional components known as Virtual Machines

(Barham et al. (2003)). Virtualization provides several advantages such as the flexibility

to configure several virtual machines on the same host. It also facilitates the dynamic

initiation and termination of VMs on a host based on the task requirements and the

hosts' specifications. The number of CPU cores in each host determines the number of

VMs each host can run (in this research it is assumed that each VM needs only one

core). In most of the methods for allocating resources, the tasks are mapped to the

virtual machines before they have been assigned to hosts. Therefore, most resource

allocation methods are developed in such a way that two consecutive levels are involved

(see Figure 1.2) (Huang et al. (2013)). In the first level, tasks are assigned to the

appropriate virtual machine based on their requirements, while in the second level the

virtual machines are scheduled to appropriate physical machines. This research will aim

to improve resource allocation in both levels (Bagul Dhanashri and Toris Divya

(2017)).

Figure 1.2: Resource Allocation Levels in Cloud Computing.

Task Scheduler

Mapped VMs

Mapped Tasks

C
loud C

om
puting

Tasks with requirements

VM Allocator

Physical Machines

Consumer

6

Specifically, the task scheduling problem in the first level can be defined as the process

of searching for the optimal mapping of the set of tasks over the available set of virtual

resources to satisfy predefined specific objectives. In the second level, virtual machine

allocation refers to the process of selecting which virtual machine should be mapped to

the given set of physical machines in the data center. The virtual resource allocation

process involves dynamically creating and destroying virtual machines from any

resource, without affecting the execution of the application (Khanna et al. (2006)).

Allocating resources at the virtual machine level therefore offers many different

benefits such as flexibility in allocating and migrating virtual resources. The flexibility

that has been achieved using virtual machines encompasses flexibility in determining

the location of hosts and dealing with resources where the type of operating system or

the hardware specifications are known. Furthermore, virtual machine allocation

provides the flexibility to migrate a virtual machine from one host to another. Using

VM migration in this way maximizes resource utilization, improves performance, and

reduces power consumption (Ahmad et al. (2015)). However, cloud providers and cloud

consumers have different and conflicting requirements and objectives. Moreover, the

resources in the cloud infrastructure dynamically change in terms of load and

availability, making resource allocation in cloud computing a complex problem. The

effective and efficient allocation of resources is one of the key essential requirements

in cloud computing environments, and thus improving resource allocation is now a cen-

tral concern.

However, resource allocation algorithms need to be improved to cope with the

elasticity, scalability, increasing resources, and cost in the cloud environment (Madni

et al. (2016)). Traditional algorithms are inadequate for allocating resource in cloud

computing as the cloud resources are based on virtualization technology. Optimizing

resource allocation algorithms in cloud computing has therefore attracted the attention

of several researchers. The challenges for managing resources in cloud computing

revolve around heterogeneity in hardware capabilities, workload estimation, and the

cloud consumer’s requirements regarding QoS (Madni et al. (2016)). These will be

discussed in more detail in the following sub-sections.

7

1.1.3 Resource Allocation issues in Cloud Environments

There are many issues associated with resource allocation in cloud computing

environments including QoS, power consumption, VM migration, provider profits,

utilization cost and multi-agent systems. In this section, an overview of these issues and

their relationship to the proposed research will be presented and discussed.

The QoS and Service Level Agreement (SLA) will be addressed first because it is

extremely important in the management of cloud computing and providing services.

QoS represents the levels of execution, dependability, and accessibility offered within

services (Zheng (2014)). In the context of cloud computing, QoS is therefore a key

concern for cloud consumers and providers. Negotiation between providers and

consumers should thus be conducted to find agreement in terms of an SLA, which

specifies the QoS attributes. Based on the SLA, the providers should guarantee the

requirements and satisfy the QoS. However, if the provider cannot provide the required

quality, they are penalized. This research study will therefore show how to improve the

negotiation process between cloud providers and consumers by using optimization

techniques to reach an agreement within a short time.

 The second issue will be addressed is the power consumption, which is defined as the

rate at which a system will perform work, while energy can be defined as the amount

of work done in a certain time (Zhu et al. (2017)). The management of power

consumption in cloud data centers has led to several improvements in energy efficiency

(Bohra et al. (2010)). In cloud computing, there is a need to design resource allocation

algorithms to reduce the total power consumption of the system (Nguyen et al. (2013)).

Specifically, cloud computing involves techniques such as the virtualization of

computing resources, which can be used to improve the efficiency of the power

consumption in cloud environments (Buyya et al. (2010)).

Allocation based on the need for an efficient use of power is becoming increasingly

important in cloud computing environments. Moreover, power management is urgently

needed due to the increasing demands of computing power and the consumption of

power in data center cooling resources. However, the cost of power is an important

factor for any provider because a reduction in power consumption leads to a reduction

in the cost of cloud infrastructure (Ahmad et al. (2015)). Currently, the main aim of

8

VM allocation based on power techniques is to map VMs onto a smaller number of

hosts. The hosts can be utilized to maximize efficiency and the idle resources,

depending on the load conditions, can be hibernated or shutdown to save power. In this

research, power consumption will be considered in VM allocation and migration

simultaneously with QoS performance and utilization of resources.

In terms of virtual machine migration, this provides advantages in the cloud by load

balancing across data centers. Detecting over-loaded resources and under-loaded

resources effectively is a key concern when applying VM migration from one resource

to another. The execution of the migration process therefore needs to be implemented

effectively to prevent a negative impact on performance. In this research, VM migration

will be used to balance the load and utilize the resources in an efficient way. This

research will focus on optimizing the method of detecting the status of resources by

applying clustering techniques because they provide accurate and adaptive results.

In terms of profitability, the goal in many cases is to maximize the profit earned by

cloud data centers, while taking into consideration the QoS. Before allocating tasks to

the VMs, the cost of executing that task will be calculated using a profit model. In this

model, the profit from the provider's resources depends on three major features: the

execution cost of the physical resources, the utility cost of power consumption, and the

penalty cost the provider should pay if there is a violation of the agreement. Several

studies have examined how to maximize profit, for example by minimizing the power

of active hosts (Wang et al. (2013)), rescheduling VMs (Ahmad et al. (2015)), and

exploiting the penalty when exceeding the deadline, which is a predefined cost set by

the provider (Lee et al. (2012)). In the latter study, Lee et al. devised two profit-based

algorithms known as Max Utilization (MaxUtil) and Max Profit (MaxProfit). The

former focuses on utilization and indirectly reduces the cost of running resources as

well as ensuring efficient utilization. The latter focuses on profit by selecting a task

with the earliest start in the queue, which is then, maintained using the MaxUtil

technique. In the research reported in this thesis the focus will be on maximizing profit

by combining the methods of minimizing the number of VMs and rescheduling VMs

to reduce the number of running hosts. This methodology is akin to the MaxUtil

algorithm, as the focus is on maximizing utilization, which increases profit indirectly

9

by reducing the cost of execution. However, the method proposed in this research will

improve both utilization and performance in term of waiting time and throughput.

Chaisiri et al. (2009) developed a multi-objective mechanism for scheduling

applications that takes into consideration various cost constraints and the availability of

resources. In this research, the focus will be on maximizing utilization by using VM

migration, and without using any specific techniques to optimize profit. Profits can be

indirectly improved by maximizing the utilization and reducing the number of SLA

violations as these involve penalties.

In terms of cost efficiency, the common method for determining cost in cloud

computing is to use a pay-per-use model to ensure minimal costs and payment purely

for the resources used (Pietri and Sakellariou (2016)). To maintain this feature, cloud

management algorithms are responsible for offering resources that can complete the

consumer's request on time, within their budget, and at the lowest cost that can be

offered. This incorporates resources such as processing cost, memory cost, storage cost,

and data transfer cost. Cost aware algorithms are therefore required that are cost

efficient and can provide the best system performance by improving both utilization

and power consumption. These types of algorithm are described as multi-objective

algorithms, because many objectives need to be taken into consideration to guarantee

optimal performance. In this thesis, the cost of using resources will be considered in

terms of processing, memory, storage, and transfer data. The proposed model is based

on distributed data centers; therefore, bandwidth cost is an important factor to consider

when allocating resources for consumers.

Finally, multiple agents are considered in resource allocation. An agent is a software

entity that acts on behalf of another entity to perform a specific task satisfy specific

goals (Wooldridge (2009)). Agent systems are self-contained software programs with

domain knowledge that can work with a degree of independence and follow specific

actions to satisfy predefined goals (Jennings and Wooldridge, 1995). Agents include a

set of features (Wooldridge (2009)), the main ones of which are autonomy, pro-activity,

re-activity, cooperation, negotiation and learning. The concept of autonomous behavior

means that agents can be satisfied their objectives are on the behalf of users.

Additionally, agents can pursue their own individual goals, including taking decisions

10

based on internal and external events. Moreover, agents communicate with other agents

to exchange information, receive instructions, give responses, negotiate, and cooperate

to fulfill their own goals. Finally, agents are able to improve the decision making

process when interacting with the external environment.

Multiple agents are a set of agents that interact together to resolve a complex problem

using their combined knowledge (Taranti et al. (2011)). Multiple agents are conceived

as a distributed computing model whereby they interact to exchange information and

execute complex tasks that require dynamic, intelligence and adaptive interaction

(Wooldridge (2009)).

The design of agents and their inherent features means they are well suited for creating

complex systems (Jennings (2000)). Using agents can thus simplify the design and

implementation of such systems, as it is not necessary to consider all possible links,

interactions and states. Instead, agents can be programmed with specific behaviors,

enabling them to deal with unknown states and interactions as they occur. Furthermore,

agents can be used individually, either by assigning each one of them to work on a

specific aspect of the problem or by cooperating to solve a problem in a distributed

fashion.

Software agents can be used to model intelligence in distributed systems such as cloud

environments in order to improve adaptability, flexiblility, and display autonomic

charactaristics. Specifically, agents can be applied in resource allocation, providing

services and in executing large-scale distributed services (Banerjee and Hecker (2017)).

They can therefore be used to provide intelligent monitoring capabilities and

management services. Additionally, agents can be applied to ensure the efficient use of

energy in cloud computing infrastructures. They can also make the cloud smarter in its

interaction with users and more efficient in providing services (Al-Ayyoub et al.

(2015)). Agent-based management can be applied in cloud computing at all three layers

(Al-Ayyoub et al. (2015)). In the IaaS layer, agents can be applied to manage and

provide intelligent allocation of resources to consumers. In the PaaS layer, agents can

be applied in the deployment process and in the execution of programming

environments to implement the applications. In addition, agents are used in the PaaS to

implement the management functionalities of cloud environments. Finally, in the SaaS

11

layer, agents can be utilized to optimize the services provided to the consumers.

Furthermore, they can be used as interfaces for managing the underlying

hardware/software infrastructure to ensure efficient utilization and that the QoS is

satisfied. In this thesis, the focus will be on how to use agents to manage and allocate

resources in the IaaS layer and, at the same time, monitor and negotiate with consumers

in the PaaS layer.

Agent organizations also provide a framework of constraints and expectations

regarding the agents’ behavior by focusing on the decision-making and actions of

specific agents (Wooldridge (2009)). The agents in this research will be designed to

manage consumers' tasks, allocate VMs, balance the load of VMs, monitor the SLA

agreements and utilize the resources.

1.1.4 Optimization Algorithms in Resource Allocation

Optimization is a rapidly expanding field of research that plays a vital role in addressing

real world problems. As discussed previously, resource allocation is a key problem that

needs to be optimized regarding the issues arising from different objectives. In this

section, optimization algorithms in resource allocation will be discussed in detail.

Optimization is defined as the process of finding the best possible solution amongst all

those available in the search space (Gendreau and Potvin (2005)). Specifically,

optimization algorithms are responsible for modeling and evaluating solutions based on

an objective function and then applying search methods to find the best solution (Yang

(2010)). An objective function can be computed based on single or multi-objective

depending on how many objectives are involved in the evaluation methodologies. In

multi-objective optimization, the best value for each objective is included in the

evaluation of objective functions. Multi-objective optimization aims to seek in the

search space, where each objective is represented by a vector of decision variables to

satisfy specific constraints (Marler and Arora (2004)).

Optimization algorithms are needed in most modern applications due to the limited

number of resources available. Furthermore, time is a significant concern because most

applications work in real-time; algorithms therefore need to reduce the waiting time

and allocate resources quickly. Thus, solutions need to be found in order to manage and

12

allocate the resources efficiently and under predefined constraints to fulfil consumers'

requests and respond to providers' objectives.

However, some complex multidimensional problems cannot be solved using

deterministic optimization techniques (which follow the same steps at each iteration

and provide the same results), but can be solved using heuristic algorithms (Blum and

Roli (2003)). Such algorithms suggest some approximations to the solution for

optimization problems with low time complexity (Yang (2010)). Nowadays, meta-

heuristic optimization algorithms are widely used in solving Non-Polynomial (NP) hard

problems (Yang (2010)). Meta-heuristic algorithms in particular are used to find near

optimal solutions in a reasonable amount of computation time (Masdari et al. (2016)).

This is because meta-heuristic algorithms provide better quality results than

deterministic algorithms and can find solutions faster than traditional exhaustive

algorithms (Madni et al. (2016)). To achieve this, meta-heuristic algorithms use

iterative strategies with randomness. Thus, meta-heuristic techniques are used in many

lines of research to address problems that require fast results using reasonable solutions.

For example, in terms of the resource allocation problem, they have been shown to

produce better scheduling results than traditional scheduling algorithms (see sections

2.4.3 and 2.4.4 for more detail). For these reasons, this thesis will focus on meta-

heuristic approaches.

In particular, we will focus on Swarm Intelligence (SI) as this is one of the more

common meta-heuristic techniques. SI is a meta-heuristic that has been developed to

solve optimization problems by simulating the behavior of social insects (Blum and Li

(2008)). SI algorithms are used in complex distributed systems because there is no need

for a central control structure. In addition, SI algorithms provide an elastic and flexible

resource allocation as they add or remove resources without influencing the overall

structure (Blum and Li (2008)). SI includes several algorithms such as Ant Colony

Algorithms (ACO) and Particle Swarm Optimization (PSO) (Madni et al. (2016)).

With the development of cloud computing, there is now a pressing need to study and

improve both the methods and the algorithms of resource allocation (as argued in

Section 1.1.2). Resource allocation plays a key role in cloud computing systems

because it directly affects the performance of the overall system. An efficient resource

13

allocation mechanism can meet consumers' requirements, and at the same time improve

the utilization and profit for the provider. Given the features of cloud computing, such

as flexibility, virtualization and so on, two levels of allocation mechanisms can be

applied in cloud computing. The first is the task scheduling level, which schedules the

tasks over available VMs, while the second level involves distributing the VMs over

the host. In cloud computing, resource allocation involves the process of assigning

available resources to the cloud applications that need those (Buyya et al. (2013).

Resource allocation in the IaaS in cloud computing has attracted considerable attention

in the research literature. In the IaaS layer, resource allocation uses VMs to execute

consumers' requests. Several meta-heuristic algorithms have been developed by

research scholars to optimize the allocation of resources in this level.

Resource allocation in cloud environments is, however, a complex task due to the

geographical distribution of resources with varying load conditions, different user

requirements and price models (Jayanthi et al. (2014)). Depending on the main

objectives, resource allocation techniques in the cloud are classified as SLA and QoS,

cost optimization, load balancing, resource utilization, and energy efficiency metrics

(as shown in Figure 1.3).

Figure 1.3: Resource Allocation Optimization Objectives.

Cloud
Resource
Allocation

Allocation based
QoS and SLA

Allocation based
Load balance

Allocation based
Cost

Allocation Based
Resource Utilization

Allocation Based
Energy Efficieny

14

Importantly, cloud providers need optimization algorithms to improve management and

monitoring methods and maximize resource utilization and profit (Sahal et al. (2013);

Omara et al., (2014)). In addition, SLA in terms of QoS parameters is another issue that

needs to be considered when developing efficient resource allocation. However, some

researchers have developed resource allocation to satisfy one or more optimization

objectives, as will be discussed in section 2.3.2.

Resource allocation in cloud computing is therefore a field where many problems need

to be addressed to optimize and increase the performance of cloud systems. In this

thesis, three significant problems arising when allocating cloud computing resources

will be addressed. The first is that of optimizing the SLA negotiation between cloud

consumers and providers, which requires completing many processes to reach an

agreement quickly and then monitoring this agreement to reduce the number of SLA

violations. The second problem concerns scheduling tasks in virtual machines to select

an appropriate VM that will run tasks based on several predefined objectives. The third

problem involves optimizing the VM allocation and migration algorithms to utilize

cloud resources efficiently, balance the load and reduce power consumption, which

improve QoS performance and increase profits for providers.

As cloud computing resources become more distributed, QoS will become increasingly

important for cloud consumers and cloud providers in satisfying several and conflicting

objectives (Zheng (2014)). Therefore, to reach an SLA, a negotiation mechanism

should be implemented. SLA negotiation is important in guaranteeing the performance

of the cloud and developing trust between cloud consumers and cloud providers. The

SLA negotiation processes need to be optimized and conducted within a short space of

time by reducing the number of rounds involved in the negotiation. Additionally,

automated negotiation needs to be developed to reduce communication between parties

and thus reduce the time spent on negotiation. Furthermore, preventing SLA violations

will avoid any costly penalties the providers need to pay to guarantee the QoS. During

the negotiation process, the parties exchange information to indicate their negotiation

goals and requirements. If multiple objectives are involved, this becomes a complicated

problem because many factors need to be considered during the negotiation process. In

this research, the aim is to improve the SLA negotiation mechanisms by reducing

negotiation time between consumers and providers.

15

The second problem is that of task scheduling which is a critical problem in cloud

computing environments; this is related to the efficiency of cloud computing facilities,

which is considered an NP-hard problem (Guo et al. (2012)). Many researchers have

explored ways of finding optimal mapping between tasks and virtual machines to

improve scheduling algorithms and satisfy several objectives. However, there are many

conflicting objectives of the consumers and providers need to be addressed. Different

experiments show that, although finding an optimum solution is almost impossible, a

sub-optimal solution using meta-heuristic algorithms can be reached. In this research,

the task scheduling algorithm deals with five objectives, which require an optimized

method to evaluate them given the time constraints. Thus, a modified ranking strategy

will be developed to enhance the scheduling algorithm and reduce the mapping time to

deal with many-objective where more than three objectives are involved (as will be

described in Section 2.2.2.2).

The third problem is that of allocating virtual machines to hosts and migrating them in

a way that improves utilization and reduces the power consumption. Different strategies

for allocating resources (virtual or physical) result in different levels of efficiency

(Chaisiri et al. (2009)). This thesis will explore how to use clustering technologies to

improve the method for detecting the status of hosts in the cloud data centers, and thus

schedule and migrate VMs to provide dynamic and effective methods of balancing the

load among hosts. The aims of optimizing VM allocation are therefore to reduce the

migration time of VMs, improve the utilization of the resources, reduce power

consumption, and balance the load among hosts.

In cloud computing, it is important to develop algorithms for allocating resources

quickly to reduce waiting time and the number of missed deadlines of tasks. Meta-

heuristic methods have occupied a strong position in research on optimizing cloud

computing over the past few years due to their effectiveness in solving some of the most

important problems that arise. They have been shown to provide immediate and quick

solutions to these problems compared to deterministic algorithms. Several intelligent

techniques have been developed to improve resource allocation in cloud systems such

as Genetic Algorithms (GA) (Singh and Chana (2016)), PSO (Salman et al. (2002)),

and ACO (Xue et al. (2014)). In this thesis, the focus will be on applying PSO

16

algorithms to improve resource allocation, and then comparing results with GA and

ACO algorithms.

Specifically, a PSO has proved to be effective in finding near-optimal solutions by

simulating the movement of a flock of birds when they search for food (Salman et al.

(2002)). In addition to the benefits of most meta-heuristic algorithms, such as flexibility

and acceptable calculations, PSO has additional advantages such as easy

implementation and consistent performance. In the PSO algorithm, a search for the

solution is carried out at low computational cost for a wide range of complex

applications including combinatorial optimization problems, finding optimal routes,

scheduling, structural optimization, image analysis, data mining, bioinformatics, and

finance and business (Eberhart and Shi (2000); Alkayal et al. (2016)).

The implementation of the PSO procedure is straightforward and generally requires

relatively few lines of code because it based on simple operations and takes a short time

compared to other algorithms such as ACO and Genetic Algorithms (Eberhart and

Kennedy (1995)). It has only one operation to update velocity and position to coordinate

and control the movements of particles. The calculation in PSO is simple because no

overlapping and mutation calculations are involved, unlike Genetic algorithms.

Therefore, PSO takes less time to find solutions than Genetic algorithms and time is a

key factor in most applications (Mirzayi and Rafe (2013)). Thus, PSO is more popular

than other SI algorithms in solving problems that require quick search results. The

current research therefore focuses on PSO and will study the benefits of applying

variants of PSO algorithms in cloud computing environments.

Specifically, PSO is a meta-heuristic algorithm often used to optimize cloud computing

(Tsai and Rodrigues (2014)). Such algorithms have been developed to solve

optimization problems when allocating resources in cloud computing infrastructure to

satisfy certain goals (Feng et al. (2012)). Several modifications to the original concept

of the PSO algorithm have been made to improve the standard PSO and ensure it can

cope with the requirements of cloud environments. Given this, three types of PSO will

be focused upon in this research: Parallel PSO, multi-objective PSO, and Cluster based

PSO. In the next section, the reasons for using each type of PSO to optimize the problem

addressed in this research will be discussed.

17

1.2 Challenges in Optimizing Resource Allocation

The PSO algorithm can be applied to solve different types of problems in several fields

such as multi-objective optimization (Cagnina et al. (2005)), data clustering (Neshat et

al. (2012)), and scheduling (Salman et al. (2002)). There are several reasons for using

PSO to improve resource allocation in cloud computing in the task scheduling and

virtual machine allocation levels (Madni et al. (2016)). In this section, the motivation

for applying the PSO algorithm to improve SLA negotiation (see Section 1.2.1), task

scheduling (see Section 1.2.2), and clustering techniques in cloud computing (in

Section 1.2.3) will be discussed in detail.

1.2.1 Service Level Agreement Negotiation

Cloud providers and cloud consumers have different and conflicting objectives, so they

need to negotiate to reach a certain agreement. Unfortunately, in cloud computing the

SLA negotiation is a difficult process because resources are very diversified, distributed

and managed by different entities (Dastjerdi and Buyya (2012)). To cope with these

difficulties, a multiple agent approach to SLA negotiation and management in cloud

environments is often used (Chen et al. (2014)). Reducing the waiting time is another

requirement for cloud consumers, so it is essential to reach an agreement quickly to

reduce mapping time. Thus, concentrating on enhancing the negotiation process can

benefit both parties. It can reduce the waiting time for consumers and increase the

number of completed tasks, which will increase both the system throughput and the

provider's profits.

In this research, the SLA negotiation will be considered at the IaaS level, which

includes the virtual and physical resources. Negotiation at this level is more significant

in terms of enhancing resource allocation. From another perspective, SLA negotiation

at this level is more complex and requires greater optimization because there are

multitude of distributed data centers with many resources in the infrastructure. The

main requirements are to speed up the process of negotiation to reduce waiting time

and decrease the number of negotiation steps to save time for consumers and providers.

18

The provider will also benefit from an increase in the number of successful tasks, which

expands the system throughput.

Parallel computing can also be applied to speed up the process of the algorithm, as this

executes the algorithm over several resources simultaneously (Grama (2003)).

Recently, parallel computing has been used extensively in cloud computing field to

develop tools enabling efficient solutions for resource allocation problems to be found

(Warneke and Kao (2011)). This is because parallel computing reduces the processing

time needed for performing complex computational tasks. The goal of parallelization is

therefore to reduce the time spent on computation and to solve a problem by using many

nodes simultaneously and dividing the work between them (Grama, (2003)).

In optimization problems, processing large amounts of data using individual function

evaluations may take a considerable amount of time. Therefore, some of the meta-

heuristic algorithms are parallelized to improve their speed. PSO is one of these, as it

has been parallelized (Parallel PSO) to reduce search times. This research will therefore

use Parallel PSO to optimize the negotiation process and reduce communication

overheads, thus enhancing the speed of negotiation processes. The purpose of using

meta-heuristic optimization in the SLA negotiation in cloud computing is to reduce the

cost and time complexity of the negotiation process. PSO is a simple and effective

algorithm, but it may be time consuming to use in a large search space (Koh et al.

(2006)). The performance of sequential PSO is negatively affected when applied to

complex optimization problems, which is a strong motivation for the development of

parallel optimization (Chang et al. (2005)).

1.2.2 Task Scheduling in Cloud Computing

Task scheduling is one of the key issues in cloud computing environments and thus has

garnered attention from several researchers (Masdari et al. (2016)). In cloud systems,

task scheduling algorithms aim to spread the workload among the computing nodes to

maximize utilization while minimizing the overall task execution time. Moreover,

optimizing scheduling in cloud environments taking both performance and resource

utilization into consideration is a significant goal (Al-Olimat et al. (2014)). In this

19

context, performance is viewed in terms of throughput, which is the total number of

tasks executed to completion in a unit of time. The utilization of resources represents

the overall utilized capacity of the cloud resources (Al-Olimat et al. (2014)). However,

utilization and performance have an inverse relationship, i.e. increasing utilization may

decrease the performance in terms of waiting time. Therefore, to achieve maximum

utilization, resources should be allocated efficiently and simultaneously compromise

conflicting objectives for consumers and providers. For instance, allocation will

decrease the waiting time for consumers because they pay per time spent on the cloud,

and it minimizes the costs of reserving resources while decreasing the utilization time.

To address the problem of evaluating and satisfying multiple and conflicting objectives,

several researchers have developed techniques using multi-objective optimization

(MOO) which handles two or three objectives (Reyes-Sierra and Coello (2006)). Many-

objective optimization methods are developed to deal with more than three objectives.

However as argued previously, there are often multiple and conflicting objectives that

need to be satisfied in cloud systems.

Optimization problems with more than three objectives are a very attractive topic for

researchers due to their widespread applicability. Previous research efforts in the

optimization field have resulted in the development of algorithms that are able to

achieve good results by handling problems with two or three conflicting objectives (i.e.

multi-objective optimization). However, these techniques do not present the same

quality when the number of objectives increases to greater than three (Li et al. (2015)).

Therefore, several attempts have been made to reduce the computational requirement

of evaluating many-objective optimization. Currently, meta-heuristic algorithms have

attracted the most research attention in this respect (Figueiredo et al. (2016)). Thus, the

current research will tackle the problem by using many-objective PSO algorithms to

improve task scheduling problems.

Resource allocation problems have many objectives that need to handle and thus

evaluate to adapt with an increased number of objectives. Thus, in the current research,

the Pareto-optimal method will not be used, as the aim is to combine the ranking method

with a weighted sum approach to handle many objectives in a short space of time and

a simple process. These objectives include improving performance by reducing waiting

20

time, the cost of execution, and maximizing throughput, which leads to an increase in

profits.

1.2.3 Virtual Machine Allocation

The third major goal of this work is to increase resource utilization and reduce power

consumption by improving VM allocation and migration at the level of VMs.

Specifically, VM allocation can be carried out in two phases: VM scheduling and VM

migration. In this research, they will be dealt with as an integrated process to utilize the

resources and reduce the number of migrations by selecting the best mapping.

Specifically, the interaction between VM scheduling and VM migration is developed

to take into consideration the tradeoffs between power consumption, QoS performance

and resource utilization.

In most VM scheduling algorithms, hosts are divided into two sets: a set that meets

some of the criteria and a set that does not fulfil the criteria. Consequently, the set of

hosts that meet the criteria is ordered to start VM scheduling with the first hosts on the

list, and continues until all VMs have been placed or until the set of qualified hosts is

exhausted. Based on different criteria, several algorithms have been developed to

allocate VMs to hosts. To determine the qualified hosts, various allocation criteria are

considered such as host load, execution cost and CPU processing speed.

In particular, VM migration, for instance, is used to improve resource utilization and

reduce power consumption (Masdari et al. (2016)). The process of determining when

the machine is over-loaded or under-loaded is a critical consideration when allocating

resources, different aspects of which have been addressed by many researchers such as

(Beloglazov and Buyya (2010); Lin et al. (2011)). In general, the methods for

classifying hosts inside data centers can be divided into two main approaches. In the

first approach, the threshold level is used to detect the over-loaded hosts. These

thresholds can be static or dynamic (Beloglazov and Buyya (2012)). In most cases,

dynamic thresholds are used because static thresholds do not reflect the current change

in the system load and thus unbalance the load. Dynamic thresholds are used to

determine the machines' load status; thus, a threshold is the value related to the system

21

state that determines changes in system behavior (e.g. system load, waiting queue

length, and storage size) (Huang et al. (2013)). VM migration algorithms can be

implemented based on the utilization threshold, to allocate VMs and migrate them

among hosts. However, defining thresholds with fixed values are unsuitable for an

environment with dynamic and unpredictable workloads, where different numbers and

types of application may share physical resources (Pietri and Sakellariou (2016)). Using

the dynamic threshold is very important in determining and classifying VMs in data

centers because the threshold values must be able to adjust according to changes in the

system utilization.

In the second approach, VM allocation is treated as a combinational optimization

problem with specific constraints such as CPU utilization, power, performance, or a

combination of these (Shabeera et al. (2017)). A meta-heuristic optimization algorithm

is then executed to solve the problem. Using a meta-heuristic to solve VM allocation

and migration provides an effective solution compared to the use of thresholds (Madni

et al. (2016)). The research described in this thesis will determine how to use PSO in

the clustering of hosts inside data centers to improve the migration process and enhance

the load balance techniques. The novelty of this field lies in the process of clustering

hosts based on PSO before applying VM migration, which considers the performance

factor during the migration process. Thus, VM migration is performed from over-

loaded and under-loaded machines simultaneously to reduce power consumption.

1.3 Research Contributions

This thesis addresses how to apply PSO algorithms to optimize resource allocation in

cloud computing regarding the negotiation process, scheduling tasks, and clustering

hosts. The general aim of optimizing resource allocation is to satisfy the requirements

of both cloud providers and consumers. More specifically, improvement in

performance is measured by minimizing the waiting time, SLA violations, and power

consumption, and by maximizing the utilization of resources, throughput and profits.

22

The proposed resource allocation model will be developed by improving three modules

for allocating resources in cloud computing as shown in Figure 1.4. The objectives of

this work can be summarized as follows:

• Improving SLA negotiation based on Parallel PSO to reduce the waiting time

for finding the data center that has the most suitable resources for executing

tasks and increasing the throughput. In addition, the SLA violation rates will be

reduced to increase the profits.

• Enhancing the method of handling many-objective PSO task scheduling in

cloud computing by using a modified ranking strategy to reduce the waiting

time for scheduling tasks inside each data center and increase the throughput.

• Improving VM allocation based on many-objective PSO to improve resource

utilization, power consumption, and QoS performance.

• Optimizing the utilization and balancing the load among cloud hosts by

clustering the hosts inside each data center based on PSO and K-means

algorithms.

Figure 1.4: Resource Allocation Modules.

Figure 1.5 summarizes the main objectives of each module in the proposed model based

on the optimization objectives of resource allocation (see Figure 1.3).

SLA Negotiation

Task Scheduling

VM Allocation

Consumers Provider

23

Figure 1.5: Proposed Resource Allocation Objectives.

The main contributions of this research in terms of knowledge can be summarized as

follows:

• In the SLA Negotiation Module:

o Designing and developing a multi-objective SLA negotiation based on

Parallel PSO algorithms to reduce negotiation time and increase

throughput.

o Developing a SLA Monitor, which monitors the execution of tasks and

the utilization of resources to improve performance and reduce the

number of SLA violations.

o The originality of this module lies in applying Parallel PSO in SLA

negotiation in cloud computing, an area in which there has been no

previous research.

Allocation based Cost

Allocation based Load
Balance

Allocation based
Resource Utilization

Allocation based Energy
Efficiency

Task
Scheduling

SLA
Negotiation

VM
Allocation

Allocation based QoS
and SLA

24

 In the Task Scheduling Module:

o Developing a many-objective PSO (MaOPSO) algorithm to improve

real-time task scheduling based on five objectives: Task Execution Time

(TET), Task Execution Cost (TEC), the data transfer cost, data transfer

time, and VM capacity under deadline constraints.

o Developing a new modified ranking strategy to evaluate the five

objectives as a separate objective in less time than state of the art

methods to reduce the waiting time and increase the throughput.

o The novelty of this approach lies in evaluating a many-objective PSO

using a modified ranking strategy and applying it in task scheduling.

 In the VM allocation Module:

o Improving the method of allocating physical resources to satisfy QoS

demands in terms of throughput, waiting time and balancing the load by

using MaOPSO to utilize the resources efficiently.

o The originality of this work lies in applying clustering based PSO with

K-means in the VM allocation algorithm.

o Developing a load balancer algorithm using the clustering technique to

group the hosts into four classes: over-loaded, high-loaded, under-

loaded, and unloaded hosts.

o Developing a VM migration algorithm to migrate VMs among hosts

inside each data center based on the clustering results, thus reducing the

power consumption and the imbalance factor between hosts inside each

data center.

These contributions have been disseminated in number of academic papers:

• Alkayal, E. S., Jennings, N. R., & Abulkhair, M. F. (2016, November). Efficient

Task Scheduling Multi-Objective Particle Swarm Optimization in Cloud

Computing. In Local Computer Networks Workshops (LCN Workshops), 2016

IEEE 41st Conference on (pp. 17-24). IEEE.

25

This paper presented a method of improving the ranking strategy for task scheduling

based on multi-objective optimization. Three objectives were evaluated and the

results were compared with weighted sum and Pareto set approaches.

• Alkayal, E. S., Abulkhair, M. F., & Jennings, N. R. (2017, September).

Automated Negotiation using Parallel Particle Swarm Optimization for

Cloud Computing Applications. In Computer and Applications (ICCA), 2017

International Conference on (pp. 26-35). IEEE.

This paper described the model of applying Parallel PSO to improve SLA

negotiation in terms of reducing negotiation time. The results were compared with

standard PSO, where the model demonstrated several improvements in terms of

performance. This paper is selected from the best papers in the conference to be

extended as a chapter of book and will be published in Springer in December of

2017.

• Alkayal, E. S., Jennings, N. R., & Abulkhair, M. F. (2017, November). Survey

of Task Scheduling in Cloud Computing based on Particle Swarm

Optimization. The International Conference on Electrical and Computing

Technologies and Applications, 2017.

This paper is accepted to publish in IEEE and it is under the process of publishing.

It discusses the previous work in the task scheduling that were applied PSO

algorithms. It classified them based on several factors. Finally, it summarized the

main points that need to be explored in developing PSO.

1.4 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2: details the background to this work in the field of optimization algorithms

and PSO. It also introduces and describes the SLA concept, SLA management and the

SLA negotiation process. Moreover, it presents an overview of previous work related

to resource allocation in cloud computing using PSO to optimize cloud computing

environments. Finally, it concludes with a summary of the main points of comparison

between this research and previous work in this field.

https://edas.info/showPaper.php?m=1570403226
https://edas.info/showPaper.php?m=1570403226
https://edas.info/showPaper.php?m=1570403226

26

Chapter 3: describes the general architecture of the proposed resource allocation model

and its components. The general design of the model, its objectives and constraints are

also discussed in this chapter. The model includes three main algorithms: SLA

negotiation based on Parallel PSO algorithm, MaOPSO task scheduling algorithm using

ranking strategy, and a VM allocation and migration algorithm using clustering based

PSO. Details the design of these algorithms and their implementation are presented in

chapters 4, 5 and 6.

Chapter 4: discusses details of the automated SLA negotiation algorithm and its

specifications. Additionally, it presents the experimental strategies, evaluation

procedures, and evaluation results of applying the Parallel PSO algorithm.

Chapter 5: presents the MaOPSO task scheduling algorithm and how it can be

improved using a modified ranking strategy. Additionally, it describes the

implementation issues and the experimental procedures. Finally, it discusses the

evaluation methodologies, and the results of the algorithm.

Chapter 6: provides details of the VM allocation algorithm and its implementation. In

addition, it presents the clustering methodologies used in VM migration based on the

PSO and K-means algorithms. The experimental and evaluation processes are then

discussed. Finally, it summarizes the results of the algorithm.

Chapter 7: presents the results of the study, its general contributions and then

highlights directions for future research. In addition, it offers several practical

recommendations based on the findings.

27

Chapter 2

Related Work

This chapter presents and reviews the background information on essential concepts

relevant to the research presented in this thesis. Each section presents a historical

overview of the development of each concept up to the present. Section 2.1 discusses

meta-heuristic algorithms in general and then focuses on swarm intelligence

techniques. Section 2.2 presents an overview of the PSO and reviews applications of

PSO in different fields related to this research. Section 2.3 describes the key concepts

of SLA negotiation and then reviews previous research in this field. In Section 2.4, a

general overview of task scheduling in cloud computing is presented and related work

based on PSO is discussed. Section 2.5 describes virtual machine allocation and

migration techniques. Finally, Section 2.6 summarizes the main ideas presented in this

chapter.

2.1 Meta-Heuristic Optimization Algorithms

This section presents a general overview of meta-heuristic algorithms and then

discusses meta-heuristic algorithms related to this study, namely Swarm Intelligence

(Section 2.1.2) and heuristic optimization algorithms (Section 2.1.3). Finally, several

methods of evaluating multiple objectives will be discussed in Section 2.1.4.

2.1.1 Overview

Optimization algorithms are advanced techniques for solving an optimization problem

by determining its optimality. Mathematically, an algorithm is a technique used to

produce outputs for a given set of inputs under specific constraints (Blum and Roli

28

(2003)). In each optimization methodology, there is an objective function, which is used

to evaluate objectives under specific constraints. Optimization algorithms work by

defining the search space and attempting to maximize or minimize the objective

function (Yang (2010)). When an optimization problem is formulated, the algorithm

searches the space for optimal solutions using appropriate mathematical techniques.

Depending on the objectives, a choice can be made to find the optimal solution, which

takes time, or to find a near optimal solution with less time complexity.

For distributed systems, there are many factors involved in selecting an appropriate

algorithm and there is no efficient algorithm that can be used for all cases. Instead, there

are specific aims and objectives for the optimization algorithm. In general, optimization

techniques can be classified into several categories based on different factors. A

common form of classification divides the algorithms into deterministic and stochastic

algorithms depending on the nature of the algorithm and the method for finding

solutions (Yang (2010)). Deterministic algorithms follow repeatable path and variables,

while stochastic algorithms are based on the randomness in the path and the variables.

For example, in Genetic algorithms, when searching for an optimal solution the

population of solutions differs each time because it is based on randomness.

Conversely, there is no major difference in the results of stochastic algorithms, although

the paths in each population are repeated. Some approaches combine deterministic and

stochastic algorithms to benefit from the advantages each provides whilst overcoming

the limitations of both.

Stochastic algorithms themselves can be divided into two types: heuristic and meta-

heuristic. Heuristic methods find a good optimal solution with low computational cost,

but are not guaranteed to find an optimal solution (Madni et al. (2016)). The meta-

heuristic algorithms generally perform better than simple heuristics and use

randomization with a local search (Yang (2010)). There is no specific definition that

determines the difference between heuristic and meta-heuristic algorithms. However,

some researchers describe all stochastic algorithms with a randomness property and

global search as meta-heuristic (Gendreau and Potvin (2005)). Randomization in meta-

heuristic algorithms provides a method for moving from the local space to the global

space when applied to global optimization (Blum and Roli (2003)). Meta-heuristic

algorithms are used to find near optimal solutions in an acceptable time based on single

29

or multiple objectives (Gendreau and Potvin (2005)). Compared to deterministic

algorithms, meta-heuristic algorithms present better results in terms of quality and

computation time (Tsai and Rodrigue (2014)). For these reasons, meta-heuristic

algorithms will be used in this research to optimize resource allocation in cloud

environments.

Optimization problems, on the other hand, are classified according to the type of

variables involved and can be divided into two different categories: combinatorial and

continuous optimization problems, based on discrete or continuous variables,

respectively. This thesis will focus on discrete optimization problems because resource

allocation includes discrete variables that represent the IDs of resources.

Figure 2.1: Main Classification of Optimization Techniques.

In general, all meta-heuristic algorithms follow the same steps when searching the space

to find the optimal solution but with different forms of implementation and detail. The

main steps all meta-heuristic algorithms follow are shown in Algorithm 2.1 (Tsai and

Rodrigues (2014)). Specifically, each algorithm starts by initializing the solutions and

defining the population (Line 1). The next step involves repeating three processes until

the termination criteria are met (Lines 2-6). The details of these processes are as

follows:

Optimization
Algorithms

Deterministic Sophistic

Meta-heuristic

Continuous Combinatorial

Heuristic

30

• Transition: this process changes the current state or position of the solution(s)

to the next state by checking the available solutions. The complexity of this

operation depends on the design of the meta-heuristic algorithm.

• Evaluation: this process is responsible for evaluating the objective function of

the solutions based on the predefined optimization factors.

• Determination: this process controls the search by determining the directions

and constraints that control the convergence speed and the movement inside the

space.

Algorithm 2.1: General Meta-heuristic Algorithm

Start Procedure ()
1. Initialization (s) // initialize solution set
2. while (the termination criterion is not met) do // do while the condition is valid
3. v = Transition(s) // change the state or position of solutions
4. f = Evaluation (v) // evaluate the new state based on objectives
5. s = Determination (v, f) // Comparing the current with the previous
6. repeat // repeat until condition is not valid
End Procedure

Meta-heuristic algorithms include several different groups of algorithms that are

classified according to the behavior and strategies of the algorithms. This research will

focus on Swarm Intelligence algorithms. A general overview and discussion of these

algorithms is presented in the following sections.

2.1.2 Swarm Intelligence Algorithms

Swarm intelligence algorithms describe several related approaches to solving problems

that resemble biological swarms and are based on social behavioral models of insects

or animals (Blum and Li (2008)). The SI algorithms include multiple swarms that share

information in a search space to find a solution. Specifically, the SI is a meta-heuristic

that has been developed by simulating the behavior of real swarms or insects to solve

problems (Kennedy (2011)). SI algorithms are used to optimize complex problems that

have a distributed structure. In addition, they can be applied in systems that have elastic

and flexible properties without influencing the overall structure. Consequently, many

SI techniques have been applied in cloud computing to improve resource scheduling,

31

for example ACO and PSO (Guo et al. (2012)). Details on each of these algorithms will

now be presented.

2.1.2.1 Particle Swarm Optimization Algorithms

PSO is a global search algorithm that consists of a set of particles characterized by

random velocities and positions. Each particle in PSO has a velocity, which represents

the movement in the search space and it dynamically adjusts this based on its previous

behaviour. Therefore, particles tend to move towards better points within the search

space and thus they search the solution space by changing their position and velocity

(Trelea (2003)).

There are several SI algorithms in use; however, PSO has been shown to give better

results in terms of performance and complexity in large-scale environments. It reduces

the computational time compared to other SI algorithms such as Genetic algorithms. It

also uses the real values of numbers and does not need to encode these to binary as

happens in GA. Thus, in the current research, a PSO algorithm will be used in

optimization. The PSO algorithm provides effective performance in a distributed

environment such as cloud computing in terms of computational time, where it is faster

than meta-heuristic algorithms such as GA and ACO. According to (Pongchairerks

(2009)), PSO was found to be faster and simpler than GA in terms of both processing

and implementation and it includes few parameters to adjust and improve the

convergence speed (for more detail see Section 2.2.1). Thus, PSO will be used in this

research to optimize the task scheduling problem.

However, PSO does have some limitations as it suffers from local optima and a low

convergence rate in the large space. PSO can overcome these problems in two ways.

Firstly, a variant of the PSO algorithm can be used by changing some of its parameters

and formulas. Secondly, it can be combined with other meta-heuristic algorithms (see

Section 2.2.2 for more detail). In this thesis, the two methods will be used based on the

nature of the problem and the objectives. For negotiation and task scheduling, the

modified PSO will be used whilst in VM allocation PSO will be combined with another

algorithm to improve its quality in data clustering with K-means algorithm. In the next

32

section, general information on the most common meta-heuristic algorithms will be

presented.

2.1.2.2 Ant Colony Optimization Algorithms

ACO is a meta-heuristic algorithm that can be used to solve complex optimization

problems by simulating the behavior of ants when searching for foods. It uses a

mechanism that simulates the behavior of real ant colonies who cooperate using

pheromone paths. When the ants move to find a food source, they follow a path and

they leave pheromones on it. Other ants can then follow the trails to the food source by

sensing the pheromone (Shishira et al. (2016)). Most ants select the shortest path as a

larger amount of pheromones has accumulated on this path (Dorigo et al. (2006);

Tawfeek et al. (2015)).

The ACO algorithm has many advantages such as adaptability, robustness and

redundancy. ACO methods are applied to solve discrete optimization problems that rely

on finding the shortest path to the goal. Moreover, it has been successfully used in other

applications such as routing problems in dynamic network, solving traveling salesman

problems, multidimensional knapsack problems, job shop scheduling, and task

scheduling in cloud environments (Shishira et al. (2016)). Its disadvantages are the

overheads and the fact the algorithm converges to the local optimal solution. However,

the main problem with the ACO is that convergence is slow; therefore, it is applied in

a small area of space (Pongchairerks (2009)).

The steps involved in the ACO algorithm are summarized in Algorithm 2.2.

Specifically, the first step involved in searching for a solution is to initialize the

pheromone and the optimal solution then distributes the ants randomly as shown in

Lines 1-3. The pheromones of all the ants are detected and is computed (Line 6). Then,

the fitness function is computed to detect the best path (Line 8). When the short path is

detected, the best value is updated (Lines 9-11). The local value and the global value

are updated in Lines 12-13. These steps are repeated until the shortest path is selected

which based on the large amount of pheromones accumulated on this path.

33

Algorithm 2.2: Ant Colony Optimization Algorithm

Procedure ACO
1. Initialize (pheromone) // initialize the pheromone value
2. Optimal =null // initialize the best path value
3. Initialize(ants) //distribute the ants randomly
4. For each ants
5. For all the paths
6. detect the pheromones on each path // detect the pheromone values
7. End For
8. Best=Computefitness (ants) // compute the fitness function
9. If (Best < Optimal)
10. Optimal=Best // detect the shortest path
11. End If
12. Update local pheromone ()
13. Update global pheromone ()
14. Repeat the steps from 5 to 13 until end condition is met.
15. Return Optimal
End Procedure

2.1.3 Evolutionary Algorithms

Evolutionary algorithms are methods that draw on concepts from biological evolution,

such as reproduction, mutation and recombination, to solve optimization problems

(Simon (2013)). EA algorithms share the same basic idea but differ in their

implementation depending on the problems that need to be solved. Evolutionary

algorithms are a set of meta-heuristics used to solve many complex problems and aim

to find a near-optimal solution because the optimal solution is too complex (Simon

(2013)). The most popular EA algorithm is the Genetic algorithm. In the following

section the Genetic algorithm will described in more detail.

2.1.3.1 Genetic Algorithms

The GA method is one of the evolutionary algorithm and it is designed to obtain a near-

optimal solution in large space problems (Whitley (2014)). The development of a GA

method is based on natural selection and Mendel’s laws of inheritance in that it

simulates the process of natural evolution which involves encoding of chromosomes;

selection of Genetic manipulation and evolution; crossover and mutation operation;

and, finally, generating and evaluating new generations (Gendreau and Potvin (2005)).

34

GAs take a large amount of time during optimization because they include many

parameters that need to be processed and encoded.

Algorithm 2.3 describes the main steps involved in GA, which defines a set of solutions

that collectively represent a population. The algorithm starts creating the population by

randomly generating a collection of solutions in Line 1. The solutions are then

evaluated by computing the fitness function (Line 3), following which the result is

compared with the current solution. A new solution is subsequently formed by a

crossover function in Line 5. The next step is a mutation function, which is invoked to

replace the worst solution with a new one (Line 6). Finally, these steps are repeated

until the stop condition is met (Lines 2-7).

Algorithm 2.3: The pseudo code of the Genetic Algorithm

Procedure Genetic ()
1. Initialize (P, C) // initialize the population
2. while (the termination condition is satisfied) do
3. Evaluate (P)
4. Best =Select (P) // select best fitness.
5. Crossover(P,C) // to produce new solution
6. Mutation (P,C) // replace worst solution with best one
7. end while
8. return Best // return best solution
End Procedure

When comparing these algorithms in terms of their application in cloud computing

environments, the GA algorithm finds a near optimal solution, and it does not become

trapped in local optimal solutions. However, there is no guarantee of finding a global

maximum using GA and it can consume more time than PSO. The drawback of ACO

is that it is inefficient in terms of load balancing, because it starts randomly and

sometimes fails to find the global optimal solution. Moreover, the time for convergence

using ACO is uncertain and depends on the problem space and the number of

dimension. In comparison, PSO employs a fast search and its calculation is simple, but

it may fall into local optima and suffers from premature convergence. In sum, the

common meta-heuristic algorithms used in cloud computing have been explored and

compared. Based on this analysis, PSO is chosen for this study. In the Section 2.2, the

PSO algorithm will be presented in more detail.

35

2.1.4 Methods of Evaluating Multiple Objectives

Optimization methods can deal with single or multiple objectives to evaluate solutions.

The methods that deal with two or three objectives are called multi-objective

optimization, whereas if the number of objectives is greater than three it is called many-

objective optimization (Maltese et al. (2016)). The scalability problems are produced

using multi-objective optimization methods when the number of objective increases (Li

et al. (2015)).

Specifically, MOO is applied to problems that involve multiple objectives and is

concerned with mathematical optimization problems where two or three objective

needs to be evaluated simultaneously (Chow et al. (2004); Srinivasan and Seow

(2003)). MOO is defined as a set of decision elements with specific constraints that

optimizes the objective function when many objective functions are involved. MOO

presents a possible set of solutions, which are evaluated using trade-offs among several

objective functions. A selection strategy is then applied to choose an acceptable

solution. The MOO problem, according to (Marler and Arora (2004)) can be

mathematically defined as follows:

𝐌𝐌𝐌𝐌𝐌𝐌 𝐅𝐅(𝐱𝐱) = (𝐅𝐅𝐅𝐅(𝐱𝐱); 𝐅𝐅𝐅𝐅(𝐱𝐱); . . ; 𝐅𝐅𝐅𝐅(𝐱𝐱)) (2.1)

where:
k is the number of objectives in the fitness function
F(x) is the objective function of the solution x
F1(x) is the objective function for objective 1 for solution x
Fk(x) is the objective function for objective k for solution x, in MOO the k=3

Specifically, several methods have been proposed in the literature for dealing with

multi-objective optimization, and these can be divided into three categories:

domination, decomposition and ranking approaches (Reyes-Sierra and Coello (2006);

Garza-Fabre et al. (2009)). Details on each of these strategies will now be presented

and discussed.

First, domination approaches will be considered. In these methods, multi-objective

problems are optimized by simultaneously optimizing all the objectives using the

concept of Pareto dominance. In most MOO algorithms, the concept of domination is

defined as all the solutions that are not dominated by other solutions (Marler and Arora

(2004)). In general, the solution can be defined as Pareto optimal if and only if no other

36

solution exists that dominates it, whereupon the set is called the Pareto optimal set

(Tripathi et al. (2007)). However, Pareto set has been shown that, as the number of

objectives increases, the convergence ability and the performance of dominance

approach decreases (Li et al. (2015)). These methods need to maintain a diverse set of

solutions and they cannot apply these when the number of objectives increase.

The second set of approaches are described as decomposition approaches. In these

methods, the multiple objectives are aggregated into a single objective, the simple

approach and widely used is the weighted sum approach (Garza-Fabre et al. (2009)).

The weighted sum approach combines multiple objectives by using their weight, thus

forming one single objective as shown in Equation 2.2. However, the complexity in this

approach lies in determining the weight values for each objective depending on its

importance (Reyes-Sierra and Coello (2006)). Different weight values produce

variations in the results and in the processing time.

𝐅𝐅(𝐱𝐱) = ∑ 𝑭𝑭 m (𝐱𝐱). 𝐖𝐖𝐦𝐦 𝐌𝐌
𝐦𝐦=𝟏𝟏 (2.2)

where:
M is the number of objectives
W is the weight value for each objective it ranges from [0-1] and ∑ Wm = 1 M

m=1
F(x) is the value for x based on multi-objective
F m (x) is the value for x based on objective m

The final set of approaches are those based on ranking objectives that are non-Pareto

techniques and do not require balancing the weights. Several ranking objectives have

been developed such as average ranking, sum ranking, or maximum ranking (Garza-

Fabre et al. (2009)). However, instead of comparing two solutions directly, some

researchers compare them by checking the rank of each one respect to specific goals.

The ranking concept is a collection of items arranged in order according to some factors

that they all possess (Gao et al. (2014)). The position of each element in the ranking is

called the rank, which is usually represented with a numerical value that refers to its

order in the ranking. Then these ranks are combined into a single value that is represent

the rank of the solution according to all objectives based on the maximization and

minimization of objectives.

The ranking strategy can be applied using several methods such as an average ranking

or a maximum ranking. An average ranking selects one objective and builds a ranking

37

list using the fitness of each solution for the chosen objective then compute the sum of

the average rank as shown in Equation 2.3 (Garza-Fabre et al. (2009)).

𝐀𝐀𝐀𝐀(𝐱𝐱) = ∑ 𝐑𝐑𝐦𝐦(𝐱𝐱)𝐌𝐌
𝐦𝐦=𝟏𝟏 (2.3)

where:
AR(x) is the average rank of solution x
𝐑𝐑𝐦𝐦(𝐱𝐱) is the rank of solution x relative to objective m
M is the number of objectives

The minimum ranking strategy is similar to the average ranking but instead of taken the

summation of rans it takes the smallest rank for each solution (Garza-Fabre et al.

(2009)). In the next section, more detail about the PSO algorithm will be provided,

including its parameters, variants and modifications.

2.2 Particle Swarm Optimization

In this section, the standard PSO algorithm and its improved variants will be discussed

in detail. Specifically, Section 2.2.1 provides an overview of PSO algorithm

characteristics and describes the steps involved in applying PSO in terms of its

operations and parameters. Section 2.2.2 discusses several methods for improving PSO

algorithms. General information on Parallel PSO is presented in Section 2.2.3. Finally,

in Section 2.2.4 clustering using the PSO algorithm will be described and discussed.

2.2.1 Overview

PSO is one of the SI algorithms that comprise a simulation inspired by the social

behavior of animals, and was first introduced by (Eberhart and Kennedy (1995)). It is

a search optimization method that finds the best optimal solution through sharing

information in the swarm (Reyes-Sierra and Coello (2006)). PSO algorithms deal with

swarm of particles, where each particle represents a solution of the problem in the

search space. Each particle has two values; one is the best personal experience (pbest)

for the particle itself, while the other is (gbest) which represents the best solution among

all particles in the swarm. The particle position is computed according to pbest and

gbest values, and the velocity determines the speed of movement of the particle

38

depending on the difference between the particle's previous position and its current

position (Kennedy (2011). The velocity of the particle is used to control the movement

of the particles and to prevent particles from falling in the local optima by using the

inertia w parameter.

Specifically, PSO shifts the particle position in each iteration by updating particle xi at

iteration t, as shown in Equation 2.4, and the velocity is then updated based on the two

best values and inertia w as shown in Equation 2.5 (Eberhart and Kennedy (1995);

Alkayal et al. (2016)).

 𝐱𝐱𝐢𝐢 (𝐭𝐭) = 𝐱𝐱𝐢𝐢 (𝐭𝐭 − 𝟏𝟏) + 𝐯𝐯𝐢𝐢 (𝐭𝐭) (2.4)

where:
xi (t) is the current position of particle i at iteration t
xi (t-1) is the position of the particle i at iteration t-1
vi (t) is the velocity of particle i at iteration t

𝐯𝐯𝐢𝐢 (𝐭𝐭) = 𝐰𝐰 × 𝐯𝐯𝐢𝐢 (𝐭𝐭 − 𝟏𝟏) + 𝐫𝐫𝐫𝐫 × 𝐜𝐜𝟏𝟏 × (𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐢𝐢 − 𝐱𝐱𝐢𝐢 (𝐭𝐭)) + 𝐫𝐫𝐫𝐫 × 𝐜𝐜𝟐𝟐 ×

 (𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐢𝐢 – 𝐱𝐱𝐢𝐢 (𝐭𝐭)) (2.5)

where:
xi (t) is the current position of particle i at iteration t
vi (t) is the velocity of particle i at iteration t
vi (t − 1) is the velocity of particle i at iteration t- 1
pbesti is the best position of particle i
gbesti is the position of best particle in a population
w is the inertia weight with range [0, 1]
r1, r2 are the random numbers with range [0, 1]
c1, c2 are the acceleration coefficients with range [0, 1]

In each iteration, there are two best values for each particle. One is the pbest, which is

the best for each particle in the swarm, and then the best of all the pbest values is

selected as gbest for all particles as shown in Equations 2.6 and 2.7.

𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩(𝐢𝐢, 𝐭𝐭) = 𝐦𝐦𝐦𝐦𝐦𝐦 (𝐟𝐟(𝐩𝐩𝐩𝐩)) (2.6)

𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠(𝐭𝐭) = 𝐦𝐦𝐦𝐦𝐦𝐦(𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 (𝐢𝐢, 𝐭𝐭)) (2.7)

where:
i is the index of particle
t is the iteration number
pbest (i, t) is the best value for particle i in iteration t
f (pi) is value of fitness function of particle i
gbest (t) is the global best for all particles in iteration t

39

In PSO, several parameters are used to control the execution of the PSO algorithm and

improve the results. These parameters include the number of particles, the dimension

of particles, the maximum number of iterations, Vmax, learning factors c1 and c2,

inertia weight (w), and random numbers r1 and r2. Vmax controls the speed of

movement of the particles, which is represented by velocities. The Vmax constant

should be selected so that it allows particles to escape from local optima. According to

several research studies, situations where the Vmax value is dynamically changing

could result in better performance to a range [-Vmax +Vmax] to control the movement

(Eberhart and Shi (2000)).

The constant numbers c1 and c2 determine the acceleration values of the particles and

their high values correspond to past sub-optimal solutions, whereas low values allow

particles to fall in local optima. The c1 constant is related to pbest, while c2 determines

how well the particle follows the swarm and is related to gbest. The particle is

influenced by its own best position and the best position of its neighbors, so the values

of c1 and c2 are set to fixed equal values (Reyes-Sierra and Coello (2006)). The random

numbers r1 and r2 are used to provide random movement of particles inside the search

space, and their values can be in the range [0-1].

The inertia weight w is computed as shown in Equation 2.8. It is a positive linear

function based on the iteration of the algorithm and its value is selected to provide a

balance between local and global exploration, and thus ensures the optimal solution can

be found with a small number of iterations. (Reyes-Sierra and Coello (2006))

demonstrated that the dynamic value of inertia w performs better than the static value.

The value of w therefore changes dynamically with the iteration of the algorithm in the

range [0-1], as shown in Equation 2.8.

 𝒘𝒘 = 𝑼𝑼𝑼𝑼 − ((𝒊𝒊) / 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴) ∗ (𝑼𝑼𝑼𝑼 − 𝑳𝑳𝑳𝑳) (2.8)

where:
w is the inertia value that controls the movement of particles and this range from 0-1
UW is the high value of w, which is one
LW is the low value of w, which is zero
i is the iteration number
Maxi is the maximum number of iterations

40

The main steps in a standard PSO algorithm are summarized in Algorithm 2.4 (Durillo

et al. (2009)). The algorithm starts by initializing the particles with the available

solutions. The fitness function of each particle is then computed according to predefined

objectives that select the best fitness value (Lines 4 and 5). Following this, the velocity

and position of each particle are updated using Equations 2.4 and 2.5 (lines 6-7). The

best value for each particle is then selected and compared with pbest and gbest values

(Lines 8-14). Finally, these steps are repeated until a stopping condition is met.

Algorithm 2.4: Pseudo code of a Standard PSO Algorithm.

Procedure PSO ()
1. INITIALIZE (S,V, P, pbest, gbest) //initialize swarm, velocity, position, pbest, gbest
2. While (stop criteria does not satisfied) do // iterate while not stop
3. For each p є S // iterate through all particle
4. f(p)=Computefitness(p) // compute fitness function for particle p
5. best=Selectbestvalue(f(p)) // select best value
6. Updatevelocity(p) // update velocity using Equation 2.4
7. Updateposition(p) // update position using Equation 2.5
8. If (best < pbest)
9. pbest=best // update pbest value
10. End if
11. End For
12. If (best <gbest)
13. gbest=best // update gbest value
14. End if
15. End while
16. Return gbest
End procedure

PSO was originally developed for application in continuous optimization problems

(Izakian et al. (2010)). Therefore, to apply PSO in a combinational problem, the

problem needs to be transformed into discrete values and to encode the representation

of the search space. The Small Position Value (SPV) rule is one of the most popular

techniques used for this purpose and uses a 1 x n vector to encode n particles of PSO

(Shishira et al. (2016)). Another technique known as Integer-PSO is presented in

(Netjinda et al. (2012)), which is used when there is a substantial difference in the length

of tasks and the processing speed of the resources technique outperforms the SPV. In

Garg (2016), crossover and mutation strategies of the Genetic algorithm were applied

in PSO to deal with discrete problems. Other researchers, such as Khanesar et al. (2007)

have used the binary PSO method for discrete problems, especially in combinatorial

optimization where its variables take only discrete values.

41

2.2.2 Improving Particle Swarm Optimization Algorithms

Several researchers have improved the solutions generated by PSO algorithms using

methods that include changing the initial population and modifying the values of the

operators of PSO (see Section 2.2.2.1). In Section 2.2.2.2, methods for improving and

evaluating objectives in the PSO algorithms will be discussed.

2.2.2.1 Modifying the Initialization and Encoding of Particles

Several methods have been applied to initialize the position and velocity of the particles

(Li-Ping et al. (2005)). For example, in Wu et al. (2010) a greedy adaptive search

algorithm was developed to initial swarm by mapping the shortest task to the fastest

resource. Alternatively, fuzzy matrices were used by (Yang et al. (2011)) to represent

the position and velocities of particles such that each element in the matrix denotes a

fuzzy relationship between the resources and tasks. In Izakian et al. (2009), a First

Come First Serve (FCFS) method was used to initialize the PSO particles, whereas in

Liu et al. (2013) randomness with constraints was used.

Heuristic algorithms are sometimes combined with PSO to improve the initialization of

the particles such as Max-min in (Miranda and Fonseca (2002)) and first Fit (FF) in

(Low et al. (2010)). Alternatively, Alkhashai and Omara (2016) proposed a hybrid Best

Fit, PSO, and Tabu Search (BFPSOTS) algorithm based on the PSO algorithm to

achieve suitable scheduling of the users' tasks in cloud computing environments. Within

the hybrid algorithm, the Best-fit algorithm has been merged into PSO to initiate the

swarm rather than generating it randomly, and the Tabu search algorithm has been

combined with PSO to improve local research by avoiding any fall in local optimality

and improving the quality of the solution.

Conversely, other researchers represent the particle, as a vector of 1 × n where n is the

number of the dimensions of the solution (Kennedy (2011). Another representation of

encoding particles occurs in a matrix with m × n, where m is the number of particles

and n is the number of dimensions for particles (Abdi et al. (2014)). Deciding which is

the most suitable encoding representation depending on the nature of the of problem's

variables (continuous or discrete) and the number of solutions. In this thesis, the first

42

representation will be used for the negotiation problem where a vector will be used for

each particle because there are a small number of particles representing data centers. In

task scheduling, a vector of 1 × n will be used to represent the VMs. In the VM

allocation, a matrix with m × n elements will be used to map VMs to hosts with the

constraint that only one host can allocate each VM. This matrix representation will be

used to simplify the process of controlling the migration of VMs from one host to

another.

2.2.2.2 Modifying Based on the Number of Objectives

In this section, the strategies that are used to improve the PSO algorithms based on the

number of objectives will be discussed. The complexity of MOO problems such as large

search spaces, uncertainty and noise, which means that most single objective

optimization techniques are not suitable to solve MOO. Consequently, many techniques

have been developed to achieve MOO (Cagnina et al. (2005)). However, there are

certain limitations in these programming techniques as they generate a single solution

per run (Marler and Arora (2004)). This issue thus initiated the development of other

approaches. Compared to traditional mathematical programming techniques, PSO

algorithms were found to be suitable as they are population based and can manage a

whole set of solutions at a time, rather than just one. In this research, PSO is focused

upon because of its proven flexibility in responding to rapid changes in the system and

its ability to adapt to the external environment during run-time (Blum and Li (2008)).

PSO can use any methods of evaluating objectives that are discussed in Section 2.1.4.

First, PSO can use the weighted sum method that considers each objective function

separately by evaluating each particle for one objective function at a time, and the

determination of the best position is performed in a similar way to the single-objective

optimization case (Garza-Fabre et al. (2009)).

Second, the Pareto set will be considered, which can be used in PSO to evaluate

objective functions in each particle based on the concept of Pareto optimality (Durillo

et al. (2009)). In the case of multi-objective, selecting the best solution is not

straightforward as there can be many non-dominated solutions in the neighborhood of

a particle and only one solution from leaders is selected to update the velocity (Li et al.

43

(2015)). For multi-objective optimization, the PSO needs to consider Pareto dominance

every time it updates particles and stores non-dominated solutions (Reyes-Sierra and

Coello (2006)). Because MOO problems involve a set of Pareto optimal solutions rather

than a single optimum solution, two main points should to be addressed when the PSO

is applied to MOO problems (Cabrera et al. (2010)). The first of these concerns the

method of selecting the leader archive, which is used to store the set of non-dominant

solutions, to control the particles' movement inside search space. The second concerns

how to maintain the best solutions.

The pseudo-code of a general multi-objective PSO (MOPSO) extends the steps of

standard PSO and is specified in detail in Algorithm 2.5 (Durillo et al. (2009)).

Specifically, the algorithm starts by initializing the particles, velocity, pbest, and

archive to store the leaders. After initialization, the objective function must be

calculated to evaluate objectives for all the particles. Non-dominant solutions for each

particle are then selected using an evaluatefitness function (Line 4). Following this, the

leader is then selected by using a select_leader function (Line 5). The velocity, position,

and archive are then updated (Lines 6-8). The loop will continue until the stop criteria

is met (Line 9). Finally, the best solution is returned in the archive value (Line 10).

Algorithm 2.5: Pseudo code of a MOPSO Algorithm based on Pareto set.

Procedure MOPSO ()
1. Initialize (particle ,position, velocity)
2. Initialize_archive (archive)
3. do
4. non-dominate =Evaluatefitness (particle)
5. archive=Select_leader (non-dominate)
6. Updatevelocity (velocity)
7. Updateposition (position)
8. Updatearchive(archive)
9. while (stopping criterion is reached)
10. return archive
End Procedure

Finally, when we consider the modified ranking methods with PSO algorithms, several

ranking strategies had been applied with PSO. For example, Gao et al. (2014) used

maximum ranking and took the smallest rank for all objectives. In (Wan and Li (2008)),

one objective was used and they ranked the fitness function of solutions based on PSO.

44

MaOO, on the other hand, differs from MOO because several issues required to be

taken into account when dealing with problems that includes more than three objective

functions (Figueiredo et al. (2016)). For example, using Pareto-based algorithms when

the number of objectives increases, the process of comparing solutions using just the

Pareto dominance relation become more difficult (Cabrera et al. (2010)). In addition,

the process of selecting the leader from the archive in order to improve the convergence

towards solutions using Pareto set is still needs to be addressed (Marler and Arora

(2004)). Thus, it is difficult to solve a MaOO with a Pareto set and many techniques

have been developed to overcome the limitations of applied Pareto-dominance

(Figueiredo et al. (2016). There is, therefore, still a need to improve PSO algorithms to

deal with many objectives. In fact, particle swarm based algorithms seem particularly

suitable for multi-objective optimization and they can be extended to handle many-

objective optimization. In this research, we extend the MOPSO in order to deal with

many-objective problems as one objective. This is because of the high convergence

speed in single-objective optimization (Figueiredo et al. (2016)). In this research, a

modified ranking strategy with many-objective will be developed to improve task

scheduling and VM allocation based on four and five objectives. In the SLA

negotiation, the weighted sum approach will be used because only three objectives are

being dealt with.

2.2.3 Parallel Particle Swarm Optimization

Advances in computing technologies have improved parallel algorithms, which provide

several advantages compared to serial algorithms. The methodology of parallel

computing focuses on dividing large problems into smaller ones and distributing them

among different nodes to find a solution in rapid time (Chang et al. (2005)). Parallel

computing has the advantages of reducing time consumption, and increasing the rate at

which complex problems are solved (Grama (2003)). The cost of complex optimization

problems motivated the subsequent development of parallel optimization algorithms.

These algorithms thus solve smaller problems simultaneously (Hao et al. (2016)). The

parallel algorithm is concerned with running the same code on multiple processors with

the goal of reducing the running time (Grama (2003)). Thus, for optimization, a parallel

algorithm will be studied in this thesis.

45

The PSO algorithm is not time-consuming and can easily be parallelized because it

consists of a set of particles that can move individually and then share the results of

their movements. A PPSO approach is used to deal with different environments at the

same time by applying the same algorithms in a different search space and exchanging

the information obtained from these environments. This is applicable to the model of

distributed data centers used in this thesis. This will therefore help to improve

throughput and search speed. In PSO, one swarm consists of several particles, whereas

in PPSO it can include many swarms. The PSO algorithm is used for applying parallel

algorithms in a distributed system because, in each step of the iteration, all the particles

are independent of each other and thus it is easy to evaluate each particle in parallel.

The PPSO is therefore developed to maximize the throughput of the algorithm, reduce

computation time, and improve the global search to prevent it falling in to local

convergence.

PPSO handles the local and global convergence of the problem to communicate

between multiple swarms. PPSO can be implemented in two main ways: the first of

which is the most commonly applied model. This is based on dividing the search space

into N independent multi-swarms randomly and initializing each individual swarm. The

PSO for each swarm is then applied and the fitness function of each independent swarm

is evaluated to determine the particle best (pbest) and the swarm best (sbest) in each

individual swarm. The velocity and position of each particle in every swarm is updated

with new results. The global best (gbest) is determined by comparing the swarm best

(sbest) across all the swarms as shown in Figure 2.2. The second method uses several

nodes to run many swarms in parallel and the main node used for updating the next

iteration then selects the best swarm. This model is used when the same data exists in

all nodes and parallelism techniques are used to speed up the process of evaluation. In

this work, the first method will be used which involves dividing the search space into

smaller spaces and running the swarm in different nodes. This approach is suitable for

the proposed model structure as it is based on distributed nodes and has a distributed

data center with different numbers of resources and different characteristics. To apply

parallel algorithms, the main performance problem concerns facilitating

communication and cooperation between different nodes. Two main types of memory

architecture can be used to apply parallel algorithms: shared memory and distributed

46

memory. In the former, all nodes communicate via main memory, while in the latter

each node has its own memory. The structure of the proposed model in this research,

which includes multiple distributed data centers, is suitable for use with a distributed

memory architecture.

Figure 2.2: Flowchart illustrating Parallel Particle Swarm Optimization.

The PPSO algorithm follows the same steps as the PSO algorithm but with one extra

step, which is the communication step. This step is required in PPSO to define the mode

of cooperation between swarms. The communication between multi-swarms can be

either synchronous or asynchronous. There are several parallel adaptations of PSO,

including synchronous PSO (Schutte et al. (2004)) and asynchronous variants (Koh et

al. (2006); Venter and Sobieszczanski-Sobieski (2006)). PPSO has been adapted to

Generate number of
N swarms

PSO
swarm 1

PSO
swarm 2

PSO
swarm N

sbest1 sbest2 sbestN

Find gbest

Update velocity

Update position

Divide the swarm into N
swarms

47

solve multi-objective optimization problems (Fan and Chang (2009)). The nature of

the communication structure plays a major role in improving the optimization

algorithm. Parallel Particle Swarm Optimizers based on the communication between

particles are be classified into three categories, namely master/slave PSO, ring PSO and

fully connected PSO, as shown in Figure 2.3 (Tu and Liang (2011)).

In the master-slave model, there is generally one master node responsible for managing

other slave nodes. Each slave node runs the swarm then sends the results to the master

node. In this model, finding the global optimal is achieved in the master node, while

evaluating the objective function and modifying particle velocities is executed in the

slave nodes. It is simple and easy to implement, which has led to its widespread use in

optimizing large-scale problems. In the Ring PSO model, the swarm is divided into

multiple swarms, each of which is placed on one node. Each node runs a PSO algorithm

on its swarm. Choosing the optimal value and modifying individual velocities occurs

locally within each swarm. After a defined number of iterations, the best solution in

each node is then migrated to neighboring nodes. In general, this model is suitable for

small sized spaces that include small numbers of swarms. However, this model can only

be implemented in a shared memory architecture because of its need for communication

in each iteration. In the fully connected topology, all nodes are directly connected to

each other. All particles in the entire swarm move directly to the best particle found in

the whole swarm. This model, like the ring PSO, requires a great deal of communication

as it takes more time to manage the swarm and control the movement of each particle.

Based on the advantages of these topologies and the structure of the proposed model,

the master/slave topology will be applied to the PPSO algorithm such that the Manager

Agent in our model is the master node and distributed data centers are the slaves. This

model is chosen because it is suitable for the proposed structure and involves the least

amount of communication and control overheads in an efficient manner than other

topologies.

48

Figure 2.3: PPSO Topologies.

Most research on parallelized versions of the PSO scheme have involved testing

different communication strategies asynchronously or synchronously (Koh et al

(2006)). Additionally, they have also focused on the implementation of the algorithm

in the cluster or GPU processor (Zhou and Tan (2009); Laguna-Sánchez et al. (2009)).

However, one of the implementation studies showed how to map the PSO on the

parallel architecture. In this thesis, the focus will be on improving the method of

communication between nodes to affect the design of the algorithm. In (Gonsalves and

Egashira (2013)) the parallel version of the PSO algorithm was described without

introducing any complexity in time and quality. In this research, the parallel version of

the algorithm is used to improve throughput by reducing the data redundancy of nodes

compared to the standard PSO algorithm.

2.2.4 Clustering Based Particle Swarm Optimization

Clustering is a technique for dividing a large dataset into small groups with similar

characteristics (Adrian and Heryawan (2015)). It is an attractive and a major task in

data mining that is used in many applications such as text mining and spatial data

applications. The clustering method is divided into hierarchical clustering and

partitioning clustering (Gan et al. (2007)). Hierarchical clustering can be applied by

either merging two clusters or splitting a cluster in such that it iteratively merges the

two nearest clusters until only one cluster remains in the dataset (Berkhin (2006)).

(a) Master/Slave (b) Ring (c) Fully Connected

49

Another method of clustering is partition clustering which clusters the dataset into

several clusters in one level.

One of the most popular approaches to clustering has been to design clustering as an

optimization problem with several objectives and constraints (Rana et al. (2011)). In

this instance, the partitioning of a given dataset satisfies the objective function based

on several objectives. The computed objective functions are based on statistical

relationships between the data points in the dataset and the cluster-centroids of each

cluster (Kuo et al. (2011)). Several optimization methods have been proposed to solve

the clustering problem where the objective function aims to maximize or minimize the

inter cluster distance. One of the most efficient algorithms applied to clustering is the

PSO algorithm (Abdel-Kader (2010); Govindarajan et al. (2013)). However, PSO often

leads to premature convergence and its performance is highly dependent on parameter

tuning, therefore several researches have been made to improve its quality and

performance in different ways (Rana et al. (2011)). For example, PSO is applied to

determine the appropriate number of clusters and initialize their centroids. Upon

initialization, PSO has a limitation in that it does not perform well on a large and

complex dataset. This is because each solution is represented by a particle that has a

boundary of the search space and it cannot then explore any further. Kuo et al. (2011)

proposed a PSO algorithm to beat this problem by predefining the number of clusters

at the beginning of the execution. To improve the efficiency of the PSO in data

clustering, it is sometimes hybridized with other algorithms such as K-means in

Mahendiran et al. (2012) and fuzzy techniques in Benameur et al. (2009).

The K-means algorithm is regarded as the most popular technique for clustering data

(Hatamlou et al. (2013)). This algorithm starts with random centroids and each object

is assigned to the closest centroid as shown in Algorithm 2.6 (Line 1). The centroid

values are then re-calculated based on the points of each cluster as shown in Lines 2-7.

This procedure continues until a termination criterion is met. Although the K-means

algorithm is simple, its performance varies greatly depending on the initialization

values of centroids. To solve this limitation, research on the setting of initial centroids

has been ongoing using K-means combined with optimization approaches such as GA

and PSO to find the global optimization and escape from local optima (Premalatha and

Natarajan (2009)).

50

Algorithm 2.6: K-means Clustering Algorithm.
Input: dataset points, K // where k is the number of clusters
Output: k clusters with points assigned to each of them
Procedure k-means (points, k)
1. random initialization of k cluster centroids
2. do
3. for all points
4. Assign points to closest cluster
5. end for
6. for all k clusters
7. compute the new centroids
8. end for
9. repeat until there is no more change in the centroid values
End Procedure

Various research studies have been conducted to improve the efficiency of the K-means

algorithm using PSO. PSO provides the optimal initial centroids, thus using these

values the K-means algorithm produces better clusters and more accurate results than

it does when used alone. In Neshat et al. (2012), a combination of PSO and K-means

was developed to take the feature of the PSO in the global search and the speed of

convergence of K-means. Furthermore, Saini et al. (2014) developed clustering

algorithm based on PSO and K-means to improve the quality of clustering results.

Benameur et al. (2009) proposed a PSO method with a fuzzy clustering algorithm,

which developed to produce a better clustering of solutions by dividing the dataset into

multiple swarms. Moreover, (Attea (2010)) discovered that as the performance of

clustering algorithms degrades there are increasingly more overlaps among clusters in

a dataset. These issues have motivated researchers to develop an innovation multi-

objective PSO framework for clustering data that delivers more effective results than

state-of-the-art clustering algorithms.

GA operators, which involve selection, mutation and crossover, can be applied to

produce a new generation of chromosomes to improve the quality compared with the

previous generation. Premalatha and Natarajan (2009) used the hybrid approach of PSO

with GA to select a better solution without becoming trapped in the local optima, and

to provide a quicker convergence speed. This renders PSO-GA more flexible in

providing better results within a reasonable processing time. However, in clustering

data, GA is more time consuming than K-means.

After studying different clustering techniques, the most common algorithms combined

with PSO can be summarized as follows:

51

• K-means clustering, which produces greater accuracy and requires less

computation time, although performance is based on the number of clusters.

• Clustering data using fuzzy measures produces results similar to K-means

clustering, but requires more computation time because the fuzzy measure

involves more calculations.

• GA yields effective results and, unlike K-means, does not require the number

of clusters at the beginning of process. However, it consumes longer time to

compute than K-means.

Given these comparisons, the requirements of the current research problem involve

applying PSO clustering to cluster hosts in the data centers. This requires high-speed

methods where the number of clusters is predefined and limited. Therefore, in this

research, the PSO combined with K-means will be used for clustering.

2.3 Service Level Agreement Negotiation

This section presents an overview of the SLA negotiation process and discusses related

work on SLA negotiation in cloud computing. Section 2.3.1 outlines the key points

related to SLA negotiation in cloud computing. In Section 2.3.2, the automated SLA

negotiation process based on multiple agents will be described. Section 2.3.3 will

discuss in detail previous work that has applied PSO to improve SLA negotiation. Using

parallel algorithms in developing SLA negotiation will be discussed in Section 2.3.4.

Section 2.3.5 will describe the techniques and the measurement factors used in SLA

monitoring algorithms. Finally, Section 2.3.6 summarizes the main points along with

results in the field of SLA negotiation.

2.3.1 Overview

An SLA is a formal agreement between the providers and the consumers that defines

the parameters of the services the consumer expects and the provider guarantees (Son

and Jun (2013)). SLA is a term widely used to specify QoS objectives, which are

achieved through a negotiation process (Abdullah and Talib (2012)). SLA in a cloud

52

computing context is defined as a contract signed between a cloud provider and a

consumer that determines the set of QoS metrics that are used to measure services and

penalties in case of violations (Son and Jun (2013)). SLA is an important way of

ensuring that the level of service is in line with the expectations of both providers and

consumers. QoS is defined as a set of parameters that specify the properties of the

service including response time, throughput, availability and failure rate. Some of these

QoS parameters are based on consumer requirements and others are related to the

provider. Different consumers can adopt different QoS values for the same cloud

service depending on the specific requirements in each case (Thio and Karunasekera

(2005)).

To apply SLA in any system, the life cycle of management needs to be followed. SLA

management is the process that incorporates allocated, negotiated, monitored,

accounted and released resources. According to (Lissy and Mukhopadhyay, (2014)),

the life cycle of SLA management comprises main four phases as shown in Figure 2.4.

The first phase of the SLA life cycle involves creating the SLA Template based on the

available and required information. The SLA Template involves a set of parameters

that include definition of services, parties, penalty policies and QoS parameters. The

next phase is SLA negotiation, which includes the process of completing the contracts

between the providers and consumers. The third phase is the SLA implementation

phase, which involves SLA generation according to the agreed contract between

consumers and providers. After the SLA is completed, it is monitored and maintained

in the final phase, SLA Monitoring, which is used to determine whether any changes

are needed or if any SLA violation has taken place. The cycle then restarts from the

beginning and will continue until the SLA is terminated. The research in this thesis will

focus on two specific phases of SLA management, SLA negotiation and SLA

monitoring. This is because these two phases play a significant role in the performance

of cloud computing systems and improving them will therefore satisfy the objectives

of cloud consumers and providers.

53

Figure 2.4: SLA Management Life Cycle.

The SLA metrics for cloud computing are defined in the three layers that represent

cloud services which are SaaS, PaaS, and IaaS (Section 1.1.1). In this research, the

focus will mainly be on the IaaS layer and the significant parameters contained within

it, including virtual and physical resources.

Negotiation concept is generally defined as a decision-making process, where parties

exchange information and attempt to reach a common acceptable agreement (Dastjerdi

and Buyya (2012)). Such negotiation is necessary when there are conflicting objectives

between different parties (Rajavel and Thangarathinam (2015)). During the negotiation,

process the participants exchange negotiation offers to satisfy predefined negotiation

goals under specific constraints.

The automated negotiation model is based on agent technologies and includes four

elements: negotiation agent, negotiation object, negotiation protocol, and negotiation

strategies (Zheng (2014)). Details of each of these components (Dastjerdi and Buyya

(2012)) can be summarized as follows:

• Negotiation Agent: includes the parties involved in a negotiation process,

which includes in cloud environment the providers, consumers and, in some

models Brokers.

1.SLA Template
Creation

2. SLA
Neogtiation

3.SLA
Implementation
and Execution

4.SLA
Montioring

54

• Negotiation Object: a set of objectives that the negotiation agents must reach

which can be single or multiple negotiation issues.

• Negotiation Protocol: specifies the rules that should be followed to control the

negotiation. There are different models of negotiation based on the protocol

used and the procedure for negotiation between the parties. Models of

negotiation protocols can be bilateral, one-to-many, or many-to-many. The

model used in this research will employ a one-to-many protocol, as one

consumer agent will negotiate with multiple data centers to find the best

resources.

• Negotiation Strategy: is the technique that negotiating agents use to achieve

their objectives under the rules and protocol of negotiation. Negotiation

strategies differ in terms of the number of criteria they handle and the number

of parties involved in the process. Furthermore, they differ in the rules and

constraints that control the negotiation process such as deadline time, the

availability of resources or the other preferences of the parties. The most

common negotiation strategies are categorized into four main types (Shen et al.

(2002)): contract net, auction model, game theory based, and the discrete

optimal control model. In the contract net, a manager agent evaluates the task

announcements of other agents and bids for the tasks the agent is engaged with

only two possible results: accept or reject. In the negotiation based on auction

strategy, both parties need to agree on the offer without any penalties being

imposed in case of rejection. In the model of game theory, each agent is

responsible for providing a plan so that if all parties accept the plan the

negotiation is finished. If they do not, agreement cannot be reached and the

negotiation process is turned down. Finally, the optimal control model is

developed as a market model. This model consists of three steps: collecting all

the information, coming up with set of decisions, and making the final decision.

This strategy aims to automate the negotiation process and provide the optimal

solution. Thus, this approach will be used in the current proposed model to

improve SLA negotiation in cloud computing.

55

SLA negotiation in cloud computing describes the process of allocating resources to

fulfil the consumer’s requirements and the provider's objectives. If cloud providers and

cloud consumers have conflicting objectives, SLA negotiation is initiated to reach an

agreement. To apply SLA negotiation, cloud consumers determine their QoS

requirements, and then negotiate them with cloud providers. Various models and

strategies of negotiation are used in cloud computing. However, the negotiation

function in cloud computing is complex because the resources are distributed and

diverse, and the process of selecting resources for executing tasks depends on the

requirements of both the provider and consumer (Dastjerdi and Buyya (2012)).

An automated negotiation mechanism is thus necessary to achieve agreement and this

has become a very important research topic in cloud computing in recent years.

However, in an open and dynamic environment, individual negotiations may be

initialized or finished during the process of negotiation. Concurrent negotiation based

on multi-agents denotes a situation where negotiations are conducted in parallel or

concurrently by an agent (Panagidi et al. (2014)).

In most research, SLA negotiation in cloud computing can be achieved using concurrent

negotiations. In the concurrent protocol, there is one consumer and many providers

residing within the framework of a one-to-many structure. In this model, consumers

and providers conduct negotiations in parallel. Consumer agents should decide the

providers from which they will use the resource. The consumer utilizes several threads

to negotiate with every provider. A negotiation offer is a proposal for an agreement that

one negotiation party makes to another based on predefined issues. The offer describes

the service specification in SLA that has been negotiated and the associated QoS in

terms of satisfaction guarantees. The negotiation constraints are control rules used to

express the requirements of a negotiating party during the negotiation processes.

There has been a wide range of research conducted on improving SLA negotiation in

cloud computing using meta-heuristic algorithms. Much of this has explored SLA

formation, management, negotiation, and monitoring. Most work on SLA negotiation

in cloud systems has focused on the IaaS level, and has explored how to improve

communication between consumers and providers (Pittl et al. (2015)). Negotiation at

the IaaS layer is concerned with virtual/ physical resources and their characteristics,

56

and is essentially conducted to enhance resource allocation. Resource providers must

efficiently manage their infrastructure to run consumer tasks, satisfy consumers' needs,

and maximize providers' profits. To achieve this, resource providers need to negotiate

with consumers before allocating resources based on the agreed issues. The solutions

then developed can be grouped into approaches based on multi-agent systems, PSO

algorithms, or on parallel meta-heuristic algorithms. In subsequent sections, an

overview of research on all these approaches will be provided and their respective

benefits and drawbacks will be discussed.

2.3.2 Automated SLA Negotiation Based on Multiple Agents

Many researchers have proposed different ways of using a multi-agent system for

automated negotiation. Using a multi-agent in developing negotiation strategies is

suitable for application in a distributed environment such as cloud computing (Chen et

al. (2014)). Specifically, (Chen et al. (2014) designed a multi-agent based negotiation

framework using a dynamic model that incorporated several factors of the negotiation

process such as degree of competition, time of negotiation, number of rounds, and

historical information on trade.

Several researchers have also explored automated concurrent negotiation, which is

based on a one-to-many form of negotiation (Panagidi et al. (2014)). This strategy

involves one buyer and several sellers who express their preferences by exchanging

offers and counteroffers (An et al. (2010)). A multi-issue concurrent negotiation

mechanism was developed to resolve multi-issues regarding price, time and service

quality in cloud computing by (Mansour and Kowalczyk (2012)). Recent research has

considered negotiation models for automated SLA negotiation, including strategic

behaviors in bilateral negotiations (Silaghi et al. (2012)) or concurrent negotiation

((Nurika et al. (2014)). Concurrent negotiation is a common type of negotiation in cloud

computing where the consumer selects the appropriate strategy to be applied by each

thread based on the preferences of each interaction (Nurika et al. (2014)). Concurrent

negotiations provide many advantages, such as enabling a buyer to negotiate, in

parallel, with many sellers (Mansour and Kowalczyk (2012)). This enables buyers to

select the best possible agreement. Researchers, aware of the advantages of this

57

approach, have subsequently proposed a number of models. (Nurika et al. (2014)), for

example explored one-to-many negotiation between a buyer and multiple sellers. In this

approach, the buyer waits until all the threads send the offers before starting next

iteration of negotiation. In (Rahwan et al. (2002)), three methods to coordinate one-to-

many negotiation were developed. The information changes between parties after the

receipt of an offer and the coordinator decides when to finish the negotiation and how

to compute the utility function. Nguyen and Jennings (2003) extended the work

presented in Rahwan et al. (2002) and proposed methods to coordinate threads of

concurrent negotiation. In Mehdi et al. (2011), the number of steps taken during the

negotiation process to reach an agreement was reduced by allowing the broker agent to

nominate the offers rather than the consumers. This reduced both the average waiting

time and the number of tasks that failed.

To accelerate the negotiation process, (Zhang and Liu (2016)) developed a concurrent

automated bilateral multi-issue negotiation mechanism for different combinations of

values of a discrete issue. The seller agent and the buyer agent can only respond by

varying the price in each thread. This greatly reduced the exchange of information

between the two agents and avoided strategic misrepresentations. Furthermore, in

(Omezzine et al. (2016)) a negotiation-based scheduling algorithm was developed to

deal with both the characteristics of the cloud market and the objectives of SaaS. Their

experimental evaluation demonstrates the benefit of including negotiation in the

scheduling process.

Finally, in Messina et al. (2014), a cloud negotiation protocol was developed to deal

with the problems that arise when having to negotiate SLAs with different providers.

They used agent technology to improve and simplify the process of SLA negotiation.

Dastjerdi and Buyya (2012) developed a method of automated negotiation based on

agent systems. It aimed to offer reliability, balance the load between different VMs,

and rank the offers.

In this thesis, the aim will be to automate the process of SLA negotiation by using

multiple agents based on multi-issue objectives within the constraints of deadline and

cost. The difference in this research is that the focus will be on applying a PSO

58

algorithm in parallel model to minimize the negotiation time. SLA negotiation based

on PSO algorithms will be discussed and analyzed in the next section.

2.3.3 SLA Negotiation based on Particle Swarm Optimization

The general methodology of using meta-heuristic algorithms in negotiation is based on

representing the negotiators’ proposals and the counter proposals as points within the

space of possible agreements (Tsai and Rodrigues (2014)). The algorithms calculate the

solution according to the negotiators' objectives, and the utility functions. Recent efforts

in automated negotiation have involved the use of meta-heuristic algorithms such as

PSO algorithms (Kolomvatsos and Hadjiefthymiades (2014); Panagidi et al. (2014)).

For example, in Copil et al. (2012), negotiation based on the PSO algorithm for creating

counteroffers was developed to provide the energy consumed and the performance

offered in the cloud. In their research, the swarm represents a potential counteroffer and

the energy is used as an objective function. The PSO-based negotiation process

evaluates the solution by considering Pareto optimality. The authors argue that

providers must manage the trade-offs between the required energy and the charged

price during negotiation by using PSO in both the consumer and provider sides.

On the other hand, in Esmaeili and Mozayani (2010), a multi-attribute negotiation

model was proposed, based on a multi-objective PSO algorithm that uses agents to

conduct a separate negotiation with each opponent where each agent identifies the best

offer among incoming offers. The research compared the results of using the weighted

sum of multi-objective approaches with the results of an optimal set to demonstrate the

model's effectiveness and the required convergence.

Panagidi et al. (2014) developed the PSO approach for concurrent multi-issue

negotiation. This was based on the number of threads, which represents the objective

issue. However, it is an efficient technique when the number of threads is small because,

when the number of issues increases, the profit decreases. In (Maitly and Chaudhuti

(2014)), a novel method of SLA negotiation in cloud environments based on a multi-

objective GA algorithm was proposed. The model efficiently chooses the most

optimized SLAs for inexperienced consumers in cloud environments. The framework

59

aims to simplify SLA negotiations and matches VM specifications. It offers high

performance compared to most current SLA negotiation schemes where the focus is

more on profit.

In (Kattan and Fatima (2012)), a combination approach of GA and PSO was developed

to improve the bilateral multi-issue sequential negotiation. The PSO is used to balance

the computational budget between the two GA algorithms. In our model, when applying

PSO algorithm in large scale distributed environments such as cloud computing, the

quality of results will be minimized in line with an increase in number of elements to

be explored in the search space. In addition, we aim to benefit from the distributed

resources to increase the performance of the PSO to speed up the negotiation process.

Thus, the emphasis will be on how to apply parallel PSO to deal with large space. In

the next section, the methods of applying parallel algorithms in the SLA negotiation

process will be discussed.

2.3.4 SLA Negotiation based on Parallel Algorithms

Parallel computing is a computational model involving several computational resources

that can run simultaneously (Grama (2003)). Automated negotiations provide many

advantages as a buyer can negotiate in parallel with many sellers. This improvement

gives the negotiation process the opportunity to select the best possible agreement and

reduce the negotiation time. Several researchers have used parallel computing to

improve concurrent negotiation strategies by applying meta-heuristic techniques such

as GA algorithms. For example, (Sim (2013)) proposed parallel negotiation models that

promote negotiation activities between the consumer and provider agents through a

broker agent. Multiple broker agent services receive requests from each consumer

agent, and many consumer agents send requests to each broker agent.

In (Hashmi et al. (2011)), a GA algorithm was developed for simultaneous web service

negotiations. They introduced a parallel GA algorithm to enhance negotiation.

Furthermore, (Nurika et al. (2014)) proposed a Genetic optimized performance oriented

algorithm for concurrent SLA negotiations in the cloud environment that focuses on

aspects such as network speed and execution time to improve overall profit and

60

performance. In Bousselmi et al (2016), a workflow-scheduling algorithm was

developed to improve the QoS by extending the Parallel Cat Swarm Optimization

(PCSO) algorithm to provide better results in performance compared to the standard

PSO algorithm. In this research, SLA negotiation based on Parallel PSO will be

developed to speed up the process of negotiation and improve the results of PSO

algorithms (see Chapter 4 for further details).

2.3.5 SLA Monitoring

After the submission of the task to the selected data center, the resource needs to be

monitored to avoid any SLA violation and to detect the status of the task. SLA

monitoring is therefore an essential requirement for any cloud model as it traces the

usage of cloud resources, performance, and ensures the SLA is met. It monitors the

execution of the tasks to provide information to cloud providers to allow effective

management of data center resources.

Monitoring SLA also plays a significant role in determining the number of violations

that have occurred. Most SLA violations happen during load fluctuations or delay time

(Emeakaroha et al. (2010); Patel and Sarje (2012)). SLA violation monitoring process

starts when an agreement has been initiated. Most importantly, monitoring plays a

critical role in determining whether a SLA is achieved or violated.

Consequently, SLA monitoring in cloud computing has been studied by many

researchers from different perspectives. Some researchers have proposed the SLA

violation approach in one layer of cloud computing, for example, (Emeakaroha et al.

(2012); Sakr and Liu (2012)) developed approaches enabling SaaS to detect the SLA

violation in applications in the SaaS layer. In fact, most researchers in SLA monitoring

have focused on the cloud IaaS layer as a critical and essential asset for SLA violation

in terms of security, privacy, quality of hardware, and availability (Emeakaroha et al.

(2010)). Generally, cloud providers need optimization algorithms to provide optimal

resource allocation to meet the SLA and satisfy QoS (Sahal et al. (2013)). Some

researchers have discussed different optimization-based approaches to resource

allocation in the cloud environment such as using meta-heuristic algorithms. For

61

example, (Liu et al. (2011)) used the ACO technique to enable the SLAs to manage the

provider's resources. In this research, the focus will be on QoS performance metrics i.e.

response time, waiting time, and throughput. The SLA Monitor agent will be used to

collect information about QoS metrics from the provider and the consumers. When the

SLA agreement is established between the cloud provider and the cloud consumer, the

SLA Monitor Agent needs to check the SLA status to detect any SLA violation.

Therefore, the focus will be on IaaS layer monitoring to detect whether any SLA

violation occurs. SLA violation detection is based on deadline constraints and the VM

migration time. The presented SLA monitoring does not include the reliability feature

of the cloud computing and not predict the failure before occurrence. Adding this

feature for future improvement of the model can improve the reliability of the system

and reduce the failure rates.

2.3.6 Discussion of SLA Negotiation Work

Previous research has improved negotiation by using multiple agents to apply

automated negotiation, which is particularly suitable for applying in cloud computing.

However, there is a need to further improve and simplify the negotiation process in

cloud computing to cope with the scalability and increase in the cloud's resources. There

are many inherent limitations in current negotiation algorithms that can be discussed in

relation to their applications in cloud environments. Such limitations can be

summarized as revolving around the need for multi-issues to be simplified and sped up.

Moreover, in some cases, the SLA is violated and this needs to be detected before it

occurs. Using meta-heuristic techniques produces effective results compared to

traditional methods. Parallel negotiation algorithms are superior in terms of negotiation

time, number of proposals and average utility when compared with sequential

negotiation (Nurika et al. (2014)). However, the parallel negotiation algorithms need to

meet several objectives simultaneously. Some parallel meta-heuristic algorithms have

been applied to enhance the negotiation process and reduce the time spent on

negotiation, for example, GAs in (Hashmi et al (2011); Nurika et al. (2014), and the

Cat Swarm algorithm in Bousselmi et al. (2016).

62

In our research, however, multi-issue concurrent negotiation based on PPSO will be

developed to speed up the process of negotiation and reduce the time of migration. To

date, no previous research has attempted this. Using PPSO will improve the quality of

the results of PSO and speed up the process of negotiation because PSO is an inefficient

algorithm when large spaces are involved.

From another perspective, most of the existing research focuses on just the price or

QoS. In the proposed model, consumer goals will be focused upon in terms of QoS,

time and the provider objective (i.e. price). Thus, in the research reported in the thesis,

the concern is SLA negotiation and monitoring, and the focus will be on the multi-issue

parallel PPSO SLA negotiation model in cloud computing where a consumer agent

negotiates with more than one agent in each data center and each agent is characterized

by multiple negotiation issues. In comparison to Copil et al. (2012), PSO will be run in

the Manager Module only to reduce communication time and the time spent on the

process of negotiation.

2.4 Task Scheduling in Cloud Computing

Task scheduling is a vital process in the field of cloud computing because it affects

overall system performance. Traditional scheduling methods are not effective when

applied in cloud computing and many researchers have therefore explored cloud

computing specifications to develop and optimize task scheduling in the cloud

environment. In this section, various scheduling algorithms related to the proposed

research will be presented and analyzed from different perspectives.

Specifically, Section 2.4.1 presents a general overview of task scheduling in cloud

computing. Section 2.4.2 discusses task scheduling based on PSO algorithms and

analyzes the results based on the objectives. In Section 2.4.3, several methods for

applying meta-heuristic algorithms will be presented and discussed. Additionally,

Section 2.4.4 presents task scheduling algorithms based on heuristic approaches namely

Min-min and Max-min algorithms. Real-time scheduling approaches will be discussed

in Section 2.4.5. Finally, Section 2.4.6 discusses previous work in task scheduling and

summarizes the main points that merit further study.

63

2.4.1 Overview

Scheduling is the process of allocating or distributing work to processors, humans or

machines to be completed within certain time constraints (Zhan et al. (2015)). In the

cloud context, task scheduling maps tasks to suitable resources to satisfy specific

objectives (Shaw et al. (2014)). Tasks must be allocated efficiently to VMs with

minimum delay. The providers must follow the SLAs and meet the QoS requirements

as defined by the consumers. One of the important research issues in cloud computing,

in terms of performance efficiency, is therefore that of scheduling tasks and resources.

Scheduling tasks in cloud environments is classified as an NP-hard problem because it

involves large solution space and thus takes a long time to find an optimal solution (Tsai

and Rodrigues (2014)). Meta-heuristic algorithms have been applied for task

scheduling problems to find sub-optimal solutions within an acceptable time (Tsai and

Rodrigues (2014)).

The scheduling function maps tasks to available resources to optimize one or many

objectives under certain constraints. Task scheduling can be categorized into two main

types: static and dynamic (Singh and Chana (2016)). In the former, the tasks are

scheduled in an environment depending on known information about the tasks and

resources. In the latter, scheduling depends on the current state of the system (such as

load, storage capacity, and network bandwidth), in addition to the submitted tasks. The

dynamic allocation changes the decision of the selected resource depending on changes

in the system, while static allocation depends on static information and does not

consider system changes. In this research, dynamic scheduling is utilized because it is

better suited to the elastic feature of most cloud infrastructures (Singh and Chana

(2016)). Dynamic task scheduling can be applied in a real-time (online) mode or batch

mode ((Mathew et al (2014)). In real-time scheduling, tasks are scheduled immediately

when they arrive in the system while in the batch scheduling, tasks are queued when

they arrive and then they scheduled (Liu et al. (2010)). From another perspective, tasks

can be classified based on dependency factor as either independent or dependent

(Pandey et al. (2010)). Task scheduling is called for scheduling independent tasks, and

scheduling dependent tasks is called workflow scheduling. Task scheduling is much

easier than workflow scheduling because the scheduling process deals with a set of

tasks that are independent of each other and they can be executed individually without

64

any dependency on other tasks (Jayanthi (2014)). On the other hand, task scheduling

can be preemptive or non-preemptive depending on the specification of the tasks and

resources. In the non-preemptive scheduling, when a task starts running it is not

interrupted until it finishes it's execution, while in preemptive scheduling the tasks are

prioritized and then are executed depending on their priority.

Several parameters are taken into consideration when optimizing scheduling algorithms

in cloud computing, some related to providers whilst others benefit the consumers (Tsai

and Rodrigues (2014)). The main parameters that summarize consumers' goals are

performance and QoS (Zhan et al. (2015)), the details of which are as follows:

• Performance: the efficiency provided by the scheduling algorithm in terms of

providing services to consumers based on their requirements. The main

attributes of the performance factor are:

o Waiting Time: the time the task takes from submission to end

execution. The waiting time should be reduced to increase the

performance of the scheduling algorithm. Improving performance and

reducing energy consumption are achieved by reducing the waiting time.

o Response Time: the time that elapses between the submission time of

the task and the start of execution.

o Execution Time: the total time taken to execute the task from the start

until it is completed. The aim of scheduling algorithms is to reduce the

execution time.

o Completion Time: the total time taken to complete the execution of a

task. It also includes the execution time and the waiting time caused by

the cloud system (Mathew et al. (2014)). Many scheduling algorithms

prefer to minimize the completion time of tasks.

• Quality of Service: this includes various constraints on consumer input such as

meeting execution, cost, performance and deadline, which are

defined in SLAs contract document.

65

o Budget: This constraint is defined by the cloud consumer and

determines the maximum cost that can be paid for services. The

scheduling policies are made to minimize the total execution time within

the budget (Poola et al. (2014)).

o Deadline: is the defined as the allowable time for execution time from

submitting a task until the time of completion. A good scheduling

algorithm always tries to ensure tasks are executed within the deadline

constraints to reduce the number of failed tasks (Mathew et al (2014)).

o Cost: indicates the total amount the cloud consumer will pay to the cloud

provider for using the resources. The cost of services depends on the

computation cost, the cost of transferring data, and the storage cost.

The parameters related to providers' goals can be summarized as follows:

• Resource Utilization: measures the resource used to increase the throughput of

the system. It is used to keep the resources as busy as possible to maximize the

profit.

• Load Balancing: is the technique of distributing the load in a cloud data center

across different nodes so that no node is under-loaded at any given time. The

load should be balanced to increase the utilization of resources. Load balancing

over the resources also improves resource utilization.

• Energy Consumption: many different scheduling algorithms have been

designed to reduce power consumption to improve performance. Reducing

energy consumption in cloud data centers is an issue that has recently been

considered in several scheduling algorithms. Energy consumption will be

affected by utilization such as it becomes high when CPUs are not utilized

because idle resources are not used effectively.

In the following subsections, the work undertaken in task scheduling in cloud

computing according to these goals will be briefly discussed. The focus will be on

methods that apply PSO and previous work based on meta-heuristic, heuristic task

scheduling, and real-time scheduling strategies will be discussed.

66

2.4.2 Task Scheduling Based on Particle Swarm Optimization

Many scheduling algorithms have been proposed for task scheduling in cloud systems.

In this thesis, the focus is on research that uses PSO in task scheduling. Many

researchers have explored how to use PSO to improve task scheduling in cloud

computing using different strategies. PSO is one of the most successful meta-heuristic

algorithms for generating optimal solutions by scanning the search space during each

iteration and evaluates solutions. This section presents a review of recent work on the

use of PSO in task scheduling in a cloud environment. A classification of the scheduling

schemes will be presented, based on their objectives for both consumers and providers,

and on the numbers of these objectives, i.e. whether they are single, multi-objective or

many-objective.

First, task scheduling based on consumers' goals is considered. In this instance,

consumers' QoS requirements include several parameters such as makespan and cost.

In multi-data centers, there are additional parameters added for network and

communication such as distance, bandwidth, and latency.

In Abdi et al. (2014) three meta-heuristic approaches for task scheduling in a cloud

environment were compared: PSO, a GA algorithm and a modified PSO. In this

scenario, the researchers argued that the number of tasks was greater than the number

of resources so tasks could not be migrated to different recourses. When compared, the

performance of the modified PSO in which the SJFP (smallest job to fastest processor)

algorithm is merged with PSO was better than other techniques in terms of minimizing

makespan in task scheduling and thus improves performance.

The PSO algorithm are used to develop task scheduling based on multi-objective

optimization. MOPSO has therefore been proposed to evaluate multi-objective

optimization problems using Pareto set. Lakra and Yadav (2015), for example,

developed a multi-objective task scheduling algorithm that scheduled the tasks to VMs

to improve the throughput and reduce the cost without violating the SLA. This model

used non-dominated sorting after ranking the tasks based on QoS and VMs. Feng et al.

(2012) were concerned with improving resource allocation and developed a MOPSO

algorithm by using Pareto-dominance, which searches for optimal scheduling based on

total task execution time, resource reservation, and the task's QoS. (Milani and Navin

67

(2015)) improved task scheduling using MOPSO according to three factors: reduced

execution time, waiting time, and missed tasks.

Alternatively, some researchers have focused on improving two objectives such as time

and cost (Ramezani et al. (2013); Pandey et al. (2010)). Specifically, Ramezani et al.

(2013) developed a MOPSO algorithm for optimizing task scheduling in relation to

execution time, task transfer time, and task execution cost. However, in Pandey et al.

(2010), the researchers used the cost for both data transmission and computation to

minimize the total execution cost in cloud computing environments. Moreover, in

(Wang and Zheng (2011)), the MOPSO was applied to optimize the cost of task

execution, transfer time and task execution time. All the previous methods used the

Pareto set in evaluating multiple objectives. In Zhao et al. (2015), task scheduling based

on the completed time and cost was improved by using a weighted sum to develop the

multiple-objective function based on QoS parameters. A similar method was used in

(Beegom and Rajasree (2014)), whose multi-objective PSO scheduling algorithm was

based on makespan and communication cost objectives using a weighted sum approach.

(Guo et al. (2012); Verma and Kaushal (2014)) used the same parameters in terms of

execution time and cost but differed in their method of evaluation function. For

instance, Verma and Kaushal (2014) used a weighted sum approach while Guo et al.

(2012) used the optimal Pareto set approach.

The second set of approaches focus on task scheduling based on provider efficiency.

Provider efficiency in this respect is related to the profit, utilization of the resources,

SLA violation, load balancing among VMs, and the cost of power consumption. In this

section, the work that will be presented aimed to improve provider objectives.

Some researchers improved task scheduling by taking energy consumption and profit

as objectives function, for example (Jena (2015)). The same objectives were considered

in (Liu et al. (2013)). They developed a PSO task scheduling model for distributing

tasks over VMs to minimize the cost of task execution and maximize the providers'

profit in the cloud environment.

In Awad et al. (2015), task scheduling was improved to increase the utilization of

resources using a dynamic PSO scheduler. These researchers proposed a modified PSO

68

algorithm called load balancing PSO (LBMPSO), which aimed to minimize reliability,

execution time, transmission time, and cost.

The third set of approaches consider task scheduling in terms of the goals of both

providers and consumers. Thus, many researchers have investigated how to

compromise and balance the needs of providers and consumers to satisfy both sets of

objectives. For example, Al-maamari and Omara (2015) proposed a dynamic adaptive

PSO (DAPSO) algorithm to enhance the performance of basic PSO to schedule tasks

for minimizing makespan and maximizing the utilization of resources. Similarly, Zhan

and Huo (2012) proposed an improved PSO to reduce average execution time and

increase the availability of resources.

Feng et al. (2012) were concerned with improving resource allocation based on a

MOPSO algorithm using Pareto-dominance that was based on three factors: total task

execution time, QoS and resource utilization. In Al-Olimat et al. (2014), MOPSO task

scheduling aimed to improve resource utilization and minimize makespan. Some

researchers have developed a MOPSO algorithm by applying a ranking strategy, such

as (Alkayal et al. (2016)). Three objectives are involved when computing the fitness

function to improve the task scheduling algorithm based on a ranking strategy.

On the other hand, there has been comparatively little research studying many-

objective. Amongst the work that has been conducted, (Ye et al. (2017)) considered a

four objectives scheduling problem based on an improved knee point driven

evolutionary algorithm. In contrast to previous research, our research aims to handle

five objectives in task scheduling based on a modified ranking strategy to simplify the

evaluation of objective function.

When focusing on the type of optimized parameters, it is clear there are many

parameters for scheduling algorithms in cloud environments. The most common

parameters that are used to evaluate the performance of the scheduling algorithm are

execution time, makespan, cost, energy consumption, QoS, and load balancing. Each

algorithm addresses one or more of these parameters depending on its objectives. Some

researchers also targeted cost optimization whereas others aimed to shorten the

makespan. Additionally, some researchers strived to minimize the overall energy

consumption, although these algorithms struggled to meet the QoS. Others aimed to

69

improve the cost, makespan and execution time. However, research efforts regarding

load balancing and QoS need more work regarding the number of objectives because,

as noted previously, most research focuses on multi-objective, which include just two

or three objectives. Additionally, there is little in the way of research focusing on

evaluating many objectives (more than three objectives) when scheduling tasks in cloud

computing environments.

2.4.3 Task Scheduling Based on Meta-Heuristic Algorithms

Researchers have demonstrated that meta-heuristic scheduling algorithms provide sub-

optimal scheduling results than traditional scheduling algorithms (Tsai and Rodrigues

(2014). Given this, different meta-heuristic algorithms have been applied to solve task

scheduling in cloud computing such as GAs and ACO algorithms (Kaur and Chhabra

(2016)).

First, task scheduling based on ACO Algorithms will be considered. Many scholars

have studied task scheduling using ACO algorithms. For example, Wen et al. (2012)

proposed a task scheduling algorithm based on an improved PSO, which considers the

total task completion time and the total task cost, but does not consider load balancing

in the system. In (Tawfeek et al. (2015)), the concept of ACO is used to schedule tasks

in a cloud computing environment based on makespan. Alternatively, Madadyar and

Bagherzadeh (2011) have introduced the method of initial ants based on the standard

deviation of the pheromone of the tasks and the expected time to execute a task on a

given VM. Chen and Zhang (2009) developed a task scheduling algorithm based on

ACO to minimize the total cost in specific time within deadline constraints. Wen et al.

(2012) proposed the ACO algorithm combined with PSO algorithm to improve the

performance of task scheduling. This enhances the convergence speed and increases

resource utilization ratio. Additionally, it prevents any descent towards a local optimum

solution.

A second approach to task scheduling is that based on Genetic algorithms. Several

researchers aiming to optimize multi-objective task scheduling in cloud systems have

used GAs. For instance, (Arfeen et al. (2011)) demonstrated that effective scheduling

70

for independent tasks can be completed using GAs in cloud computing environments.

The GA in the scheduling tasks algorithm was developed by Zhao et al. (2009) to

improve both resource and time utilization, so that the result obtained provides high

satisfaction for their objectives. In (Dasgupta et al. (2013)), they developed a scheduling

strategy for the load balancing of VMs using a GA. In their research, the scheduling

strategy looks for the best solution by using a GA in each schedule. This method

provides better load balancing and resource utilization than the static method of

resources allocation. In Ying et al. (2009), two modified algorithms of PSO were used

in resource allocation and the results were compared with a GA. The research

demonstrated that PSO gives better results compared with a GA algorithm. Moreover,

according to research conducted by (Pongchairerks (2009)), PSO was found to be better

than GAs in most cases. Furthermore, according to Mirzayi and Rafe (2013), PSO was

found to be faster and simpler than GAs in terms of the execution and implementation

of independent tasks. Therefore, this work will focus on improving the PSO algorithm.

2.4.4 Task Scheduling based on Heuristic Algorithms

Different heuristic algorithms have been proposed for scheduling tasks in cloud

environments (Mirzayi and Rafe (2013)). In this section, the heuristic strategies related

to the proposed research will be presented. They schedule tasks based on predefine

parameters such as completion time and execution time. The Minimum-Minimum

Completion Time (Min-min) and the Maximum-Minimum Completion Time (Max-

min) are the most heuristic algorithms used in scheduling (Mirzayi and Rafe (2013)).

The minimum completion time (MCT) algorithm maps each task to the VM that has

the minimum completion time (Munir et al. (2007)). Conversely, the minimum

execution time (MET) algorithm maps tasks to VMs based on the minimum execution

time for that task irrespective of availability of the resource (Munir et al. (2007)).The

Min-min algorithm begins with determines the MCT for each task on all resources, and

then schedules each task to the minimum MCT (Aissi et al. (2005)). The main objective

of the improved Max-min algorithm is to assign a task with MET to a resource, which

provides MCT (Mao et al. (2014)). In Min-min, the shorter tasks are executed first, so

if the number of shorter tasks is fewer than the number of longer tasks then the Max-

71

min is used (Mao et al. (2014)). However, the Min-min algorithm does not involving

loading balance technique while the Max-min algorithm may offer a better load balance

among the resources in cloud environments.

In this work, heuristic algorithms will not be used because they focus on minimum

completed time and total execution time, and there are other factors that need to be

taken into consideration, such as cost and transfer time. The VM load is an important

factor because it affects the performance of the system. In addition, the cost factor is

required for the consumers in that they want a reduced cost whilst the provider is

concerned with profit. The Max-min and Min-min algorithms will therefore be

considered in detail to assess their results in relation to the proposed research.

2.4.5 Real-Time Task Scheduling Algorithms

Real-time task scheduling strategies should ensure that tasks could be completed in

accordance with deadline constraints. In this section, several real-time scheduling

algorithms in cloud computing will be discussed. In real-time cloud applications, the

consumers and the providers must have a strong SLA to control the timing of

applications and ensure that the deadlines for tasks are met (Zhan et al. (2015)). In the

context of cloud computing, deadline means meeting the consumer’s requirements, as

well as QoS and SLA within the constraints of a specified time (Mathew et al. (2014)).

Several researchers have discussed deadlines in task scheduling algorithms while others

view the cost budget as a constraint on the scheduling algorithm. The primary

objectives of real-time scheduling are to increase throughput and minimize waiting time

rather than meeting deadlines.

The Earliest Deadline First (EDF) algorithm assigns priorities to tasks then the task

with the shortest deadline is the one that is scheduled (Liu et al. (2010)). EDF is a form

of dynamic scheduling in such that if a scheduling event occurs then the queue will be

searched for the process that is closest to its deadline. The selected task will then be the

next scheduled for execution. EDF is more popular in real-time research because the

principle of the EDF algorithm is very simple to understand and implement. In Gupta

et al. (2014), a Priority EDF Scheduling method was used involving two task scheduling

72

algorithms, one of which was EDF and the other was a priority based scheduling

algorithm.

He et al. (2014) proposed an algorithm to achieve real-time task scheduling and develop

cloud computing resources. In their research, the degree of resource load balancing and

task completion time were objective functions. Multi-objective PSO was used to

achieve task scheduling. The deadline guaranteed scheduling algorithm proposed by

Shin et al. (2015) enhances the guarantees of deadline and resource utilization. The first

algorithm receives all tasks that have arrived at the data center, and then sorts those

tasks in ascending order depending on their priority, which is assigned according to the

deadline. The research described in this thesis will develop a model of task scheduling

that meets both the consumers' deadline and the cost budget.

2.4.6 Discussion of Task Scheduling Algorithms

Many task scheduling algorithms have been used in cloud environments. These can be

divided into three categories and are presented below:

1. Real-time algorithms: These include that approaches schedule tasks with time

constraints.

2. Heuristic algorithms: These techniques find the optimal or near optimal

solution by using a sample space of random solutions. The Min-min and Max-

min algorithms, previously discussed, are examples of these.

3. Meta-heuristic algorithms: These algorithms use a random solution space for

scheduling the tasks, however the main difference between heuristic and meta-

heuristic methods is that heuristic methods are problem specific while meta-

heuristic methods are problem independent (Masdari et al. (2016)). They

generally use population-based concepts inspired by the social behavior of

insects and include PSO, ACO and GAs algorithm.

Regarding task scheduling optimization, there are many studies that have developed the

optimization of scheduling in cloud computing. However, most of the previous research

on multi-objective optimization is based on objectives that do not conflict with each

73

other. Specifically, these studies apply single objective optimization to solve their

problems. The studies then combine previously optimized objectives into a single

objective, and treat them as a single objective using a weighted sum equation. This is

an inappropriate approach for dealing with many objectives because our work will be

based on five objectives while most approaches work well with three objectives.

As discussed in Section 2.4.2, PSO has already been used to improve scheduling in the

cloud. For example, PSO that was utilized to satisfy one objective was shown in

research by (Suresh et al. (2014); Wang et al. (2014); Pacini et al. (2014)). Other

researchers have used multi-objective PSO to achieve different objectives and have

combined them into a single objective (Adamuthe et al. (2013); Moorthy et al. (2014)).

However, this approach of combined multi-objectives is inefficient especially with

conflict objectives because objectives have positive and negative values. Therefore, an

effective method is needed to deal with these objectives separately. Thus, the possibility

of extending the process of evaluating objective functions in a many-objective PSO

algorithm will be explored to find the best solutions for many objectives.

Based on the research that has applied PSO algorithms to schedule tasks in cloud

environments, the main points for further study can be summarized as follows:

1- The quality of using PSO algorithms can be improved by redesigning the

operator and improving the initialization step of the swarm. This can be

achieved by using local search techniques or heuristic algorithms such as Min-

min (as discussed in Section 2.4.2).

2- More work is needed to overcome some of the difficulties of PSO. For example,

by combining it with another population-based meta-heuristic technique or a

local search technique to improve the quality of results (Madni (2016)), as

discussed in Section 2.4.3.

3- Several areas still need to be addressed when applying PSO to optimize task

scheduling problems in cloud computing (as discussed in Section 2.4.2). These

areas include:

• Applying dynamic scheduling based on the consumer budget so resources

can be located and released according to consumer need. PSO needs to be

74

applied with QoS when establishing an SLA between the consumer and the

provider (as discussed in Section 2.4.1).

• PSO needs to be improved and applied to the load balancing problem, the

energy optimization problem, and VM placement and migration.

• Scheduler algorithms in cloud applications need to be scaled with an

increase in the number of requests and resources in the cloud infrastructure.

Furthermore, the distribution of cloud resources is another issue that needs

to be considered. Therefore, PSO applied to these properties of the cloud

needs to be improved by using the distributed capabilities of PSO to apply

Parallel PSO (as discussed in Section 2.4.2).

• Most of the current research focuses on the cost of using resources by

considering the processing resources. However, there are other applications

involved including storing and transferring a large dataset. Thus, there is a

need to develop scheduling methods that consider the storage issues for

applications. In addition, execution time and storage cost trade-off need to

be improved and evaluated (as discussed in Section 2.4.2).

• Applying new strategies for providing effective communication and sharing

information between multiple data centers should be studied (as discussed

in Section 2.4.1).

• Applying PSO with real-time algorithms is a concern that requires greater

scrutiny through research (as discussed in Section 2.4.5).

• Most work on scheduling tasks is based on two or three factors. However,

there are many factors that can be used to evaluate resources in cloud

computing. There is a pressing need to enhance the method of evaluating

many-objective optimization to deal with the increased numbers of

objectives and compromise the conflicts inherent in the best method (as

discussed in Section 2.4.2).

2.5 Virtual Machine Allocation

Virtual machine allocation is the process of mapping a virtual machine to the most

suitable host (Pietri and Sakellariou (2016)). There are many hosts and each can run

75

several VMs in cloud computing infrastructure. Mapping VMs among hosts in an

efficient manner is a complex function especially when the number of VMs and hosts

increased. VM allocation is a key role in cloud management because it directly affects

system performance. Specifically, VM allocation involves mapping between hosts and

VMs (Adrian and Heryawan (2015)). VM allocation and migration are an integral part

of any resource allocation algorithm in cloud data centers and therefore, our research

aims to improve VM allocation and migration.

In cloud computing, VM allocation is responsible for selecting resources and

scheduling tasks so that the consumer's requirements and provider's goals are met

((Pietri and Sakellariou (2016))). In general, the main requirement of consumers is to

minimize response time while the provider's goals are to maximize resource utilization

and profits. The VM allocation's main goal can be either to maximize the usage of

available resources or conserve power by being able to shut down idle resources

(Shankar and Bellur (2010)).

The VM allocation problem is a type of optimization problem and several optimization

techniques are used to address it such as deterministic, heuristic and meta-heuristic

algorithms (Lopez-Pires and Bar´an (2015)). Deterministic algorithms include the

optimization techniques that follow the same steps at each iteration and provide the

same results such as linear programming, binary integer programming and constraint

programming. Heuristic algorithms are those used in VM allocation such as First Fit

(FF), Best Fit (BF), and First Fit Decreasing (FFD) (Lopez-Pires and Bar´an, (2015);

Mastelic et al. (2014)). Meta-heuristic algorithms are those that solves problem with

certain constraints by using randomness such as GA, ACO and PSO. In this thesis, the

focus will be on PSO algorithms and their variants duo to the advantages they provide

in solving problems, as discussed in Section 2.1.2.1.

Specifically, VM allocation includes two main processes: VM scheduling and VM

migration. VM scheduling involves mapping the VM to the host whilst migration

transfers VMs from one host to another to satisfy specific objectives. VM allocation

has been viewed as an optimization problem by researchers such as (Shah et al (2013);

Panchal and Kapoor (2013)). On the other hand, research has also been conducted

where VM allocation has been broken down in to the separate problems of VM

76

scheduling and VM migration (Xu and Li (2011)). In the following sections, the two

methods will be reviewed in detail and research in this area discussed.

In Section 2.5.1, VM scheduling will be discussed in detail and the main objectives in

developing it will be presented. The VM migration process will be described and

presented in Section 2.5.2. Section 2.5.3 discusses the strategies of applying load

balancing during the allocation of resources. Section 2.5.4 discusses related work on

VM allocation. Finally, Section 2.5.6 summarizes the key points and outlines the issues

that need to be discussed and studied in VM allocation.

2.5.1 Virtual Machine Scheduling

Many beneficial advantages of cloud computing such as scalability, load balancing and

flexibilities because of applying the virtualization technology in term of VMs (Mastelic

et al. (2014)). These VMs are scheduled to a set of hosts, which is known as VM

allocation. Automating the process of virtual machine scheduling has become a

necessity due to a growth in the number of data centers. Generally, the VM allocation

method aims to maximize the utilization and minimize the number of idle resources.

VM Scheduling can be applied to the allocation of new VMs to an appropriate host or

for reallocating VMs that have migrated from one host to another. The VM scheduling

process involves categorizing the virtual machines' characteristics and resource

requirements, the utilization of resources and the allocation goals. VM scheduling goals

can be single objective such as maximize the utilization of resources, saving power

consumption and cost reduction. Some approaches to VM scheduling have been

developed to achieve two or more objectives. Nowadays, VM allocation includes more

than three objectives because several objectives need to be taken into consideration

(Lopez-Pires et al. (2016)). The main policies of VM scheduling according to their

concerns can be summarized as follows:

• Efficient Resource Utilization: Improving resource utilization and decreasing

communication overheads are the most promising topics in managing resource

at the IaaS layer. Unutilized resources on each data center may vary largely

77

with different VM scheduling solutions. The resources should be utilized in an

efficient method to increase the total profits.

• Efficient Power Consumption: This concerns the scheduling of VMs for a

small number of hosts to reduce overall power consumption. It seeks to

minimize the total power consumption of the data center. VM scheduling is one

of the most important and efficient forms of technology for reducing power

consumption in the cloud. The proposed method of rescheduling the power of

VMs efficiently is to place them on only part of the hosts and transform the

others into a low power state (sleep or off).

• Cost Reduction: This aims to optimally schedule the VMs over the hosts to

reduce the overall cost. In addition, reducing the cost of the power consumed

will reduce the overall costs. Meeting the QoS and SLA prevents violations and

reduces the penalties, which improves profit.

• Efficient Load balance: Load balancing is very challenging in cloud

computing due to the dynamic changes in the resource requirements (Shah et

al. (2013)). An efficient load balancing approach can reduce the number of

migrations and energy consumption by minimizing the number of active

resources. It is responsible for distributing the dynamic workload evenly across

all the resources in the entire system to avoid over-loaded or idle resources

(Shaw et al. (2014)).

The extent to which VM allocation can improve these objectives will now be discussed.

First, VM will be considered in terms of effective resource utilization. A multi-

objective ACO algorithm to place VMs was proposed by (Gao et al. (2013)). The

objectives to be met were minimization of the total resource utilization of hosts and the

number of VM migrations. In (Zhong et al. (2010)), an improved GA algorithm was

designed that could assign VMs efficiently, enabling the maximum utilization of

available resources. Consequently, the physical resources reached the maximum usage

rate and thus the number of physical resources decreased.

Second, VM scheduling for power conservation is considered. Quang-Hung et al.

(2012) proposed a power-aware VM allocation algorithm that represents several

combinations of FF and the shortest duration time heuristics. However, their VM

allocation algorithms did not lead to an optimal solution because they run as an FCFS

78

algorithm. Given this problem, several researchers have explored how to modify the FF

algorithm to find the optimal solution. Specifically, (Lu and Zhang (2015)) developed

a Modified Best Fit Decreasing (MBFD) algorithm. The MBFD algorithm takes a

sorted list of VMs as input and migrates them in descending order based on their host

utilization. It allocates them to the selected host that provides the smallest remaining

processing capacity. Thus, this algorithm ensures high utilization of resources as none

of them will be idle. Wang et al. (2013) implemented PSO to solve an energy-aware

VM scheduling optimization problem in the cloud data center.

Buyya et al. (2010), on the other hand, proposed a model of power consumption based

on a correlation between the energy of CPU utilization and the time of the work.

Furthermore, (Bohra et al. (2010) developed a correlation model between consumption

of power and resource utilization. Several researchers have also attempted to minimize

power consumption in cloud environments by virtualization that involves applying VM

migration to optimize the utilization of resources (Ye et al. (2010); Luo et al. (2012)).

Third, VM scheduling for cost effectiveness is considered. In Mark et al. (2011), a

hybridized approach combined the GA, ACO and PSO algorithms for efficient

scheduling of VMs on physical resources. The authors reported that the Evolutionary

Optimal VM Placement (EOVMP) algorithm could provide a near optimal solution for

stochastic problems and the prediction of the demand forecaster exhibited acceptable

efficiency. In (Lee et al. (2010)), a GA approach was developed that used topological

information to schedule VM resources. Additionally, a prediction engine was employed

to take advantage of topological intelligence and for performance evaluation. The target

was to decrease the total finishing time of an application, which automatically results

in price reduction.

Finally, load balancing can be applied at many levels such as the data center level, hosts

level, VM level and the task level. Load balancing at the level of VM scheduling deals

with the assignment of VMs on relevant hosts to balance the load on each host. VM

scheduling plays an important role in balancing the load of the system so that the

resource utilization is increased. This policy therefore tries to balance the load in order

to utilize the resources in an efficient way and minimizes the difference between the

79

loads. In this research, the focus will be on balancing the load between hosts inside the

data center.

Some SI approaches, such as ACO and PSO, have also been used to schedule VMs over

available hosts. In (Lu and Gu (2011)), for example, an ACO approach was introduced

to find the closest idle or under-loaded cloud resource quickly, and for sharing the load

of an over-loaded virtual machine flexibly. For optimal identification of hosts and load

sharing of over-loaded virtual machines, the behavior of ants was adopted. In (Cho et

al. (2015)), a hybrid algorithm based on a meta-heuristic approach was proposed for

load balance oriented VM scheduling in the cloud environment using a combination of

PSO and ACO.

Research by (Patel and Sarje (2012)) explored VM scheduling policies to increase the

utilization of cloud resources. Zhao et al. (2016) implemented a clustering based load

balancing heuristic using Bayes Theorem, whilst (Panchal and Kapoor (2013)) used a

K-means clustering approach for the scheduling of VMs in a cloud computing

environment. In this thesis, a new dynamic VM allocation policy is introduced that

takes VMs as per consumer requirements and allocates them in cluster form to the

available data centers. These clusters of VMs are formed using a K-means clustering

algorithm.

In the next section, methods of applying VM migration in cloud computing and their

benefits they provide in achieving their goals will be discussed.

2.5.2 Virtual Machine Migration

A VM migration strategy is used in cloud systems to maximize the utilization of

resources by moving the VMs from under-loaded and over-loaded hosts to unloaded

hosts. Moreover, VM migration reduces the power consumed in the cloud data center

by switching off the idle hosts. Several methods are used to migrate VMs from one host

to another. These methods differ in terms of the factors that are used for applying

migration and the main objectives of migration. Thus, an intelligent and efficient

migration algorithm is required to balance the load and improve the utilization and

80

performance of the system. VM migration algorithm aims to minimize energy

consumption, minimize violation of SLAs and reduce the number of hosts active at a

given time. In some cases, VM migration can increase the number of SLA violations

when it applied without taken QoS performance into consideration as a factor in the

migration process. For example, a VM is migrated from one host to another it must

transfer its primary memory to the destination host which leads to increase the

migration time and waiting time. Additionally, in the transfer process, the requested

CPU cannot be delivered, as the VM will be in a transitional state. For this reason, along

with the demands of power consumption, the amount of VM migration must be

minimal, as this will reduce the number of SLA violations. An efficient VM migration

strategy will minimize power consumption as well as minimize the number of SLA

violations.

VM migration can be broken down into three sub-problems, the details of which are as

follows:

• Host Detection: To detect the status of the hosts, which may be generally either

over-loaded or under-loaded.

• VM Selection: After detecting the over-loaded host, the VMs are selected for

migration and several strategies for selecting VMs can be used.

• VM Placement: The process of selecting the host to which the VM is migrated.

The destination host must not become over-loaded after the placement of the

migrated VM.

In the following subsections, VM migration processes are discussed in detail along with

the main research conducted on each.

2.5.2.1 Host Detection Strategies

The objective of the host detection algorithm is to recognize when a host is over-loaded

or under-loaded. Detection is based on the usage and load of host resources in terms of

CPU, RAM, storage and bandwidth. To detect the status of the hosts several methods

81

are used. In this research, the focus will be on methods using threshold detection and

the clustering based on meta-heuristic algorithms.

Some researchers have used threshold concepts in VM allocation to determine the status

of machines and tasks. For example, (Lin et al. (2011)) used a threshold-based scheme

for allocating resources and distributing the available VMs over cloud requests to

improve resource utilization and reduce the usage cost based on changes in the system

load.

A single threshold method is based on defining the high limit of the utilization of the

host's CPU (Beloglazov and Buyya (2010)). In deploying the VMs, it maintains the

usage rate of CPUs below this threshold to reserve idle resources and prevent SLA

conflict. The double threshold method involves setting the upper and lower limit

threshold of the utilization rate of the host's CPU. Thresholds can be used for detecting

the status of the hosts and this can be static or dynamic. For example, Beloglazov and

Buyya (2010) introduced the concept of adaptive threshold for VM allocation.

Specifically, they used predictions based on VM resource usage to dynamically

determine upper and lower utilization thresholds to classify the hosts. However, static

threshold policies do not work well in a highly dynamic environment such as cloud

computing (Verma et al. (2014)). Thus, a dynamic strategy for detecting status of hosts

will be developed in this research.

Selecting the thresholds values based on the resource utilization is particularly

important, because the research described in this thesis will study dynamic thresholds,

which can define the thresholds dynamically based on the current utilization of the

resources to improve the efficiency of the resource scheduling strategy. Compared to

previous work in this field, most algorithms only rely on CPU utilization for host

detection. Multiple factors will be used to enhance VM migration such as CPU

utilization, memory utilization and bandwidth utilization.

In this research, we focus on clustering algorithm to detect the status of hosts. The

clustering approach combines hosts into one group based on their state, which may be

free, fully loaded, partially loaded, or underutilized. Shindler et al. (2011) proposed a

K-means clustering which is accurate and fast approach to deal with allocation of VM

issues. (Panchal and Kapoor (2013)), on the other hand, proposed a dynamic VM

82

allocation algorithm that also uses the K-means clustering method and it mapped the

VMs to the nearest clusters.

(Hemalatha et al. (2013)) proposed a honey bee clustering algorithm, which searches

for the host that can best serve new VM requests in the manner of a bee. It also provides

support for the reallocation of VMs and reduces network latency. Alternatively,

(Malathy and Somasundaram (2012)) proposed a novel approach based on a reservation

cluster. In this approach, unscheduled VM request tasks are placed into the reservation

cluster schedule. The reservation cluster schedules all tasks concurrently, which means

less computation time and reduced usage of resources.

(Panchal and Kapoor (2013)) allocated the VMs dynamically in cloud computing

applications, using K-means clustering algorithms where the parameter was costs in the

data center and clustering was carried out according to the number of data centers.

Alternatively, (Veeramallu (2014)) conducted VM allocation using K-means clustering

algorithms based on energy saving and the number of data centers; each cluster was

then allocated to available hosts on the data center similar to the process outlined by

(Panchal and Kapoor (2013)). In this research, clustering based on PSO and K-means

will be applied to improve detection of hosts' statuses and the results of migrating VMs.

2.5.2.2 Virtual Machine Selection

VM selection is the process of selecting one or more VMs from a set of VMs in one

host to be migrated to another host to balance load or reduce power (Beloglazov and

Buyya (2012)). Several VM placement strategies have been developed based on many

factors such as utilization, migration time and load. In more detail, (Verma et al. (2014))

proposed an algorithm to solve the selection problem of VMs by migrating from the

over-loaded hosts to rebalance the load for all hosts in the data center. Beloglazov and

Buyya (2012) have proposed algorithms to solve the problems of detection of over-

loaded hosts and VM selection. They proposed that host over-loaded detection

algorithms and Local Regression provide the best results compared to other algorithms.

For example, a Power Aware Best Fit Decreasing (PABFD) algorithm is used for VM

placement, but this is only based on a power consumption metric that specifies the best

83

host to which the VMs should be migrated. In this research, several parameters are used

to allocate and cluster hosts including power, cost, capacity, utilization and execution

time.

In Shidik et al. (2016), the use of K-means clustering as a VM selection technique for

dynamic VM scheduling has been evaluated. Several attributes, such as VM processing

in MIPS and VM memory size, are applied in clustering VMs. Moreover, Median

Absolute Deviation (MAD) has been used as a form of over-loaded detection that works

before the VM selection mechanism. The results of the experiment show that the

number of clusters using K-means can influence energy consumption and QoS in the

cloud data center.

2.5.2.3 Virtual Machine Placement

VM Placement selection algorithms are used to determine the allocation of new VMs

or to reallocate the migration VMs. Many VM placement approaches based on meta-

heuristic algorithms were developed in the cloud environment. Specifically, (Xiong and

Xu (2014)) have addressed this issue and presented a model using the PSO technique.

Their fitness function is based on the total distance between actual utilization and their

best value of utilization, taking into consideration energy efficiency. Wang et al. (2013)

solved the same problem using a modified PSO. Their modification consists of

redefining the parameters and operators of PSO, implementing an energy efficient local

fitness first technique and developing a new two-dimensional particle encoding scheme

to achieve better quality solutions. The algorithm is compared with FF, BF and MBFD

algorithms. Wang et al. (2013) overcome the energy optimization problem by

combining PSO with a FF mechanism with the additional aim of maximizing revenue

acquisition. On the other hand, (Beloglazov and Buyya (2012)) introduced an algorithm

for VM migration based on three different criteria: migration time, CPU utilization and

power consumption. A VM is selected if it requires the minimum time to complete a

migration. Although this work highlights multiple objectives, the researchers did not

use multi-objective techniques. Instead, they dealt with it as a single objective. This

method combines the set of objectives into a single objective by multiplying each

objective according to a pre-defined weight. In the work described in this thesis, the

84

migration will be based on CPU utilization for each host and the general load of the

system. In this way, the performance is improved by decreasing the waiting time and

the utilization of all hosts is increased.

Some researchers have focused on balancing the load to utilize the resources. These

include (Madhusudhan and Sekaran (2013)), who developed a GA VM placement and

load balancing to utilize the resources effectively. Several algorithms use the GA

approach, which is based on the current available resources on the host and the current

demand of the VMs parameters, which are used to make decisions regarding placing

VMs on hosts. However, sometimes VM migration algorithms increase the number of

migrations. Thus, the current research aims to improve the migration process by

minimizing the number of VM migration as possible.

2.5.3 Discussion of VM Allocation Related Work

Many different researchers aiming to improve the methods of selecting hosts to execute

the VMs have studied the issue of VM allocation. In particular, several meta-heuristic

algorithms have therefore been used to solve VM scheduling problems and optimize

energy consumption, profit, resource utilization and load balancing. Researchers such

as (Khanna et al. (2006)) have developed VM selection based on CPU utilization load

without considering other resource factors such as memory load, storage size and

network bandwidth.

Regarding VM migration, previous work presented by (Beloglazov and Buyya (2012);

(Luo et al. (2012)) (analyzed in Section 2.5), focused on migrating all VMs to under-

loaded hosts. However, this is not always a good strategy, because to reduce migration

time not all the VMs should be migrated to under-loaded hosts. In contrast, it is better

to check the load after migration and compare it with the load before migration to

evaluate the effect of migration because in some cases the migration process has

negative effective on the load. Moreover, detecting the status of hosts requires

intelligent mechanisms that are more adaptive than thresholds such as meta-heuristic

clustering.

85

Finally, most of the research deals with multi-objective optimization while the VM

allocation problem often includes many objectives to be evaluated, leading to greater

improvement in many-objective optimization techniques.

2.6 Summary

This chapter has presented background information on cloud computing, SLAs,

optimization techniques and resource allocation, which are the main processes that will

be drawn upon in this thesis. Firstly, the key concepts of heuristic and meta-heuristic

algorithms were presented. Optimization based on particle swarm algorithm was then

discussed and the algorithms based on PSO were briefly introduced. These represent

the main methods underlying the proposed algorithms for allocating resources in cloud

computing. The chapter then presented an overview of SLA negotiation and analyzed

key research in this area. The general concepts and models of task scheduling

algorithms in cloud computing were then presented. Finally, the VM allocation process

was discussed along with work to optimize VM scheduling and migration.

The research on resource allocation in cloud systems still requires further study and

improvement. Several existing issues have not been fully addressed while new

challenges continue to emerge. Subsequently, an effective resource allocation system

is required to achieve consumer satisfaction and maximize the profit for cloud service

providers. A great deal of research has been conducted and many solutions have been

presented in cloud computing environment in respect to task scheduling and the VM

allocation problem. However, several issues and challenges require further research,

before an optimal solution that is practical for most cloud environments is found.

Some of the challenging issues raised in relation to previous research are as follows:

1) There is a need to reduce consumer SLA violations when utilizing resources

because most of the models reduce performance in order to reduce the cost and

improve the utilization (as discussed in Section 2.3.1).

86

2) There is a need to improve resource allocation strategies to reduce scheduling time

and thus to improve the real-time scheduling framework (as discussed in Section

2.4.1).

3) There is an urgent need to handle conflicting objectives such as minimizing the cost

for cloud consumers and maximizing the profit for cloud providers. At the same

time, it is important for cloud providers to utilize and manage the resources in an

efficient manner to reduce power consumption (as discussed in Section 2.4.1).

4) Load balancing is a key concern in managing and scheduling the workload in the

cloud infrastructure. This will satisfy several objectives such as meeting the QoS

requirements of consumers, maximizing profit and enhancing the usage of

resources. To balance the load, VM migration is considered as a means of utilizing

the resources efficiently (as discussed in Section 2.5.2).

In sum, the differences in our research compared to previous research can be

summarized as follows:

In terms of SLA Negotiation:

• An automated SLA negotiation model based on PPSO will be developed; no

previous study has attempted this. PPSO will be developed to enhance the

results of PSO by dividing the large search space into small spaces and reducing

the time complexity of the algorithm.

• Most of the previous research has focused on the price or QoS. In contrast, in

our model, the focus will be on the consumer goal of price and QoS in terms of

throughput, waiting time and completion time. Additionally, the provider goals

of resource utilization and profits will be considered. This is because balancing

these conflicting objectives can improve the performance of cloud services.

• For multi-objective optimization, the optimizer needs to consider Pareto

dominance every time it updates particles and stores non-dominated solutions

to approximate the Pareto front. In our model, the strategy of using multi-

objective based on a weighted sum strategy to reduce the time spent updating

the particles is improved by using parallel computing.

87

• An SLA monitoring function will be developed to detect the number of

violations that related to the number of tasks that missed deadlines or migration

time.

In terms of Task Scheduling:

• Our work differs from previous work in that it focuses on optimizing task

scheduling based on many objectives to satisfy several goals for consumers and

providers simultaneously.

• Most existing research on task scheduling dealing with multi-objective

optimization evaluates two or three objectives. Specifically, these studies often

apply methods that may not provide better quality when there are more than

three objectives, as discussed in section 2.1.4. In this work, the modified ranking

strategy will be developed, combining two methods to evaluate many-objective

optimization, involving more than three objectives, in shorter time than other

methods.

In terms of VM allocation:

 A VM scheduling algorithm based on MaOPSO will be developed to deal with

many-objective optimization and will use the same strategy used in task

scheduling to rank the objectives according to different factors related to VM

allocation.

 The load balancing technique will be optimized by applying clustering with

PSO and K-means in the hosts of data centers to detect the over-loaded and

under-loaded hosts and balance the load.

 A VM migration algorithm based on the results of clustering will be developed

to utilize the resources effectively and reduce power consumption.

The specification of the presented model in this thesis and its main structure will be

discussed in detail in Chapter 3. Additionally, Chapter 3 will describe all the modules

in the model and explains their responsibilities in resource allocation. Finally, the

general information on the implementation and evaluation of the model will be

provided.

88

Chapter 3

A Resource Allocation Model

This chapter details the architecture and design of the proposed optimized resource

allocation model presented in Section 1.3, which involves three modules. The first

section presents an overview of the model and explains its goals and objectives. The

second section describes the design issues and constraints on the model and its

objectives. Section 3.3 presents the main architecture modules of the model and the

responsibilities of each component. Section 3.4 presents information on the

implementation and configuration of the proposed model. In addition, it discusses the

main parameters for the evaluation used in the experiments. The final section

summarizes the main elements of the proposed model.

3.1 Overview

The provider infrastructure model can include one or multiple data centers. The

provider architecture in the proposed model consists of multiple distributed data centers

that are controlled and managed by one manager. This model was chosen because it

offers several benefits such as scalability using many data centers. However, allocating

resources in multiple data centers is more complicated than using one data center. There

are many factors and parameters that need to be considered such as data center location,

network bandwidth, latency, data transfer cost and data transfer time. The proposed

model of resource allocation consists of three phases: SLA Negotiation, Task

Scheduling and VM Allocation as described in Section 3.1. Each phase of the model

aims to improve the specific problem of resource allocation to satisfy certain goals.

Specifically, when scheduling tasks at the level of VMs and hosts, the model aims to

89

apply PSO to optimize SLA negotiation between cloud consumers and the provider.

The main goal is to dynamically allocate resources (virtual or/and physical) to execute

the tasks requested by consumers in ways that simultaneously benefit both consumers

and providers. Consequently, the optimized model will improve resource utilization,

maximize throughput and profit and reduce waiting time to enhance performance.

Furthermore, it also reduces power consumption by switching off idle resources, which

indirectly increases profit by minimizing the cost of power consumption.

In the model, the provider has multiple data centers modeled as a set of DC=

{𝐷𝐷𝐷𝐷1, 𝐷𝐷𝐷𝐷2,…, 𝐷𝐷𝐷𝐷𝑑𝑑}; where d denotes the number of data centers in the provider

structure. Each data center contains several hosts and the cost of using data center

resources comprises the costs of processing, memory usage, bandwidth, storage usage

and power. Each data center 𝐷𝐷𝐷𝐷𝑖𝑖=1,…,𝑑𝑑 consists of a number of physical machines

(hosts) modeled as a set of Host = {𝐻𝐻𝑖𝑖1, 𝐻𝐻𝑖𝑖2,…, 𝐻𝐻𝑖𝑖ℎ}; where h is the numbers of hosts

inside data center i. Thus, in this model, the number of hosts in each data center differs

according to its capabilities. Each host is described by a CPU processing speed defined

in Millions of Instructions Per Second (MIPS), numbers of CPU cores, the amount of

available RAM, size of storage capabilities and the required network bandwidth. In this

instance, storage denotes the network storage device that is used to store the data files

for the task.

Each host 𝐻𝐻𝑗𝑗=1,...,ℎ can deploy many VMs represented as a set of VM=

{𝑉𝑉𝑉𝑉𝑗𝑗1,𝑉𝑉𝑉𝑉𝑗𝑗2,….𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗}; where v denotes the numbers of VMs that can be run in each

Host j. Different types of VMs associated with data centers will be used in the model.

Each VM is characterized by specific properties representing the capabilities of the

processing storage and the cost, which includes {VM type, CPU speed, Memory size,

Storage size and Network bandwidth}.

In our model, the tasks denote the software file that needs to be run in the cloud

resources and to return results in the output file. The tasks in this model are independent

which means there are no dependencies between them. The task is characterized by

specific properties that represent the requirements of the consumers regarding the

execution of tasks, which includes:

90

{𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐼𝐼𝐼𝐼,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀),𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ, 𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 }. The consumers specify

these requirements when they submit the tasks.

Specifically, our model of optimized resource allocation includes many phases, as

shown in Figure 3.1. The first phase is SLA negotiation, which is responsible for

selecting the data center to execute the tasks and uses Parallel PSO to reduce negotiation

time and increase throughput. The second phase is the MaOPSO tasks scheduling

algorithm, which maps tasks inside each data center to satisfy many objectives:

maximizing resource utilization, increasing profits and reducing waiting time. The third

phase is VM allocation, which maps VMs to hosts using clustering based on PSO and

K-means to improve the utilization of resources and reduce power consumption. Details

of each algorithm and related information are presented in Chapters 4, 5 and 6

respectively.

Figure 3.1: Optimized Resource Allocation Phases.

Tj T3 T2 T1

VM1

2. Task Scheduling Phase

Data center#1

Hk H2 H1

3. VM Allocation Phase

1. SLA negotiation Phase

Tj T3 T2 T1

2. Task Scheduling Phase

Data center# n

3. VM Allocation Phase

Tj T2 T1

2. Task Scheduling Phase

Data center#2

3. VM Allocation Phase

T1 T2 Tm

m: total no. of tasks j: total no. of VMs inside DC k: total of no. of host n: no. of DCs

VM2 VMj VM1 VMj VM2 VMj VM1

Hk H2 H1 Hk H1

91

3.2 Design of an Optimized Resource Allocation Model

It is important to identify constraints on the design of the proposed model before

discussing its structural detail. The resource allocation model is designed and

implemented according to the following constraints:

• The model includes n data centers where each data center has its own resources.

• Each task should be allocated to only one data center at the negotiation phase.

• The task needs to be assigned to one VM, which is compatible with its

requirements in terms of CPU power, RAM size, storage size and cost.

• When a task is assigned to a VM, the execution of that task should be completed

in the same VM, i.e., the tasks are non-preemptive (see Section 2.4.1).

• The VM can process one task at a time because it is assumed that each VM has

one core to prevent the problem of contention when running many tasks.

• The total processing requirements of all tasks hosted on a resource should not

exceed the maximum processing capacity of that resource.

• The total memory requirements of all tasks hosted on a resource should not

exceed the maximum memory available for that resource.

• The number of host and VMs are not fixed because some of the hosts will be

switched off if there is no more work to save power.

• At any time, the total number of virtual machines used in a host should not

exceed its capacity, which is dependent on the number of CPU cores and

assumes that one core can run only one VM.

• All tasks are independent and the scheduling algorithm assumes there is no

communication between them.

The main design goals of the proposed allocation model can be summarized as follows:

 All decisions regarding the allocation of the (VMs/physical) machines should

be made automatically based on the proposed algorithms.

 Utilization of the system can be improved by balancing the load to avoid over-

loaded and under-loaded hosts. This ensures the efficient use of resources.

 Dynamic resource allocation in the proposed system is used to adhere to QoS

requirements and reduce SLA violations.

92

 Reducing the time required for mapping and allocation to reduce the waiting

time and improve performance

 The task should be finished before the deadline to improve throughput and

increase profit.

 The profit is increased by maximizing the utilization of the resource and

reducing the number of SLA violations.

 Reduce power consumption by improving the migration method to turn off idle

resources.

3.3 General Resource Allocation Architecture

The architecture of the proposed model comprises four main entities: Consumer Agent,

Broker Agent, Manager Module and Provider Modules. These main entities represent

all layers of cloud computing and each is responsible for a specific function regarding

resource scheduling and allocation. Specifically, Consumer Agents in the SaaS layer

interface and deal with consumers. The Manager Module in the PaaS layer provides the

negotiation and management capabilities of the model for consumers and the provider

infrastructure. The Provider Module is in the IaaS layer and manages the infrastructure

of the cloud, which includes virtual and physical resources. The general architecture of

the proposed model is illustrated in Figure 3.2. The details of each module involved in

this architecture are discussed below, along with their functions and responsibilities.

• The Consumer Agent: This agent is located on the consumer’s side and represents

the interface the consumers deal with to submit the tasks. It is responsible for

receiving tasks from consumers who submit their specified requirements in terms

of cost budget, CPU speed, storage size and deadline. The Consumer Agent then

sends the tasks with their requirements to the Broker Agent.

• The Broker Agent: This Agent acts as a mediator between the Consumer Agent

and the Manager Module. The Broker receives tasks from the Consumer Agent,

represents these tasks in the form of proposals, and then sends them to the Manager

Module. When consumers submit tasks, they are accepted through the Broker

93

Agent, which defines the QoS requirements based on the consumer's request. In

addition, this Agent collects the results of feedback and acknowledgements and

sends them to the Consumer Agent, which is concerned with the state of each task.

• The Manager Module: This module is a central module in the proposed

architecture. It is responsible for allocating resources according to the information

received from the DC Manager Agent in the Cloud Provider module. Interaction

between the three submodules is needed to satisfy the objectives of the proposed

model. The submodules of the Manager are the SLA Monitor Agent, The

Negotiation Agent and the Task Dispatcher Agent, as shown in Figure 3.3. The

Manager accepts proposals from the Broker Agent through the SLA Negotiator

Agent and receives offers from the DC Manager Agent in each data center. Then

the negotiation process begins in this module based on the predefined objectives of

the providers and consumers. In addition, it manages the execution of the

consumer’s task in the data centers of cloud providers. It receives updates on the

state of each task from the DC Manager Agents. The Manager submodules are

described in more detail below:

• The SLA Negotiator Agent: this agent receives proposals from the Broker

Agent and offers from each data center through DC Manager Agents. It

starts the negotiation by determining the most appropriate offer for each

proposal within the constraints of the cost budget and deadline. It selects the

data center that can execute a task in line with the specified requirements. It

applies Parallel PSO negotiation to conduct the mapping between

consumers and data centers. It then creates the agreement form, and signs it

on behalf of the consumer and providers. The design and implementation of

the Parallel PSO negotiation algorithm are discussed in Chapter 4.

• The Task Dispatcher Agent: The function of this Agent is to assign tasks

to the selected data center based on the results from the SLA Negotiator

Agent, which decides the data center ID for each task.

• The SLA Monitor Agent: this agent is responsible for collecting

information about the agreed SLA and monitoring it to detect any SLA

94

violation. It is responsible for monitoring the progress of the submitted tasks

and detects any violation of the SLA. A violation in this model relates to the

deadline time constraint.

• Cloud Provider Module: This module represents the IaaS layer in the cloud

environment, which includes the VMs and hosts. It consists of many distributed

data centers, which in this instance is assumed ten in order to evaluate our model

with a large number of data centers. Each data center is a centralized repository for

both physical and virtual resources and has five components: DC Manager Agent,

Host Monitor Agent, Task Scheduler, Load Balancer Agent and VM Manager

Agent (Figure 3.4). The details and responsibilities of each of these components is

as follows:

• The DC Manager Agent: It acts as an interface between the data center

resources and the Manager Module. It is the local manager for each data

center. The DC Manager Agent in each data center sends offers that can

satisfy the QoS of the consumer to the Manager Agent. This agent has many

responsibilities, periodically sends the status of the cloud to the Manager

Agent from the Host Monitor Agent, and receives the list of tasks to be

executed from the Manager Module.

• The Host Monitor Agent: It is responsible for monitoring the load in each

host and notifying VM migration if there is an unbalanced load among the

hosts. It collects information about all hosts and VMs in the data center,

which includes the status of the host, utilization of resources, and power

consumption. This module also provides information to the VM Scheduler

to map the VMs to hosts.

• The Task Scheduler Agent: The Task Scheduler Agent utilizes the latest

status information from the Host Monitor Agent regarding VM availability

and load. The MaOPSO task scheduling algorithm is used to search the VMs

inside the data center to find the best VM for each task based on five

objectives: Task Execution Time (TET), Task Execution Cost (TEC), Data

Transfer Time (DTT), Data Transfer Cost (DTC) and VM capacity. Details

of the MaOPSO task algorithm will be presented in Chapter 5.

95

• The Load Balancer Agent: This module detects over-loaded and under-

loaded hosts. It clusters the available hosts to apply the VM migration

algorithm inside each data center. It applies PSO based clustering to cluster

hosts into four classes: over-loaded, high-loaded, under-loaded, and

unloaded. Details of the VM migration algorithm are provided in Chapter 6.

Figure 3.2: General Architecture of Resource Allocation in Cloud

• The VM Manager Module: This module is responsible for allocating the VMs

inside the data center. It begins the VM migration process based on the

information from the Host Monitor Agent. The VM Manager Module includes

two submodules: VM Scheduler Agent and VM Migrator Agent. The details of

these are as follows:

• The VM Scheduler Agent: This Agent is responsible for allocating

VMs over hosts inside the data center. It uses MaOPSO to allocate

VMs to reduce the time and improve throughput based on four

Data center #1 Data center #2 Data center #n

VM Manager

Host Monitor

DC Manager

Broker Agent

Consumer
Agent

Consumer
Agent

Consumer
Agent

Manager Agent

Task Scheduler

Load Balancer

VM Manager

Host Monitor

DC Manager

Task Scheduler

Load Balancer

VM Manager

Host Monitor

DC Manager

Task Scheduler

Load Balancer

96

objectives. This algorithm maps the VMs to the available hosts. It

periodically collects information from the Host Monitor Agent to

make decisions on the placement of VMs.

• The VM Migrator Agent: This is responsible for starting the

migration of VMs from unloaded and over-loaded hosts to unloaded

ones. It triggers the migration of VMs to hosts depending on the

information provided by the Host Monitor Agent.

Figure 3.3: Manager Module Architecture.

Figure 3.4: Architecture of Provider Module.

• Cloud Database: it includes information on the data centers, hosts, VMs, and tasks.

It consists of static information such as specification of the hosts and VMs and

dynamic information on change regarding the status of the system such as host load

and VM utilization. In the proposed model, a distributed database is used, which

includes a primary database in the Manager Module and several secondary

databases in each data center. Periodic synchronization is needed to update any

changes to the primary database. Figure 3.5 illustrates the entity relationship

between tables in the proposed database model.

SLA Negotiator Task Dispatcher

Manager Module

SLA Monitor

Host
Monitor

DC
Manager

VM
Scheduler

Load
Balancer
Monitor

VM
Migrator

VM Manager
Data center Module

Task
Scheduler

97

Figure 3.5: The Entity Relationship Diagram for the Proposed Database.

3.4 General Resource Allocation Implementation

This section will discuss the main points related to the implementation of the proposed

model, and the main setting of the simulation components that will be used to

implement the required modules. In addition, it describes the factors that will be used

to evaluate the resource allocation phases. However, the special configuration for each

algorithm and its evaluation will be discussed in subsequent chapters.

First, we consider the reasons for using simulation. In cloud computing environments,

various resources exist including hardware, software, and the network. In addition,

consumers have different dynamic and sometimes competing QoS requirements. Using

a real cloud environment, such as Amazon EC2 or Microsoft Azure, to design and

evaluate the model's performance metrics with different configurations and settings is

difficult because of the limitations of these infrastructures. This is because, in the

proposed model, several configurations of the data center with different specifications

need to be tested. Moreover, using real environments restricts the evaluation process

because there are limits on the infrastructure, and the reevaluation of experiments then

becomes very difficult in terms of measurement. Thus, retesting is extremely difficult

98

and requires additional changes to the environment and infrastructure. Furthermore, it

is expensive, costly in terms of budget, and time-consuming to re-configure

benchmarking parameters to change the applications and workloads so they can run

more tests. Because of these limitations, most developers and researchers prefer to use

simulators for benchmarking experiments and evaluations (Sakellari and Loukas

(2013)). Using simulation tools and environments give developers many advantages

such as testing and retesting the different configurations of the infrastructure in less

time and using easier methods. Moreover, using simulators can improve the flexibility

of the models by allowing the developer to define a structure that is easy to use, modify

and customize depending on the different requirements. For all these reasons, the model

will be evaluated using simulator software.

However, there are various simulation tools available for cloud systems, such as

CloudSim, GreenCloud, and MDCSim (Malhotra and Jain (2013)). In this research, the

three phases of our model will be implemented and evaluated using a CloudSim

environment. There are several reasons for this. Firstly, CloudSim is an open source

simulator developed using the Java language so it is available for the public to use and

to improve. In addition, it includes several submodules that simulate the main

components and layers of cloud environments. This enables flexible customization of

the simulation by adding or modifying modules according to the desired design.

Specifically, the model in this research was implemented using CloudSim 3.0.3 which

was the most recent version up until the middle of 2017. CloudSim is a general and

extendable simulation model that facilitates the modeling and evaluation of cloud

computing infrastructures and services (Calheiros et al. (2011)). It supports several

functionalities, such as the queuing and processing of events, the creation of cloud

system entities (services, hosts, data centers, brokers, and virtual machines),

communication between components, and management of the simulation clock

(Calheiros et al. (2011)).

CloudSim includes the following main classes:

• Data center: models the main hardware infrastructure of the cloud and is
managed by the providers.

• Broker: represents a broker module, which manages the communication and
negotiation between consumers and providers.

99

• Host: models a host inside the data center.

• VM: models a virtual machine that is running on the host and executes the
tasks.

• Cloudlet: models the cloud applications and services in the SaaS layers (in
this model it is denoted by the term task).

• VmAllocation: a policy that determines the method of allocating VMs to hosts
and is specified in the data center characteristics.

• VmScheduler: a policy of allocating processing cores inside the host for VMs.
It runs on each physical host in the data center to distribute CPU cores among
VMs.

• CloudletScheduler: a policy of scheduling cloudlets to CPU inside the VM
and is specific to each VM.

To implement the model, several modifications were made to the CloudSim simulator

classes to customize them to the specified problem. Existing classes were therefore

modified and new classes added for negotiation, monitoring, computing the load, and

clustering hosts. Details of these modifications will be discussed in subsequent

chapters.

The architecture of CloudSim consists of five layers, as shown in Figure 3.6. These

layers represent the main structure of any cloud computing environment. In our model,

the five layers are Cloud Data center, Manager, VM, Network, and Broker, as shown

in Figure 3.7. In this research, the Network layer is required because the tasks will be

scheduled among multiple data centers. The Cloud Data center layer provides APIs to

start and terminate the instances of cloud components, which represent the Provider

Module in our model. The Manager layer is responsible for management, resource

allocation in the SLA negotiation phase and the task scheduling phase. This represents

the Manager module in the model. In addition, it collects information from each data

center and allocates resources. The VM layer manages the mapping of VMs to hosts

within a data center, and represents the VM Manager in the model. In addition, it

collects resource utilization information (e.g. CPU, memory, disk, etc.) on each host

and on the virtual machines. The Broker layer provides the interface between the

consumer and the Manager layer. In the proposed model, the Consumer Agent

represents this layer.

100

Figure 3.6: CloudSim Architecture (Calheiros et al. (2011)).

Figure 3.7: Proposed Model Layers

3.4.1 Configurations and Specifications of Resources

To evaluate the proposed resource allocation model, a series of experiments were

performed to evaluate the objectives discussed previously in Chapter 1. Each phase of

the proposed model has several such objectives; these will be evaluated after discussing

the implementation information in detail in Chapters 4, 5, and 6. In this section, general

information related to the simulation and specification details that will be used in all

Cloud Data Center Layer

Virtual Machine Layer

Management Layer

Broker Layer

Network Layer

101

phases will be described, including the characteristics of the data centers, hosts, VMs,

and the tasks that will be used in the evaluation experiments.

Table 3.1 specifies the data centers that are used in our model which include the

supposed values for cost of using the resources in the data center. To simulate the host

machines, Amazon’s Elastic Compute Cloud (EC21) instances that differ according to

CPU type were used. Four types of EC2 were selected: high-CPU, extra, small, and

micro, with different characteristics for each host, as shown in Table 3.2. The data

centers in the proposed model differ in terms of the costs of processing, memory,

storage, transferring data, and power. The selected values are based on EC2 instances

for general-purpose applications.

It should be noted that the network bandwidth values in the host specification used in

the evaluation tests of our model in the three phases is multiplied by 100 (see Table 3.1)

and for VM bandwidth (see Table 3.2) is multiplied by 10.

DC
ID

Cost
per

Processing
$/ seconds

Cost
per

Memory
$/ MB

Cost
per

Storage
$/ MB

Data
Transfer

cost
$/ Mb

No. of
Host

Cost
Power

$/
seconds

1 3.0 0.05 0.1 0.1 4 0.5
2 3.0 0.05 0.1 0.1 4 0.5
3 2.0 0.04 0.1 0.05 4 0.5
4 2.0 0.04 0.1 0.05 4 0.5
5 3.0 0.05 0.1 0.05 4 0.5
6 3.0 0.05 0.05 0.1 2 0.3
7 3.0 0.04 0.05 0.1 2 0.3
8 3.0 0.04 0.05 0.1 2 0.3
9 2.0 0.04 0.05 0.1 2 0.3
10 2.0 0.04 0.05 0.1 2 0.3

Table 3.1. Specification of Data centers.

1 https://aws.amazon.com/ec2/instance-types/

102

Host
ID

Host
Type

RAM
(GB)

Bandwidth
(Mb/s)

CPU
(GHz)

Storage Size
(GB)

No. of
cores

1 Micro 1 1000 Up to
3.3

100000 2

2 Small 2 10000 Up to
3.3

200000 2

3 Extra 4 20000 Up to
3.3

400000 4

4 high-
CPU

8 40000 Up to
3.3

400000 4

Table 3.2. Specification of Host Types.

VMs were simulated with the specification that fits in the simulated hosts. Four types

of VM that vary in CPU speed and memory size with the specification of EC2 instances

were used as shown in Table 3.3, which shows that each VM has one core. In cloud

computing, the creation of a VM is implemented in two ways. The first VM is creating

based on task requirements then it is mapped to a host that can fit, while the other

depends on creating a VM in the host after which the task is mapped to a suitable VM.

In our model, we combine the two methods in such that VMs were created depending

on the host specification and tasks then mapped to them. In each data center, there are

specific type of VMs based on the specification of the hosts. This is because it manages

the VMs in a more efficient way than the first method and reduces the number of created

VMs, therefore utilizing the resources more efficiently. In contrast, the first method

creates a number of VMs that is equal to the number of tasks, and thus leads to

complexity when allocating VMs to hosts. The specific characteristics for each VM are

shown in Table 3.3 below.

VM

ID

VM

Type

RAM

(MB)

Bandwidth

(Mb/s)

CPU

(MIPS)

Storage Size

(MB)

PE

1 Small 4048 1000 10000 10000 1

2 Medium 4048 2000 20000 20000 1

3 Large 8096 4000 40000 40000 1

4 xLarge 8096 8000 80000 80000 1

Table 3.3: Specification of VM Types.

103

To simulate the tasks, a dataset called the Large Hadron Collider Computing Grid

(LCG) were used (Schwickerath et al. (2005)). This describes the work of 11 days of

activity from multiple nodes. It includes 188.041 lines, and each line in the file contains

information about the completed task along with information on the submission time,

consumer ID, compute element name, and task runtime. This dataset was used because

it includes task information relative to that needed in the proposed model. Tasks that

are not included in our model are tightly coupled tasks and complex workflow

applications. The tasks are simulated to be submitted to our system, which includes

different number of VMs and hosts with random types based on the predefined

specifications. The tasks are taken from the file without sorting and thus the results are

varied because the tasks are different in length and specifications. In the model we

consider the process of dealing with tasks are dynamic and online and the tasks are

scheduled directly when they arrived and are not queued.

3.4.2 Evaluation Parameters

After running the simulation, specific parameters were measured based on the

objectives of the proposed model. The main parameters used, as indicators of the

model's goals (see Section 1.3) were average waiting time, average execution time,

throughput, resource utilization, cost, profit, and power consumption. Details on each

factor are presented as follows:

• Average Waiting Time (AWT): The average waiting time of a task is defined

as the ratio of the sum of waiting times of all tasks to the total number of tasks.

The average waiting time is measured by computing the difference between the

time the task is submitted to the system and the time of starting the execution of

all the tasks, as shown in Equation 3.1. The waiting time includes the time taken

for negotiation, mapping tasks to VMs, data transfer time, and the time at which

VMs are migrated.

𝐀𝐀𝐀𝐀𝐀𝐀 = ∑ (𝑺𝑺𝑺𝑺(𝒊𝒊) − 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝒊𝒊)𝒎𝒎
𝒕𝒕=𝟎𝟎)/m (3.1)

where:
AWT is the average waiting time of all tasks in seconds
m denotes the number of tasks running in the system per unit of time

104

ST (i) denotes the start time of execution of the task i in seconds
SubT (i) denotes the time for submission of the task i in seconds

• Average Completed Time (ACT): This is the total time taken by each task to

finish execution. It is measured by computing the difference between the time

of submission of each task and the time of ending execution of each task.

𝐀𝐀𝐀𝐀𝐀𝐀 = ∑ (𝑬𝑬𝑬𝑬𝑬𝑬(𝒊𝒊) − 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝒊𝒊))𝒎𝒎
𝒕𝒕=𝟎𝟎 /m (3.2)

where:
ACT is the average completed time of all tasks in seconds
m denotes the number of tasks running in the system per unit of time
Ext (i) denotes the finish execution time of the task i in seconds
Subt (i) denotes the time of submission of the task i in seconds

• Throughput (TH): The throughput measures the overall performance of the

system. Throughput indicates the number of tasks that our model can execute in

a specific time.

 𝐓𝐓𝐓𝐓 = (𝐂𝐂/𝐓𝐓) × 𝟏𝟏𝟏𝟏𝟏𝟏 (3.3)

where:
TH denotes the throughput of the system
C is the total number of completed tasks
T denotes the simulation time in seconds

• Average VM Utilization (AVU): This represents the utilization of the VM in

terms of the CPU, memory, storage and bandwidth used by all tasks to finish

execution. The CPU utilization for each VM is defined as a percentage ratio of

the CPU, memory, storage and bandwidth utilization divided by 4 (which is the

number of factors including in computing VM utilization). The CPU utilization

is the amount of CPU used for all tasks in a VM over the total CPU of the VM.

Memory utilization, storage utilization, and bandwidth utilization are computed

in the same way as CPU utilization, as shown in Equations 3.4, 3.5, 3.6 and 3.7.

 CVM (i) = ∑ (𝑼𝑼𝑼𝑼(𝒊𝒊) / 𝑨𝑨𝑨𝑨(𝒊𝒊)) ∗ 𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏
𝒊𝒊=𝟎𝟎 (3.4)

 MVM (i) = ∑ (𝑼𝑼𝑼𝑼(𝒊𝒊) / 𝑨𝑨𝑨𝑨(𝒊𝒊)) ∗ 𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏
𝒊𝒊=𝟎𝟎 (3.5)

105

SVM (i) = ∑ (𝑼𝑼𝑼𝑼(𝒊𝒊) / 𝑨𝑨𝑨𝑨(𝒊𝒊)) ∗ 𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏
𝒊𝒊=𝟎𝟎 (3.6)

BVM (i) = ∑ (𝑼𝑼𝑼𝑼(𝒊𝒊) / 𝑨𝑨𝑨𝑨(𝒊𝒊)) ∗ 𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏
𝒊𝒊=𝟎𝟎 (3.7)

 UVM (i) = (CVM (i) + MVM (i) + SVM (i) +BVM (i))/4 (3.8)

where:
UVM (i) is the average utilization of VM i
CVM (i) is the CPU utilization of VM i
UC (i) is the used CPU for all tasks executed in VM i
AC (i) is the total CPU of VM i
MVM is the memory utilization of VM i
UM (i) is the used memory for all tasks executed in VM i
AM (i) is the total memory of VM i
SVM (i) is the storage utilization of VM i
US (i) is the used storage for all tasks executed in VM i
AS (i) is the total storage of VM i
BVM (i) is the bandwidth utilization of VM i
UB (i) is the used bandwidth for all tasks executed in VM i
AB (i) is the total bandwidth of VM i
 n denotes the number of VMs

• Average Resource Utilization (ARU): Host utilization in our model represents

the total utilization of all VMs running on the host. The average resource

utilization is computed by summing the host utilization of all available hosts in

the data center (Equations 3.9 and 3.10).

HU (j) = (∑ 𝑼𝑼𝑼𝑼𝑼𝑼(𝒊𝒊)𝒊𝒊=𝒏𝒏
𝒊𝒊=𝟎𝟎)/𝒏𝒏 (3.9)

where:
HU is the average host utilization for host j
UVM (i) denotes the utilization of all VMs in the host j
n denotes the number of VMs in host j

𝑨𝑨𝑨𝑨𝑨𝑨 = ∑ 𝑯𝑯𝑯𝑯(𝒋𝒋)𝒋𝒋=𝒎𝒎
𝒋𝒋=𝟎𝟎 /m (3.10)

where:
ARU denotes the resource utilization
HU is the average host utilization for host j as shown in Equation 3.9
m denotes the number of hosts in the data center

• Execution Cost (EC): This factor denotes the cost consumers should pay to

execute tasks in the providers' resources. It includes the cost of CPU processing,

memory, using data storage, and transferring data (Equation 3.11). These costs

are all defined in the data center specifications and differ based on the resources.

106

This is an important factor for consumers and one that most resource allocated

algorithms aim to minimize.

𝑬𝑬𝑬𝑬 = ∑
((𝑻𝑻(𝒊𝒊) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) + (𝑹𝑹(𝒊𝒊) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒊𝒊))

+ (𝑺𝑺(𝒊𝒊) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒊𝒊)) + (𝑫𝑫(𝒊𝒊) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒊𝒊)))
𝒊𝒊=𝒏𝒏
𝒊𝒊=𝟎𝟎 (3.11)

where:
EC is the cost of execution of all tasks
n denotes the number of tasks executed in the data center
T (i) is the execution time in seconds of task i
costCPU is the cost of processing CPU in $ / seconds
R (i) is the size of RAM of task i in MB
costRAM is the cost of memory used in $ / MB
S (i) is the size of storage of task I in MB
costStorage is the cost of storing data in $ / MB
D (i) is the size of the task I file in Kb
costB (i) is the cost of transferring data in $ / Mb

• Total Profit (TP): The profit model is based on a pay-as-you-go policy that is

applied in many cloud systems to address the highly variable demand for cloud

resources and to calculate the cost of executing tasks in the cloud data center

(Lee et al. (2012)). Thus, profit represents the total income the provider can gain

from executing tasks in their resources. It is calculated depending on the total

execution cost for all tasks, penalty costs, and power consumption costs, as

shown in Equation 3.12. The penalty cost is computed based on the provider

policy and is defined in the SLA; it represents the costs the provider can afford

to pay if the SLA is not satisfied. In the proposed model, the penalty is paid for

execution delay and is computed according to the delay constraints, as shown

in Equation 3.13.

 𝑻𝑻𝑻𝑻 = (𝑬𝑬𝑬𝑬– 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 − ∑ 𝑷𝑷𝑷𝑷𝑷𝑷 (𝒊𝒊) 𝒊𝒊=𝒕𝒕
𝒊𝒊=𝟎𝟎) (3.12)

 𝑷𝑷𝑷𝑷𝑷𝑷(𝒊𝒊) = �(𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝒊𝒊) − 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆(𝒊𝒊)) × 𝑷𝑷 𝒊𝒊𝒊𝒊 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝒊𝒊) > 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆(𝒊𝒊)
𝟎𝟎 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

 (3.13)

where:
TP is the total profit the provider gains from execution of all tasks
EC is the cost of execution of tasks
Pen (i) is the penalty the provider can afford to pay for delay in task i
Pcost is the cost of using power for executing tasks, as shown in Equation 3.14
reqt (i) is the time task i is required for execution
exet (i) is the time task i is taken for execution
P is the penalty cost defined for the delay

107

T is the number of tasks

 Power Consumption (PCost): This is based on the power cost in kWh, which

differs according to the specifications of the data center. It is computed by

multiplying the power cost by the total execution time for all tasks, as shown in

Equation 3.14.

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 = 𝑷𝑷𝑷𝑷 × 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 (3.14)

where:
PCost is the total power cost of execution of all tasks
PC is the total execution time for all tasks
Powercost is the cost of power defined in $/seconds

• Task Completed Rate (TCR): This is the number of completed tasks over
the total number of submitted tasks.

𝐓𝐓𝐓𝐓𝐓𝐓 = 𝐓𝐓𝐜𝐜 / 𝐓𝐓𝐒𝐒 (3.15)
where:
TCR is the rate of completed tasks, and ranges from [0-1]
Tc is the number of completed tasks
Ts is the number of submitted tasks

• The SLA Violation (SLAV): In this research, an SLA violation can occur in

relation to deadline and migration time. A SLA violation of deadline constraints

occurs when the task deadline is missed and is computed according to the rate

of completed tasks computed as shown in Equation 3.16.

 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 = (𝟏𝟏 − 𝐓𝐓𝐓𝐓𝐓𝐓) × 𝟏𝟏𝟏𝟏𝟏𝟏 (3.16)

where:
SLAD denotes the SLA violation based on deadline
TCR is the task completed rate computed by Equation 3.15

A SLA violation for migration time occurs when the consumer does not receive

their requested resources. In technical terms, SLA violations occur when VMs

cannot acquire the amount of MIPS that are requested. In this case, the SLA

violation occurs when the requested CPU is greater than the available capacity

of CPU. It is computed as the sum of unallocated MIPS to the sum of the

requested MIPS as shown in Equation 3.17.

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 = ∑ (𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝒊𝒊) − 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝒊𝒊))/𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝒊𝒊)𝒊𝒊=𝒎𝒎
𝒊𝒊=𝟎𝟎 (3.17)

108

where:
SLAM denotes the SLA violation based on migration time
RMIPS (i) denotes the MIPS requested by the VM i for running the task
AMIPS (i) denotes the actual MIPS that were allocated to the VM i.

The overall SLA violations are computed as shown in Equation 3.18.

 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 + 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 (3.18)

where:
SLAD denotes the SLA violation based on deadline
SLAM denotes the SLA violation based on migration time
SLAV denotes the overall SLA violation

• The Imbalance Factor (IF): This refers to the balance of the load among VMs.

It is measured based on the time for executing tasks in VMs. A small value of

IF indicates good load balancing. Equation 3.19 shows how to compute IF.

𝐈𝐈𝐈𝐈 = (𝐓𝐓𝐦𝐦𝐦𝐦𝐦𝐦 − 𝐓𝐓𝐦𝐦𝐦𝐦𝐦𝐦)/ 𝐓𝐓𝐚𝐚𝐚𝐚 (3.19)

where:
IF is an imbalance factor
Tmax is the maximum time for execution of tasks
Tmin is the minimum time for execution of tasks
Tav is the average time for execution of tasks

• Average Fitness Values (AFV): The average fitness value for each solution is

calculated by applying the PSO algorithm and evaluating selected objectives, as

shown in Equation 4.20.

𝐀𝐀𝐀𝐀𝐀𝐀 = ∑ 𝐅𝐅(𝐢𝐢)𝐦𝐦
𝐢𝐢=𝟏𝟏 (3.20)

where:
AFV is the average fitness value for all tasks
i is the index of the task
m is the total number of tasks in the simulation
F (i) is the value of fitness function for all solutions

• Processing Time (PT): the processing time is the time taken to run a specific

algorithm. In the SLA negotiation, it is called negotiation time and in VM

migration, it is called migration time.

109

3.5 Summary

This chapter described the general architecture of the resource allocation model

presented in Section 1.3. The proposed model comprises three phases: SLA negotiation,

task scheduling, and VM allocation. In addition, the chapter discussed the specifications

of each phase of the model. The chapter also presents general issues related to

implementation of the model using the CloudSim simulator and the main classes that

are used or modified. Finally, it outlines the main parameters used in the evaluation of

each phase of the model.

The model phases will be discussed and presented in subsequent chapters where

Chapter 4 covers the SLA negotiation, Chapter 5 describes the task scheduling

algorithms and Chapter 6 presents the VM allocation algorithm.

110

Chapter 4

SLA Negotiation Based on Parallel Particle

Swarm Optimization

This chapter discusses details of the SLA Negotiation phase based on Parallel PSO,

which is the first phase of the proposed model (see description in Chapter 3). It starts

by providing an overview of the SLA Negotiation algorithm. In Section 4.2, the

sequential PSO Negotiation algorithm is then presented. Section 4.3 discusses the

design of the synchronous and asynchronous Parallel PSO negotiation algorithms.

Implementation details for the proposed algorithms are covered in Section 4.4. In

Section 4.5, evaluation methods and discussion of the results of applying the algorithms

are presented. The last section summarizes the main contributions of these algorithms

according to the objectives discussed in Section 1.3.

4.1 Overview

The proposed model includes many distributed data centers consisting of several virtual

and physical resources. Resource allocation in cloud computing needs to be able to deal

with the features of cloud computing which are described as large-scale, scalable, and

dynamic (see Section 1.1.1). Thus, dynamic real-time scheduling algorithms are

required to allocate cloud resources. In a dynamic real-time scheduling algorithm, the

waiting time should be reduced; therefore reducing waiting time is one of the key goals

of our model. This will be achieved by reducing the time for mapping between task and

cloud resources. Searching inside each data center for suitable resources for each task

is a complex process, and this complexity is increased as the number of resources and

tasks grows. The proposed model utilizes techniques from meta-heuristic optimization

111

and the structure of the model (the distributed data center) to reduce mapping time. It

improves the negotiation strategy between consumers and providers by applying the

Parallel PSO algorithm. Thus, instead of searching all the providers' resources, the

search space is divided into smaller spaces, which are then searched concurrently.

Consequently, the time spent on mapping is reduced which leads to improved

throughput and increased profit. Specifically, Parallel PSO in the proposed model

divides the swarm into multi-swarms, each of which is run on one data center, and the

best solutions are then returned to the Manager Module. Using a Parallel PSO algorithm

rather than a sequential PSO is more effective, because better solutions are provided by

searching small spaces than by searching large spaces. In addition, the structure of the

distributed data center is suitable for applying parallel PSO because each data center

can evaluate one set of solutions rather than evaluate all in one node.

Cloud consumers aim to reduce the time of execution and providers aim to maximize

their profit by reducing the number of tasks that exceed deadline. The negotiation is

conducted to satisfy the goals of both parties. The negotiation steps can be reduced to

save time if both parties agree. In addition, negotiation can be improved if the

consumers and providers allow a third party to select resources based on their objectives

and perform mapping processes on their behalf to reduce traffic and communication

messages. In this way, the overall waiting time can be reduced, including mapping time.

Thus, the throughput of the system will be increased.

Specifically, in this work, the cloud consumers and the providers must define the

requirements and objectives, and the Manager Module then starts the negotiation

process based on these requirements. The SLA Negotiator Agent in the Manager

Module selects the best offer for each task from the available data centers by applying

the Parallel PSO algorithm. The objective function of this algorithm is based on three

factors: execution cost, network delay, and current load in the data center. Specifically,

the Broker Agent send tasks to the SLA Negotiator Agent along with QoS requirements

and constraints such as deadline, cost budget, CPU speed, and memory size. The SLA

Negotiator Agent then begins the negotiation process by communicating with all data

centers through the DC Manager Agent, collecting the results and then selecting the

most appropriate solution. If the request is accepted, a formal SLA agreement is created

and signed which guarantees QoS between both parties, including the consumer's

112

requirements and the penalty cost if the agreement is violated. The Negotiator Agent

uses the Parallel PSO algorithm to map tasks to the data center to satisfy predefined

goals such as improving performance by reducing waiting time, avoiding SLA

penalties, and improving throughput. Specifically, the SLA Negotiator selects the data

center from those in the cloud infrastructure according to a set of parameters that

include CPU speed, RAM size, storage size, cost budget, deadline and penalty.

The process for the proposed SLA negotiation algorithm is shown in Figure 4.1. It

involves communication between four components: Broker Agent, Negotiator Agent,

Task Dispatcher Agent and DC Manager Agent. The Broker Agent accepts the tasks,

including the requirements from consumers, and then prepares the proposal for the SLA

Negotiator Agent. The SLA Negotiator Agent acts as a mediator between the consumers

and the DC Manager Agent, and is located in each data center to manage the resources.

These components then communicate to manage the SLA Negotiation and create SLA

agreements. The SLA Negotiation Processes can be summarized as follows:

1. The Broker Agent receives proposals from the consumers that describe all

the tasks along with their requirements and constraints including the deadlines

and cost budget. The Broker Agent then sends these proposals to the SLA

Negotiator Agent.

2. In the proposed model, the DC Manager Agent collects information about

data center resources from the Host Monitor Agent. Resource information

includes data center status, which describes the current load of the data center,

the types of VMs, the specifications of each VM in terms of software, hardware,

and the cost, and dynamic information such as availability and current load.

3. The SLA Negotiator Agent accepts proposals from the Broker Agent and then

starts the Parallel PSO algorithm by sending the proposals for each data center

in parallel.

4. In each data center, based on the type of VMs, a set of offers for the proposals

is prepared. The PSO algorithm then runs to find a suitable mapping between

each proposal and the offers prepared; the result, which includes the data center

113

ID, is sent back to the SLA Negotiator Agent. The steps undertaken by the PSO

algorithm are presented in Algorithm 4.4.

5. The SLA Negotiator Agent accepts the results and selects the best. These

tasks are then passed to the selected data centers to execute and a confirmation

message is then sent with the agreed SLA to the Broker Agent. However, when

the negotiation fails because of deadline or cost constraints or there is no data

center, the failed message is sent to the Consumer Agent.

Figure 4.1: SLA Negotiation Processes.

4.2 SLA Negotiation Algorithm Formulation

The negotiation inside the data centers is carried out using a Parallel PSO algorithm

that is based on three factors: cost, network delay, and data center load. The consumers

send tasks, including the requirements and the constraints of deadlines and cost budgets,

to the Consumer Agent who then uses them to form the proposal. The proposal includes

these attributes: {Task length, data file size, CPU Processing, Memory Size, Storage

size, Max Cost, Deadline}.

Broker Agent

SLA
Negotiator

Task
Dispatcher

Requests with requirement

Proposals

Data center Module#n

DC
Manager

Data center Module#1

DC
Manager

Data center Module#2

DC
Manager

Proposals

Manager

Tasks

Proposals

114

The data centers provide a set of offers based on the type of VMs that can initiate and

run on the hosts. The offer includes both static information and dynamic information

based on the existing status of the system. The main attributes of the offer are: {Data

center ID, VM Cost, VM Type, CPU Processing Speed, RAM Size, Storage Size, network

Bandwidth, Data center load, Penalty}.

The input and output data are considered first. In this instance, the SLA negotiation

algorithm receives a set of tasks in the form of proposals and the ID of the data centers

as input data. The output results of this algorithm are the mapping between tasks and

data centers, which then enables tasks to dispatch into the selected data centers.

Next, the problem constraints are addressed. The negotiation process is conducted

under specific constraints to reach an agreement. These constraints include:

1) Tasks should be assigned to one data center at a time so that, in the mapping

matrix, each row has only one element with a value of 1, as shown in Equation

4.1.

∑ 𝒎𝒎𝒎𝒎𝒎𝒎 (𝒊𝒊, 𝒋𝒋) ≤ 𝟏𝟏 ∀ 𝒋𝒋 = 𝟏𝟏,𝟐𝟐, … ,𝒎𝒎 𝒏𝒏
𝒊𝒊=𝟏𝟏 (4.1)

where:
i is the task index
j is the data center index
m is the total number of tasks
n is the total number of data centers
m (i, j) is a binary value {0, 1}

2) Each task should be scheduled within a deadline, which indicates the maximum

response time of cloud providers to tasks from consumers. Cloud providers must

respond to consumers' requests within a reasonable time, otherwise an SLA

violation occurs and cloud providers need to pay the penalty for violation to the

consumer. The deadline can be computed in several ways; in this research, Equation

4.2 is used because execution time is based on processing time, which relates to the

CPU speed of the VM in such that the minimum and maximum time for executing

task are considered. The deadline is computed as an absolute value because it is

should be a positive value.

𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊, 𝒋𝒋) = |(𝑳𝑳(𝒊𝒊, 𝒋𝒋) + 𝟎𝟎.𝟓𝟓 (𝑳𝑳(𝒊𝒊, 𝒋𝒋) –𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯(𝒊𝒊, 𝒋𝒋))) ∗ 𝟏𝟏𝟏𝟏𝟏𝟏 | (4.2)

115

where:
i is the index of the task
j is the index of the VM type in the data center
Del (i, j) is the delay for task i using VM type j
L (i, j) is the minimum time for executing task i using VM type j
High (i, j) is the maximum time for executing task i in VM type j.

The execution time of a task with a network delay should not exceed the deadline,
as shown in Equation 4.3.

𝑬𝑬𝑬𝑬𝑬𝑬 (𝒊𝒊, 𝒋𝒋) + 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 (𝒊𝒊, 𝒋𝒋) < 𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊, 𝒋𝒋) (4.3)
where:
Exe (i,j) is the time for executing task I in VM j.
Del (I,j) is the maximum delay time allowed to execute task i in VM j, which
is computed as shown in Equation (4.2).
NDelay (i, j) is the network delay of task i in VM j as shown in Equation 4.6

3) Cloud providers require prices for using the VM. The consumer must pay the

price requested by the cloud providers based on the resources used. The amount

a consumer must pay per hour for using a VM from a resource provider should

be determined and the consumer specifies the maximum cost allowed as

follows:

 𝐓𝐓𝐓𝐓𝐓𝐓 (𝐢𝐢, 𝐣𝐣) < 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 (𝐢𝐢) (4.4)
where:
TEC (i, j) is the execution cost of task i in VM j that is computed by using
Equation 4.5
Costbudget (i) is the maximum permitted cost specified by the consumer.

4) The minimum requirement in terms of the processing speed of the VM in MIPS,

minimum memory size, and storage disk size should be satisfied in the selected

data center such that 𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 ,

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎,𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎.

where:

CPUreq is the requested CPU in term of MIPS
CPUav is the available CPU in term of MIPS
Memoryreq is the requested Memory in term of MB
Memoryav is the available Memory in term of MB
Stroagereq is the requested Storage in term of MB
Storageav is the available Storage in term of MB
Bwreq is the requested Bandwidth in term of Mb/s
Bwav is the available Bandwidth in term of Mb/s

116

The objective function is the next issue to be considered. The aim in SLA negotiation

is to find the best mapping to a data center within existing constraints. The best mapping

is determined by using the fitness function, which is based on minimizing three factors:

cost of execution, network delay, and data center load. Details on these factors are as

follows:

• The Task Execution Cost (TEC): This is the total cost needed to execute the

task in the VM, which includes the cost of processing per second, the cost of

storage, the cost of memory and the cost of bandwidth, as shown in Equation

4.5.

𝑻𝑻𝑻𝑻𝑻𝑻(𝒊𝒊, 𝒋𝒋) = ((𝑬𝑬𝑬𝑬𝑬𝑬(𝒊𝒊, 𝒋𝒋) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒋𝒋) + (𝑹𝑹(𝒊𝒊) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒋𝒋))
+ (𝑺𝑺(𝒊𝒊) × 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒋𝒋)) + (𝑫𝑫(𝒊𝒊) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒋𝒋)))

 (4.5)

where:
TEC (i, j) is the cost of execution task i in VM j in $
Exe (i, j) is the execution time in seconds of task i in VM j in seconds
costCPU is the cost of processing CPU in $ / seconds
R (i) is the size of RAM in task i in MB
costRAM is the cost of memory used in $ / MB
S (i) is the size of storage of task i in MB
costStorage is the cost of storing data in $ / MB
D (i) is the size of the task i file in Kb
costB (i) is the cost of transferring data in $ / Mb

• The Network Delay: This is the time required to transfer data between two

nodes and depends on the topology of the network. This is computed based on

the data length of the task and the VM bandwidth, as shown in Equation 4.6.

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 (𝒊𝒊, 𝒋𝒋) = 𝑻𝑻𝑻𝑻(𝒊𝒊)/𝑩𝑩(𝒋𝒋) (4.6)
where:
NDelay (i, j) is the delay when moving task i to VM j
TL (i) is the length of task i in MI
B (i) is the bandwidth of VM j in Mbs

• The Data Center Load: This encompasses by the utilization of all hosts in the

data center, as shown in Equation 4.7. The host utilization is computed as the

summation of used MIPS in all VMs in the host divided by the total MIPS in

117

the host, as shown in Equation 4.8. In this model, only the utilization of CPU

processing is considered because the proposed model focuses on the tasks that

need high processing speed rather than large storage capabilities. The

processing speed is measured in MIPS. The data center load is a percentage

value in the range (0-1)

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = ∑ 𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 (𝒋𝒋)𝒎𝒎
𝒋𝒋=𝟏𝟏 (4.7)

 𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 (𝒋𝒋) = (∑ 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒊𝒊)/ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻(𝒋𝒋))/𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏
𝒊𝒊=𝟎𝟎 (4.8)

where:
Dload is the load of the data center
Hload (j) is the utilization of the host j
usedMIPS (i) is the MIPS used by all tasks executed in the VM i
TotalMIPS (i) is the total MIPS in the VM i
m is the number of hosts in the data center
n is the number of VMs in host j

The objective function aims to determine the lowest cost for execution with the least

amount of network delay and the smallest data center load. The fitness function is

formulated using a weighted sum approach, as shown in Equation 4.9. The cost of

execution is given a more substantial weight because it has a high preference amongst

consumers.

𝑴𝑴𝑴𝑴𝑴𝑴 𝑭𝑭(𝒙𝒙𝒙𝒙) = 𝟎𝟎.𝟒𝟒 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻(𝒊𝒊) + 𝟎𝟎.𝟑𝟑 ∗ 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 + 𝟎𝟎.𝟑𝟑 ∗ 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 (4.9)

where:
TEC (i) is the cost of execution task i in the resource in seconds (Equation 4.5).
NDelay is the delay of the network in seconds. (Equation 4.6).
DCload is the load of the data center (Equation 4.7).

In the next section, the SLA negotiation based on sequential PSO will be described in
detail and the results compared with the Parallel PSO algorithm.

4.3 Sequential PSO Negotiation Algorithm

Initially, the SLA negotiation is developed using the PSO technique to compare it with

the Parallel PSO proposed in the current model. PSO starts with a specific number of

particles; each particle denotes specific solutions for the tasks during the negotiation

process (Section 2.2.1). In this case, the search space is large because it includes all

118

VMs in all data centers. Specifically, Algorithm 4.1 summarizes the main steps of SLA

negotiation based on the PSO algorithm. The algorithm maps arrival task to the data

center in Line 2 by calling upon the Procedure Negotiation_PSO (Algorithm 4.2) in

sequential PSO or Negotiation _PPSO to run the Parallel PSO algorithm specified in

Algorithm 4.3. In this model, we deal with real time scheduling which includes dealing

with tasks directly and do not queued them to reduce the waiting time.

Algorithm 4.1: SLA Negotiation Algorithm.

Inputs: T, D, type // list of tasks and data centers
Outputs: map (t, d) // map matrix of tasks and data center ID
Procedure SLANegotiation (T, D, type) // negotiation type parallel or sequential
1. for arrival tasks in T list
2. If type ==sequential then
3. ID=Negotiation_PSO (t, D) // map tasks to data center by algorithm 4.2
4. Else if type == parallel
5. ID=Negotiation_PPSO (t, D) // map tasks to data center by algorithm 4.3
6. End if
7. If (ID!= null) // there is suitable resource for task
8. Update map (t, ID)
9. Dispatch task to selected data center
10. Else
11. Update t status to failed // there is no suitable resource for tasks, task failed
12. End
13. End for
14. Update T list
15. Repeat for step 2 until Task list T is empty
End procedure

The details of the Negotiation_PSO algorithm in Line 3 are listed in Algorithm 4.2. The

algorithm begins by initializing the main values of particles, number of iterations,

position, and velocities. The initialization step includes encoding the particle values to

deal with discrete PSO. The SPV method (as described in Section 2.2.1) is used in this

model because it is the strategy most commonly applied in existing research. In this

method, the particles are represented by a 1 × n vector; where n is the number of tasks

and the value assigned to each position is the index for all data centers. The position is

represented by an m × n matrix and an encoding strategy must be used to represent the

solutions, where m is the index of the data center and n is the number of tasks. The

values for each element in the position matrix can be either 0 or 1 with the constraint

that only one element can take the value of 1 in each column. This is because each

column represents a task allocation and each row represents an allocated task to the

119

specific resource. This ensures that during allocation, each task is assigned to only one

data center. The velocity is represented by an m × n like position but it also includes

integer values to control the movement of the particles, as shown in Equation 2.4. It

revalues the changes in each iteration according to the new best values.

After initialization, the fitness function for all elements in the particle is computed

based on Equation 4.9 and the best value is updated. The PSO algorithm searches for

solutions with the minimum fitness value. The velocity and position are then updated

based on the new best value, as shown in Equations 2.4 and 2.5 (see Chapter 2). These

steps are repeated until the maximum number of iterations is reached. Finally, the best

solution is the last best value of the particle, which includes the best mapping of tasks

and the data center IDs. Figure 4.2 depicts a flowchart illustrating SLA negotiation

based on a sequential PSO algorithm.

Figure 4.2: Flowchart for the SPSO Algorithm.

Start

Initialize particles,
position and velocity

Initialize pbest, gbest

Calculate fitness function
Equation 4.9

Update velocity and
position

Gbest particle

End

Yes

No Update pbest, gbest

Stop condition

120

Algorithm 4.2: Sequential PSO Negotiation Algorithm.

Procedure Negotiation_PSO (t, D)
Inputs: t, D // task t and D data centers
Outputs: d data center // the output is the selected data center ID
1. Initialize (V, P, pbest, gbest) // initialize velocity, position, pbest, gbest
2. while (stop criteria do not satisfied) do // iterate while not stop
3. For each p in t // iterate through all values in particle t
4. b=Evaluation (p) // objective function using Equation 4.9
5. If (b < pbest) // update pbest value
6. pbest=b
7. End if
8. End For
9. Update (V, P) // using Equations 2.4 and 2.5
10. If (b < gbest)
11. gbest=b
12. End if
13. End while
14. Return gbest // include data center ID
End procedure

4.4 Parallel PSO Negotiation Algorithms

The Parallel PSO algorithm needs to be improved to solve the SLA negotiation

problem. As described in Section 2.2.3, the Parallel PSO is a set of independent swarms

that communicate through a specific topology. The communication topology between

multi-swarms has a significant effect on the performance of the Parallel PSO algorithm.

It defines the method for transforming the parameters among swarms. The most

common Parallel PSO topology is a master-slave topology model (Belal and El-

Ghazawi, 2004). In this model, a single module (master) controls the optimization

algorithm, and utilizes an external (slave) module to compute solutions. This model

treats each slave as a swarm then selects the best solution from those available. Most

research results indicate that the best architecture for applying Parallel PSO is a global

best, which is based on the master-slave model (Belal and El-Ghazawi, 2004).

Therefore, our model is also based on a master-slave model (as described in Section

2.2.3).

Several PPSOs have been proposed and they can be implemented in two main ways.

The first method divides the search space into multiple swarms and each swarm

executes the same algorithm on different nodes (Schutte et al. 2004). The second

method is based on designing an algorithm using many nodes (equal to the number of

particles) to compute and evaluate the fitness function separately and simultaneously

121

(Koh et al. (2006); Venter and Sobieszczanski-Sobieski (2006)). The second method of

applying PPSO is suitable for complex problems whose fitness evaluations take a large

time to compute in order as they help reduce computation time (Gonsalves and Egashira

(2013)). In this research, the first method will be used because there are many

distributed data centers with different characteristics and the aim is to speed up the

process of negotiation to decide the best data center to run the task.

Specifically, the implementation of the Parallel PSO algorithm starts by considering

each data center as a separate swarm and runs PSO. The master receives the best

solutions, compares them and selects the minimum value, which is then deemed the

best. The PPSO divides the search space into multiple swarms to focus on optimizing

the smaller space of the problem. In our model, the search space is divided because

there are resources in each data center that it needs to discover. The general steps of

Parallel PSO are summarized in Algorithm 4.3. It starts by initializing the best value

(Line 1). Then it sends tasks t to all data centers in parallel (Lines 3-7). The best results

are selected as shown in Line 8. These steps are repeated while there is a task in the

task list.

Algorithm 4.3: Parallel PSO Negotiation Algorithm.

Procedure Negotiation_PPSO (t, D)
Inputs: t, D // task t and data centers
Outputs: d data center // the output is the selected data center ID
1. Initialize best // initialize best
2. While (there are tasks in t) do // iterate while there are tasks
3. Parallel
4. For i=0: N // where N is the numbers of data centers
5. Result[i] = NPSO (i, t); // tasks t send to all DCs to run NPSO (Algorithm 4.4)
6. End for
7. end Parallel
8. Select best result (result) // sort the result to select the minimum
9. end while
10. return best // return the best solutions for tasks
End procedure

In more detail, Algorithm 4.4 runs in each data center. It starts with initializing values

as shown in Line 1. After the initialization step, the objective function is calculated

using the fitness function, as shown in Equation 4.9 (Lines 3-10). The objective

function value is calculated for each particle, and the particles' pbest and gbest values

are then evaluated (Lines 12-14). Finally, when the algorithm is finished, the global

best value is sent to the Negotiator Agent in the Manager Module (Line 14).

122

Algorithm 4.4: PSO Negotiation Algorithm in data center.

Procedure NPSO (task t, data center i)
1. Initialize (V, P, pbest, gbest) // initialize swarm, velocity, position, pbest, gbest
2. while (stop criteria do not satisfied) do // iterate while not stop
3. for each p in t // // iterates all tasks in particle t
4. for each v in data center i // iterates all VM in data center i
5. b=Evaluation (p (v)) // objective function using Equation 4.9
6. If (b < pbest) // update pbest value
7. pbest=b
8. End if
9. End For
10. End for
11. Update (V, P) // using Equations 2.4 and 2.5
12. If (b < gbest)
13. gbest=b
14. End if
15. End while
16. Return gbest // best value resource in data center i
End procedure

Based on the communication methods between swarms and the master node, there are

two parallel adaptations of PSO: synchronous PSO (Schutte et al. (2004)) and

asynchronous PSO (Koh et al. (2006); Venter and Sobieszczanski-Sobieski (2006)). In

synchronous Parallel PSO (SPPSO), the master node waits for all swarms to finish

searching before it decides the best solution whereas in synchronous Parallel Particle

Swarm Optimization (ASPPSO) algorithm, the master node can select the first best

solution and does not wait for the others to finish. Both approaches will now be

discussed.

In SPPSO, the optimization algorithm waits at the end of every iteration until solutions

for all the particles have been returned before updating particle velocities and positions

(Zhou and Tan (2009)). The synchronization is required to ensure that all swarms have

completed the evaluation of the fitness function and that results are returned before the

velocity and position calculations can be executed (Belal and El-Ghazawi, 2004). In the

SPPSO implementation, all swarms are running in separate data centers in parallel and

the master node therefore waits for all swarms to be completed before selecting the best

solution, as shown in Algorithm 4.3.

The problem for the SPPSO algorithm is that all the swarms need to wait for others to

finish before deciding which is the best. To improve the PSO algorithm, an

asynchronous parallel variant has been developed to speed up the convergence of the

PSO to an approximate optimal solution (Gonsalves and Egashira (2013)). In the

123

ASPPSO, the algorithm does not wait for all solutions to be returned before selecting

the best solution (Line 5) (Venter and Sobieszczanski-Sobieski (2006)). The difference

between synchronous and asynchronous optimization lies in Line 5 of the Algorithm

4.3. In the synchronous approach, the master node waits for all swarms to compute the

results then the best solution is chosen. However, in the asynchronous model, the first

result from any swarm is used to continue the algorithm. In our model, Algorithm 4.3

is run in the SLA Negotiator Agent while Algorithm 4.4 is executed in each DC

Manager Agent. The results of both are then sent to the SLA Negotiator Agent, which

selects the solution.

4.5 SLA Monitoring Algorithm

The SLA Monitor Agent monitors the SLA for each task to find any violation. In each

data center, the SLA Monitor collects information from agreed SLAs and checks

whether there is any SLA violation before sending an alert. The SLA Monitor detects

whether the SLA violation comes from missing the task deadline. Another type of

violation is detected using the Host Monitor Agent. Algorithm 4.5 presents the main

steps of the SLA Monitor Agent. It starts by initializing the SLAV by zero (Line 1). It

checks the deadline and the execution time. If the execution time exceeds the deadline,

then the SLA violation is increased by one (Lines 2-5). Finally, the number of SLA

violations is returned (Line 6).

Algorithm 4.5: SLA Monitoring Algorithm.

Input: SLA parameters (deadline, execution time)

Output: number of SLAV
Procedure VMMonitoring (deadline, execution time)
1. Initialize the SLAV with 0
2. For each task in Task list
3. If execution time > deadline then
4. SLAV = SLAV +1
5. End for
6. Return SLAV
End Procedure

124

4.6 Parallel PSO Implementation

The model was implemented using CloudSim 3.0.3 as described in Section 3.4. This

simulation model involves many data centers and many consumers. Virtual machines

are created according to the specifications of the data center, and many tasks are

simulated by using data from the dataset file. To implement the model, several

modifications are made to the CloudSim simulator classes to customize them to

evaluate the algorithm.

To implement the algorithm, the same specification of tasks, VMs, Hosts, and data

centers were used that were described previously in Chapter 3. To run the SLA

negotiation algorithm as a parallel algorithm, a conceptual model was used because it

was not affected by the underlying details of the implementation. To simulate parallel

computing, the focus was on parallel implementation using multi-threading. The

rationale of a container (e.g., using agent frameworks like Jade) (Taranti et al. (2011))

was not adopted because this was a simulator rather than a real system. In addition, Jade

is restricted to iterative computation and can be adaptive to recursive computation but

not with the same performance (Gautier et al. (2007)). The approach is based on multi-

threading programming in Java. Most of the previously developed algorithms in

Parallel PSO negotiations have focused on the implementation of the Parallel PSO

algorithm and the type of hardware that is used. In this research, the focus was on

evaluation of the Parallel PSO algorithm itself and its role in improving resource

allocation. In the proposed model, ten data centers are assumed so the swarm is split

into ten multi-swarms containing the same number of data centers. These are then

evaluated in parallel.

The CloudSim classes are then extended by adding some classes and modifying the

available classes to adapt to the goals. For example, the Data center Broker class that

represents the manager of the data center was parallelized to manage many data centers

and a dispatcher function was added to submit tasks to the selected data center. In

addition, a negotiation class was added to represent the negotiation process and

determine the data center ID that can execute the task. Moreover, several classes were

added to run and execute the PSO algorithm.

125

4.7 Experimental Evaluation

The methodology of the experiments and the specifications of the simulation

environment used to test and evaluate the proposed algorithms will be described in

Section 4.7.1. The results of the experiments will be presented and discussed in Section

4.7.2.

4.7.1 Experimental Methodology

The important issue in this chapter is evaluation of the effectiveness of the PPSO only.

Therefore, it is assumed that in this case that after the selection of SLA negotiation, the

task scheduling inside the data center is based on FCFS. The VM is then scheduled to

available hosts based on FCFS. This is because it is important to evaluate each phase

alone without any influence from other algorithms.

The performance of the Parallel PSO Negotiation algorithms was evaluated and

compared with the results of the sequential PSO. The performance and the efficiency

were then measured in terms of the negotiation time, average fitness values, and

speedup to compare both the synchronous and asynchronous algorithms. The proposed

model was then evaluated in terms of the resources allocated to determine whether the

model satisfies the objectives discussed previously in Chapter 1. The details of these

experiments are as follows:

• Methodology 1: This includes several experiments to test the effectiveness of

the Parallel PSO by changing the number of iterations and comparing the results

with the sequential PSO. In addition, it determines the best parameters within

which to run Parallel PSO and satisfy the objectives by changing the number of

iterations.

• Methodology 2: This was implemented for each of the Parallel PSO algorithms

to measure the performance factors of the model in terms of negotiation time,

waiting time, completed time and throughput. The results were then compared

with the sequential PSO algorithm to determine the effectiveness of the

proposed algorithms.

126

The specification of the data center, host, and VMs was as the same as described in

Chapter 3. The specific numbers used in the Parallel PSO Negotiation algorithm are

listed in Table 4.1. To simulate the task, the dataset LCG was used, as described in

Chapter 3. Each experiment was run ten times and the average score across all

experiments was then calculated with 95% confidence intervals.

Data centers 10

Hosts 50 per Dara

center

VMs 50 per Data

center

Tasks 50-500

Table 4.1: Setting of the Parameters for Experiments.

The values of the parameters used in the PSO are listed in Table 4.2, and include the

number of particles and the number of iterations. Other parameters also control the PSO

such as c1, c2, r1, r2, and inertia w values. These values are chosen to improve the

quality of the solutions and the specific reason for selecting each parameter is described

in Table 4.2.

PSO Parameters Values Reason

swarms 10 Depends on the number of
data centers

particles 10 Depends on the number of
data centers

iterations 5-50 Based on the results of the
tests of fitness function, there
is no further change after 50

iterations in PSO
W [0-1] Specified based on Equation

2.8
c1 , c2 2.0,2.0 As reported in (Li-Ping et al.

(2005)) r1, r2 [0-1]

Table 4.2: Setting of the Parameters for PSO.

127

After running the simulation, the following parameters are measured and used as

indicators to test the effectiveness of the proposed algorithm. To evaluate the

performance of the Parallel PSO, the following factors needed to be computed:

• Negotiation Time (NT): This is the total time (in seconds) that the PSO

algorithm takes to reach solutions, as shown in Equation 4.10.

𝑵𝑵𝑵𝑵 = ∑ 𝑻𝑻(𝒊𝒊)𝒎𝒎
𝒊𝒊=𝟏𝟏 (4.10)

where:
NT is the total negotiation time for all tasks
i is the index of the task
m is the total number of tasks in the simulation
T (i) is the time, in seconds, taken for negotiation until an agreement is reached

• Speedup (Sp): This measures the improvement in execution time using

parallelism. The speedup is computed by dividing the total execution time in

the sequential algorithm by the total execution time using the parallel

algorithms, as shown in Equation 4.11.

𝐒𝐒𝐒𝐒 = 𝐓𝐓𝐓𝐓/𝐓𝐓𝐓𝐓 (4.11)

where:
Sp is the speedup of the algorithm
T1 is the total execution time in the sequential algorithm in seconds.
Tc is the total execution time of the parallel algorithm on c processors in
seconds.

• Average Waiting Time: is defined in Equation 3.1.

• Average Completed Time: is defined in Equation 3.2.

• Throughput: is defined in Equation 3.3.

• Execution Cost: is defined in Equation 3.11.

• Profit: is defined in Equation 3.12.

• SLA Violation: In the evaluation of SLA negotiation, the focus is on the SLA

violation, which comes from the missing deadline as defined in Equation 3.16.

This is because no method for migration is presented in this phase of the model.

128

In Chapter 6, the model for SLA violation for both missed deadline and

migration time will be evaluated as shown in Equation 3.18.

• Imbalance Factor: is defined in Equation 3.19.

• Average Fitness Values: This is the mean of the fitness values across the entire

swarm. It is defined in Equation 3.20.

4.7.2 Experimental Results

The results of methodology #1 will be considered first. In this experiment, the Parallel

PSO algorithms were evaluated in terms of finding the desired solution compared to

sequential PSO. This was achieved by changing the number of iterations from 5 up to

50, then computing the comparison factors. Table 4.3 presents the results of the

negotiation time that show that negotiation time is reduced until iteration 15, after

which it then increases (see Figure 4.3). Thus, regarding the results of waiting time,

increasing the iteration numbers reaches the objective of minimizing waiting time (see

Figure 4.4). Regarding throughput, the results in Figure 4.5 show throughput is

increased until iteration 20, after which it slowly decreases. Thus, selecting the number

of iterations as 20 is reasonable given these factors.

Iteration

Negotiation Time (seconds) Average Waiting Time
(seconds)

PSO SPPSO ASPPSO PSO SPPSO ASPPSO
5 6931 3439 2888 128 114 66

10 8600 5488 3494 122 111 63
15 3686 2835 2106 118 97 56
20 4127 3517 2679 98 85 62
25 4913 3254 2974 92 76 58
30 5411 4021 3189 88 74 57
35 5815 4267 3256 84 67 52
40 6457 3036 3571 78 61 51
45 6999 3966 3660 69 60 48
50 7137 3523 2896 66 57 41

Table 4.3: Negotiation Time and Average Waiting Time Results (in seconds).

129

Figure 4.3: Negotiation Time Results (data shown with 95% confidence intervals).

Figure 4.4: Average Waiting Time Results (data shown with 95% confidence

intervals).

Iteration PSO SPPSO ASPPSO

5 62 64 78

10 65 67 74

15 66 68 77

20 68 72 82

25 66 75 79

30 65 72 76

35 67 73 81

40 69 75 82

45 69 77 79

50 71 75 78

Table 4.4: Throughput Results.

130

Figure 4.5: Throughput Results (data shown with 95% confidence intervals).

To illustrate the effectiveness of the ASPPSO compared to sequential PSO, the average

fitness values for both are compared. The results of SPPSO are not considered because

they are approximately similar to those of the ASPPSO. The results in Figure 4.6 show

that the ASPPSO fitness values change as the number of iterations increases, while in

the PSO the convergence speed is low while the fitness values remain steady and do

not change. This means that the PSO may fall in local optima and there is no

improvement in the results as the number of iterations increases.

Iteration PSO ASPPSO

5 49 81
10 52 70
15 51 62
20 50 65
25 55 59
30 52 60
35 54 70
40 56 61
45 53 73
50 51 78

Table 4.5: Average Fitness Value Results.

131

Figure 4.6: Average Fitness Value Results (data shown with 95% confidence

intervals).

The results of methodology #2 will now be considered. These involve comparing the

performance of the two versions of the Parallel PSO algorithms and the sequential PSO

algorithm in terms of negotiation time, speedup, waiting time, completed time, and

throughput. When the negotiation time in the SPPSO and ASPPSO algorithms was

evaluated and compared with the results of the sequential PSO algorithm, it was found

that the ASPPSO algorithm takes the least amount of time. This is because ASPPSO

reduces the time spent processing by using multiple swarms in different nodes and

updates the particles based on the swarm that finishes first. Specifically, the negotiation

time is the highest in sequential PSO (as shown in Figure 4.7).

Table 4.6: Negotiation Time (in Seconds) and Speedup Results.

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20 25 30 35 40 45 50

Av
er

ag
e

fit
ne

ss
 V

al
ue

s

iteration

PSO ASPPSO

Task Negotiation Time Speedup Results
PSO SPPSO ASPPSO SPPSO ASPPSO

50 1395 590 469 1.364407 1.974414
100 1668 950 738 1.455789 2.260163
150 2909 1504 1205 1.934176 2.414108
200 3396 2268 1688 1.997354 2.911848
250 4944 3083 2176 2.361425 3.272059
300 6255 3568 2500 2.660032 3.502
350 9596 3869 3063 3.301751 3.932876
400 10022 4365 3400 3.695991 4.176471
450 12379 4714 3954 3.826008 4.507537
500 14428 5813 4450 4.248202 4.742247

132

Figure 4.7: Negotiation Time Results (data shown with 95% confidence intervals).

Table 4.6 presents the speedup results of the SPPSO and ASPPSO algorithms. From

these, it is apparent that the speedup when applying ASPPSO is higher than when using

SPPSO. For example, running 300 tasks in ASPPSO gives 2.5, while executing the

tasks using SPPSO gives 1.9. This means that the speedup in APPOS is increased by a

ratio of approximately 20% compared to SPPSO.

Figure 4.8: Speedup Results (data shown with 95% confidence intervals).

133

The results of the waiting time experiment are presented in Table 4.9 and in Figure 4.9.

These show that increasing the number of tasks increases the waiting time of the tasks.

The waiting time includes mapping time and the time taken to schedule the tasks until

they begin execution. ASPPSO gives the shortest waiting time compared to the other

algorithms because it searches for the optimum VM for each task and does not wait for

all swarms to finish searching. The ASPPSO and SPPSO algorithms give shorter

waiting times compared to PSO especially as the number of tasks increases. For

example, with 450 tasks they reduce the waiting time by 20% using SPPSO and 30%

using ASPPSO.

Task Average Waiting Time Average Completed Time
PSO SPPSO ASPPSO PSO SPPSO ASPPSO

50 16.17 36.14 17.3 3150 1437 1365
100 62.01 106 97.27 9487 3535 2980
150 147 149.7 148.53 12280 6894 5231
200 201 215.98 195.7 15306 7295 6033
250 239.8 224.25 205.25 19005 7679 7121
300 295.04 290.6 261.5 22717 10184 8972
350 370.2 369.25 348.5 24236 11394 10594
400 426 417 384.6 25605 15455 13281
450 515.8 468.95 456.6 27751 17339 13535
500 527.3 486.4 476.42 32103 19529 15747

Table 4.7: Average Waiting Time and Average Completed Time Results (in seconds).

Figure 4.9: Average Waiting Time (data shown with 95% confidence intervals).

134

The results of completed time show that the ASPPSO algorithm takes the least time to

complete the tasks compared to SPPSO and PSO, as shown in Figure 4.10. From Table

4.7, the results show that both SPPSO and ASPPSO offer good performance in terms

of reducing the time taken to complete the tasks compared to PSO. This is because our

model tries to select the best mapping for each task, which reduces the mapping time.

The results in Figure 4.10 show that the time for completing tasks using the ASPPSO

algorithm improves by 15% compared to the SPPSO and by 35% compared to the

sequential PSO.

Figure 4.10: Average Completed Time Results (data shown with 95% confidence

intervals).

The throughput measurement indicates the performance of the proposed model when

executing many tasks in a small amount of time. The results in Table 4.8 show that the

model offers good performance in terms of throughput when many tasks are involved.

This is because our model tries to select the best mapping for each task, which increases

the number of tasks executed in a short time. By comparing the results in Figure 4.11,

it is clear that the throughput of the ASPPSO algorithm is the highest. It improves the

throughput by 10 % compared to the SPPSO and by 20% compared to the sequential

PSO.

135

Table 4.8: Throughput Results.

Figure 4.11: Throughput Results (data shown with 95% confidence intervals).

When the SLA violation rates are evaluated to check the number of tasks that missed

deadlines when applying the SLA Negotiation algorithm, it was found that the SLA

violation rates using ASPPSO give the lowest value. This means that ASPPSO reduces

the number of violations and is more efficient in satisfying the QoS than PSO and

SPPSO. This is because the deadline factor is taken as a constraint of the evaluation

function in Equation 4.9. With a small number of tasks, the difference between

algorithms is not great but with an increased number of tasks, the difference becomes

substantial.

Task PSO SPPSO ASPPSO
50 48.9 54.8 55.19
100 60.7 62.15 66.21
150 61.05 65.85 68
200 62.2 68.75 70.3
250 65.45 70.75 72.14
300 66.5 71.88 73.2
350 68.35 72.88 74.5
400 70.3 73.59 75
450 72.2 74.4 76.3
500 73.39 75.35 77

136

Table 4.9: SLA Violation Rate Results.

Figure 4.12: SLA Violation Rate Results (data shown with 95% confidence

intervals).

When the total profit is computed to check the effect of providing QoS in the SLA after

applying the SLA Negotiation algorithm, it was found that the total profits using

ASPPSO gives the highest value as shown in Figure 4.13. This means that ASPPSO

increases the profit by about 15% more than SPPSO and 25% more than PSO. This is

because it reduces the SLA violation rates.

Task PSO SPPSO ASPPSO
50 17.4 16 10.6
100 20.8 18.5 15.5
150 24.7 21.3 19.8
200 28.6 24.5 22.16
250 36.2 29.8 25.9
300 44.6 33.7 27.6
350 53.4 36.6 29.8
400 58.3 42.8 34.2
450 64.5 50.6 39.3
500 70.7 65.7 44.9

137

Table 4.10: Total Profit Results.

Figure 4.13: Total Profit Results (data shown with 95% confidence intervals).

4.8 Summary

The main goals of this phase were to improve the QoS in terms of throughput and

waiting time, and increase the profits. Thus, a model for SLA negotiation in cloud

computing was proposed to reduce the negotiation time and increase the throughput of

the system. The Parallel PSO algorithm was used to optimize negotiation between the

cloud consumers and the cloud providers. Two versions of the Parallel PSO algorithms

were developed: SPPSO and ASPPSO. The results of the negotiation strategy were used

in task scheduling to find the best VM for each task. These improvements increased the

Task PSO SPPSO ASPPSO
50 570 627 754
100 896 905 1164
150 1034 1134 1305
200 1296 1673 2003
250 1776 2189 2512
300 2014 2632 2990
350 2465 3090 3532
400 2834 3471 3937
450 3461 3910 4420
500 3971 4265 4708

138

speed of the negotiation process. Specifically, they increased the performance in terms

of both waiting time and throughput. Furthermore, there is an improvement in ASPPSO

compared to SPPSO in terms of waiting time and throughput.

The main findings from the experimental analysis are as follows:

• Comparing the ASPPSO results with the SPPSO results shows an improvement

in waiting time of up to 20% and in completed time of up to 15%.

• The ASPPSO algorithm shows an improvement in performance compared to

the PSO algorithms of approximately 35% for waiting time and 30% for

completed time.

• The throughput in the ASPPSO algorithm increased by about 10% compared to

the SPPSO and by approximately 20% compared to the PSO.

• The speed of ASPPSO increased by about 20% compared to the SPPSO.

• The average fitness values of the ASPPSO converged more quickly than those
of the PSO algorithm.

• Profits when applying ASPPSO increased by about 15% more than with SPPSO
and by 25% more than with PSO.

• SLA violation rates when using ASPPSO decreased by 15% compared to
SPPSO and 25% compared to PSO.

139

Chapter 5

Task Scheduling Based on Many-Objective

Particle Swarm Optimization

In this chapter, the task scheduling technique based on the MaOPSO algorithm will be

discussed. This is the second phase of the proposed model as described in Section 1.3.

Section 5.1 provides a general overview of task scheduling in cloud computing. In

Section 5.2, the design of the proposed MaOPSO algorithm will be presented in detail.

Section 5.3 describes the main issues involved in implementing the MaOPSO algorithm

and the main configuration used to run the simulation. In Section 5.4, the methodologies

and the results of the evaluations will be discussed. Finally, Section 5.5 summarizes the

primary contributions of the task scheduling phase.

5.1 Overview

Task scheduling is one of the most important research fields, because it needs to be

optimized to produce efficient performance in a cloud environment. Task scheduling in

cloud environments aims to find a sub-optimal solution in quick time, which involves

mapping the task to resources in order to meet the required objectives. PSO algorithms

have been shown to find sub-optimal solutions within a reasonable amount of time (as

discussed in Section 2.2.1). When the number of tasks and VMs increases, the task

scheduling process becomes a challenge because the complexity of mappings is

increased and this complexity is increased further if many objectives are evaluated. As

argued in Section 2.4.6, this research will focus on optimizing the scheduling

algorithms to handle many objectives in a short time (compared to current solutions).

140

However, the process of finding the best mapping is based on simultaneously meeting

the objectives of both consumers and providers. For the consumer, QoS in terms of

reduced waiting time and less cost is preferable, while for providers the utilization of

the system and profit are the main objectives. As presented in Chapter 2, MOO has been

developed with PSO to deal with multiple objectives. The available solutions are

effective with two or three objectives; however when the number of objectives is greater

than three new or modified methods are required (as discussed in Section 2.2.2.2). To

address this issue, MaOPSO was developed to deal with many objectives in a short

time. It improves the methodology of evaluating multi-objective based on simple

ranking that are presented in (Alkayal et al. (2016)). Thus, a modified ranking

methodology is presented that will evaluate the objectives in less time than the Pareto

set and weighted sum methods (as discussed in Section 2.2.2.2). Specifically, the

presented MaOPSO algorithm aims to improve the efficiency of scheduling tasks over

VMs in each selected data center to minimize mapping time. This, in turn, will improve

the waiting time and increase the throughput of the system. The goal of scheduling in

our algorithm is to submit each task to VMs inside the data center to minimize waiting

time and execution cost and at the same time, increase the throughput and providers'

profit by increasing the number of successfully executed tasks within the deadline

limits.

Thus, after the PPSO SLA negotiation phase has finished, as shown in Algorithm 4.1

(see Chapter 4), each task is dispatched to the selected data center through the

Dispatcher Agent in the Manager Module. The second phase of the model then involves

scheduling tasks over VMs inside selected data centers. In the data center Module, there

is a DC Manager, which accepts tasks from the Manager Module and sends them to the

Task Scheduler Agent, as shown in Figure 5.1. In the task scheduling phase, the Task

Scheduler Agent in each data center schedules the tasks over VMs based on the many-

objective PSO task scheduling algorithm (Algorithm 5.1).

141

Figure 5.1: Task Scheduling Phase.

The many-objective PSO was therefore developed to deal with many-objective

problems involving more than three objectives. From the literature discussed in Section

2.2.3, it is apparent that appropriate methods for applying many-objective PSO

algorithms in our case including ranking and decomposition approaches. This is

because a simple and quick strategy is required to evaluate many objectives in a short

time. A new modified method will be used based on combining ranking strategies and

the weighted sum. This will select a suitable VM for each task at a quicker time and a

simpler process compared to Pareto set methods.

Thus, to address how to improve many-objective PSO, five objectives must be

evaluated separately to find the best solution. These objectives are task execution time,

task execution cost, data transfer time, data transfer cost, and the VM capacity (as

discussed in Section 2.4). The first objective is to minimize task execution time (as

shown in Equation 5.2). The second is to minimize TEC, as presented in Equation 4.5.

The third is DTT, which involves minimizing the data transfer time (as shown in

Equation 5.3). The fourth is to minimize DTC, which is presented in Equation 5.4. The

fifth is to maximize the VM capacity (as shown in Equation 5.5). The VM with the best

fitness value according to these objectives is then selected and a task is assigned. In

Task
Dispatcher

DC
Manager

VM
Scheduler

VM Manager
Data Center Module

Task
Scheduler

Manager Module

142

the following section, the design and details of the MaOPSO algorithm based on the

modified ranking strategy are presented.

5.2 MaOPSO Task Scheduling Algorithm

The task scheduling problem consists of n tasks and m virtual machines. Each task must

be processed by one of the VMs such that the overall scheduling time is minimized.

The proposed algorithm focuses on the QoS parameters and costs relating to execution

time, execution cost, data transfer time, data transfer cost and VM capacity. The

algorithm follows the same rules as the model presented in Chapter 3 whereby each

task can be executed on just one VM at a time and each VM handles only one task at a

time.

In general, the first step in applying a MaOPSO scheduling algorithm is to represent

the problem, which involves converting it from continuous to discrete values. A

commonly used method that has been applied in most research is to represent the

particle as a 1 × n vector of n number of VMs associated with the number of dimensions

based on the number of objectives (see Section 2.2.1), as shown in Table 5.1. The value

inside the particle vector is a random integer number between 1 and M where M is the

number of VMs. A matrix m × n is used to represent velocity and position, where m is

the number of VMs and n is the number of tasks that need to be scheduled. The elements

of the position matrix can have values of either 0 or 1 with the constraint that there must

be a single element with the value 1 in each column. Similarly, velocity is represented

in the form of a matrix m × n. In the proposed method, the initial population is generated

at random. For this purpose, the algorithm generates a random integer between 1 and

M, representing the number of VMs onto which the task is mapped. Randomness in

PSO initialization helps maintain population diversity and means all particles have an

equal chance of being selected (Al-maamari et al. (2015)).

143

 𝐓𝐓𝟏𝟏 𝐓𝐓𝟐𝟐 𝐓𝐓𝟑𝟑 𝐓𝐓𝟒𝟒 … 𝐓𝐓𝐧𝐧

VM 𝑉𝑉𝑉𝑉1 𝑉𝑉𝑉𝑉3 𝑉𝑉𝑉𝑉1 𝑉𝑉𝑉𝑉2 … 𝑉𝑉𝑉𝑉𝑚𝑚

Table 5.1: Particle Vector Direct Representation.

Algorithm 5.1 describes the task scheduling steps taken in the proposed model, which

represents the main processes involved in scheduling tasks inside each data center. The

algorithm invokes the MaOPSO algorithm (Algorithm 5.2) which finds a suitable VM

for the arrival tasks (Line 1). If there is a suitable VM for the tasks then the tasks are

mapped to VMs (Lines 3-4). Otherwise, the tasks status are updated with failed (Lines

5-7). The list of tasks is then updated to check if there are arrival tasks (Line 8). The

steps are repeated while there is tasks in task list (Line 9). In our model, we deal with

dynamic online scheduling by scheduling arrival tasks and not queue the tasks to reduce

the waiting time and provide real time scheduling. Thus, the particle includes the arrival

tasks with supposed the limit is 10 tasks at each particle. If the tasks more than 10, it

will be kept in task list for next iteration.

Algorithm 5.1: Task scheduling algorithm.

Procedure TASKSCHEDULING (T, VMs)
Inputs: T, VMs // list of tasks and VMs
Outputs: mapping (T, VM)
1. for all arrival task in T list
2. v=MaOPSO (t, VM) // map tasks to specific VMs by algorithm5.2
3. If (v != null) // there is suitable VM for task
4. mapping (t, v) // maps tasks to selected VMs
5. Else
6. Update t status to failed
7. End else
8. Update T list
9. Repeat for step 2 until T list is empty
10. Return mapping
End procedure

Algorithm 5.2 includes the standard PSO (presented in Algorithm 2.4); however,

instead of using one objective, it uses five objectives. It starts by defining the number

of particles and initializing other parameters (Line 1). It then calculates the TET, TEC,

DTT, DTC and VMC for each task with available VMs in the data center using CTET,

CTEC, CDTT, CDTC and CVMC functions (Lines 2-8). These functions apply

144

Equations 5.1, 4.5, 5.2, 5.3 and 5.4 to compute the five objectives’ values, which will

be discussed in the following sections. The steps from Lines 11 to 23 are the main

functions that represent the MaOPSO algorithm used to schedule tasks over VMs. The

MaOPSO algorithm is improved by using the modified ranking function (as shown in

Algorithm 5.2). This includes the process of computing the objective function based on

five objectives, using the modified ranking strategy. Specifically, the rank value for

each particle (i.e.VM ID) is determined by computing the rank of each objective, and

then the smallest value of the rank value for each particle is selected. Thus, the particle

with the smallest rank among all the values of the corresponding objectives is selected

as the best solution.

Algorithm 5.2: MaOPSO Task scheduling algorithm.

Procedure MaOPSO (t, VM)
1. Initialize (V, P, pbest, gbest, best)
2. For each p є t // for each task in the particle t
3. For each v є VMs do
4. TEC (v) ← CTEC (v) // cost of each task
5. ECT (v) ←CECT (v) //task execution time
6. DTT (v) ←CDTT (v) //data transfer time
7. DTC (v) ←CDTC (v) //data transfer cost
8. VMC (v) ←CVMC (v) //VM capacity
9. End for
10. End for
11. While t < Iteration do
12. For each p є t
13. f=Ranking (p, TET, TEC, DTT, DTC, VMC)
14. best =SelectFitness (f)
15. If best <pbest (p)
16. Pbest =best
17. End if
18. End for
19. If best <gbest
20. gbest =best
21. End if
22. Update (V, P) //using Equations 2.4, 2.5
23. End while
24. Return gbest
End Procedure

The particle's best fitness values are calculated according to the five factors mentioned

previously (i.e. the least TET, TEC, DTT, and DTC and the highest VMC). Details of

these objectives are as follows:

145

1. Task Execution Time:

The algorithm utilizes the task execution time as a vector for each arrival task

because the proposed scheduling algorithm is dynamic; the expected time for

executing each task on VM(i) is therefore computed accordingly. The TET is

computed for a task in each VM, represented in a 1× n matrix where n represents

the number of VMs in the data center. For each task, the TET at each VM is

computed by considering the following parameters: the task length measured in

Machine Instruction (MI) and the VM processing speed in MIPS. The task

execution time is calculated by dividing the task length measured in MI by the VM

processing measured in MIPS, as shown in Equation 5.1.

𝑻𝑻𝑻𝑻𝑻𝑻 (𝒊𝒊, 𝒋𝒋) = 𝑻𝑻𝑻𝑻 (𝒊𝒊) / 𝑷𝑷𝑷𝑷𝑷𝑷 (𝒋𝒋) (5.1)

where:
TET (i) is the execution time for task i
TL (i) is the length of task i measured in MI
PSV (j) is the processing speed of VM j measured in MIPS

2. Task Execution Cost:

This has been defined in Equation 4.5.

3. Data Transfer Time

The data transfer time for each task is computed according to the size of the task's

input and output files and the bandwidth for each VM, depending on the VM type.

𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊, 𝒋𝒋) = 𝑭𝑭𝑭𝑭 (𝒊𝒊) / 𝑽𝑽𝑽𝑽𝑽𝑽 (𝒋𝒋) (5.2)

where:
DTT (i, j) is the data transfer time of task i in VM j
FS (i) is the size of the task i input and output files in MI
VMB (j) is the bandwidth of VM j

4. Data Transfer Cost

The data transfer cost is computed according to data transfer time which is

computed in Equation 5.2 and the cost of bandwidth of VM, as shown in Equation

5.3.

𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊, 𝒋𝒋) = 𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊) ∗ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒋𝒋) (5.3)

where:
DTC (i, j) is the data transfer cost of task i in VM j

146

DTT (i, j) is the data transfer time of task i in VM j, as shown in Equation 5.2
CostBW (j) is the cost of bandwidth per second using VM j

5. VM Capacity

VM capacity is computed based on the utilization of the VM in terms of CPU,

memory, storage size and bandwidth, as shown in Equation 5.4.

𝑽𝑽𝑽𝑽𝑽𝑽 (𝒋𝒋) = (∑ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 (𝒊𝒊)𝒎𝒎
𝒊𝒊=𝟎𝟎)/ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒋𝒋) × 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 (j)

 (5.4)

where:
VMC (j) is the capacity load of the VM j
Tlength (i) is the total length for all tasks assigned to VM
CMIPS(j) is the CPU speed of VM j in MIPS
Ncores (j) is the number of cores in VM j

The modified ranking strategy of the MaOPSO algorithm can now be considered. The

novel contribution of this work concerns the method used to evaluate the objective

functions, which involves ranking each objective to select the best solution using the

MaOPSO algorithm. In this research, the modified ranking function is invoked to

evaluate the objectives in MaOPSO. Using this function, the ranking strategy is applied

to evaluate the solutions in each iteration, where each objective is represented by a two-

dimensional matrix. Algorithm 5.3 illustrates the main steps for computing the fitness

value, which involves ranking the solution according to the objective functions, thus

improving the MaOPSO task scheduling algorithm.

The design of the fitness function is based on the sum ranking and minimum ranking

strategies. The minimum ranking of the objectives is summarized in Equation 5.5, and

the sum of ranking is presented in Equation 5.6. Finally, the weighted sum is computed

for the two ranks to find the final rank of the solution x as shown in Equation 5.7.

 𝐅𝐅𝐅𝐅(𝐱𝐱) = 𝐌𝐌𝐌𝐌𝐌𝐌 (𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐓𝐓𝐓𝐓𝐓𝐓), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐓𝐓𝐓𝐓𝐓𝐓), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐃𝐃𝐃𝐃𝐃𝐃), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐃𝐃𝐃𝐃𝐃𝐃),

𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐕𝐕𝐕𝐕𝐕𝐕)) (5.5)

𝐅𝐅𝐅𝐅(𝐱𝐱) = 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐓𝐓𝐓𝐓𝐓𝐓) + 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐓𝐓𝐓𝐓𝐓𝐓) + 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐃𝐃𝐃𝐃𝐃𝐃) + 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐃𝐃𝐃𝐃𝐃𝐃) +

𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐕𝐕𝐕𝐕𝐕𝐕) (5.6)

 Min F(𝐱𝐱) = 𝟎𝟎.𝟓𝟓 ∗ 𝐅𝐅𝐅𝐅(𝐱𝐱) + 𝟎𝟎.𝟓𝟓 ∗ 𝐅𝐅𝐅𝐅(𝐱𝐱) (5.7)

147

Regarding the proposed ranking, Algorithm 5.3 illustrates the main steps for computing

the fitness value based on the modified ranking of solutions according to the objective

functions in order to improve the MaOPSO task scheduling algorithm. The algorithm

begins by computing the minimum rank, following which the sum rank is computed as

shown in Lines 2 and 3 for all objectives. The rank value for the particle is computed

using the weighted sum method of the sum rank and minimum rank as shown in Line

4. Finally, the final rank for particle p is selected as a minimum rank as shown in Line

6, then it returned to continue the process of Algorithm 5.2 (Line 7).

Algorithm 5.3: Modified Ranking Strategy Algorithm.

Procedure MaOPSO (p, TET, TEC, DTT, DTC, VMC)
1. For each v є p do
2. f1 (v) = Min (p, TET, TEC, DTT, DTC, VMC)
3. f2 (v) = Sum (p, TET, TEC, DTT, DTC, VMC)
4. rank (v) =f1 (v)*0.5 + f2 (v) *0.5
5. End for
6. r=min (rank)
7. Return r
End Procedure

To illustrate this approach, suppose there is one task with five VMs and the five

objectives for each VM are computed using Equations 5.1, 4.5, 5.2, 5.3 and 5.4. The

results are shown in Tables 5.2 - 5.6. The ranking of the VMs is based on the minimum

rank and sum rank values, which involves sorting them in ascending order. The rank of

the objectives is then computed by applying weighted sum, as shown in Equation 5.7,

and the VM with the lowest rank value is selected, as shown in Table 5.7. All the shaded

cells in Tables 5.2-5.7 represent the best solution, i.e. the best VM for the task.

The values of TET The rank values after sorting
Task V1 V2 V3 V4 V5 Task V1 V2 V3 V4 V5
T1 10 12 8 15 12 T1 2 3.5 1 5 3.5

Table 5.2: Task Execution Time (TET).

The values of TEC The rank values after sorting
Task V1 V2 V3 V4 V5 Task V1 V2 V3 V4 V5
T1 21 24 30 22 25 T1 1 3 5 2 4

Table 5.3: Task Execution Cost (TEC).

148

The values of DTT The rank values after sorting
Task V1 V2 V3 V4 V5 Task V1 V2 V3 V4 V5
T1 10 14 8 12 16 T1 2 4 1 3 5

Table 5.4: Data Transfer Time (DTT).

The values of DTC The rank values after sorting
Task V1 V2 V3 V4 V5 Task V1 V2 V3 V4 V5
T1 20 26 20 21 30 T1 1.5 4 1.5 3 5

Table 5.5: Data Transfer Cost (DTC).

The values of DTC The rank values after sorting
Task V1 V2 V3 V4 V5 Task V1 V2 V3 V4 V5
T1 13 26 22 16 30 T1 5 2 3 4 1

Table 5.6: VM Capacity (VMC).

The value of the rank of each objective in a specific VM is then summed to find the

rank of VM for this task. However, if two VMs are equal, for example VM1 = 6.25 and

VM3= 6.25, then both have the smallest rank. The strategy to adopt in this case is that

if there are many VMs with an equal smallest value, the first in the sequence is chosen

which in this case is V1.

Task V1 V2 V3 V4 V5
Min
rank

1 2 1 2 1

Sum
rank

2+1+2+1.5
+5

=11.5

3.5+3+4+4
+2

=16.5

1+5+1+1.5
+3

=11.5

5+2+3+3+
4

=17

3.5+4+5+
5+1

=18.5
Total 1*0.5+11.5

*0.5=6.25
0.5*2+0.5*
16.5=9.25

1*0.5+0.5*
11.5=6.25

2*0.5+0.5
+17=9.5

1*0.5+18.
5*0.5=9.7

5

Table 5.7: VMs Rank Values.

149

5.3 MaOPSO Task Scheduling Implementation

MaOPSO is implemented using CloudSim 3.0.3. The simulation model involves many

data centers with different specifications, as shown in Chapter 3. Virtual machines are

created to provide cloud services from the data center and many tasks are simulated

using data from the dataset file. The details of these resources are presented in Section

3.4.1 in Tables 3.1, 3.2, and 3.3. The value of parameters used to apply the MaOPSO

algorithm are listed in Table 5.8, which includes the number of particles, the maximum

number of iterations and other parameters of PSO algorithms.

PSO
Parameters

Values Reason

particles 10 Depends on the number of data centers
iterations 5-500 Based on the results of the tests of fitness function ,

there is no further change after 500 iterations
w [0-1] Specified based on Equation 2.8

c1 ,c2 2.0,2.0 As reported in (Li-Ping et al. (2005))
r1,r2 [0-1]

Table 5.8: The Setting of the Parameters for PSO.

To implement MaOPSO, several classes from CloudSim were used and modified to

represent cloud environment such as classes for defining Data center, Host, VM, and

Cloudlet. In addition, classes for managing resources such as CloudletScheduler,

VMScheduler, and DatacenterBroker were modified to run in the proposed model.

Moreover, new classes such as Task Dispatcher, Ranking, MaOPSO, Particle, and

Problem Set classes were also added.

5.4 Experimental Evaluation

It is important to point out that the aim in this chapter is testing the effectiveness of the

MaOPSO in scheduling task only before discussing the methods that will used to

conduct the experimental tests and evaluate the effectiveness of the MaOPSO in task

scheduling by comparing it with other methods. It can therefore be assumed in this case

that after the selection of SLA negotiation, the tasks are scheduled inside the data

center; the VM is then scheduled to available hosts based on FCFS.

150

In terms of evaluation, several experiments were conducted to measure the objectives

of our model.

• First, several experiments were performed to analyze the effectiveness of

MaOPSO and determine the best parameters for running the algorithm by

changing the number of iterations.

• Second, experiments are performed to evaluate the performance of the modified

ranking strategy in the task scheduling algorithm, the results of which are

compared with the Pareto set and weighted sum approaches.

• Third, experiments are conducted to compare the scheduling task algorithm

with state of the art algorithms used in task scheduling in cloud systems, which

were previously discussed in Chapter 2.

• Fourth, experiments are performed to compare the modified ranking with the

simple ranking strategy that developed in (Alkayal et al. (2016)).

Each experiment was run ten times and the average score across all experiments was

then calculated with 95% confidence intervals. After running the simulation, the

following parameters are measured and used as indicators to test the effectiveness of

the proposed algorithm. To evaluate the performance of the MaOPSO task scheduling,

the following factors were computed:

• Average Waiting Time: is defined in Equation 3.1.

• Average Completed Time: is defined in Equation 3.2.

• Throughput: is defined in Equation 3.3.

• Average VM Utilization: is defined in Equation 3.8.

• Execution Cost: is defined in Equation 3.11.

• Profit: is defined in Equation 3.12.

• Imbalance Factor: is defined in Equation 3.19.

• Average Fitness Values: is defined in Equation 3.20.

151

5.4.1 The MaOPSO Algorithm: Analysis Results

The model that has been developed aims to minimize the waiting time, completed time,

and the cost. The results of the modified ranking (denoted as Ranking in the evaluation)

strategy were normalized to show the effectiveness of the algorithm. The results are

normalized to be represented in one figure as shown in Figure 5.2.The results in Figure

5.2 show that the ranking strategy minimizes the objectives with an increasing number

of iterations until it reaches 100, after which there is no significant difference in the

quality of the results. In terms of maximizing the throughput and the resource

utilization, good results are shown after 50 iterations (see Figure 5.3). Thus, the

maximum number of iterations in task scheduling evaluation results was selected as

100 to balance the objectives of minimization and maximization.

#Iteration Minimizing Objectives Maximizing Objectives
Waiting

Time
Completed

Time
Cost Throughput Utilization

5 0.3 0.58 0.3 0.4 0.19
10 0.25 0.38 0.3 0.42 0.3
50 0.108 0.33 0.29 0.41 0.31
100 0.102 0.29 0.28 0.45 0.29
200 0.095 0.33 0.27 0.51 0.32
300 0.11 0.35 0.25 0.52 0.33
400 0.13 0.35 0.23 0.51 0.35
500 0.13 0.38 0.2 0.54 0.35

Table 5.9: Results of MaOPSO in terms of Minimizing and Maximizing Objectives.

Figure 5.2: Results of MaOPSO in terms of Minimizing Objectives (data shown with

95% confidence intervals).

152

Figure 5.3: Results of MaOPSO in terms of Maximizing Objectives (data shown with

95% confidence intervals).

5.4.2 Evaluating Ranking Method Efficiency in MaOPSO Task Scheduling

In this section, the effectiveness of the ranking in dealing with five objectives will be

assessed and compared to the weighted sum of objectives and the Pareto optimal

solution using a non-dominant set. In this research, the weighted sum is computed by

multiplying each objective with the weight that represents its importance in the system.

The values of the objectives that need to be maximized are positive and those that

should be minimized are negative. For simplicity, equal weights are used for each

objective because they all have the same importance in this model, as shown in

Equation 5.8. To analyze the performance of the method, the results of processing time

and average fitness will be compared. These results are presented in Figures 5.4 and

5.5.

𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂 (𝒊𝒊) = ∑ (𝒐𝒐𝒐𝒐𝒐𝒐 (𝒊𝒊,𝒌𝒌) × 𝒘𝒘 (𝒌𝒌))𝟓𝟓
𝒌𝒌=𝟏𝟏 (5.8)

where:
k represents the objective value, and k=1, 2, 3, 4 and 5
obj (i, k) is the value of the objective k in the solution i
w (k) is a non-negative weight value such that ∑𝑤𝑤(𝑘𝑘) = 1, k=1, 2, 3, 4 and 5.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 10 50 100 200 300 400 500

N
or

m
al

iza
tio

n
va

lu
es

Iteration

Throughput Utilization

153

Specifically, the ranking strategy gives the best results in terms of reducing the

processing time when compared to the weighted sum and the Pareto optimal set

approaches, as shown in Figure 5.4. The processing time is the time that be consumed

to finish evaluation objectives to find the results of scheduling process. In addition, with

respect to the average fitness value, the results of ranking strategy converge on a

specific solution, which is a weakness because the algorithm falls in to local optima.

Therefore, to solve this problem, the VM utilization should be used as a factor to

balance the tasks over VMs.

Tasks Weighted sum Pareto Ranking
5 366 1050 403
10 856 1520 990
50 1485 3907 1672
100 4567 8143 3673
150 6597 10068 4684
200 7113 12911 5515
250 9677 14156 6783
300 11978 15762 8175
350 13537 16600 8758
400 14713 18710 10317
450 15149 20760 12353
500 17714 22450 13405

Table 5.10: Processing Time Results.

Figure 5.4: Processing Time Results (data shown with 95% confidence intervals).

154

Tasks Weighted sum Pareto Ranking
5 39.4 85.1 99.88
10 31.65 64.5 112.28
50 37.5 75.7 120.9
100 42.2 68.2 122.56
150 32.9 74 122.36
200 37.3 81 124.7
250 43.9 88 125.8
300 34.1 94.7 127.88
350 30.5 97.2 129.89
400 34.98 80.1 131.5
450 32.4 76.5 133.2
500 32.79 78 135

Table 5.11: Average Fitness Results.

Figure 5.5: Average Fitness Results (data shown with 95% confidence intervals).

5.4.3 Evaluating MaOPSO Task Scheduling Compared to Other Scheduling

Algorithms

In the research literature, different heuristic and meta-heuristic algorithms have been

utilized to perform task scheduling in various fields (as discussed in sections 2.4.3 and

2.4.4). The performance of the algorithm used in this research is therefore compared

with three task scheduling techniques Genetic, ACO, Max-min and Min-min algorithms

155

(described in sections 2.4.2, 2.4.3 and 2.4.4 respectively). Their performance is

compared in terms of waiting time, completed time, average utilization of VMs, and

the VM imbalance factor.

The results show an improvement in ranking strategy in terms of waiting time compared

to other algorithms, especially when the number of tasks increases to more than 250.

This is because the ranking strategy reduces the mapping time. With a smaller number

of tasks, for example between 50-100, the Genetic algorithm gives a short waiting time

compared to Minimax and Minimin algorithms, as shown in Figure 5.6. However, ACO

reduces the waiting time less than the Genetic algorithm. The ranking algorithm reduces

the waiting time by about 15%, and this is because it reduces the mapping time of tasks.

Task Ranking Genetic ACO Max-

min
Min-
min

50 27 26.6 30 40 30
100 35 34.15 87 68 76
150 93 138 119 108 126
200 140 189 169 189 144
250 177 290 224 206 227
300 226 305 298 278 255
350 245 329 305 318 310
400 280 346 332 331 326
450 315 393 420 443 386
500 410 483 470 515 490

Table 5.12: Waiting Time Results.

Figure 5.6: Waiting Time Results (data shown with 95% confidence intervals).

156

Reducing waiting time will reduce the time taken to complete tasks, as shown in Figure

5.7. The results show a decrease in completed time for the ranking strategy over other

algorithms. In addition, Max-min and Min-min algorithms take a shorter amount of

time compared to the Genetic and ACO algorithms.

Task Ranking Genetic ACO Max-
min

Min-
min

50 330 350 345 291 304
100 348 398 372 339 351
150 382 436 417 383 368
200 419 492 455 454 437
250 454 524 487 497 477
300 483 597 524 549 525
350 510 621 566 595 577
400 536 683 583 635 592
450 551 705 628 656 632
500 590 788 657 693 677

Table 5.13: Completed Time Results.

Figure 5.7: Completed Time Results (data shown with 95% confidence intervals).

With respect to the utilization of resources, the results in Table 5.14 show the best

resource utilization in applying ranking strategy compared to other algorithms.

Moreover, the ACO algorithm offers better resource utilization than the others; this is

because they distribute the tasks over VMs during the scheduling process in an efficient

157

method. However, Figure 5.8 shows that the improvement in resource utilization is

limited to about 10% because in this phase there is no focus on improving utilization.

In the next chapter, the method of improving resource utilization associated with

reduced power consumption will be considered.

Task Ranking Genetic ACO Max-
min

Min-
min

50 0.53 0.38 0.39 0.22 0.35
100 0.56 0.46 0.45 0.31 0.39
150 0.58 0.49 0.48 0.35 0.42
200 0.64 0.52 0.52 0.39 0.48
250 0.67 0.56 0.63 0.43 0.52
300 0.69 0.6 0.67 0.49 0.55
350 0.73 0.65 0.69 0.53 0.57
400 0.75 0.68 0.72 0.57 0.63
450 0.78 0.72 0.75 0.62 0.65
500 0.85 0.74 0.79 0.67 0.68

Table 5.14: Average Utilization of Resources.

Figure 5.8: Average Utilization of Resources (data shown with 95% confidence

intervals).

Regarding the results of total profits presented in Figure 5.9, the ranking strategy

provides the highest profits compared to other algorithms. This is because it reduces

the waiting time and executes more tasks within specific times. The profit is increased

158

by about 15% more than for other algorithms as a result of improving the throughput

of the system.

Task Ranking Genetic ACO Max-

min
Min-
min

50 6370 5269 5423 4096 4982
100 12896 10405 11754 10164 10696
150 20607 14383 17830 15395 14041
200 22636 16993 20145 19390 19556
250 27181 21788 24930 22389 23157
300 36816 26118 30150 27306 28350
350 42438 30289 36120 29470 32970
400 45285 34157 39784 31818 35038
450 48224 39810 43453 33366 38165
500 51956 44265 47403 36900 42174

Table 5.15: Total Profits Results.

Figure 5.9: Total Profits (data shown with 95% confidence intervals).

5.4.4 Evaluating MaOPSO Task Scheduling Compared to Simple Ranking

Algorithms

In this section, the proposed task scheduling algorithm is compared with the simple

ranking algorithm that was presented in (Alkayal et al. (2016)). The simple ranking is

159

evaluated with three and five objectives to test its effectiveness with increased number

of objectives.

Regarding the results of processing time presented in Figure 5.10, the ranking strategy

provides the smallest processing time comparing to other algorithms. This is because it

reduces the waiting time by about 15% less than for other algorithms. The simple

ranking provides better results with three objectives than with five ones.

 Figure 5.10: Processing Time Results (data shown with 95%

confidence intervals).

Regarding the results of average waiting time presented in Figure 5.11, the ranking

strategy provides the lowest compared to other algorithms. This is because it reduces

the processing time as shown in Figure 5.10. The waiting time is decreasing by about

15% more than for other algorithms.

160

Figure 5.11: Waiting Time Results (data shown with 95% confidence intervals).

Regarding the results of total throughput presented in Figure 5.12, the ranking strategy

provides the highest throughput compared to other algorithms. This is because it

reduces the waiting time and execute more tasks within specific times. The throughput

is increased by about 25% more than for other algorithms. The simple ranking provides

higher throughput with three objectives than with five objectives.

Figure 5.12: Throughput Results (data shown with 95% confidence intervals).

161

5.5 Summary

MaOPSO task scheduling in cloud computing is applied to distribute tasks over VMs

inside data centers. It was optimized by applying a many-objective PSO algorithm using

a modified ranking strategy. This modified strategy is an improvement and extension

of the simple ranking strategy that presented in (Alkayal et al. (2016)). In so doing, this

work advanced the field by improving task scheduling in terms of QoS, resource

utilization, and profits. Thus, a new modified ranking strategy has been devised to

evaluate the five objective functions: TET, TEC, DTT, DTC and VMC in a short space

of time. The modified ranking method combines the weighted sum approach with

ranking strategies to provide an evaluation method that can be adapted in line with an

increase in the number of objectives.

The results of proposed ranking strategy were evaluated and compared with the simple

ranking strategy, weighted sum and Pareto set approaches. The results from the ranking

strategy are used in MaOPSO task scheduling to find the most appropriate VM for each

task. This improvement accelerates and simplifies the process of evaluating objectives

in MaOPSO algorithms when compared to other approaches. Because of these

improvements, this work has increased performance by increasing the throughput and

reducing waiting time. Moreover, it has provided an improvement of up to 20% in

completion time compared to the weighted sum approach.

The main findings from the experimental analysis are as follows:

• Comparing the ranking results with the weighted sum results and Pareto set

shows an improvement in processing time of up to 10% and in completed time

of up to 15%.

• The throughput in the ranking algorithm increased by about 10% compared to

the Min-min and by approximately 15% compared to the Genetic Algorithm.

• The completed time for ranking decreased by about 20% compared to the other

benchmarks.

• The average fitness values of the ranking converged more quickly than the

Genetic algorithm.

• The profits increased by about 15% more using the ranking strategy when

compared to other algorithms.

162

Chapter 6

Virtual Machine Allocation using Particle

Swarm Optimization

The VM allocation using the PSO algorithm, which is the third phase of the proposed

resource allocation model described in Chapter 3, is discussed in this chapter in detail.

In the first section, an overview of the VM allocation process and key objectives are

presented. Section 6.2 then presents and describes the clustering algorithm based on K-

means and PSO that was used to cluster hosts in the data centers. In Section 6.3, the

VM scheduling algorithm based on a many-objective PSO algorithm and modified

ranking strategy is discussed. An overview of the migration algorithm used to balance

the load among hosts is presented in Section 6.4. Section 6.5 discusses the experimental

procedures and parameters used to evaluate VM allocation and compares the results

with state of the art algorithms in this field. Finally, Section 6.6 summarizes the main

results and conclusions arising from this phase of the proposed model.

6.1 Overview

As discussed in Section 2.5, the virtual machine allocation problem is a crucial research

issue in cloud computing. VM allocation involves finding an appropriate means of

mapping VMs to hosts so that cloud resources are utilized efficiently to reduce power

consumption and increase profits. Optimization of the current allocation of VMs

requires the development of VM migration methodology, which distributes the load

between hosts to satisfy the goals of balancing load and reduces power consumption by

switching off unused hosts. At the same time, VM allocation algorithms aim to satisfy

the QoS and prevent SLA violation.

163

In this thesis, a clustering mechanism was developed to divide the hosts into different

classes based on the K-means and PSO algorithm. Based on the results of the clustering

algorithm, the VM scheduling and VM migration processes were then conducted. A

PSO based K-means algorithm was proposed by combining the globalized search

ability of PSO and the fast convergence of K-means. This algorithm consists of two

modules, namely PSO and K-means algorithms. In K-means, the convergence rate is

quicker at finding a local optimum solution but slower at finding a global solution and

thus justifies the combination of PSO and K-means by combining the advantages of

both algorithms when clustering hosts in data centers (Neshat et al. (2012)).

The VM scheduling problem is an NP-hard problem and can be treated as a many-

objective optimization problem (Panchal and Kapoor (2013)). The key goals of

optimizing VM allocation involve simultaneously improving resource utilization,

power consumption, QoS and profits. One of the main drawbacks of current research

on VM migration solutions is that it only focuses on one or two major goals such as

power consumption or resource utilization and ignores other objectives such as QoS

performance, profits and SLA violation (see the discussion in Section 2.5.2). However,

some researchers have proposed the use of a multi-objective VM allocation in cloud

data centers. The aim of this study is to satisfy five objectives and, thus, a novel

modified ranking strategy is applied to deal effectively with many objectives by using

a modified ranking methodology. Moreover, MaOPSO not only addresses the aims of

power consumption and reductions in SLA violation, it also strives to reduce the

number of VM migrations and migration time to maintain QoS performance. To satisfy

these objectives, five important criteria are considered, namely: power consumption by

the host during the allocation of a VM, the host capacity, the host utilization, the data

transfer time and the data transfer cost. In most research studies, only two dimensions

of host utilization are considered, namely CPU capacity and memory size. In our

research, other factors are taken into consideration when computing host utilization

such as the network bandwidth and the storage size. This is because there are several

applications that require large storage size and the distribution of data centers means

that network bandwidth is an additional concern.

The proposed model used for allocating VMs to available hosts involves several

processes. Specifically, the VM allocation methodology can therefore be divided into

164

three steps, which run in each data center. These steps are summarized in Algorithm

6.1. The first function is carried out by the Load Balancer Agent, which is responsible

for clustering available hosts based on their utilization and capacity by using PSO and

K-means algorithms (as described in Section 3.3). The clustering results produce four

distinct lists of hosts namely high-loaded, over-loaded, under-loaded and unloaded (see

Algorithm 6.2) (Line 2). The VMs are then scheduled over unloaded hosts based on a

many-objective PSO algorithm that satisfies the required VM specification and reduces

migration time as shown in Algorithm 6.5 (Line 3). The migrating process is conducted

to move all VMs from unloaded hosts, and some VMs from high-loaded and over-

loaded hosts (Line 4).

Algorithm 6.1: VM Allocation Algorithm.

Input: VMs, Hosts lists
Output:
Start Procedure VMAllocation (VMs, Hosts)
1. Initialize unloaded, over-loaded, under-loaded, high-loaded lists
2. Clustering (unloaded, over-loaded, under-loaded, high-loaded, c)
3. VMScheduling (VMs, unloaded, over-loaded)
4. VMmigration (unloaded, over-loaded, under-loaded, high-loaded)
End procedure

In the following sections, each step involved in allocating VMs will be described in
detail.

6.2 Clustering Hosts Based on PSO and K-means

The novelty of the VM allocation strategy in this model is that it begins by clustering

the hosts in each data center into four classes, which determine the status of the hosts

based on their utilization. The main goals of applying clustering in the VM allocation

are to automate the process of detecting the states of hosts rather than using static

threshold points. In addition, using clustering techniques provides a more accurate and

dynamic method for detecting the hosts' status, reflecting the current load of the data

center. Once the clustering process is finished, the many-objective PSO algorithm

assigns a VM to the unloaded hosts, a process that will be discussed in the next section.

165

In this thesis, a combination algorithm based on K-means and PSO clustering

algorithms was therefore used to cluster hosts into four distinct groupings. As discussed

in Section 2.2.5, the K-means algorithm is easy to implement and offers high processing

performance. In addition, its computations are low in complexity and it efficiently deals

with the collection of large amounts of data.

According to (Neshat et al. (2012)) one of the weaknesses of K-means is that it does

not handle noisy data, which means that if K-means alone is applied in VM allocation

it may cause imbalances among the hosts. The K-means algorithm also takes more

iterations than other algorithms to initialize cluster centroids. Given this, (Baswade and

Nalwade (2013)) demonstrated that if the centroid point is initially taken by a

modification in the K-means algorithm, rather than random selection, it could increase

performance, accuracy and reduce the number of iterations in the algorithm. The PSO

is less sensitive to initial conditions due to its sub-optimal population-based nature, and

is therefore more likely to find a near optimal solution. Thus, the proposed method for

improving K-means using a PSO algorithm is based on applying PSO to find the initial

centroids of the clusters, after which the K-means is used to enhance the results of the

PSO.

An improved PSO-based K-means algorithm was developed by (Zheng and Jia (2011))

to overcome the problem of local optima in K-means clustering. Naik et al. (2012) then

proposed a hybrid K-means and PSO (KPSO) clustering algorithm to obtain optimal

centers for cluster analysis. In the proposed clustering model, unlike previous research,

a PSO algorithm will be used to initialize the centroids of clusters. The K-means

algorithm is used to refine the clustering results. Thus, by applying PSO and K-means

with different objective functions, a strategy similar to that used by (Ahmadyfard and

Modares (2008)) has been adopted.

The proposed clustered algorithm is summarized in Algorithm 6.2. It begins by

initializing of the centroids (Line 1). Then the new values of centroids are computed

using PSO in Algorithm 6.3 (Line 2). These values are then used as threshold limits to

determine the status of the hosts (unloaded, over-loaded, under-loaded, and high-

loaded). The hosts are assigned to clusters by comparing their utilization with the values

of centroids, as shown in Lines 3-14.

166

Algorithm 6.2: Clustering Hosts Algorithm.
Inputs: unloaded, over-loaded, under-loaded, high-loaded, c // c is the number of clusters
Outputs: Clusters of Hosts
Procedure Clustering (unloaded, over-loaded, under-loaded, high-loaded, c)
1. Initialize centroid list with size of c
2. centroid =KPSOClustering (Hosts, c) // using Algorithm 6.3
3. For all host in Hosts
4. If host utilization < centroid [0] then
5. Add host into under-loaded list
6. Else if centroid [0] ≤ host utilization < centroid [1] then
7. Add host into un-loaded list
8. Else if centroid [1] ≤ host utilization < centroid [2] then
10. Add host into over-loaded list
11. Else if centroid [2] ≤ host utilization then
12. Add host into high-loaded list
13. End if
14. End For
End Procedure

The process of clustering hosts based on PSO is summarized in Algorithm 6.3. It begins

by computing the utilization of hosts based on four attributes (CPU processing, memory

size, storage size, and network bandwidth), as described in Equation 3.9 (Line 1). The

host capacity is calculated as shown in Line 2. The PSOClustering module is initially

conducted using the utilization of hosts as data points and the number of clusters to find

each clusters’ centroid (Line 3). The centroid values are then used in the K-means

module as inputs to refine the centroids and generate the final clustering solution (Line

4). The K-means utilizes the centroid results from the PSO, following which the

distance for all hosts is computed and the hosts are reassigned to the new clusters as

shown in Equation 6.1, until there is no change in the distance results (Lines 5-9). Then

the centroids are updated with the new cluster points as shown in Line 10 by using

Equation 6.2, which computes the point's values in each cluster to find the new centroid.

Finally, the centroid values are sorted in ascending order so that they can be used in the

VM migration and monitoring as thresholds to determine the status of hosts (Line 11).

𝒅𝒅 (𝒙𝒙𝒙𝒙, 𝒄𝒄𝒄𝒄) = │𝒙𝒙𝒙𝒙 − 𝒄𝒄𝒄𝒄│ , ∀ 𝒙𝒙𝒙𝒙 ∈ 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒋𝒋 (6.1)

where:
d (xi, cj) is the distance between point x and centroid of cluster j
xi is the point x in the space
cj is the centroid of cluster j

𝒄𝒄𝒄𝒄 = ∑ 𝒙𝒙𝒙𝒙 /𝒏𝒏𝒊𝒊∈𝒋𝒋 (6.2)

where
n is the number of points in the cluster j
xi is the point x in the space
cj is the centroid of cluster j

167

Algorithm 6.3: KPSO Clustering Algorithm.

Inputs: List of Hosts, c // c is the number of clusters
Outputs: Centroids of Clusters
Procedure KPSOClustering (Hosts, c)
1. U= Calculate utilization(Hosts) // using Equation 3.9
2. N=HostCapacity (Hosts) // using Equation 6.4
3. centroid=PSOClustering (U, n, c) // using Algorithm 6.4 to create clusters by PSO
4. Repeat
5. For all n clusters.
6. For all Hosts
7. Compute the distance of host from cluster centroids // using Equation 6.1
8. Assign host to the cluster that have closer centroid
9. End for
10. Compute the new centroid of all cluster // using Equation 6.2.
11. End for
12. Repeat until the centroid distance does not change.
13. Sort the clusters centroids // sort the centroid in ascending order
14. Return the clusters centroids
End

Specifically, the steps taken by the clustering algorithm based on PSO are shown in

Algorithm 6.4. PSO deals with the clustering problem like any other problem by

defining particles with the centroids of the clusters as discussed in Section 2.2.4. It

begins with the initialization of the particles with the centroid of clusters, whereby the

number of dimensions in the particles forms the number of the cluster (Line 1). For all

particles, the distance of all hosts to all clusters is then computed as shown in Line 6.

Each host is assigned to the closest cluster, which therefore involves a short distance as

shown in Line 7. Following this, the fitness function is computed according to the new

distribution of the hosts based on Equation 6.3 (Line 8). The new centroids are then

computed after the velocity and position have been updated, as shown in Lines 11 and

12. Finally, the gbest is returned which includes the centroid values of the cluster (Line

15).

The fitness function of the PSO algorithm is computed according to the utilization and

capacity of the hosts as shown in Equation 6.3. The objective function aims to minimize

the inter cluster distance of the utilization and capacity because the hosts are clustering

based on the both utilization and the capacity. The host capacity is computed based on

the available resources in the host in terms of available CPU MIPS and Memory size

as shown in Equation 6.4 and the utilization is computed as shown in Equation 3.9.

𝒇𝒇(𝒙𝒙) = �(𝑯𝑯𝑯𝑯(𝒙𝒙)− 𝑨𝑨𝑨𝑨𝑨𝑨 (𝒙𝒙))𝟐𝟐 − (𝑯𝑯𝑯𝑯(𝒙𝒙) − 𝑨𝑨𝑨𝑨𝑨𝑨 (𝒙𝒙))𝟐𝟐 (6.3)

168

where:
HU is the utilization of the host x as shown in Equation 3.9
AHU is the average utilization of all hosts
HC is the capacity of the host x as shown in Equation 6.4
AHC is the average capacity of all hosts

𝐇𝐇𝐇𝐇(𝐱𝐱) = (𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀(𝐱𝐱) − 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝐱𝐱)) + (𝐀𝐀𝐀𝐀(𝐱𝐱)− 𝐔𝐔𝐔𝐔(𝐱𝐱)) (6.4)

where:
HC(x) is the capacity of the host x
ACPU(x) is the available CPU in the host x
UCPU(x) is the used amount of CPU in the host x
AM(x) is the available memory in the host x
UM(x) is the amount of memory used in the host x

Algorithm 6.4: PSO Clustering Algorithm.

Inputs: List of utilization of the hosts U, c // c is the number of clusters
Outputs: Centroids of Clusters
Procedure PSOClustering (U, n, c)
1. Initialize each particle with c random cluster centers.
2. For iteration = 1 to max-iterations
3. for all particles
4. for all n hosts
5. for all c clusters
6. Compute the distance of host from all cluster centroids.
7. Assign host to the cluster that have closer centroid
 8. Calculate the fitness function // using Equation 6.3
9. End for
10. End for
11. Find the Pbest, Gbest position of each particle.
12. Update the cluster centroids according to velocity updating
13. End for
14. Iteration ++
15. Return Gbest // return the best centroid values
End

6.3 Virtual Machine Scheduling Algorithm

In this phase, the VM is mapped to the unloaded hosts using a many-objective PSO

(MaOPSO) VM scheduling algorithm, which is based on five objectives. The new

aspect contained in the proposed model is that VMs are allocated to idle, under-loaded,

or over-loaded hosts only to save power. This algorithm runs in each data center and

selects the most appropriate host to run the VM in order to increase utilization and

profits, whilst at the same time reducing power consumption and waiting time.

169

After determining the state of hosts using clustering algorithms (as shown in Algorithm

6.2), the scheduling of VMs over unloaded hosts is conducted. The algorithm starts

mapping VMs to unloaded hosts based on the many-objective PSO. After the VM is

assigned to the selected host, the unloaded host's list is updated and re-sorted after each

mapping. Finally, the algorithm returns the mapping matrix, which contains the best

host for each VM. Through modification of the MaOPSO algorithm, the unloaded hosts

are ranked according to five objectives.

Specifically, Algorithm 6.5 summarizes the main steps involved in scheduling VMs

inside the data center. The algorithm starts by checking the unloaded host's and over-

loaded lists, if they contain hosts then the list and the VMs are sent to the MaOPSO for

scheduling as shown in Line 3. If the unloaded list is empty, the algorithm then searches

in the over-loaded list (Lines 4,5). If the over-loaded list is empty, the allocation will

be carried out in one of the hosts in the sleep mode (Line 7). Finally, the selected host

is then updated in term of utilization after allocation using Algorithm 6.7 (Line 10).

Algorithm 6.5: VM Scheduling Algorithm.

Input: List of VMs and List of unloaded, over-loaded
Output: the mapping results of VMs and Hosts
Procedure VMScheduling (VMs, unloaded, over-loaded)
1. For all VMs
2. If unloaded is not empty then
3. Host = MaOPSO_VMScheduling (VM, unloaded)
4. Else if over-loaded is not empty then
5. Host = MaOPSO_VMScheduling (VM, over-loaded)
6. Else
7. Assign VM to the first host in the sleep mode list // list already sorted
8. End if
9. UpdateUtilization (Host ,VM) //using Algorithm 6.7
10. End for
End Procedure

The VM scheduling problem formulation is now considering. The algorithm for

allocating VM is based on input values with specific constraints to satisfy the

objectives. The specification of these inputs and outputs will now be presented along

with details of the objectives and their constraints. The input data will be considered

first. There are several hosts with different specifications in each data center. In

addition, each host can run one or more virtual machines based on the cores in each

host. In the proposed algorithm, the VMs are allocated to unloaded, over-loaded and

idle hosts.

170

Second, the output data is considered. The output of the VM scheduling algorithm is

the placement matrix, which incorporates the mapping of hosts for each VM. A two-

dimensional encoding scheme is used for solving the VM scheduling problem. The first

dimension of a particle is an n vector where n is the number of unloaded hosts, while

the second dimension represents the set of m VMs to be mapped to these hosts. Next,

the constraints are considered. The VM placement is conducted according to the

following conditions:

 The VM is running on one host at a time. Supposing that h matrix is used to

represent the hosts in the data center with m × n elements where m is the number

of VMs and n is the number of hosts, and then the total number of each row

should be 1, ∑ ℎ𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 ≤ 1 ∀𝑗𝑗 ∈ 𝑚𝑚 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ℎ𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 0 𝑜𝑜𝑜𝑜1 .

 The host should be sufficient for all VMs allocated to it such that

∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑚𝑚
1=1 ≤ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗,∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦𝑖𝑖𝑚𝑚

1=1 ≤ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗, ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑚𝑚
1=1 ≤ 𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗

where:
VCPUiis the CPU processing speed of VM i
HCPUjis the CPU processing speed of Host j
VMemoryiis the Memory size of VM i
HMemoryjis the Memory size of Host j
VStiis the Storage size of VM i
HStjis the Storage size of Host j

Finally, the objective functions are considered. The VM scheduling algorithm involves

five objectives; the details of each of these are described as follows:

• Power Consumption of the host after allocation (PH): the power

consumption by VMs and the host inside the data center is mainly computed in

terms of CPU utilization of VMs and PMs (in MIPS) based on the power of

active hosts and idle hosts. According to (Beloglazov et al., 2012), the power that

has been consumed by the host in ideal condition is the 70% of their total power

consumed by the host when it is 100% utilized.

𝐏𝐏𝐏𝐏 = 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 + 𝐔𝐔 ∗ (𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 – 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏) (6.5)

where:
PH is the total power consumed by a host
Pidle is the power consumed by idle hosts (70% Pmax (Beloglazov et al., 2012))
Pmax is the maximum power consumed by a host, (suppose 250 W)
U is the CPU utilization when the host is active

171

2. Host Capacity (HC): is computed as shown in Equation 6.4.

3. Host Utilization (HU): the utilization of the host in terms of CPU, memory,

storage, and bandwidth, unlike previous work (see Section 2.5.1) which

includes only CPU and memory utilization. This objective is computed as

shown in Equation 3.9.

4. Data Transfer Time (DTT): the time taken to transfer the data files; this is

based on the bandwidth of the host as shown in Equation 5.3.

5. Data Transfer Cost (DTC): the cost of transferring the data files to the host;

this is based on the cost of bandwidth as shown in Equation 5.4.

Based on these objectives, the fitness function is computed using the modified ranking

algorithm discussed in Chapter 5. Thus, the fitness function is computed by determining

the rank for each objective after which the modified ranking is applied. The minimum

rank is calculated as shown in Equation 6.6 and the sum ranking as shown in Equation

6.7. Finally, the weighted sum of the minimum ranking and the sum ranking is

computed as shown in Equation 6.8.

𝐅𝐅𝐅𝐅(𝐱𝐱) = 𝐦𝐦𝐦𝐦𝐦𝐦 (𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐏𝐏𝐏𝐏), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐇𝐇𝐇𝐇), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐇𝐇𝐇𝐇), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐃𝐃𝐃𝐃𝐃𝐃),

𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐃𝐃𝐃𝐃𝐃𝐃)) (6.6)

𝐅𝐅𝐅𝐅(𝐱𝐱) = 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐏𝐏𝐏𝐏) + 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐇𝐇𝐇𝐇) + 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐇𝐇𝐇𝐇) + 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐃𝐃𝐃𝐃𝐃𝐃) +

𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐃𝐃𝐃𝐃𝐃𝐃) (6.7)

min𝐅𝐅(𝐱𝐱) = 𝟎𝟎.𝟓𝟓 × 𝑭𝑭𝑭𝑭(𝒙𝒙) + 𝟎𝟎.𝟓𝟓 × 𝑭𝑭𝑭𝑭(𝒙𝒙) (6.8)

Algorithm 6.6 outlines the steps involved in scheduling VM over hosts using PSO. It

begins by setting the number of elements in the particles with the number of hosts (Line

1). It then initializes the particles randomly with hosts (Line 2). For each particle, it

calculates the fitness function using Equation 6.8 (Line 4). The values of pbest and

gbest are updated (Lines 5-10), following which the velocity and the position for each

particle are updated as shown in Lines 13 and 14. These steps are repeated until the

iteration maximum is reached, after which the gbest is returned which includes the host

number (Line 17).

172

Algorithm 6.6: MaOPSO VM Scheduling Algorithm.
Input: VM and List of Hosts in the data center
Output: the best host for VM
Procedure MaOPSO_VMScheduling (VM, Hosts)
1. Set elements in the particles = number of Hosts, t=1, tmax=10
2. Do
3. for each particle
4. Calculate solution fitness value // using Equation 6.8
5. If the fitness value is better than Pbest
6. Set Pbest = current fitness value
7. End If
8. If Pbest is better than Gbest
9. Set Gbest = Pbest
10. End If
11. End for
12. for each particle
13. Update particle Velocity // use Equation 2.4
14. Use Velocity to update particle Position // use Equation 2.5
15. End for
16. while (t < tmax)
17. Return Gbest // return the best host for VM
End Procedure

After VM scheduling is finished for each VM, the utilization of the selected host and

the host cluster's lists are updated as shown in Algorithm 6.7. The utilization is

computed according to the number of VMs in the host using Equation 3.8. The

algorithm starts by setting the utilization as zero. Then if the host does not contain VM

then only the utilization of the allocated VM is computed (Lines 1-3). Otherwise, the

utilization of the available VMs is computed as shown in Lines 6-8. The utilization of

the host is updated with the new value and the host's cluster will update (Lines 10 and

11).

Algorithm 6.7: Updating Utilization after VM Scheduling.
Input: Host, VM
Output: update the utilization of Host
Procedure UpdateUtiliazation (Host, VM)
1. Set utilization = 0
2. If Host contains no VM then
3. Set utilization = utilization of VM // using Equation 3.8
4. Else
5. for each v in the Host do
6. utilization = utilization + utilization of v
7. End for
8. End else
9. Set Host utilization with utilization
11. UpdateHostcluster (Host)
End Procedure

173

6.4 Virtual Machine Migration Algorithm

VM migration in cloud computing is one of the techniques that has recently drawn

researchers’ attention and is now an active field of research (see discussion in Section

2.5.2). Power consumption can be reduced considerably because an inactive host or a

host in sleep mode consumes minimal energy (Pietri and Sakellariou (2016)). Reducing

power consumption, which is one of the benefits of VM migration, can be achieved by

switching idle resources to inactive mode when the load is low, and then turning them

on again when the load is high (Wood, 2007). However, to achieve this outcome, VMs

need to be migrated VMs from one host to the other, which may have a negative effect

upon performance or take a long time, which may then lead to an SLA violation. Bad

migration decisions may therefore waste resources and take time, increasing the waiting

time and decreasing the performance in terms of throughput. The migration algorithm

must therefore be designed in a way that not only reduces power consumption, but also

satisfies QoS performance to prevent SLA violation especially in tasks with limited

deadlines, as is the case in this research. In the VM migration method, selecting which

VM to migrate to is another challenging task for which researchers have proposed

several different solutions (see discussion in Section 2.5.2.2).

There are several different approaches to applying VM migration. For example, one

way is to migrate all the VMs in the over-loaded machine to the under-loaded machine

whose residual capacity is big enough to hold them (Lin et al. (2011)). In research

conducted by Beloglazov and Buyya (2010), the under-loaded machines were migrated

to free the resources and then switched off to save power. Such migration can result in

performance degradation of the resources if it is applied without taking into

consideration system load and time as migration is often time consuming. Therefore, a

continuous monitoring scheme can be applied to minimize the number of VM

migrations and ensure optimal performance.

In the proposed model, based on the results of clustering (Section 2.5.2.1), the load

balancer Agent responsible for clustering the hosts checks the lists and if there are hosts

in the high-loaded and under-loaded lists, it calls the VM Manager Agent to start the

migration process. The under-loaded hosts are then placed in sleep mode to save power.

VMs from the hosts that are over-loaded are migrated to other hosts to reduce the

waiting time of the tasks. In addition, all VMs from the under-loaded hosts are migrated

174

to other unloaded hosts and the corresponding hosts are then switched off. The aim is

to balance the load to prevent SLA violations due to long migration time in cases if

migrating many VMs.

The migration algorithm in this model are conducted in the level of hosts by migration

VMs from hosts to another inside data center. This make limitation of applying

migration process and to overcome this limitation, the network communication between

data center is should developed by improving the topology of VMs network to simplify

the communication among VMs which can be improved to developed the proposed

model in future work.

In more detail, Algorithm 6.8 outlines the steps undertake in VM migration. It begins

by checking the high-loaded list if it is not empty it calls the MigrationLoaded

procedure to transfer the VMs from these hosts to unloaded hosts (Lines 1 and 2). It

then checks the over-loaded list to transfer VMs (Lines 3 and 4). Finally, VMs are

migrated from the under-loaded list by calling the MigrationUnderloaded procedure

(Lines 5 and 6).

Algorithm 6.8: VM Migration Algorithm.

Inputs: high-loaded, over-loaded, unloaded, under-loaded lists
Outputs: migration of VMs
Procedure VMmigration (high-loaded, over-loaded, unloaded, under-loaded)
1. If high-loaded is not empty then
2. MigrationLoaded (high-loaded)
3. If over-loaded is not empty then
4. MigrationLoaded (over-loaded)
5. If under-loaded is not empty then
6. MigrationUnderloaded (under-loaded)
7. End if
End Procedure

The procedures involved in VM migration are similar but the difference is that from

under-loaded lists all VMs are migrated to switch off the hosts whilst in the over-loaded

and high-loaded lists one VM is transferred to avoid high-loaded hosts. In Algorithm

6.9, the migration steps start by setting the flag value to false then, for all hosts, it tries

to transfer the VMs to unloaded or under loaded hosts (Lines 4-8). If all VMs transfer

from one host, it is then switched off and removed from under-loaded hosts (Lines 9-

11).

175

Algorithm 6.9: Migration from under-loaded host.
Procedure MigrationUnderloaded (under-loaded)
1. Flag=false;
2. For each host in under-loaded list
3. For each vm in the VM list of the host
4. If (Migratedto (vm, unloaded)) or (Migratedto (vm, under-loaded)
5. Flag = true
6. Continue for all vm
7. Else go to next host
8. End if
9. If flag=true
10. add host to sleep list
11. Remove host from under-loaded list
12. End if
13. End for
End Procedure

If VM migration takes place from high-loaded and over-loaded lists, then Algorithm

6.10 is applied. The algorithm starts by selecting one VM from the host for transfer

based on the minimum migration time, which is computed in Equation 6.9 (Line 2). It

is then migrated to the unloaded list (Line 3). The utilization of the host and the cluster

are then updated (Lines 4-5) and the host is removed from the high-loaded list. The

same process for over-loaded lists is followed in Algorithm 6.11 where, instead of high-

loaded lists, the over-loaded lists are used.

Algorithm 6.10: Migration from high-loaded host.

Procedure MigrationLoaded (high-loaded)
1. For each host in high-loaded list
2. vm = selectvm (host)
3. If (Migratedto (vm, unloaded))
4. Computehost utilization(host)
5. Updatehostcluster(host)
6. Remove host from high-loaded list
7. Else
8. go to next host
9. End if
10. End for

End Procedure

The minimum migration time approach is used to select the VM for migration. This

approach depends on selecting the VM with the least memory to be migrated. This

because a VM with less memory can be migrated faster depending on the bandwidth of

the host. The migration time for each VM is computed by dividing the memory size of

the VM by the bandwidth of the host as shown in Equation 6.9.

176

𝐌𝐌𝐌𝐌 = 𝐑𝐑𝐑𝐑𝐑𝐑(𝐯𝐯)/𝐁𝐁𝐁𝐁(𝐢𝐢) (6.9)

where:
MT is the migration time in seconds
Ram (v) is the size of VM v in MB
BW (i) is the bandwidth of the hosts i

Algorithm 6.11: Migration from high-loaded host.

Procedure MigrationLoaded (over-loaded)
1. For each host in high-loaded list
2. vm = selectvm (host)
3. If (Migratedto (vm, unloaded))
4. Computehost utilization(host)
5. Updatehostcluster(host)
6. Remove host from over-loaded list
7. Else
8. go to next host
9. End if

End Procedure

The processes involved in VM migration from host are listed in Algorithm 6.12. It starts

by initializing the selected host with a null value (Line 1). The MaOPSO algorithm is

then applied to select the host for VM (Line 3). If the process of allocation succeeds,

the utilization of the selected host and the cluster are updated (Lines 7-9).

Algorithm 6.12: Select Host for migration VM.

Procedure migratedto (VM, hosts)
1. selectedhost=null
2. For each host in hosts
3. selectedHost =MaOPSO_VMScheduling (VM, hosts)
4. If selectedHost=null
5. return false
6. Else
7. update selectedhost utilization
8. Updatehostcluster(selectedhost)
9. return true
10. End if
11. End for
End procedure

6.5 Experimental Evaluation

To evaluate the proposed model of VM allocation algorithms the CloudSim simulator

is used. Several classes such as VM_migration, VMScheduling, MaOPSO, modified

Ranking and Clustering classes are added to the simulator to execute our model. In

177

addition, some classes of CloudSim are modified such as Datacenter, Broker, VM and

cloudlet classes.

The specification and characteristics of resources and tasks presented in Section 3.4.1

are used. In the following sections, the experimental methodology and the results of the

evaluation of our proposed model are discussed.

6.5.1 Experimental Methodology

In this section, the methodology for evaluating the proposed model will be discussed.

To evaluate the strategy of VM allocation developed in this research, it will be

compared with single and double thresholds, and the First Fit algorithm (see Section

2.5.2.1) to demonstrate the effectiveness of our approach and determine whether there

is a difference in the results. The First Fit is based on choosing the first host that can fit

the VM without considering any other objectives. In the next section, the results of

these algorithms are compared with the proposed algorithm.

Each experiment was run ten times and the average score across all experiments was

then calculated with 95% confidence intervals. After running the simulation, the

following parameters are measured and used as indicators to test the effectiveness of

the proposed algorithm. To evaluate the performance of the MaOPSO VM allocation

algorithm, the following factors were computed:

• Average Waiting Time: is defined in Equation 3.1.

• Average Completed Time: is defined in Equation 3.2.

• Throughput: is defined in Equation 3.3.

• Average Resource Utilization: is defined in Equation 3.9.

• Profit: is defined in Equation 3.12.

• Power Consumption: is defined in Equation 3.14.

• SLA Violation: is defined in Equation 3.18.

• Imbalance Factor: is defined in Equation 3.20.

178

6.4.2 Experimental Results

In this section, the experimental results will be presented. The model was evaluated

according to several factors that reflect the research goals. These factors include

completion time, waiting time, resource utilization, throughput, profit, power

consumption, migration time, and the number of migrations.

First, the completion time and waiting time are considered. The VM allocation

completion time was tested by determining the submission and finishing time of the

task. The test was repeated using different numbers of tasks in each experiment (see

Table 6.1). As can be seen in Figure 6.1, the completion time for the proposed algorithm

is less than for other algorithms. This is because the selection of hosts to allocate VMs

based on MaOPSO, which depends on five objectives, was improved. The enhancement

in the model is based on selecting the host from an unloaded cluster, which leads to a

reduction in allocation and migration time. The proposed model reduces the completion

time by about 15% compared to other algorithms.

Task Clustering
KPSO

Single
Threshold

Double
Threshold

First Fit

50 88 100 100.2 102
100 88 102 101.8 104
150 90 97 102.6 104
200 93 100 100 105
250 97 99.5 101.5 107
300 98 101.3 103.5 107.3
350 98 100.5 104 108
400 99 102.5 105 109
500 101.3 105.4 106 110

 Table 6.1: Average Completion Time Results (in seconds).

179

Figure 6.1: Average Completion Time (data shown with 95% confidence intervals).

The results of the waiting time experiment are presented in Table 6.2 and Figure 6.2.

These show that an increase in the number of tasks causes the waiting time to increase.

Waiting time includes the mapping time, the time spent queuing the tasks and migration

time prior to the start of execution. This model gives the shortest waiting time compared

to other algorithms because it searches for an optimal allocation of VM. The First Fit

algorithm gives the longest waiting time because it allocates VM to the first fitting host.

Tasks Clustering
KPSO

Single
Threshold

Double
Threshold

First Fit

50 5.063 15.002 10.054 15.114
100 10.028 15.606 12.854 20.042
150 15.403 20.405 18.109 25.062
200 20.088 25.178 21.957 30.919
250 25.388 33.005 28.604 35.118
300 30.991 37.084 35.9 40.916
350 35.521 45.203 40.902 51.505
400 40.578 53.52 47.825 55.969
500 50.934 63.701 57.57 67.231

Table 6.2: Average Waiting Time Results (in seconds).

180

Figure 6.2: Average Waiting Time (data shown with 95% confidence intervals).

Second, the throughput factor is considered. It is used to measure the performance of

the proposed model regarding the execution many tasks in a small amount of time. The

results in Table 6.3 show that, when there is a large number of tasks, the model offers

good performance regarding throughput. This is because our model tries to select the

best host for each VM, which leads to an increase in the number of tasks executed in a

short space of time. By comparing the results in Figure 6.3, it can be inferred that the

throughput of our model is the highest, whereas the throughput of First Fit is the

smallest. Thus, our model maps VMs to hosts in a way that requires less utilization and

high CPU processing, thereby executing more tasks in a shorter space of time.

#Tasks Clustering
 KPSO

Single
 Threshold

Double
 Threshold

First Fit

50 60.3 54.8 55.19 48.9
100 69 62.15 66.21 60.7
150 70.4 65.85 68 61.05
200 73.5 68.75 70.3 62.2
250 76.8 70.75 72.14 65.45
300 79.1 71.88 73.2 66.5
350 81.5 72.88 74.5 68.35
400 83 73.59 75 70.3
450 85.6 74.4 76.3 72.2
500 87.2 75.35 77 73.39

Table 6.3: Throughput Results.

181

Figure 6.3: Throughput Results (data shown with 95% confidence intervals).

Third, the average resource utilization is considered. When the resource utilization in

our system was evaluated and compared to the results of other algorithms, the proposed

model gave the highest utilization. This is because the methodology for allocating hosts

to VMs is taking the host utilization as a factor of evaluating hosts. Moreover, the VM

migration algorithm aims to improve utilization by moving VMs from under-loaded

hosts to unloaded ones to maximize utilization by hosts. Specifically, the resource

utilization increased in line with an increase in the number of tasks (as shown in Table

6.4). Thus, the new algorithm improves utilization by up to 10% compared to single

and double threshold algorithms and up to 20% compared to the First Fit algorithm.

Tasks Clustering
KPSO

Single
Threshold

Double
Threshold

First Fit

50 0.22 0.2 0.21 0.15
100 0.2 0.2 0.22 0.18
150 0.35 0.31 0.29 0.25
200 0.55 0.39 0.42 0.34
250 0.6 0.41 0.46 0.39
300 0.61 0.47 0.52 0.41
350 0.65 0.49 0.51 0.45
400 0.72 0.55 0.63 0.51
450 0.75 0.61 0.62 0.57
500 0.77 0.62 0.66 0.6

Table 6.4: Average Resource Utilization Results.

182

Figure 6.4: Average Resource Utilization (data shown with 95% confidence

intervals).

Fourth, the profits are considered. These are computed as the difference between the

cost of executing all tasks and the cost of power consumed during execution, and the

penalty cost if an SLA violation occurs. Table 6.5 displays the profit results. From

these, it is clear the profit in our model is the greatest. For example, running 300 tasks

in our algorithm gives $38 while executing the tasks using a single threshold algorithm

gives $28.6 and $26.2 when using double thresholds. This means that the profit

increases by a ratio of approximately 30% compared to a single threshold algorithm

and 40% compared to a First Fit. This is because our strategy improves the throughput

by increasing the number of executed tasks, which indirectly improves profit. In

addition, our model reduces the cost of power by moving the unused running hosts into

sleep mode. The profits also benefit from a reduction in the number of failed tasks.

#Tasks Clustering
KPSO

Single
Threshold

Double
Threshold

First Fit

50 5.5 2.9 3.07 2.1
100 6.9 4.3 5.03 3.3
150 13 11.7 9.2 8.3
200 15.7 13.6 12.5 11.9
250 25 20.1 18.8 17.4
300 38 28.6 26.2 23
350 45 37.5 40.7 33.2
400 50 43.6 46.8 41.1
450 56 47.7 48 45
500 63 52.1 51 49.2

Table 6.5: Profit Results.

183

Figure 6.5: Profit Results (data shown with 95% confidence intervals).

Fifth, we consider power consumption. As shown in Table 6.6, there is a reduction in

the power consumed when using the proposed algorithm compared to that consumed

by others. This is because using the VM migration strategy increases the hosts'

utilization and saves power by moving under-loaded hosts to sleep mode. In Figure 6.6,

single and double thresholds give high ratios of power consumption compared to the

proposed algorithm, as they depend on static values that do not reflect the status of the

hosts' utilization for all cases. The clustering KPSO algorithm consumes the least

amount of power compared to all other algorithms because it migrates VMs from under-

loaded hosts to conserve the power of the host. It reduces the consumed power by 15%

compared to the threshold approach and 25% compared to the First Fit algorithm.

Tasks

Clustering
KPSO

Single
Threshold

Double
Threshold

First Fit

50 0.05 0.09 0.07 0.1
100 0.07 0.1 0.08 0.12
150 0.08 0.12 0.09 0.14
200 0.09 0.14 0.1 0.17
250 0.1 0.16 0.12 0.19
300 0.11 0.18 0.14 0.23
350 0.12 0.21 0.16 0.25
400 0.14 0.23 0.18 0.27
450 0.15 0.27 0.23 0.32
500 0.2 0.31 0.25 0.35

Table 6.6: Power Consumption Results.

184

Figure 6.6: Power Consumption Results (data shown with 95% confidence intervals).

Next, the imbalance factor is considered. The imbalance factor results in Figure 6.7

indicate that the proposed algorithm balances the load better than any other algorithm.

This because the load balancer was applied to balance the load and migrate VMs from

over-loaded and high-loaded lists. The First Fit results yield high imbalance factors,

which means that it unbalances the load between hosts because it does not consider the

load balance as a factor during the allocation process.

Tasks

Clustering
KPSO

Single
Threshold

Double
Threshold

First Fit

50 5.3 7.01 8.7 9.09
100 5.8 7.97 9.41 10.2
150 6.6 8.57 9.57 11.5
200 7.5 9.75 10.6 12.4
250 8.01 10.09 11.29 13.6
300 9.3 10.7 12.59 15.9
350 9.8 12.31 14.7 18.3
400 11.3 13.2 15.66 20
450 12.5 14.9 17.34 23.5
500 15.3 18.2 23.87 27.5

Table 6.7: Imbalance Factor Results.

185

Figure 6.7: Imbalance Factor Results (data shown with 95% confidence intervals).

Finally, the SLA violation rate is considered. An SLA violation occurs if the tasks miss

deadlines or if the VM is assigned a greater number of MIPS than was initially

allocated, which increases the waiting time. The SLA violation comparisons in Figure

6.9 show that the proposed model decreases SLA violation by about 25% compared to

the single and double thresholds and by 35% compared to the First Fit algorithm.

Task
Clustering

KPSO
Single

Threshold
Double

Threshold First Fit

50 34.3 45.8 40.3 47.3
100 32.9 52.1 46.4 54.3
150 35.2 55.5 48.2 57.4
200 36.6 58.2 49.5 60.7
250 38.1 60.3 51.2 63.5
300 39.4 61.8 52.8 65.1
350 41.5 62.3 53.6 66.75
400 42.7 63.1 54 68.13
450 39.4 62.6 55.7 71.7
500 37.5 62.9 57.4 72.95

Table 6.8: SLA Violation Rate Results.

186

Figure 6.8: SLA Violation Rate Results (data shown with 95% confidence intervals).

The algorithm will now be evaluated in relation to clustering, where the results will be

compared to PSO and K-means algorithms separately to demonstrate the effective of

the proposed KPSO, which combined the two algorithms. The results were evaluated

in term of clustering time, waiting time, throughput and power consumption. The results

in Figures 6.9 and 6.10 show that the proposed algorithm consumes less in the way of

clustering time and waiting time than the K-means and PSO algorithms because it uses

PSO to initialize the cluster centroids. Consequently, the proposed model executes

more tasks and therefore gives high throughput as shown in Figure 6.11.

Task KPSO K-means PSO

50 0.17 0.28 0.21
100 0.3 0.44 0.37
150 0.4 0.6 0.46
200 0.45 0.72 0.57
250 0.6 0.8 0.65
300 0.71 0.84 0.79
350 0.82 0.92 0.87
400 0.85 1.2 0.96
450 0.9 1.5 1.13
500 1.2 1.6 1.54

Table 6.9: Waiting Time Results.

187

Figure 6.9: Clustering Time Results (data shown with 95% confidence intervals).

Task KPSO K-means PSO
50 0.61 0.73 0.65

100 0.73 0.85 0.78
150 0.82 0.94 0.8
200 0.95 1.5 0.98
250 1.3 1.7 1.5
300 1.6 1.93 1.76
350 1.8 2.3 2.13
400 2.2 2.67 2.46
450 2.4 2.91 2.87
500 2.6 3.4 3.07

Table 6.10: Average Waiting Time Results.

Figure 6.10: Average Waiting Time (data shown with 95% confidence intervals).

188

Task KPSO K-
means PSO

50 60.3 40.8 52.19
100 69 42.7 57.3
150 70.4 51.5 61.2
200 73.5 56.4 65.5
250 76.8 60.5 68.43
300 79.1 63.2 70.1
350 81.5 66.81 72.35
400 83 69.3 74.7
450 85.6 70.4 77.5
500 87.2 73.4 79.2

Table 6.11: Throughput Rate Results.

Figure 6.11: Throughput Results (data shown with 95% confidence intervals).

6.6 Summary

In this chapter, the specification of VM allocation was presented and discussed in detail.

Essentially, the proposed model of VM allocation consists of four steps:

 Clustering hosts based on the host load and utilization using K-means and PSO

algorithms

 Scheduling the VMs to unloaded hosts by finding the appropriate host for each

VM using a MaOPSO algorithm and a modified ranking strategy

 Migrating VMs from high-loaded, over-loaded and under-loaded hosts based on

the minimum migration time

189

 Monitoring the load of the hosts to avoid high-loaded and under-loaded hosts.

The main findings from the experimental analysis are as follows:

• The proposed algorithm provides an improvement in waiting time of up to 15%,

in completion time of up to 15%, and in throughput of up to 15%.

• The utilization of the resources in our model is increased by about 20%

compared to the K-means algorithm due to the effective use of VM migration.

• A noticeable enhancement in profits in our model was observed when increasing

the number of tasks. This is because improving resource utilization indirectly

improves profit by about 20% compared to the single threshold algorithm and

by about 30% compared to the First Fit algorithm.

• Power consumption in our model is reduced by 20% compared to other

algorithms because the VM migration algorithm has been improved.

• The proposed model also provides a small imbalance factor, which means that

it balances loads by about 40% more effectively than other methods.

• Our model reduces SLA violation rates by about 35% compared to the First Fit

algorithm and 25% with thresholds.

• The proposed algorithm reduces waiting time and clustering time compared to

PSO and K-means algorithms.

190

Chapter 7

Conclusions and Future Work

7.1 Conclusions

A model for allocating resources in cloud computing was proposed in this thesis, which

involved improving three aspects: SLA negotiation, task scheduling and VM allocation.

Particle swarm optimization was used to optimize these modules with different variants

depending on the nature of the problem in each case.

For SLA negotiation, parallel PSO is used to improve the process of negotiation

between consumers and multiple distributed data centers with different resources. The

parallel PSO algorithm is used to quicken the process of negotiation and automate the

process to reach agreement in a short amount of time with a reasonable quality solution.

The proposed algorithm for SLA negotiation reduces the waiting time by about 30%

compared to PSO and 20% compared to SPPSO. The throughput increases by about

20% compared to the PSO algorithm. SLA violation rates are improved by about 25%

compared to PSO.

The task scheduling algorithm was improved using a many-objective PSO algorithm

based on a modified ranking strategy. In so doing, this work advanced the state of the

art by improving task scheduling using MaOPSO based on five objectives, and it

devised a modified ranking strategy to evaluate the objective functions. The results of

the modified ranking strategy were used in MaOPSO task scheduling to find an

appropriate VM for each task. This improvement accelerates and simplifies the process

of evaluating objectives in MaOPSO algorithms compared to using Pareto set method

or weighted sum. The work was evaluated empirically by comparing it to a Genetic

algorithm and ACO algorithm for optimization and two heuristic algorithms (Min-min

and Max-min). Our results show that the new algorithm outperformed these algorithms

191

in terms of profits, performance (waiting time, execution time, and throughput),

resource utilization and power consumption. Specifically, MaOPSO maximized

resource utilization and minimized waiting time, demonstrating improvements of up to

40% compared to Min-min. In addition, the VM migration reduced power consumption

by 25% compared to a Genetic algorithm. Profits were improved indirectly by

improving the utilization, as much as 40% in some cases. The improved task scheduling

aimed to reduce the completion time of the tasks, which improves both throughput and

profits. Additionally, the SLA needed be satisfied to reduce any SLA violation caused

by missing task deadlines. Finally, the MaOPSO task-scheduling algorithm increases

throughput, reduces waiting time and shows an improvement up to 30% greater than

the weighted sum objective.

Regarding VM allocation and migration, the strategy for allocating hosts based on

many-objective PSO was improved, enabling it to handle many objectives

simultaneously. Clustering based on PSO and K-means algorithm was applied to define

the threshold limits, improve the migration process and increase the utilization of

resources. Additionally, the VM migration, based on clustering results was developed

to decrease power consumption. The proposed VM allocation algorithm decreases both

the waiting time and completed time by 15% and increased the throughput by about

15%. Moreover, by applying the migration process, it reduced the power consumption

by about 25% and reduced the imbalance factor by 40%. Regarding SLA violation rates,

it reduced violations by about 35%, which improved profits by about 20%.

Thus, from these improvements, performance in terms of waiting time and throughput

was enhanced by reducing the negotiation time and mapping time. Moreover, utilization

of resources was increased and balanced in an efficient way by applying VM migration.

At the same time, power consumption was reduced by closing the under-loaded hosts

during migration process. The profit was indirectly increased due to maximization of

resource utilization and increasing the overall throughput.

7.2 Future Work

Based on the analysis of the literature in Section 2.6 and the results obtained from

applying our model, the following issues need to be addressed in future work.

192

• Improving the Initialization of PSO with Heuristic Algorithms

The MaOPSO used in the scheduling task can be extended to explore different options

for creating an initial population, for example using a Max-min or Min-min approach,

as this will influence the quality of solutions and convergence speed of the algorithm

(as discussed in Section 2.2.2). During the study, it became apparent that, in future

research, further improvements can be made to the initialization of the PSO algorithm,

improving the fitness function, and incorporating the advantages of other clustering

algorithms to improve the efficiency and performance of clustering (see discussion in

Section 2.2.4). It is relatively easy to find more effective algorithms for clustering in

the pattern recognition domain as this depends on the problem and the PSO algorithm

can be used to optimize the clustering algorithm parameters.

• Improving the Load Balancing at The VM Level

In our model, we balance the load of VMs in the hosts. Many benefits can be gain if we

applying balancing load at the level of VMs by distributing the tasks between VMs.

Another meta-heuristic can be combined with PSO to overcome the limitations of PSO.

One suggestion would be to use the Cuckoo search algorithm (CSA), which is a meta-

heuristic optimization algorithm inspired by the behavior of certain cuckoo species

(Yang and Deb (2009)). CSA is mostly used as a single parameter and is well known

for its simplicity and ease of implementation. CSA works with an initial population that

represents a set of cuckoos. The population of cuckoos in the nest will depend on the

host bird. Eggs that are like those of the host have more chance to grow and become a

cuckoo and other eggs will be identified and destroyed by the host bird (Yang and Deb

(2009)).

Compared to the PSO algorithm, which can converge to local optima prematurely, the

CSA algorithm often converges to global optimal solutions. Moreover, the CSA

algorithm can effectively balance the local and global search with the help of a

switching parameter.

193

• Automating the Process of Defining Consumers' Requirements

In this research, it was assumed that the consumer specifies their requirements (see

discussion in Section 3.1). However, a more intelligent method is needed to determine

the consumers' requirements. Moreover, an assessment of the consumers' service

requirements based on different types of application can improve resource utilization,

such that services delivered to the consumer as the ones they require, no more or less.

For example, if consumer's request is running tasks on a resource, the tasks are mapped

to the required resource. In our model and most of the developed scheduling algorithms,

the requirement is determined in terms of CPU, memory, storage and bandwidth rather

than determined by the consumers, which is neither accurate nor precise.

• Scheduling Workflow Applications

The proposed model of task scheduling in Section 5.1 can be improved to handle

applications that have dependencies between tasks, enabling it to deal with workflow

scheduling. This is discussed in Section 2.4.1, and incorporating such functionalities

would extend our approach and allow it to be applied in the scheduling of a wider range

of applications including bioinformatics applications and computational biology.

• Fault Tolerance Factors

The notion of resource failure can be integrated with the allocation process to enhance

reliability. At present this is absent from our approach, as discussed in Section 2.3.5

Resource performance variation should also be added to the monitoring services to

predict the possibilities of failure before it occurs. Incorporating these features into the

proposed model will build greater robustness into the scheduling process. Detecting

faults and recovering the system after failure need to be improved and optimized

because it is a significant requirement in developing any resource management model.

194

• Dynamic SLA

In the scheduling process, there is currently no mechanism to detect the changes in the

SLA violation and adapt the changes in the SLA as discussed in Section 2.3.1. Our

model deals with a static form of SLA that is determined at the beginning of negotiation,

if the SLA can be changed during the execution with specific constraints then more

benefits can be gained in terms of performance and resource utilization. The SLA form

can be checked and evaluated while the resource allocation is proceeding to reflect

changes in system utilization and performance. This suggestion can form part of a long-

term agreement because more changes can be made after the agreement is signed.

• Communication between Data centers

Currently model of resource allocation there is one entity that manages all data centers

and no communication between data centers. This architecture can therefore be applied

to a small number of data centers. However, as the number of data centers increases,

the management process through a centralized manager becomes more complicated and

can be a single point of failure.

To improve the architecture and reduce the communication overheads a multi-agent

system can be used to facilitate communication between data centers, enabling agents

to negotiate to select the best data center for each task to develop distributed manager

model. In addition, improving the strategies of communication between data centers

can improve the balancing load among them and increasing the performance of the

system.

• Improve the network topology of the VM

The main limitation of applying VM migration between data centers is the network

communication, as discussed in Section 2.5.2. In our model, the migration of VMs from

one host to another inside the data center was developed. In future research, VM

migration between data center can be developed to manage the network VM more

efficiently.

195

One of the suggested ways to improve this is to develop virtualized VM in data centers

by optimizing network topologies among virtualized VMs, as discussed in Section 6.4.

This will reduce network communication traffic during the migration of VMs from one

data center to another.

196

References

Abdel-Kader, R. F. (2010, February). Genetically improved PSO algorithm for efficient

data clustering. In Machine Learning and Computing (ICMLC), 2010 Second

International Conference on (pp. 71-75). IEEE.

Abdi, S., Motamedi, S. A., & Sharifian, S. (2014, January). Task scheduling using

Modified PSO Algorithm in cloud computing environment. In International

conference on machine learning, electrical and mechanical engineering (pp. 8-9).

Abdullah, R., & Talib, A. M. (2012, October). Towards integrating information of

service level agreement and resources as a services (RaaS) for cloud computing

environment. In Open Systems (ICOS), 2012 IEEE Conference on (pp. 1-5). IEEE.

Adamuthe, A. C., Pandharpatte, R. M., & Thampi, G. T. (2013, November).

Multiobjective virtual machine placement in cloud environment. In Cloud &

Ubiquitous Computing & Emerging Technologies (CUBE), 2013 International

Conference on (pp. 8-13). IEEE.

Adrian, B., & Heryawan, L. (2015, November). Analysis of K-means algorithm for VM

allocation in cloud computing. In Data and Software Engineering (ICoDSE), 2015

International Conference on (pp. 48-53). IEEE.

Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Yousafzai, A., & Xia, F. (2015).

A survey on virtual machine migration and server consolidation frameworks for

cloud data centers. Journal of Network and Computer Applications, 52, 11-25.Aissi,

H., Bazgan, C., & Vanderpooten, D. (2005). Complexity of the min–max and min–

max regret assignment problems. Operations research letters, 33(6), 634-640.

Ahmadyfard, A., & Modares, H. (2008, August). Combining PSO and k-means to

enhance data clustering. In Telecommunications, 2008. IST 2008. International

Symposium on (pp. 688-691). IEEE.

Abulkhair, M. F., Alkayal, E. S., & Jennings, N. R. (2017, September). Automated

Negotiation using Parallel Particle Swarm Optimization for Cloud Computing

Applications. In Computer and Applications (ICCA), 2017 International

Conference on (pp. 26-35). IEEE.

197

Al-Ayyoub, M., Jararweh, Y., Daraghmeh, M., & Althebyan, Q. (2015). Multi-agent

based dynamic resource provisioning and monitoring for cloud computing systems

infrastructure. Cluster Computing, 18(2), 919-932.

Alkayal, E. S., Jennings, N. R., & Abulkhair, M. F. (2016, November). Efficient Task

Scheduling Multi-Objective Particle Swarm Optimization in Cloud Computing. In

Local Computer Networks Workshops (LCN Workshops), 2016 IEEE 41st

Conference on (pp. 17-24). IEEE.

Alkhashai, H. M., & Omara, F. A. (2016). An Enhanced Task Scheduling Algorithm

on Cloud Computing Environment. International Journal of Grid and Distributed

Computing, 9(7), 91-100.

An, B., Lesser, V., Irwin, D., & Zink, M. (2010, May). Automated negotiation with

decommitment for dynamic resource allocation in cloud computing. In Proceedings

of the 9th International Conference on Autonomous Agents and Multiagent

Systems: volume 1-Volume 1 (pp. 981-988). International Foundation for

Autonomous Agents and Multiagent Systems.

Anuradha, V. P., & Sumathi, D. (2014, February). A survey on resource allocation

strategies in cloud computing. In Information Communication and Embedded

Systems (ICICES), 2014 International Conference on (pp. 1-7). IEEE.Attea, B. A.

A. (2010). A fuzzy multi-objective particle swarm optimization for effective data

clustering. Memetic Computing, 2(4), 305-312.

Arfeen, M. A., Pawlikowski, K., & Willig, A. (2011, July). A framework for resource

allocation strategies in cloud computing environment. In Computer Software and

Applications Conference Workshops (COMPSACW), 2011 IEEE 35th Annual (pp.

261-266). IEEE.

Awad, A. I., El-Hefnawy, N. A., & Abdel_kader, H. M. (2015). Dynamic Multi-

objective task scheduling in Cloud Computing based on Modified particle swarm

optimization. Advances in Computer Science: an International Journal, 4(5), 110-

117.

198

Al-maamari, A., & Omara, F. A. (2015). Task scheduling using PSO algorithm in cloud

computing environments. International Journal of Grid and Distributed

Computing, 8(5), 245-256.

Al-Olimat, H. S. (2014). Optimizing cloudlet scheduling and wireless sensor

localization using computational intelligence techniques. The University of Toledo.

Bagul Dhanashri, R., & Toris Divya, N. (2017). Implementation of Two Level
Scheduler in Cloud Computing Environment. International Journal of Computer
Applications, Volum No.3,, 166(3).

Banerjee, S., & Hecker, J. P. (2017). A Multi-Agent System Approach to Load-

Balancing and Resource Allocation for Distributed Computing. In First Complex

Systems Digital Campus World E-Conference 2015 (pp. 41-54). Springer, Cham.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., ... & Warfield, A.

(2003, October). Xen and the art of virtualization. In ACM SIGOPS operating

systems review (Vol. 37, No. 5, pp. 164-177). ACM.

Baswade, A. M., & Nalwade, P. S. (2013). Selection of initial centroids for k-means

algorithm. IJCSMC, 2(7), 161-164.

Beegom, A. A., & Rajasree, M. S. (2014, October). A particle swarm optimization

based pareto optimal task scheduling in cloud computing. In International

Conference in Swarm Intelligence (pp. 79-86). Springer, Cham.

Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing. Future

generation computer systems, 28(5), 755-768.

Beloglazov, A., & Buyya, R. (2010, May). Energy efficient resource management in

virtualized cloud data centers. In Proceedings of the 2010 10th IEEE/ACM

international conference on cluster, cloud and grid computing (pp. 826-831). IEEE

Computer Society.

Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic consolidation of

199

virtual machines in cloud data centers. Concurrency and Computation: Practice

and Experience, 24(13), 1397-1420.

Belal, M., & El-Ghazawi, T. (2004). Parallel models for particle swarm optimizers.

International Journal on Intelligent Cooperative Information Systems, 4(1), 100-

111.

Benameur, L., Alami, J., & El Imrani, A. (2009, September). A new hybrid particle

swarm optimization algorithm for handling multiobjective problem using fuzzy

clustering technique. In Computational Intelligence, Modelling and Simulation,

2009. CSSim'09. International Conference on (pp. 48-53). IEEE.

Berkhin, P. (2006). A survey of clustering data mining techniques. Grouping

multidimensional data, 25, 71.

Blum, C., & Li, X. (2008). Swarm intelligence in optimization. In Swarm Intelligence

(pp. 43-85). Springer Berlin Heidelberg.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys (CSUR), 35(3), 268-308.

Bohra, A. E. H., & Chaudhary, V. (2010, April). VMeter: Power modelling for

virtualized clouds. In Parallel & Distributed Processing, Workshops and Phd

Forum (IPDPSW), 2010 IEEE International Symposium on (pp. 1-8). Ieee.

Bousselmi, K., Brahmi, Z., & Gammoudi, M. M. (2016, March). QoS-aware scheduling

of workflows in cloud computing environments. In Advanced Information

Networking and Applications (AINA), 2016 IEEE 30th International Conference on

(pp. 737-745). IEEE.

Buyya, R., Beloglazov, A., & Abawajy, J. (2010). Energy-efficient management of data

center resources for cloud computing: a vision, architectural elements, and open

challenges. arXiv preprint arXiv:1006.0308.

Buyya, R., Vecchiola, C., & Selvi, S. T. (2013). Mastering cloud computing:

foundations and applications programming. Newnes.

200

Cabrera, J. C. F., & Coello, C. A. C. (2010). Micro-MOPSO: A Multi-Objective Particle

Swarm Optimizer That Uses a Very Small Population Size.

Cagnina, L., Esquivel, S. C., & Coello Coello, C. (2005). A particle swarm optimizer

for multi-objective optimization. Journal of Computer Science & Technology, 5.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011).

CloudSim: a toolkit for modeling and simulation of cloud computing environments

and evaluation of resource provisioning algorithms. Software: Practice and

experience, 41(1), 23-50.

Chaisiri, S., Lee, B. S., & Niyato, D. (2009, December). Optimal virtual machine

placement across multiple cloud providers. In Services Computing Conference,

2009. APSCC 2009. IEEE Asia-Pacific (pp. 103-110). IEEE.

Chang, J. F., Roddick, J. F., Pan, J. S., & Chu, S. C. (2005). A parallel particle swarm

optimization algorithm with communication strategies.

Chen, J., Han, X., & Jiang, G. (2014). A negotiation model based on multiagent system

under cloud computing. In The Ninth International Multi-Conference on Computing

in the Global Information Technology (pp. 157-164).

Chen, W. N., & Zhang, J. (2009). An ant colony optimization approach to a grid

workflow scheduling problem with various QoS requirements. IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(1), 29-

43.

Cho, K. M., Tsai, P. W., Tsai, C. W., & Yang, C. S. (2015). A hybrid meta-heuristic

algorithm for VM scheduling with load balancing in cloud computing. Neural

Computing and Applications, 26(6), 1297-1309.

Chow, C. K., & Tsui, H. T. (2004, June). Autonomous agent response learning by a

multi-species particle swarm optimization. In Evolutionary Computation, 2004.

CEC2004. Congress on (Vol. 1, pp. 778-785). IEEE.

Copil, G., Moldovan, D., Salomie, I., Cioara, T., Anghel, I., & Borza, D. (2012,

August). Cloud SLA negotiation for energy saving—A particle swarm optimization

201

approach. In Intelligent Computer Communication and Processing (ICCP), 2012

IEEE International Conference on (pp. 289-296). IEEE.

Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., & Dam, S. (2013). A genetic

algorithm (ga) based load balancing strategy for cloud computing. Procedia

Technology, 10, 340-347.

Dastjerdi, A. V., & Buyya, R. (2012, May). An autonomous reliability-aware

negotiation strategy for cloud computing environments. In Proceedings of the 2012

12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(ccgrid 2012) (pp. 284-291). IEEE Computer Society.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE

computational intelligence magazine, 1(4), 28-39.

Durillo, J. J., García-Nieto, J., Nebro, A. J., Coello, C. A. C., Luna, F., & Alba, E.

(2009, April). Multi-objective particle swarm optimizers: An experimental

comparison. In International Conference on Evolutionary Multi-Criterion

Optimization (pp. 495-509). Springer, Berlin, Heidelberg.

Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm

theory. In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the

Sixth International Symposium on (pp. 39-43). IEEE.

Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors

in particle swarm optimization. In Evolutionary Computation, 2000. Proceedings

of the 2000 Congress on (Vol. 1, pp. 84-88). IEEE

Emeakaroha, V. C., Netto, M. A., Calheiros, R. N., Brandic, I., Buyya, R., & De Rose,

C. A. (2012). Towards autonomic detection of SLA violations in Cloud

infrastructures. Future Generation Computer Systems, 28(7), 1017-1029.

Esmaeili, A., & Mozayani, N. (2010, June). Improving multi-agent negotiations using

multi-objective PSO algorithm. In KES International Symposium on Agent and

Multi-Agent Systems: Technologies and Applications (pp. 92-101). Springer,

Berlin, Heidelberg.

202

Fan, S. K. S., & Chang, J. M. (2009). A parallel particle swarm optimization algorithm

for multi-objective optimization problems. Engineering Optimization, 41(7), 673-

697.

Feng, M., Wang, X., Zhang, Y., & Li, J. (2012, October). Multi-objective particle

swarm optimization for resource allocation in cloud computing. In Cloud

Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd International

Conference on (Vol. 3, pp. 1161-1165). IEEE.

Figueiredo, E. M., Ludermir, T. B., & Bastos-Filho, C. J. (2016). Many objective

particle swarm optimization. Information Sciences, 374, 115-134.

Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008, November). Cloud computing and grid

computing 360-degree compared. In Grid Computing Environments Workshop,

2008. GCE'08 (pp. 1-10). Ieee.

Gan, G., Ma, C., & Wu, J. (2007). Data clustering: theory, algorithms, and

applications. Society for Industrial and Applied Mathematics.

Gao, Y., Guan, H., Qi, Z., Hou, Y., & Liu, L. (2013). A multi-objective ant colony

system algorithm for virtual machine placement in cloud computing. Journal of

Computer and System Sciences, 79(8), 1230-1242.

Gao, Y., Peng, L., Li, F., Liu, M., & Liu, W. (2014, August). Multi-objective cloud

estimation of distribution particle swarm optimizer using maximum ranking. In

Natural Computation (ICNC), 2014 10th International Conference on (pp. 321-

325). IEEE.

Garg, H. (2016). A hybrid PSO-GA algorithm for constrained optimization problems.

Applied Mathematics and Computation, 274, 292-305.

Garza-Fabre, M., Pulido, G., & Coello, C. (2009). Ranking methods for many-objective

optimization. MICAI 2009: Advances in Artificial Intelligence, 633-645.

Gautier, T., Besseron, X., & Pigeon, L. (2007, July). Kaapi: A thread scheduling

runtime system for data flow computations on cluster of multi-processors. In

Proceedings of the 2007 international workshop on Parallel symbolic computation

(pp. 15-23). ACM.

203

Gendreau, M., & Potvin, J. Y. (2005). Metaheuristics in combinatorial optimization.

Annals of Operations Research, 140(1), 189-213.

Gonsalves, T., & Egashira, A. (2013). Parallel swarms oriented particle swarm

optimization. Applied Computational Intelligence and Soft Computing, 2013, 14.

Govindarajan, K., Somasundaram, T. S., & Kumar, V. S. (2013, July). Particle swarm

optimization (PSO)-based clustering for improving the quality of learning using

cloud computing. In Advanced Learning Technologies (ICALT), 2013 IEEE 13th

International Conference on (pp. 495-497). IEEE.

Grama, A. (2003). Introduction to parallel computing. Pearson Education.

Guo, L., Shao, G., & Zhao, S. (2012, September). Multi-objective task assignment in

cloud computing by particle swarm optimization. In Wireless Communications,

Networking and Mobile Computing (WiCOM), 2012 8th International Conference

on (pp. 1-4). IEEE.

Gupta, G., Kumawat, V. K., Laxmi, P. R., Singh, D., Jain, V., & Singh, R. (2014,

August). A simulation of priority based earliest deadline first scheduling for cloud

computing system. In Networks & Soft Computing (ICNSC), 2014 First

International Conference on (pp. 35-39). IEEE.

Hao, Y., Wang, L., & Zheng, M. (2016). An adaptive algorithm for scheduling parallel

jobs in meteorological Cloud. Knowledge-Based Systems, 98, 226-240.

Hashmi, K., Alhosban, A., Malik, Z., & Medjahed, B. (2011, July). Webneg: A genetic

algorithm based approach for service negotiation. In Web Services (ICWS), 2011

IEEE International Conference on (pp. 105-112). IEEE.

Hatamlou, A., Abdullah, S., & Othman, Z. (2011, June). Gravitational search algorithm

with heuristic search for clustering problems. In Data mining and optimization

(DMO), 2011 3rd conference on (pp. 190-193). IEEE.

He, P., Liang, Y., & Chou, X. (2014, August). Resource Scheduling Algorithm in

Embedded Cloud Computing and Application. In Advanced Applied Informatics

(IIAIAAI), 2014 IIAI 3rd International Conference on (pp. 425-429). IEEE.

204

Hemalatha, M. (2013). Cluster Based Bee Algorithm for Virtual Machine Placement in

Cloud Data Center. Journal of Theoretical & Applied Information Technology,

57(3).

Huang, Lu, Hai-shan Chen, and Ting-ting Hu. "Survey on Resource Allocation Policy

and Job Scheduling Algorithms of Cloud Computing1." JSW 8.2 (2013): 480-487.

Izakian, H., Ladani, B. T., Abraham, A., & Snasel, V. (2010). A discrete particle swarm

optimization approach for grid job scheduling. International Journal of Innovative

Computing, Information and Control, 6(9), 1-15.

Izakian, H., Ladani, B. T., Zamanifar, K., & Abraham, A. (2009, March). A novel

particle swarm optimization approach for grid job scheduling. In International

Conference on Information Systems, Technology and Management (pp. 100-109).

Springer, Berlin, Heidelberg.

Jayanthi, S. (2014, November). Literature review: Dynamic resource allocation

mechanism in cloud computing environment. In Electronics, Communication and

Computational Engineering (ICECCE), 2014 International Conference on (pp.

279-281). IEEE.

Jena, R. K. (2015). Multi objective task scheduling in cloud environment using nested

PSO framework. Procedia Computer Science, 57, 1219-1227.

Jennings, N. R. (2000). On agent-based software engineering. Artificial intelligence,

117(2), 277-296.

Jennings, N. R., & Wooldridge, M. (1995). Applying agent technology. Applied

Artificial Intelligence an International Journal, 9(4), 357-369.

Kaur, N., & Chhabra, A. (2016, March). Analytical review of three latest nature

inspired algorithms for scheduling in clouds. In Electrical, Electronics, and

Optimization Techniques (ICEEOT), International Conference on (pp. 3296-3300).

IEEE.

Kattan, A., & Fatima, S. (2012, June). Pso as a meta-search for hyper-ga system to

evolve optimal agendas for sequential multi-issue negotiation. In Evolutionary

Computation (CEC), 2012 IEEE Congress on (pp. 1-8). IEEE.Kennedy, J. (2011).

205

Particle swarm optimization. In Encyclopedia of machine learning (pp. 760-766).

Springer US.

Khanesar, M. A., Teshnehlab, M., & Shoorehdeli, M. A. (2007, June). A novel binary

particle swarm optimization. In Control & Automation, 2007. MED'07.

Mediterranean Conference on (pp. 1-6). IEEE.

Khanna, G., Beaty, K., Kar, G., & Kochut, A. (2006, April). Application performance

management in virtualized server environments. In Network Operations and

Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP (pp. 373-381). IEEE.

Koh, Byung‐Il, et al. "Parallel asynchronous particle swarm optimization."

International Journal for numerical methods in engineering 67.4 (2006): 578-595.

Kolomvatsos, K., & Hadjieftymiades, S. (2014). On the use of particle swarm

optimization and kernel density estimator in concurrent negotiations. Information

Sciences, 262, 99-116.

Kuo, R. J., Wang, M. J., & Huang, T. W. (2011). An application of particle swarm

optimization algorithm to clustering analysis. Soft Computing, 15(3), 533-542.

Laguna-Sánchez, G. A., Olguín-Carbajal, M., Cruz-Cortés, N., Barrón-Fernández, R.,

& Álvarez-Cedillo, J. A. (2009). Comparative study of parallel variants for a

particle swarm optimization algorithm implemented on a multithreading GPU.

Journal of applied research and technology, 7(3), 292-307.

Lakra, A. V., & Yadav, D. K. (2015). Multi-objective tasks scheduling algorithm for

cloud computing throughput optimization. Procedia Computer Science, 48, 107-

113.

Lee, G., Tolia, N., Ranganathan, P., & Katz, R. H. (2010, August). Topology-aware

resource allocation for data-intensive workloads. In Proceedings of the first ACM

asia-pacific workshop on Workshop on systems (pp. 1-6). ACM.

Lee, Y. C., Wang, C., Zomaya, A. Y., & Zhou, B. B. (2012). Profit-driven scheduling

for cloud services with data access awareness. Journal of Parallel and Distributed

Computing, 72(4), 591-602.

206

Li, K., Deb, K., Zhang, Q., & Kwong, S. (2015). An evolutionary many-objective

optimization algorithm based on dominance and decomposition. IEEE Transactions

on Evolutionary Computation, 19(5), 694-716.

Lin, C. C., Liu, P., & Wu, J. J. (2011, December). Energy-efficient virtual machine

provision algorithms for cloud systems. In Utility and Cloud Computing (UCC),

2011 Fourth IEEE International Conference on (pp. 81-88). IEEE.

Li-Ping, Z., Huan-Jun, Y., & Shang-Xu, H. (2005). Optimal choice of parameters for

particle swarm optimization. Journal of Zhejiang University-Science A, 6(6), 528-

534.

Lissy, A., & Mukhopadhyay, D. (2014). Negotiation in Cloud During Service Level

Agreement-A Survey. International Journal of Advance Foundation and Research

in Computer, 1(12), 49-58.

Liu, J., Luo, X. G., Zhang, X. M., & Zhang, F. (2013). Job scheduling algorithm for

cloud computing based on particle swarm optimization. In Advanced Materials

Research (Vol. 662, pp. 957-960). Trans Tech Publications.

Liu, H., Xu, D., & Miao, H. K. (2011, December). Ant colony optimization based

service flow scheduling with various QoS requirements in cloud computing. In

Software and Network Engineering (SSNE), 2011 First ACIS International

Symposium on (pp. 53-58). IEEE.

Lopez-Pires, F., & Barán, B. (2015). Virtual machine placement literature review. arXiv

preprint arXiv:1506.01509.

Lopez-Pires, F., Barán, B., Amarilla, A., Benítez, L., Ferreira, R., & Zalimben, S.

(2016, October). An Experimental Comparison of Algorithms for Virtual Machine

Placement Considering Many Objectives. In Proceedings of the 9th Latin America

Networking Conference (pp. 1-8). ACM.

Low, C., Hsu, C. J., & Su, C. T. (2010). A modified particle swarm optimization

algorithm for a single-machine scheduling problem with periodic maintenance.

Expert Systems with Applications, 37(9), 6429-6434.

207

Luo, L., Wu, W., Di, D., Zhang, F., Yan, Y., & Mao, Y. (2012, June). A resource

scheduling algorithm of cloud computing based on energy efficient optimization

methods. In Green Computing Conference (IGCC), 2012 International (pp. 1-6).

IEEE.

Lu, X., & Gu, Z. (2011, September). A load-adapative cloud resource scheduling model

based on ant colony algorithm. In Cloud Computing and Intelligence Systems

(CCIS), 2011 IEEE International Conference on (pp. 296-300). IEEE.

Lu, X., & Zhang, Z. (2015). A Virtual Machine Dynamic Migration Scheduling Model

Based on MBFD Algorithm. International Journal of Computer Theory and

Engineering, 7(4), 278.

Liu, S., Quan, G., & Ren, S. (2010, July). On-line scheduling of real-time services for

cloud computing. In Services (SERVICES-1), 2010 6th World Congress on (pp.

459-464). IEEE.

Madhusudhan, B., & Sekaran, K. C. (2013). A genetic algorithm approach for virtual

machine placement in cloud. In Published in the proceeding of International

Conference on Emerging Research in Computing, Information, Communication

and Applications (ERCICA2013).

Madni, S. H. H., Latiff, M. S. A., & Coulibaly, Y. (2016). An appraisal of meta-

heuristic resource allocation techniques for IaaS cloud. Indian Journal of Science

and Technology, 9(4).

Mahendiran, A., Saravanan, N., Subramanian, N. V., & Sairam, N. (2012).

Implementation of K-means clustering in cloud computing environment. Research

Journal of Applied Sciences, Engineering and Technology, 4(10), 1391-1394.

Maity, S., & Chaudhuri, A. (2014, October). Optimal negotiation of SLA in federated

cloud using multiobjective genetic algorithms. In Cloud Networking (CloudNet),

2014 IEEE 3rd International Conference on (pp. 269-271). IEEE.

Malathy, G., & Somasundaram, R. (2012). Performance enhancement in cloud

computing using reservation cluster. European Journal of Scientific Research,

ISSN, 394-401.Maltese, J., Ombuki-Berman, B. M., & Engelbrecht, A. P. (2016).

208

A Scalability Study of Many-Objective Optimization Algorithms. IEEE

Transactions on Evolutionary Computation.

Malhotra, R., & Jain, P. (2013). Study and comparison of various cloud simulators

available in the cloud computing. International Journal, 3(9).

Mansour, K., & Kowalczyk, R. (2011). A meta-strategy for coordinating of one-to-

many negotiation over multiple issues. Foundations of Intelligent Systems, 122,

343-353.

Mao, Y., Chen, X., & Li, X. (2014). Max–min task scheduling algorithm for load

balance in cloud computing. In Proceedings of International Conference on

Computer Science and Information Technology (pp. 457-465). Springer, New

Delhi.

Mark, C. C. T., Niyato, D., & Chen-Khong, T. (2011, March). Evolutionary optimal

virtual machine placement and demand forecaster for cloud computing. In

Advanced Information Networking and Applications (AINA), 2011 IEEE

International Conference on (pp. 348-355). IEEE.

Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods

for engineering. Structural and multidisciplinary optimization, 26(6), 369-395.

Masdari, M., Salehi, F., Jalali, M., & Bidaki, M. (2016). A Survey of PSO-based

scheduling algorithms in cloud computing. Journal of Network and Systems

Management, 25(1), 122-158.

Mastelic, T., Oleksiak, A., Claussen, H., Brandic, I., Pierson, J. M., & Vasilakos, A. V.

(2015). Cloud computing: Survey on energy efficiency. Acm computing surveys

(csur), 47(2), 33.

Mathew, T., Sekaran, K. C., & Jose, J. (2014, September). Study and analysis of various

task scheduling algorithms in the cloud computing environment. In Advances in

Computing, Communications and Informatics (ICACCI, 2014 International

Conference on (pp. 658-664). IEEE.

209

Mehdi, N. A., Mamat, A., Ibrahim, H., & Subramaniam, S. K. (2011). On the fly

negotiation for urgent service level agreement on intercloud environment. Journal

of Computer Science, 7(10), 1596.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.

Messina, F., Pappalardo, G., Santoro, C., Rosaci, D., & Sarné, G. M. (2014, June). An

agent based negotiation protocol for cloud service level agreements. In WETICE

Conference (WETICE), 2014 IEEE 23rd International (pp. 161-166). IEEE.

Milani, F. S., & Navin, A. H. (2015). Multi-objective task scheduling in the cloud

computing based on the patrice swarm optimization. International Journal of

Information Technology and Computer Science (IJITCS), 7(5), 61.

Miranda, V., & Fonseca, N. (2002, October). EPSO-evolutionary particle swarm

optimization, a new algorithm with applications in power systems. In Transmission

and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES (Vol. 2,

pp. 745-750). IEEE.

Mirzayi, S., & Rafe, V. (2013). A survey on heuristic task scheduling on distributed

systems. AWERProcedia Information Technology & Computer Science, 1, 1498-

1501.

Moorthy, R. S., Somasundaram, T. S., & Govindarajan, K. (2014, September). Failure-

aware resource provisioning mechanism in cloud infrastructure. In Global

Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014

IEEE (pp. 255-260). IEEE.

Munir, E. U., Li, J. Z., Shi, S. F., & Rasool, Q. (2007, August). Performance analysis

of task scheduling heuristics in grid. In Machine Learning and Cybernetics, 2007

International Conference on (Vol. 6, pp. 3093-3098). IEEE.

Naik, B., Swetanisha, S., Behera, D. K., Mahapatra, S., & Padhi, B. K. (2012,

November). Cooperative swarm based clustering algorithm based on PSO and k-

means to find optimal cluster centroids. In Computing and Communication Systems

(NCCCS), 2012 National Conference on (pp. 1-5). IEEE.

210

Netjinda, N., Sirinaovakul, B., & Achalakul, T. (2012, May). Cost optimization in cloud

provisioning using particle swarm optimization. In Electrical

Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON), 2012 9th International Conference on (pp. 1-4). IEEE.

Neshat, M., Yazdi, S. F., Yazdani, D., & Sargolzaei, M. (2012). A new cooperative

algorithm based on PSO and k-means for data clustering.

Nguyen, T. D., & Jennings, N. R. (2003, September). Concurrent bilateral negotiation

in agent systems. In Database and Expert Systems Applications, 2003. Proceedings.

14th International Workshop on (pp. 844-849). IEEE.

Nguyen, Q. T., Quang-Hung, N., Tuong, N. H., & Thoai, N. (2013, January). Virtual

machine allocation in cloud computing for minimizing total execution time on each

machine. In Computing, Management and Telecommunications (ComManTel),

2013 International Conference on (pp. 241-245). IEEE.

Nurika, O., Paputungan, I. V., & Hassan, M. F. (2014). Performance Oriented Genetic

Algorithm Framework of Concurrent SLA Negotiations in Cloud. World Applied

Sciences Journal, 30(30), 280-287.

Omara, F. A., Khattab, S. M., & Sahal, R. (2014). Optimum Resource Allocation of

Database in Cloud Computing. Egyptian Informatics Journal, 15(1), 1-12.

Omezzine, A., Saoud, N. B. B., Tazi, S., & Cooperman, G. (2016, August). Negotiation

based scheduling for an efficient saas provisioning in the cloud. In Future Internet

of Things and Cloud (FiCloud), 2016 IEEE 4th International Conference on (pp.

33-40). IEEE.

Pacini, E., Mateos, C., & García Garino, C. (2014). Dynamic scheduling based on

particle swarm optimization for cloud-based scientific experiments. CLEI

Electronic Journal, 17(1), 3-3.

Panagidi, K., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). An intelligent scheme

for concurrent multi-issue negotiations. Int. J. Artif. Intell., 12(1), 129-149.

211

Panchal, B., & Kapoor, R. K. (2013). Dynamic VM allocation algorithm using

clustering in cloud computing. International Journal of Advanced Research in

Computer Science and Software Engineering, 3(9), 143-150.

Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010, April). A particle swarm

optimization-based heuristic for scheduling workflow applications in cloud

computing environments. In Advanced information networking and applications

(AINA), 2010 24th IEEE international conference on (pp. 400-407). IEEE.

Patel, K. S., & Sarje, A. K. (2012, October). VM provisioning method to improve the

profit and SLA violation of cloud service providers. In Cloud Computing in

Emerging Markets (CCEM), 2012 IEEE International Conference on (pp. 1-5).

IEEE.

Pietri, I., & Sakellariou, R. (2016). Mapping virtual machines onto physical machines

in cloud computing: A survey. ACM Computing Surveys (CSUR), 49(3), 49.

Pittl, B., Mach, W., & Schikuta, E. (2015, December). A negotiation-based resource

allocation model in iaas-markets. In Utility and Cloud Computing (UCC), 2015

IEEE/ACM 8th International Conference on (pp. 55-64). IEEE.

Pongchairerks, P. (2009). Particle swarm optimization algorithm applied to scheduling

problems. ScienceAsia, 35(1), 89-94.

Poola, D., Garg, S. K., Buyya, R., Yang, Y., & Ramamohanarao, K. (2014, May).

Robust scheduling of scientific workflows with deadline and budget constraints in

clouds. In Advanced Information Networking and Applications (AINA), 2014 IEEE

28th International Conference on (pp. 858-865). IEEE.Premalatha, K., &

Natarajan, A. M. (2009). Discrete PSO with GA operators for document clustering.

International Journal of Recent Trends in Engineering, 1(1), 20-24.

Quang-Hung, N., Thoai, N., & Son, N. T. (2012). Performance constraint and power-

aware allocation for user requests in virtual computing lab. arXiv preprint

arXiv:1210.1026.

212

Rahwan, I., Kowalczyk, R., & Pham, H. H. (2002, January). Intelligent agents for

automated one-to-many e-commerce negotiation. In Australian Computer Science

Communications (Vol. 24, No. 1, pp. 197-204). Australian Computer Society, Inc.

Rajavel, R., & Thangarathinam, M. (2015). Optimizing Negotiation conflict in the

cloud service negotiation framework using probabilistic decision making model.

The Scientific World Journal, 2015.

Rana, S., Jasola, S., & Kumar, R. (2011). A review on particle swarm optimization

algorithms and their applications to data clustering. Artificial Intelligence Review,

35(3), 211-222.

Ramezani, F., Lu, J., & Hussain, F. (2013, December). Task scheduling optimization

in cloud computing applying multi-objective particle swarm optimization. In

International Conference on Service-oriented computing (pp. 237-251). Springer,

Berlin, Heidelberg.

Reyes-Sierra, M., & Coello, C. C. (2006). Multi-objective particle swarm optimizers:

A survey of the state-of-the-art. International journal of computational intelligence

research, 2(3), 287-308.

Sahal, R., Khattab, S. M., & Omara, F. A. (2013, May). GPSO: An improved search

algorithm for resource allocation in cloud databases. In Computer Systems and

Applications (AICCSA), 2013 ACS International Conference on (pp. 1-8). IEEE.

Saini, G., & Kaur, H. (2014). A novel approach towards K-mean clustering algorithm

with PSO. International Journal of Computer Science & Information

Technologies,5.

Salman, A., Ahmad, I., & Al-Madani, S. (2002). Particle swarm optimization for task

assignment problem. Microprocessors and Microsystems, 26(8), 363-371.

Sakellari, G., & Loukas, G. (2013). A survey of mathematical models, simulation

approaches and testbeds used for research in cloud computing. Simulation

Modelling Practice and Theory, 39, 92-103.

213

Sakr, S., & Liu, A. (2012, June). Sla-based and consumer-centric dynamic provisioning

for cloud databases. In Cloud Computing (CLOUD), 2012 IEEE 5th International

Conference on (pp. 360-367). IEEE.

Schutte, J. F., Reinbolt, J. A., Fregly, B. J., Haftka, R. T., & George, A. D. (2004).

Parallel global optimization with the particle swarm algorithm. International

journal for numerical methods in engineering, 61(13), 2296-2315.

Schwickerath, U., Jones, R., Shiers, J., Brook, N., Grandi, C., Eck, C., ... & Gibbard,

B. (2005). LHC computing Grid: Technical Design Report (No. CERN-LHCC-

2005-024). CERN.

Shabeera, T. P., Kumar, S. M., Salam, S. M., & Krishnan, K. M. (2017). Optimizing

VM allocation and data placement for data-intensive applications in cloud using

ACO metaheuristic algorithm. Engineering Science and Technology, an

International Journal, 20(2), 616-628.

Shah, M. M. D., Kariyani, M. A. A., & Agrawal, M. D. L. (2013). Allocation of virtual

machines in cloud computing using load balancing algorithm. International Journal

of Computer Science and Information Technology & Security (IJCSITS), 3(1),

2249-9555.

Shankar, A., & Bellur, U. (2010). Virtual Machine Placement in Computing Clouds.

CoRR, vol. abs/1011.5064.

Shaw, S. B., & Singh, A. K. (2014, September). A survey on scheduling and load

balancing techniques in cloud computing environment. In Computer and

Communication Technology (ICCCT), 2014 International Conference on (pp. 87-

95). IEEE.

Shidik, G. F., Sulistyowati, N. S., & Tirta, M. B. (2016, August). Evaluation of cluster

K-Means as VM selection in dynamic VM consolidation. In Communications

(APCC), 2016 22nd Asia-Pacific Conference on (pp. 124-128). IEEE.

Shen, W., Li, Y., Ghenniwa, H., & Wang, C. (2002). Adaptive negotiation for agent-

based grid computing. Journal of the American Statistical Association, 97(457).

214

Shin, S., Kim, Y., & Lee, S. (2015, January). Deadline-guaranteed scheduling

algorithm with improved resource utilization for cloud computing. In Consumer

Communications and Networking Conference (CCNC), 2015 12th Annual IEEE

(pp. 814-819). IEEE.

Shindler, M., Wong, A., & Meyerson, A. W. (2011). Fast and accurate k-means for

large datasets. In Advances in neural information processing systems (pp. 2375-

2383).

Shishira, S. R., Kandasamy, A., & Chandrasekaran, K. (2016, September). Survey on

meta heuristic optimization techniques in cloud computing. In Advances in

Computing, Communications and Informatics (ICACCI), 2016 International

Conference on (pp. 1434-1440). IEEE.

Silaghi, G. C., ŞErban, L. D., & Litan, C. M. (2012). A time-constrained SLA

negotiation strategy in competitive computational grids. Future Generation

Computer Systems, 28(8), 1303-1315.

Simon, D. (2013). Evolutionary optimization algorithms. John Wiley & Sons.

Sim, K. M. (2013). Complex and concurrent negotiations for multiple interrelated e-

markets. IEEE transactions on cybernetics, 43(1), 230-245.

Singh, S., & Chana, I. (2016). A survey on resource scheduling in cloud computing:

Issues and challenges. Journal of grid computing, 14(2), 217-264.

Son, S., & Jun, S. C. (2013, May). Negotiation-based flexible SLA establishment with

SLA-driven resource allocation in cloud computing. In Cluster, Cloud and Grid

Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on (pp. 168-

171). IEEE.

Srinivasan, D., & Seow, T. H. (2003, December). Particle swarm inspired evolutionary

algorithm (ps-ea) for multiobjective optimization problems. In Evolutionary

Computation, 2003. CEC'03. The 2003 Congress on (Vol. 4, pp. 2292-2297). IEEE.

Suresh, M., & Karthik, S. (2014, March). A Load Balancing Model in Public Cloud

Using ANFIS and GSO. In Intelligent Computing Applications (ICICA), 2014

International Conference on (pp. 85-89). IEEE.

215

Taranti, P. G., de Lucena, C. J. P., & Choren, R. (2011, April). A quantitative study

about tardiness in java-based multi-agent systems. In Agent Systems, their

Environment and Applications (WESAAC), 2011 Workshop and School of (pp. 37-

44). IEEE.

Tawfeek, M. A., El-Sisi, A., Keshk, A. E., & Torkey, F. A. (2013, November). Cloud

task scheduling based on ant colony optimization. In Computer Engineering &

Systems (ICCES), 2013 8th International Conference on (pp. 64-69). IEEE.

Thio, N., & Karunasekera, S. (2005, March). Automatic measurement of a qos metric

for web service recommendation. In Software Engineering Conference, 2005.

Proceedings. 2005 Australian (pp. 202-211). IEEE.

Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis

and parameter selection. Information processing letters, 85(6), 317-325.

Tripathi, P. K., Bandyopadhyay, S., & Pal, S. K. (2007). Multi-objective particle swarm

optimization with time variant inertia and acceleration coefficients. Information

Sciences, 177(22), 5033-5049.

Tsai, C. W., & Rodrigues, J. J. (2014). Metaheuristic scheduling for cloud: A survey.

IEEE Systems Journal, 8(1), 279-291.

Tu, K. Y., & Liang, Z. C. (2011). Parallel computation models of particle swarm

optimization implemented by multiple threads. Expert Systems with Applications,

38(5), 5858-5866.

Veeramallu, G. K. S. B. (2014). Dynamically Allocating the Resources Using Virtual

Machines. International Journal of Computer Science and Information

Technologies, 5(3), 4646-4648.

Verma, J. K., Katti, C. P., & Saxena, P. C. (2014). MADLVF: An energy efficient

resource utilization approach for cloud computing. International Journal of

Information Technology and Computer Science (IJITCS), 6(7), 56.

Verma, A., & Kaushal, S. (2014, March). Bi-criteria priority based particle swarm

optimization workflow scheduling algorithm for cloud. In Engineering and

Computational Sciences (RAECS), 2014 Recent Advances in (pp. 1-6). IEEE.

216

Venter, G., & Sobieszczanski-Sobieski, J. (2006). Parallel Particle Swarm Optimization

Algorithm Accelerated by Asynchronous Evaluations. JACIC, 3(3), 123-137.

Wan, L. Y., & Li, W. (2008, July). An improved particle swarm optimization algorithm

with rank-based selection. In Machine Learning and Cybernetics, 2008

International Conference on (Vol. 7, pp. 4090-4095). IEEE.

Wang, S., Liu, Z., Zheng, Z., Sun, Q., & Yang, F. (2013, December). Particle swarm

optimization for energy-aware virtual machine placement optimization in

virtualized data centers. In Parallel and Distributed Systems (ICPADS), 2013

International Conference on (pp. 102-109). IEEE.

Wang, Q., & Zheng, H. C. (2011, April). Optimization of task allocation and knowledge

workers scheduling based-on particle swarm optimization. In Electric Information

and Control Engineering (ICEICE), 2011 International Conference on (pp. 574-

578). IEEE.

Wang, Z., Zhang, J., & Si, J. (2014, July). Application of particle swarm optimization

with stochastic inertia weight strategy to resources scheduling and assignment

problem in cloud manufacturing environment. In Control Conference (CCC), 2014

33rd Chinese (pp. 7567-7572). IEEE.

Warneke, D., & Kao, O. (2011). Exploiting dynamic resource allocation for efficient

parallel data processing in the cloud. IEEE transactions on parallel and distributed

systems, 22(6), 985-997.Wen, X., Huang, M., & Shi, J. (2012, October). Study on

resources scheduling based on ACO algorithm and PSO algorithm in cloud

computing. In Distributed Computing and Applications to Business, Engineering &

Science (DCABES), 2012 11th International Symposium on (pp. 219-222). IEEE.

Whitley, D. (2014). An executable model of a simple genetic algorithm. Foundations

of genetic algorithms, 2(1519), 45-62.

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.

Wu, Z., Ni, Z., Gu, L., & Liu, X. (2010, December). A revised discrete particle swarm

optimization for cloud workflow scheduling. In Computational Intelligence and

Security (CIS), 2010 International Conference on (pp. 184-188). IEEE.

217

Xia, Q., Lan, Y., & Xiao, L. (2015, August). A Heuristic Adaptive Threshold Algorithm

on IaaS Clouds. In Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl

Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on

Scalable Computing and Communications and Its Associated Workshops (UIC-

ATC-ScalCom), 2015 IEEE 12th Intl Conf on (pp. 399-406). IEEE.

Xiong, A. P., & Xu, C. X. (2014). Energy efficient multiresource allocation of virtual

machine based on PSO in cloud data center. Mathematical Problems in

Engineering, 2014.

Xu, H., & Li, B. (2011, April). Egalitarian stable matching for VM migration in cloud

computing. In Computer Communications Workshops (INFOCOM WKSHPS),

2011 IEEE Conference on (pp. 631-636). IEEE.

Xue, S., Li, M., Xu, X., Chen, J., & Xue, S. (2014). An ACO-LB algorithm for task

scheduling in the cloud environment. Journal of Software, 9(2), 466-473.

Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.

Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights [C]//Nature &

Biologically Inspired Computing. In 2009. NaBIC 2009. World Congress on. IEEE

(pp. 210-214).

Yang, W. A., Guo, Y., & Liao, W. H. (2011). Optimization of multi-pass face milling

using a fuzzy particle swarm optimization algorithm. The International Journal of

Advanced Manufacturing Technology, 54(1), 45-57.

Ye, K., Huang, D., Jiang, X., Chen, H., & Wu, S. (2010, December). Virtual machine

based energy-efficient data center architecture for cloud computing: a performance

perspective. In Proceedings of the 2010 IEEE/ACM Int'l Conference on Green

Computing and Communications & Int'l Conference on Cyber, Physical and Social

Computing (pp. 171-178). IEEE Computer Society.

Ye, X., Liu, S., Yin, Y., & Jin, Y. (2017). User-oriented many-objective cloud

workflow scheduling based on an improved knee point driven evolutionary

algorithm. Knowledge-Based Systems.

218

Ying, Y., Shou, Y. Y., & Li, M. (2009). Hybrid genetic algorithm for resource

constrained multi-project scheduling problem. Journal of Zhejiang University

(Engineering Science), 1, 006.

Zhan, S., & Huo, H. (2012). Improved PSO-based task scheduling algorithm in cloud

computing. Journal of Information & Computational Science, 9(13), 3821-3829.

Zhan, Z. H., Liu, X. F., Gong, Y. J., Zhang, J., Chung, H. S. H., & Li, Y. (2015). Cloud

computing resource scheduling and a survey of its evolutionary approaches. ACM

Computing Surveys (CSUR), 47(4), 63.

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and

research challenges. Journal of internet services and applications, 1(1), 7-18.

Zhang, L., & Liu, Q. (2016). An automated multi-issue negotiation mechanism based

on intelligent agents in e-commerce. Journal of Advanced Management Science

Vol, 4(2).

Zhao, S., Lu, X., & Li, X. (2015). Quality of service-based particle swarm optimization

scheduling in cloud computing. In Proceedings of the 4th International Conference

on Computer Engineering and Networks (pp. 235-242). Springer, Cham.

Zhao, J., Yang, K., Wei, X., Ding, Y., Hu, L., & Xu, G. (2016). A heuristic clustering-

based task deployment approach for load balancing using bayes theorem in cloud

environment. IEEE Transactions on Parallel and Distributed Systems, 27(2), 305-

316.

Zhao, C., Zhang, S., Liu, Q., Xie, J., & Hu, J. (2009, September). Independent tasks

scheduling based on genetic algorithm in cloud computing. In Wireless

Communications, Networking and Mobile Computing, 2009. WiCom'09. 5th

International Conference on (pp. 1-4). IEEE.

Zheng, X. (2014). Qos representation, negotiation and assurance in cloud services.

Queen's University (Canada).

Zheng, X., & Jia, Y. (2011, December). A study on educational data clustering

approach based on improved particle swarm optimizer. In IT in Medicine and

Education (ITME), 2011 International Symposium on (Vol. 2, pp. 442-445). IEEE.

219

Zheng, X., Martin, P., Brohman, K., & Zhang, M. (2014). Cloud service negotiation: a

research report. International Journal of Business Process Integration and

Management 10, 7(2), 103-113.

Zhou, Y., & Tan, Y. (2009, May). GPU-based parallel particle swarm optimization. In

Evolutionary Computation, 2009. CEC'09. IEEE Congress on (pp. 1493-1500).

IEEE.

Zhong, H., Tao, K., & Zhang, X. (2010, July). An approach to optimized resource

scheduling algorithm for open-source cloud systems. In ChinaGrid Conference

(ChinaGrid), 2010 Fifth Annual (pp. 124-129). IEEE.

Zhu, W., Zhuang, Y., & Zhang, L. (2017). A three-dimensional virtual resource

scheduling method for energy saving in cloud computing. Future Generation

Computer Systems, 69, 66-74.

