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ABSTRACT 
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Doctor of Philosophy 

 by Entisar Alkayal 

 

Allocating resources in data centers is a complex task due to their increase in size, 

complexity, and consumption of power. At the same time, consumers' requirements 

regarding execution time and cost have become more sophisticated and demanding. 

These requirements often conflict with the objectives of cloud providers. Set against 

this background, this thesis presents a model of resource allocation in cloud computing 

environments that focuses on developing the allocation process in three phases: (i) 

negotiation between consumers and providers to select the data center, (ii) scheduling 

tasks inside data centers, and (iii) scheduling virtual machines (VMs) to physical 

machines. The proposed model attempts to optimize each phase by applying multi-

objective optimization (MOO) and many-objective optimization (MaOO) using a 

particle swarm optimization (PSO) algorithm.  

In more detail, a parallel PSO (PPSO) algorithm based on multi-objective was therefore 

developed to improve the SLA negotiation process between consumers and providers. 

The main insight of this algorithm is that SLA negotiation can be automated and the 

PSO can be parallelized to minimize negotiation time and to maximize system 

throughput, thus increasing the profits of providers.   

A many-objective PSO (MaOPSO) algorithm based on a modified ranking strategy was 

developed to improve the task scheduling problem in each data center. The novelty of 

this algorithm lies in using a modified ranking strategy to minimize evaluation time and 

improve the quality of the results. The algorithm was executed within the constraints 

of the tight deadline to improve performance in terms of both waiting time and 

completion time. 
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Finally, VM allocation was improved by applying a many-objective PSO to allocate 

VMs in physical machines after clustering the hosts. Here the novelty lies in applying 

PSO and K-means when clustering hosts to improve VM allocation and migration, thus 

maximizing resource utilization and performance whilst reducing power consumption.  

Most notably, SLA Negotiation reduced waiting time and completed time by up to 20%. 

Additionally, it increased the throughput by about 20%. The proposed SLA negotiation 

reduced the rates of SLA violations by about 25%. On the other hand, the proposed 

MaOPSO task algorithm reduced the waiting time and completed time by 15% and 20% 

respectively. It increased the throughput up to 15% and the profits up to 15%. 

With respect to MaOPSO VM allocation, it improved resource utilization by up to 20%. 

Additionally, it reduced the power consumption by 25% compared to other algorithms. 

Profits are indirectly increased by improving utilization up to 20%. Finally, the 

MaOPSO VM algorithm led to an increased throughput of 20%, a reduced waiting time 

of 15%, and reduced the completed time up to 15%. 



iii 

Contents 

List of Figures             vi 
List of Tables              viii 
List of Algorithms                                                                                                         x 
Declaration of Authorship                                                                                          xi 
Acknowledgements            xii 
List of Abbreviations                                                                                                 xiii 

1 Introduction              1 
1.1 Resource Allocation in Cloud Computing……...….………………........1                                               

1.1.1 Cloud computing Overview…………….…..………………........1                                                        
1.1.2 Resource Allocation Overview ………….….……………….......4 
1.1.3 Resource Allocation issues in Cloud Environments…..……........7 
1.1.4 Optimization Algorithms in Resource Allocation………..…......11 

1.2 Challenges in Optimizing Resource Allocation    ………………………17 
1.2.1 Service Level Agreement Negotiation……...………….……….17  
1.2.2 Task Scheduling in Cloud Computing………………………….18 
1.2.3 Virtual Machine Allocation……………………...……………..20 

1.3 Research Contributions ……..………………………………………….21 
1.4 Thesis Structure .......………………………………………………........25 

 
2 Related Work           27 

2.1 Meta-Heuristic Optimization Algorithms……..…………………….…27 
2.1.1 Overview……………………………………...……………….. 27 
2.1.2 Swarm Intelligence Algorithms……………………………...…30 

2.1.2.1 Particle Swarm Optimization Algorithm……..…….…31 
2.1.2.2 Ant Colony Optimization Algorithms ………….….…32 

2.1.3 Evolutionary Algorithms………………………………………. 33 
2.1.3.1 Genetic Algorithms………………………………..….33 

2.1.4 Methods of Evaluating Multiple Objectives…...………………..35 
           2.2 Particle Swarm Optimization……..…………...……………………….. 37 

 2.2.1 Overview……..………………….……………………………. 37 
 2.2.2 Improvements on Particle Swarm Optimization Algorithms ..... 41 

2.2.2.1 Modifying the Initializing of Particles……………...... 41 
2.2.2.2 Modifying Based on the Number of Objectives………42 

 2.2.3 Parallel Particle Swarm Optimization……………………........ 44 
 2.2.4 Clustering Based Particle Swarm Optimization…………....…..48 

2.3 Service Level Agreement Negotiation ………………………………… 51 
 2.3.1 Overview.……………………………………………..……..... 51 
 2.3.2 Automated SLA Negotiation Based on Multiple Agents……....56 
 2.3.3 SLA Negotiation Based on Particle Swarm Optimization…...…58 
 2.3.4 SLA Negotiation Based on Parallel Algorithms……..….……...59 
 2.3.5 SLA Monitoring………………………………………………..60 
 2.3.6 Discussion of SLA Negotiation work …..………………….......61 

 
 



iv 

2.4 Task Scheduling in Cloud Computing                                                      62 
 2.4.1 Overview...……………………………………………………. 63 
 2.4.2 Task Scheduling Based on Particle Swarm Optimization...….... 66 
 2.4.3 Task Scheduling Based on Meta-Heuristic Algorithms …….....69 
 2.4.4 Task Scheduling Based on Heuristic Algorithms….…………...70 
 2.4.5 Real-Time Task Scheduling Algorithms………………….…....71     
2.4.6 Discussion of Task Scheduling Algorithms………..…………...72 

2.5 Virtual Machine Allocation ………………………………….…………74 
 2.5.1 Virtual Machine Scheduling ………………………………….. 76 
 2.5.2 Virtual Machine Migration …………………………………… 79 

2.5.2.1 Host Detection Strategies……………………………. 80 
2.5.2.2 Virtual Machine Selection…………………………… 82 
2.5.2.3 Virtual Machine Placement………………….………. 83 

2.5.3 Discussion of VM Allocation Related Work……………………84 
2.6 Summary………………………………………………………………... 85 

 
3 A Resource Allocation Model         88 

3.1Overview………...…………………………………………………..…... 88 
3.2 Design of an Optimized Resource Allocation Model...………………  91 
3.3 General Resource Allocation Architecture …….……....……………   92 
3.4 General Resource Allocation Implementation………...……………... 97 

3.4.1 Configurations and Specifications of Resources……………..  100 
3.4.2 Evaluation Parameters ……………………………………….  103 

3.5 Summary ………………………………...……………………………  109 
 
4 SLA Negotiation Based on Parallel Particle Swarm Optimization                  110 

4.1 Overview…………………………………...……………..…………… 110 
4.2 SLA Negotiation Algorithm Formation…………………………..…  113 
4.3 Sequential PSO Negotiation Algorithm…………………………...…  117 
4.4 Parallel PSO Negotiation Algorithms………………………………..  120 

            4.5 SLA Monitoring Algorithms……...…………………………...…...…  123 
4.6 Parallel PSO Implementation…….……………………………….…   124 
4.7 Experimental Evaluation………….……………………………….…  125 

4.7.1 Experimental Methodology ……………………..…………… 125 
4.7.2 Experimental Results ………………………………………… 128 

            4.8 Summary………………………………………………………………  137 
 
5 Task Scheduling Based on Many Objectives Particle Swarm Optimization      139 

5.1 Overview………………………………………………………………. 139 
5.2 MaOPSO Task Scheduling Algorithm ……….……………………… 142 
5.3 MaOPSO Task Scheduling Implementation …...…………………… 149 
5.4 Experimental Evaluation ………...………………………………..…  149 

                      5.4.1 The MaOPSO Algorithm: Analysis Results…..…………….… 151 
          5.4.2 Evaluating Ranking Method Efficiency in MaOPSO …………. 152 

                      5.4.3 Evaluating MaOPSO Compared to Other Scheduling ……...…. 154 
                      5.4.4 Evaluating MaOPSO Compared to Simple Ranking ………….. 158 
             5.5 Summary …...………………………………………………………… 161 
 
 
 



v 

6 Virtual Machine Allocation using Particle Swarm Optimization                      162 
6.1 Overview………………………………………………………………. 162 
6.2 Clustering Hosts Based on PSO and K-means Algorithms…………  164 
6.3 Virtual Machine Scheduling Algorithm……………………………... 168 
6.4 Virtual Machine Migration Algorithm……………….……………...  173 
6.5 Experimental Evaluation……………………………………………..  176 

6.5.1 Experimental Methodology ………………………………….. 177 
6.5.2 Experimental Results ………………………………………… 178 

6.6 Summary ……………………………………………………………… 188 
 
7 Conclusions and Future Work                                                                              190 

7.1 Conclusions…….……………………………………………………… 190 
7.2 Future Work …..……………………………………………………… 191 

 

References               196 

  



vi 

List of Figures 
 

1.1:   Cloud Computing Technologies          2 

1.2:   Resource Allocation Levels in Cloud Computing.        5 

1.3:   Resource Allocation Optimization Objectives.       13 

1.4:   Resource Allocation Modules.         22 

1.5:   Proposed Resource Allocation Objectives.       23 

 

2.1:   Main Classification of Optimization Techniques.      29 

2.2:   Flowchart illustrating Parallel Particle Swarm Optimization.     46 

2.3:   PPSO Topologies.          48 

2.4:   SLA Management Life Cycle.         53 

3.1:   Optimized Resource Allocation Phases        90 

3.2:   General Architecture of Resource Allocation in Cloud      95 

3.3:   Manager Module Architecture.         96 

3.4:   Architecture of Provider Module.        96 

3.5:   The Entity Relationship Diagram for the Proposed Database.     97 

3.6:   CloudSim Architecture (Calheiros et al. (2011)).    100 

3.7:   Proposed Model Layers        100 

 

4.1:   SLA Negotiation Processes.       113 

4.2:   Flowchart for the SPSO Algorithm.      119 

4.3:   Negotiation Time Results (data shown with 95% confidence intervals). 129 

4.4:   Average Waiting Time Results (data shown with 95% confidence intervals). 129 

4.5:   Throughput Results (data shown with 95% confidence intervals).  130 

4.6:   Average Fitness Value Results (data shown with 95% confidence intervals). 131 

4.7:   Negotiation Time Results (data shown with 95% confidence intervals). 132 

4.8:   Speedup Results (data shown with 95% confidence intervals).  132 

4.9:   Average Waiting Time (data shown with 95% confidence intervals).  133 

4.10: Average Completed Time (data shown with 95% confidence intervals). 134 

4.11: Throughput Results (data shown with 95% confidence intervals).  135 

4.12:  SLA Violation Rate Results (data shown with 95% confidence intervals). 136 

4.13: Total Profit Results (data shown with 95% confidence intervals).  137 



vii 

5.1:  Task Scheduling Phase.        141 

5.2:  Results of MaOPSO in terms of Minimizing Objectives.   151 

5.3:  Results of MaOPSO in terms of Maximizing Objectives.   152 

5.4:  Processing Time Results (data shown with 95% confidence intervals). 153 

5.5:  Average Fitness Results (data shown with 95% confidence intervals).  154 

5.6:  Waiting Time Results (data shown with 95% confidence intervals).  155 

5.7:  Completed Time Results (data shown with 95% confidence intervals). 156 

5.8: Average Utilization of Resources (data shown with 95% confidence intervals). 157 

5.9: Total Profits (data shown with 95% confidence intervals).   158 

5.10: Processing Time Results (data shown with 95% confidence intervals). 159 

5.11: Waiting Time Results (data shown with 95% confidence intervals).  160 

5.12: Throughput Results (data shown with 95% confidence intervals).  160 

 

6.1:  Average Completion Time (data shown with 95% confidence intervals).  179 

6.2:  Average Waiting Time (data shown with 95% confidence intervals).  180 

6.3:  Throughput Results (data shown with 95% confidence intervals).  181 

6.4:  Average Resource Utilization (data shown with 95% confidence intervals). 182 

6.5:  Profit Results (data shown with 95% confidence intervals).   183 

6.6:  Power Consumption Results (data shown with 95% confidence intervals). 184 

6.7:  Imbalance Factor Results (data shown with 95% confidence intervals). 185 

6.8:  SLA Violation Rate Results (data shown with 95% confidence intervals). 186 

6.9:  Clustering Time Results (data shown with 95% confidence intervals).  187 

6.10: Average Waiting Time Results (data shown with 95% confidence intervals). 187 

6.11: Throughput Results (data shown with 95% confidence intervals).  188 
 

  



viii 

List of Tables 

 

3.1.   Specification of Data centers       101 

3.2.   Specification of Host Types.       101 

3.3:   Specification of VM Types.       102 

  

4.1:   Setting of the Parameters for Experiments.     126 

4.2:   Setting of the Parameters for PSO.       126 

4.3:   Negotiation Time and Average Waiting Time Results (in seconds).  128 

4.4:   Throughput Results.        129 

4.5:   Average Fitness Value Results.       130 

4.6:   Negotiation Time (in Seconds) and Speedup Results.     131 

4.7:   Average Waiting Time and Average Completed Time Results (in seconds).  133 

4.8:   Throughput Results.        135 

4.9:   SLA Violation Rate Results.       136 

4.10: Total Profit Results.        137 

 

5.1:   Particle Vector Direct Representation.      143 

5.2:   Task Execution Time (TET).       147 

5.3:   Task Execution Cost (TEC).       147 

5.4:   Data Transfer Time (DTT).       147 

5.5:   Data Transfer Cost (DTC).       148 

5.6:   VM Capacity (VMC).        148 

5.7:   VMs Rank Values.        148 

5.8:   The Setting of the Parameters for PSO.      149 

5.9:   Results of MaOPSO in terms of Minimizing and Maximizing Objectives. 151 

5.10: Processing Time Results.       153 

5.11: Average Fitness Results.       154 

5.12: Waiting Time Results.        155 

5.13: Completed Time Results.       156 

5.14: Average Utilization of Resources.       157 

5.15: Total Profits Results.         158 



ix 

6.1:   Average Completion Time Results (in seconds).    178 

6.2:   Average Waiting Time Results (in seconds).     179 

6.3:   Throughput Results.        180 

6.4:   Average Resource Utilization Results.      181 

6.5:   Profit Results.         182 

6.6:   Power Consumption Results.        183 

6.7:   Imbalance Factor Results.       184 

6.8:  SLA Violation Rate Results.       185 

6.9:   Waiting time Results.        186 

6.10: Average Waiting Time Results.       187 

6.11: Throughput Rate Results.       188 

 

  



x 

List of Algorithms 

 

2.1: General Meta-Heuristic Algorithm        30 

2.2:  Ant Colony Optimization Algorithm        33 

2.3:   The pseudo code of the Genetic Algorithm       34 

2.4:   Pseudo code of a Standard PSO Algorithm       40 

2.5:   Pseudo code of a MOPSO Algorithm based on Pareto set.     43 

2.6:   K-means Clustering Algorithm.         50 

 

4.1:   SLA Negotiation Algorithm.       118 

4.2:   Sequential PSO Negotiation Algorithm.     120 

4.3:   Parallel PSO Negotiation Algorithm.      121 

4.4:   PSO Negotiation Algorithm in data center.     122 

4.5:   SLA Monitoring Algorithm.       123 

 

5.1:   Task scheduling algorithm.       143 

5.2:   MaOPSO Task scheduling algorithm.      144 

5.3:   Modified Ranking Strategy Algorithm.      147 

 

6.1:    VM Allocation Algorithm.       164 

6.2:    Clustering Hosts Algorithm.       166 

6.3:    KPSO Clustering Algorithm.       167 

6.4:    PSO Clustering Algorithm.        168 

6.5:    VM Scheduling Algorithm.       169 

6.6:    MaOPSO VM Scheduling Algorithm.      172 

6.7:    Updating Utilization after VM Scheduling.     172 

6.8:    VM Migration Algorithm.        174 

6.9:    Migration from under-loaded host.      175 

6.10:  Migration from high-loaded host.      175 

6.11:  Migration from high-loaded host.      176 

6.12:  Select Host for migration VM.       176 

  



xi 

Declaration of Authorship 

 

I declare that this thesis and the work presented in it are my own and has been generated 
by me as the result of my own original research. 

 

I confirm that: 

 

1. This work was done wholly or mainly while in candidature for a research degree at 
this University; 

 

2. Where any part of this thesis has previously been submitted for a degree or any 
other qualification at this University or any other institution, this has been clearly 
stated; 

 

3. Where I have consulted the published work of others, this is always clearly 
attributed; 

 

4. Where I have quoted from the work of others, the source is always given. With the 
exception of such quotations, this thesis is entirely my own work; 

 

5. I have acknowledged all main sources of help; 
 

6. Where the thesis is based on work done by myself jointly with others, I have made 
clear exactly what was done by others and what I have contributed myself; 

 

7. Parts of this work have been published in a number of conference (see 
Section 1.3 for a list). 

 

  



xii 

Acknowledgements 
 

At the beginning, praise and gratitude be to ALLAH almighty, without His gracious 

help, it would have been impossible to accomplish this work. Working with this thesis 

has been a very interesting and valuable experience to me and I have learned a lot. I 

want to express my thanks to the people who have been very helpful during the time it 

took me to finish this thesis.  

First, I would like to thank my supervisor Professor Dr. Nicholas Jennings who helped 

me with guidance, supervision, and constructive comments until I completed this work. 

My PhD has been an amazing experience and I thank him wholeheartedly, not only for 

his tremendous academic support, but also for giving me so many wonderful 

opportunities. 

Similar, profound gratitude and deeply thankful goes to my supervisor Dr.Maysoon 

Abu Al-Khair for her efforts with me and for her unlimited help. 

My special gratitude goes to my parents whose love and affection is the source of 

motivation and encouragement for my studies. I would like to thank all my family, all 

my sisters and all my brothers for unconditional support, and for simply being there. 

They were always supporting me and encouraging me with their best wishes.  

Finally, I would like to thank my husband, Abdulaziz Alzanbagi. He was always there 

cheering me up and stood by me through the good times and bad. I thank my daughter 

Gala and my son Faisal, and I would like to give them this work to express my love 

for them and to motivate them for success. 

 

 

Thank you all!  

Entisar Alkayal, November 2017 

 

  



xiii 

 
List of Abbreviations 

ACO  Ant Colony Algorithms 

ASPPSO     Asynchronous Parallel Particle Swarm Optimization 

CPU         Central Processing Unit  

CSA                Cuckoo Search Algorithm 

DTC          Data Transfer Cost 

DTT         Data Transfer Time 

EC2  Elastic Compute Cloud 

ECT         Expected Completed time 

EDF  Earliest Deadline First 

FCFS      First Come First Serve 

FF           First Fit 

FFD      First Fit Decreasing   

GA      Genetic Algorithm 

IaaS         Instruction as a Service 

MBFD     Modified Best Fit Decreasing 

MI      Machine Instruction 

MIPS       Million Instruction Per Second 

MOO      Multi-objective Optimization 

MOPSO  Multi-objective Particle Swarm Optimization  

MaOO            Many Objective Optimization  

MaOPSO  Many-Objective Particle Swarm Optimization 

MCT    Minimum Completion Time  



xiv 

MET               Minimum Execution Time  

Max-min  Maximum-Minimum Completion Time 

Min-min    Minimum-Minimum Completion Time 

NIST   National Institute of Standards and Technology 

NP  Non-Polynomial 

PaaS      Platform as a Service  

PSO         Particle Swarm Optimization 

PPSO      Parallel Particle Swarm Optimization 

QoS         Quality of Service 

RAM       Random Access Memory 

SaaS        Software as a Service  

SLA         Service Level Agreement  

SI      Swarm Intelligence 

SPPSO     Synchronous Parallel Particle Swarm Optimization 

SPV   Small Position Value 

TEC         Task Execution Cost 

TET         Task Execution Time 

TPC         Task Processing Cost 

VMC        Virtual Machine Capacity 

VM      Virtual Machine 



1 

 

Chapter 1  

 

Introduction 
 

This chapter introduces the key problems addressed in this research: resource allocation 

in cloud computing and motivations for optimized solutions. An overview of this 

research is presented in Section 1.1, which includes brief definitions of cloud 

computing, benefits and structure layers. The main challenges regarding resource 

allocation are discussed along with general issues in cloud computing. The motivations 

and challenges regarding optimizing resource allocation are then addressed in Section 

1.2. Section 1.3 focuses on the main contributions and objectives of the research. The 

last section provides a summary of the outline of the thesis. 

 

1.1 Resource Allocation in Cloud Computing 

In this section, an overview of the main concepts pertinent to cloud computing will be 

presented including its definition, structures and models (see section 1.1.1). In addition, 

Section 1.1.2 discusses the definition of resource allocation while Section 1.1.3 

discusses the main issues related to resource allocation in cloud computing 

environments. An overview of methods for optimizing resource allocation in cloud 

computing along with the techniques for applying these will be presented in Section 

1.1.4. 

 

1.1.1 Cloud Computing Overview  

Cloud computing is not an especially new concept; it has long been associated with 

other distributed systems such as grid computing, utility computing, and cluster 

computing (Foster et al. (2008)). It is also frequently associated with virtualized 

infrastructure or hardware on demand, IT outsourcing, platforms and software services, 
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and other IT industry technologies. Cloud computing should not be viewed as a new 

technology; it is a combination of many technologies and paradigms that communicate 

with each other to form a cloud model, as shown in Figure 1.1. 

Figure 1.1: Cloud Computing Technologies. 

Cloud computing is defined in a variety of ways, the most general of which, 

incorporating all cloud technologies and characteristics, is presented by the National 

Institute of Standards and Technology (NIST). NIST define the cloud computing 

environment as: " a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction"(Mell and Grance (2011)).  

Cloud service models are divided into three layers, based on the models of services 

providers supply to consumers. These include Infrastructure-as-a-Service (IaaS), 

Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) layer, each of which is 

defined as follows (Zhang et al. (2010)): 

• IaaS: This layer comprises the infrastructure of cloud environment that includes 

data center resources providing infrastructure services for consumers. The 

capability provided to the consumer is that of renting these resources to run 

software. Two examples of this layer are Amazon Elastic Compute Cloud 

Cloud Computing

Virtualization

Autonomic 
Computing

Internet 
Technology

Grid 
Computing

Utility 
Computing
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(Amazon EC2) and Amazon Simple Storage Service (Amazon S3) (Buyya et 

al. (2013)).  

• PaaS: Middleware provides a runtime environment that allows developers to 

create applications and run them in the infrastructure provided by the provider. 

It responsible for creating applications and frameworks by supporting 

programming languages and tools hosted in the cloud. 

• SaaS: This layer is responsible for delivering services to the consumers. SaaS 

provides full services to the customer rather than requiring customers to install 

software on their computer.  

In this research, the focus is on the IaaS layer of cloud computing because managing 

this layer is an efficient way to improve the performance of all systems. Cloud 

computing has several characteristics that provide benefits for both cloud service 

consumers and cloud service providers. Its main characteristics are on-demand access, 

scalability, pay-per-use, power efficiency, reliability and virtualizing resources (Buyya 

et al. (2013)). Most notably, on-demand access means that the resources are available 

to the customers when they are needed and are in line with their requirements. 

Scalability to meet consumers' needs refers to the ability of the system to continue 

working as the number of consumers changes. A scalability feature enables cloud 

computing to scale resources up or down based on consumers' requirements. Pay-per-

use in cloud computing means that the consumer only pays for the resources they use. 

Power efficiency refers to the strategies that can be applied to use energy more 

efficiently and reduce consumption. Reliability means that the consumer will be 

provided with uninterrupted services and resources in line with the agreed Quality of 

Services (QoS). These services include virtualization, which allows multiple instances 

of operating systems to run in parallel on a single physical machine (host), and thus 

defines the concept of virtual machines (VMs) (Ahmad et al. (2015)). This functionality 

is achieved through the creation of multiple VMs that host different operating systems, 

thus providing flexible cloud applications.  

The NIST definition lists four deployment structures that describe models for delivering 

cloud services to consumers (Mell and Grance (2011)). These configuration models 
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vary in management complexity, security implications and their associated costs 

(Zhang et al. (2010)). The details of these models are as follows:  

• Private: In a private cloud, one organization manages and maintains the 

resources. A drawback of this approach is that the benefits of multitenancy, the 

economy of scale and associated cost savings, are not realized. This deployment 

model is preferred when data privacy and security are of paramount importance.  

• Public: In a public cloud, resources are provided to the public and a pay-per-

use policy is implemented. The resources are therefore managed and monitored 

by an external provider. This deployment model is chosen when there are large 

numbers of users. Organizations can therefore use public clouds to reduce the 

cost of resources. 

• Hybrid: A hybrid cloud combines both private and public clouds and is 

managed and controlled by one organization. This deployment model provides 

the benefits of enhanced scalability and reduced cost offered by public clouds, 

along with the security provided by private clouds, thus facilitating the 

deployment of certain sensitive applications internally. 

• Community: In a Community cloud, several organizations share infrastructure 

to implement the same terms of service as well as access policies.  

This work focuses on the private cloud model because only one provider will be used 

to manage and control the distributed data centers. This model is chosen because it is 

secure and is preferable for use in small organizations such as universities and 

institutions. The model can be extended to apply in public cloud and adding some 

procedures for authentication and security.  

 

1.1.2 Resource Allocation Overview 

Resource allocation has been an issue of concern for many areas of computing, 

including operating systems, grid computing, and data center management (Anuradha 

and Sumathi (2014)).  Regarding cloud computing, resource allocation describes the 

process of mapping available resources to cloud services over the Internet.  Specifically, 

the term resource allocation in a cloud context is defined as the process of finding hosts 

in the infrastructure of cloud providers to run the applications for consumers in a way 



5 

 

that utilizes resources efficiently based on predefined goals (Jayanthi et al. (2014)). It 

therefore describes any mechanism that aims to guarantee the requirements of 

applications are correctly met by the provider’s infrastructure (Singh and Chana 

(2016)).  

Data centers in the infrastructure of cloud computing are designed with the capability 

of applying virtualization. Virtualization is a mechanism for dividing computational 

resources into multiple isolated executional components known as Virtual Machines 

(Barham et al. (2003)). Virtualization provides several advantages such as the flexibility 

to configure several virtual machines on the same host. It also facilitates the dynamic 

initiation and termination of VMs on a host based on the task requirements and the 

hosts' specifications. The number of CPU cores in each host determines the number of 

VMs each host can run (in this research it is assumed that each VM needs only one 

core). In most of the methods for allocating resources, the tasks are mapped to the 

virtual machines before they have been assigned to hosts. Therefore, most resource 

allocation methods are developed in such a way that two consecutive levels are involved 

(see Figure 1.2) (Huang et al. (2013)).  In the first level, tasks are assigned to the 

appropriate virtual machine based on their requirements, while in the second level the 

virtual machines are scheduled to appropriate physical machines. This research will aim 

to improve resource allocation in both levels (Bagul Dhanashri and Toris Divya 

(2017)).  

 

 

 

 

 

 

 

 

Figure 1.2: Resource Allocation Levels in Cloud Computing. 

Task Scheduler 

Mapped VMs 

Mapped Tasks 

C
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Specifically, the task scheduling problem in the first level can be defined as the process 

of searching for the optimal mapping of the set of tasks over the available set of virtual 

resources to satisfy predefined specific objectives. In the second level, virtual machine 

allocation refers to the process of selecting which virtual machine should be mapped to 

the given set of physical machines in the data center. The virtual resource allocation 

process involves dynamically creating and destroying virtual machines from any 

resource, without affecting the execution of the application (Khanna et al. (2006)). 

Allocating resources at the virtual machine level therefore offers many different 

benefits such as flexibility in allocating and migrating virtual resources.  The flexibility 

that has been achieved using virtual machines encompasses flexibility in determining 

the location of hosts and dealing with resources where the type of operating system or 

the hardware specifications are known. Furthermore, virtual machine allocation 

provides the flexibility to migrate a virtual machine from one host to another.  Using 

VM migration in this way maximizes resource utilization, improves performance, and 

reduces power consumption (Ahmad et al. (2015)). However, cloud providers and cloud 

consumers have different and conflicting requirements and objectives.  Moreover, the 

resources in the cloud infrastructure dynamically change in terms of load and 

availability, making resource allocation in cloud computing a complex problem. The 

effective and efficient allocation of resources is one of the key essential requirements 

in cloud computing environments, and thus improving resource allocation is now a cen-

tral concern.   

However, resource allocation algorithms need to be improved to cope with the 

elasticity, scalability, increasing resources, and cost in the cloud environment (Madni 

et al. (2016)). Traditional algorithms are inadequate for allocating resource in cloud 

computing as the cloud resources are based on virtualization technology. Optimizing 

resource allocation algorithms in cloud computing has therefore attracted the attention 

of several researchers. The challenges for managing resources in cloud computing 

revolve around heterogeneity in hardware capabilities, workload estimation, and the 

cloud consumer’s requirements regarding QoS (Madni et al. (2016)). These will be 

discussed in more detail in the following sub-sections. 
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1.1.3 Resource Allocation issues in Cloud Environments 

There are many issues associated with resource allocation in cloud computing 

environments including QoS, power consumption, VM migration, provider profits, 

utilization cost and multi-agent systems. In this section, an overview of these issues and 

their relationship to the proposed research will be presented and discussed. 

The QoS and Service Level Agreement (SLA) will be addressed first because it is 

extremely important in the management of cloud computing and providing services. 

QoS represents the levels of execution, dependability, and accessibility offered within 

services (Zheng (2014)). In the context of cloud computing, QoS is therefore a key 

concern for cloud consumers and providers. Negotiation between providers and 

consumers should thus be conducted to find agreement in terms of an SLA, which 

specifies the QoS attributes. Based on the SLA, the providers should guarantee the 

requirements and satisfy the QoS. However, if the provider cannot provide the required 

quality, they are penalized. This research study will therefore show how to improve the 

negotiation process between cloud providers and consumers by using optimization 

techniques to reach an agreement within a short time.  

 The second issue will be addressed is the power consumption, which is defined as the 

rate at which a system will perform work, while energy can be defined as the amount 

of work done in a certain time (Zhu et al. (2017)).  The management of power 

consumption in cloud data centers has led to several improvements in energy efficiency 

(Bohra et al. (2010)). In cloud computing, there is a need to design resource allocation 

algorithms to reduce the total power consumption of the system (Nguyen et al. (2013)). 

Specifically, cloud computing involves techniques such as the virtualization of 

computing resources, which can be used to improve the efficiency of the power 

consumption in cloud environments (Buyya et al. (2010)).   

Allocation based on the need for an efficient use of power is becoming increasingly 

important in cloud computing environments. Moreover, power management is urgently 

needed due to the increasing demands of computing power and the consumption of 

power in data center cooling resources. However, the cost of power is an important 

factor for any provider because a reduction in power consumption leads to a reduction 

in the cost of cloud infrastructure (Ahmad et al. (2015)). Currently, the main aim of 
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VM allocation based on power techniques is to map VMs onto a smaller number of 

hosts. The hosts can be utilized to maximize efficiency and the idle resources, 

depending on the load conditions, can be hibernated or shutdown to save power. In this 

research, power consumption will be considered in VM allocation and migration 

simultaneously with QoS performance and utilization of resources.  

In terms of virtual machine migration, this provides advantages in the cloud by load 

balancing across data centers. Detecting over-loaded resources and under-loaded 

resources effectively is a key concern when applying VM migration from one resource 

to another. The execution of the migration process therefore needs to be implemented 

effectively to prevent a negative impact on performance. In this research, VM migration 

will be used to balance the load and utilize the resources in an efficient way. This 

research will focus on optimizing the method of detecting the status of resources by 

applying clustering techniques because they provide accurate and adaptive results. 

In terms of profitability, the goal in many cases is to maximize the profit earned by 

cloud data centers, while taking into consideration the QoS. Before allocating tasks to 

the VMs, the cost of executing that task will be calculated using a profit model. In this 

model, the profit from the provider's resources depends on three major features: the 

execution cost of the physical resources, the utility cost of power consumption, and the 

penalty cost the provider should pay if there is a violation of the agreement. Several 

studies have examined how to maximize profit, for example by minimizing the power 

of active hosts (Wang et al. (2013)), rescheduling VMs (Ahmad et al. (2015)), and 

exploiting the penalty when exceeding the deadline, which is a predefined cost set by 

the provider (Lee et al. (2012)). In the latter study, Lee et al. devised two profit-based 

algorithms known as Max Utilization (MaxUtil) and Max Profit (MaxProfit). The 

former focuses on utilization and indirectly reduces the cost of running resources as 

well as ensuring efficient utilization. The latter focuses on profit by selecting a task 

with the earliest start in the queue, which is then, maintained using the MaxUtil 

technique. In the research reported in this thesis the focus will be on maximizing profit 

by combining the methods of minimizing the number of VMs and rescheduling VMs 

to reduce the number of running hosts. This methodology is akin to the MaxUtil 

algorithm, as the focus is on maximizing utilization, which increases profit indirectly 
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by reducing the cost of execution. However, the method proposed in this research will 

improve both utilization and performance in term of waiting time and throughput. 

Chaisiri et al. (2009) developed a multi-objective mechanism for scheduling 

applications that takes into consideration various cost constraints and the availability of 

resources. In this research, the focus will be on maximizing utilization by using VM 

migration, and without using any specific techniques to optimize profit. Profits can be 

indirectly improved by maximizing the utilization and reducing the number of SLA 

violations as these involve penalties. 

In terms of cost efficiency, the common method for determining cost in cloud 

computing is to use a pay-per-use model to ensure minimal costs and payment purely 

for the resources used (Pietri and Sakellariou (2016)). To maintain this feature, cloud 

management algorithms are responsible for offering resources that can complete the 

consumer's request on time, within their budget, and at the lowest cost that can be 

offered. This incorporates resources such as processing cost, memory cost, storage cost, 

and data transfer cost. Cost aware algorithms are therefore required that are cost 

efficient and can provide the best system performance by improving both utilization 

and power consumption. These types of algorithm are described as multi-objective 

algorithms, because many objectives need to be taken into consideration to guarantee 

optimal performance. In this thesis, the cost of using resources will be considered in 

terms of processing, memory, storage, and transfer data. The proposed model is based 

on distributed data centers; therefore, bandwidth cost is an important factor to consider 

when allocating resources for consumers. 

Finally, multiple agents are considered in resource allocation. An agent is a software 

entity that acts on behalf of another entity to perform a specific task satisfy specific 

goals (Wooldridge (2009)). Agent systems are self-contained software programs with 

domain knowledge that can work with a degree of independence and follow specific 

actions to satisfy predefined goals (Jennings and Wooldridge, 1995). Agents include a 

set of features (Wooldridge (2009)), the main ones of which are autonomy, pro-activity, 

re-activity, cooperation, negotiation and learning. The concept of autonomous behavior 

means that agents can be satisfied their objectives are on the behalf of users. 

Additionally, agents can pursue their own individual goals, including taking decisions 
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based on internal and external events. Moreover, agents communicate with other agents 

to exchange information, receive instructions, give responses, negotiate, and cooperate 

to fulfill their own goals. Finally, agents are able to improve the decision making 

process when interacting with the external environment. 

Multiple agents are a set of agents that interact together to resolve a complex problem 

using their combined knowledge (Taranti et al. (2011)). Multiple agents are conceived 

as a distributed computing model whereby they interact to exchange information and 

execute complex tasks that require dynamic, intelligence and adaptive interaction 

(Wooldridge (2009)). 

The design of agents and their inherent features means they are well suited for creating 

complex systems (Jennings (2000)). Using agents can thus simplify the design and 

implementation of such systems, as it is not necessary to consider all possible links, 

interactions and states. Instead, agents can be programmed with specific behaviors, 

enabling them to deal with unknown states and interactions as they occur. Furthermore, 

agents can be used individually, either by assigning each one of them to work on a 

specific aspect of the problem or by cooperating to solve a problem in a distributed 

fashion. 

Software agents can be used to model intelligence in distributed systems such as cloud 

environments in order to improve adaptability, flexiblility, and display autonomic 

charactaristics. Specifically, agents can be applied in resource allocation, providing 

services and in executing large-scale distributed services (Banerjee and Hecker (2017)). 

They can therefore be used to provide intelligent monitoring capabilities and 

management services. Additionally, agents can be applied to ensure the efficient use of 

energy in cloud computing infrastructures. They can also make the cloud smarter in its 

interaction with users and more efficient in providing services (Al-Ayyoub et al. 

(2015)). Agent-based management can be applied in cloud computing at all three layers 

(Al-Ayyoub et al. (2015)). In the IaaS layer, agents can be applied to manage and 

provide intelligent allocation of resources to consumers. In the PaaS layer, agents can 

be applied in the deployment process and in the execution of programming 

environments to implement the applications. In addition, agents are used in the PaaS to 

implement the management functionalities of cloud environments. Finally, in the SaaS 
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layer, agents can be utilized to optimize the services provided to the consumers. 

Furthermore, they can be used as interfaces for managing the underlying 

hardware/software infrastructure to ensure efficient utilization and that the QoS is 

satisfied. In this thesis, the focus will be on how to use agents to manage and allocate 

resources in the IaaS layer and, at the same time, monitor and negotiate with consumers 

in the PaaS layer. 

Agent organizations also provide a framework of constraints and expectations 

regarding the agents’ behavior by focusing on the decision-making and actions of 

specific agents (Wooldridge (2009)). The agents in this research will be designed to 

manage consumers' tasks, allocate VMs, balance the load of VMs, monitor the SLA 

agreements and utilize the resources.  

 

1.1.4 Optimization Algorithms in Resource Allocation  

Optimization is a rapidly expanding field of research that plays a vital role in addressing 

real world problems. As discussed previously, resource allocation is a key problem that 

needs to be optimized regarding the issues arising from different objectives. In this 

section, optimization algorithms in resource allocation will be discussed in detail. 

Optimization is defined as the process of finding the best possible solution amongst all 

those available in the search space (Gendreau and Potvin (2005)). Specifically, 

optimization algorithms are responsible for modeling and evaluating solutions based on 

an objective function and then applying search methods to find the best solution (Yang 

(2010)). An objective function can be computed based on single or multi-objective 

depending on how many objectives are involved in the evaluation methodologies. In 

multi-objective optimization, the best value for each objective is included in the 

evaluation of objective functions. Multi-objective optimization aims to seek in the 

search space, where each objective is represented by a vector of decision variables to 

satisfy specific constraints (Marler and Arora (2004)).   

Optimization algorithms are needed in most modern applications due to the limited 

number of resources available. Furthermore, time is a significant concern because most 

applications work in real-time; algorithms therefore need to reduce the waiting time 

and allocate resources quickly. Thus, solutions need to be found in order to manage and 
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allocate the resources efficiently and under predefined constraints to fulfil consumers' 

requests and respond to providers' objectives.  

However, some complex multidimensional problems cannot be solved using 

deterministic optimization techniques (which follow the same steps at each iteration 

and provide the same results), but can be solved using heuristic algorithms (Blum and 

Roli (2003)). Such algorithms suggest some approximations to the solution for 

optimization problems with low time complexity (Yang (2010)). Nowadays, meta-

heuristic optimization algorithms are widely used in solving Non-Polynomial (NP) hard 

problems (Yang (2010)). Meta-heuristic algorithms in particular are used to find near 

optimal solutions in a reasonable amount of computation time (Masdari et al. (2016)). 

This is because meta-heuristic algorithms provide better quality results than 

deterministic algorithms and can find solutions faster than traditional exhaustive 

algorithms (Madni et al. (2016)). To achieve this, meta-heuristic algorithms use 

iterative strategies with randomness. Thus, meta-heuristic techniques are used in many 

lines of research to address problems that require fast results using reasonable solutions. 

For example, in terms of the resource allocation problem, they have been shown to 

produce better scheduling results than traditional scheduling algorithms (see sections 

2.4.3 and 2.4.4 for more detail). For these reasons, this thesis will focus on meta-

heuristic approaches. 

In particular, we will focus on Swarm Intelligence (SI) as this is one of the more 

common meta-heuristic techniques. SI is a meta-heuristic that has been developed to 

solve optimization problems by simulating the behavior of social insects (Blum and Li 

(2008)). SI algorithms are used in complex distributed systems because there is no need 

for a central control structure. In addition, SI algorithms provide an elastic and flexible 

resource allocation as they add or remove resources without influencing the overall 

structure (Blum and Li (2008)). SI includes several algorithms such as Ant Colony 

Algorithms (ACO) and Particle Swarm Optimization (PSO) (Madni et al. (2016)).   

With the development of cloud computing, there is now a pressing need to study and 

improve both the methods and the algorithms of resource allocation (as argued in 

Section 1.1.2). Resource allocation plays a key role in cloud computing systems 

because it directly affects the performance of the overall system. An efficient resource 
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allocation mechanism can meet consumers' requirements, and at the same time improve 

the utilization and profit for the provider. Given the features of cloud computing, such 

as flexibility, virtualization and so on, two levels of allocation mechanisms can be 

applied in cloud computing. The first is the task scheduling level, which schedules the 

tasks over available VMs, while the second level involves distributing the VMs over 

the host. In cloud computing, resource allocation involves the process of assigning 

available resources to the cloud applications that need those (Buyya et al. (2013). 

Resource allocation in the IaaS in cloud computing has attracted considerable attention 

in the research literature. In the IaaS layer, resource allocation uses VMs to execute 

consumers' requests. Several meta-heuristic algorithms have been developed by 

research scholars to optimize the allocation of resources in this level.  

Resource allocation in cloud environments is, however, a complex task due to the 

geographical distribution of resources with varying load conditions, different user 

requirements and price models (Jayanthi et al. (2014)). Depending on the main 

objectives, resource allocation techniques in the cloud are classified as SLA and QoS, 

cost optimization, load balancing, resource utilization, and energy efficiency metrics 

(as shown in Figure 1.3).  

 

Figure 1.3: Resource Allocation Optimization Objectives. 
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Importantly, cloud providers need optimization algorithms to improve management and 

monitoring methods and maximize resource utilization and profit (Sahal et al. (2013); 

Omara et al., (2014)). In addition, SLA in terms of QoS parameters is another issue that 

needs to be considered when developing efficient resource allocation. However, some 

researchers have developed resource allocation to satisfy one or more optimization 

objectives, as will be discussed in section 2.3.2. 

Resource allocation in cloud computing is therefore a field where many problems need 

to be addressed to optimize and increase the performance of cloud systems. In this 

thesis, three significant problems arising when allocating cloud computing resources 

will be addressed. The first is that of optimizing the SLA negotiation between cloud 

consumers and providers, which requires completing many processes to reach an 

agreement quickly and then monitoring this agreement to reduce the number of SLA 

violations. The second problem concerns scheduling tasks in virtual machines to select 

an appropriate VM that will run tasks based on several predefined objectives. The third 

problem involves optimizing the VM allocation and migration algorithms to utilize 

cloud resources efficiently, balance the load and reduce power consumption, which 

improve QoS performance and increase profits for providers. 

As cloud computing resources become more distributed, QoS will become increasingly 

important for cloud consumers and cloud providers in satisfying several and conflicting 

objectives (Zheng (2014)). Therefore, to reach an SLA, a negotiation mechanism 

should be implemented. SLA negotiation is important in guaranteeing the performance 

of the cloud and developing trust between cloud consumers and cloud providers. The 

SLA negotiation processes need to be optimized and conducted within a short space of 

time by reducing the number of rounds involved in the negotiation. Additionally, 

automated negotiation needs to be developed to reduce communication between parties 

and thus reduce the time spent on negotiation. Furthermore, preventing SLA violations 

will avoid any costly penalties the providers need to pay to guarantee the QoS. During 

the negotiation process, the parties exchange information to indicate their negotiation 

goals and requirements. If multiple objectives are involved, this becomes a complicated 

problem because many factors need to be considered during the negotiation process. In 

this research, the aim is to improve the SLA negotiation mechanisms by reducing 

negotiation time between consumers and providers.  
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The second problem is that of task scheduling which is a critical problem in cloud 

computing environments; this is related to the efficiency of cloud computing facilities, 

which is considered an NP-hard problem (Guo et al. (2012)). Many researchers have 

explored ways of finding optimal mapping between tasks and virtual machines to 

improve scheduling algorithms and satisfy several objectives. However, there are many 

conflicting objectives of the consumers and providers need to be addressed. Different 

experiments show that, although finding an optimum solution is almost impossible, a 

sub-optimal solution using meta-heuristic algorithms can be reached. In this research, 

the task scheduling algorithm deals with five objectives, which require an optimized 

method to evaluate them given the time constraints. Thus, a modified ranking strategy 

will be developed to enhance the scheduling algorithm and reduce the mapping time to 

deal with many-objective where more than three objectives are involved (as will be 

described in Section 2.2.2.2). 

The third problem is that of allocating virtual machines to hosts and migrating them in 

a way that improves utilization and reduces the power consumption. Different strategies 

for allocating resources (virtual or physical) result in different levels of efficiency 

(Chaisiri et al. (2009)).  This thesis will explore how to use clustering technologies to 

improve the method for detecting the status of hosts in the cloud data centers, and thus 

schedule and migrate VMs to provide dynamic and effective methods of balancing the 

load among hosts. The aims of optimizing VM allocation are therefore to reduce the 

migration time of VMs, improve the utilization of the resources, reduce power 

consumption, and balance the load among hosts.  

In cloud computing, it is important to develop algorithms for allocating resources 

quickly to reduce waiting time and the number of missed deadlines of tasks. Meta-

heuristic methods have occupied a strong position in research on optimizing cloud 

computing over the past few years due to their effectiveness in solving some of the most 

important problems that arise. They have been shown to provide immediate and quick 

solutions to these problems compared to deterministic algorithms. Several intelligent 

techniques have been developed to improve resource allocation in cloud systems such 

as Genetic Algorithms (GA) (Singh and Chana (2016)), PSO (Salman et al. (2002)), 

and ACO (Xue et al. (2014)). In this thesis, the focus will be on applying PSO 
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algorithms to improve resource allocation, and then comparing results with GA and 

ACO algorithms. 

Specifically, a PSO has proved to be effective in finding near-optimal solutions by 

simulating the movement of a flock of birds when they search for food (Salman et al. 

(2002)). In addition to the benefits of most meta-heuristic algorithms, such as flexibility 

and acceptable calculations, PSO has additional advantages such as easy 

implementation and consistent performance. In the PSO algorithm, a search for the 

solution is carried out at low computational cost for a wide range of complex 

applications including combinatorial optimization problems, finding optimal routes, 

scheduling, structural optimization, image analysis, data mining, bioinformatics, and 

finance and business (Eberhart and Shi (2000); Alkayal et al. (2016)).  

The implementation of the PSO procedure is straightforward and generally requires 

relatively few lines of code because it based on simple operations and takes a short time 

compared to other algorithms such as ACO and Genetic Algorithms (Eberhart and 

Kennedy (1995)). It has only one operation to update velocity and position to coordinate 

and control the movements of particles. The calculation in PSO is simple because no 

overlapping and mutation calculations are involved, unlike Genetic algorithms. 

Therefore, PSO takes less time to find solutions than Genetic algorithms and time is a 

key factor in most applications (Mirzayi and Rafe (2013)). Thus, PSO is more popular 

than other SI algorithms in solving problems that require quick search results. The 

current research therefore focuses on PSO and will study the benefits of applying 

variants of PSO algorithms in cloud computing environments. 

Specifically, PSO is a meta-heuristic algorithm often used to optimize cloud computing 

(Tsai and Rodrigues (2014)). Such algorithms have been developed to solve 

optimization problems when allocating resources in cloud computing infrastructure to 

satisfy certain goals (Feng et al. (2012)). Several modifications to the original concept 

of the PSO algorithm have been made to improve the standard PSO and ensure it can 

cope with the requirements of cloud environments. Given this, three types of PSO will 

be focused upon in this research: Parallel PSO, multi-objective PSO, and Cluster based 

PSO. In the next section, the reasons for using each type of PSO to optimize the problem 

addressed in this research will be discussed. 
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1.2 Challenges in Optimizing Resource Allocation 

The PSO algorithm can be applied to solve different types of problems in several fields 

such as multi-objective optimization (Cagnina et al. (2005)), data clustering (Neshat et 

al. (2012)), and scheduling (Salman et al. (2002)). There are several reasons for using 

PSO to improve resource allocation in cloud computing in the task scheduling and 

virtual machine allocation levels (Madni et al. (2016)). In this section, the motivation 

for applying the PSO algorithm to improve SLA negotiation (see Section 1.2.1), task 

scheduling (see Section 1.2.2), and clustering techniques in cloud computing (in 

Section 1.2.3) will be discussed in detail. 

 

1.2.1 Service Level Agreement Negotiation  

Cloud providers and cloud consumers have different and conflicting objectives, so they 

need to negotiate to reach a certain agreement. Unfortunately, in cloud computing the 

SLA negotiation is a difficult process because resources are very diversified, distributed 

and managed by different entities (Dastjerdi and Buyya (2012)). To cope with these 

difficulties, a multiple agent approach to SLA negotiation and management in cloud 

environments is often used (Chen et al. (2014)). Reducing the waiting time is another 

requirement for cloud consumers, so it is essential to reach an agreement quickly to 

reduce mapping time. Thus, concentrating on enhancing the negotiation process can 

benefit both parties. It can reduce the waiting time for consumers and increase the 

number of completed tasks, which will increase both the system throughput and the 

provider's profits. 

In this research, the SLA negotiation will be considered at the IaaS level, which 

includes the virtual and physical resources. Negotiation at this level is more significant 

in terms of enhancing resource allocation. From another perspective, SLA negotiation 

at this level is more complex and requires greater optimization because there are 

multitude of distributed data centers with many resources in the infrastructure. The 

main requirements are to speed up the process of negotiation to reduce waiting time 

and decrease the number of negotiation steps to save time for consumers and providers. 
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The provider will also benefit from an increase in the number of successful tasks, which 

expands the system throughput.  

Parallel computing can also be applied to speed up the process of the algorithm, as this 

executes the algorithm over several resources simultaneously (Grama (2003)). 

Recently, parallel computing has been used extensively in cloud computing field to 

develop tools enabling efficient solutions for resource allocation problems to be found 

(Warneke and Kao (2011)). This is because parallel computing reduces the processing 

time needed for performing complex computational tasks. The goal of parallelization is 

therefore to reduce the time spent on computation and to solve a problem by using many 

nodes simultaneously and dividing the work between them (Grama, (2003)). 

In optimization problems, processing large amounts of data using individual function 

evaluations may take a considerable amount of time. Therefore, some of the meta-

heuristic algorithms are parallelized to improve their speed. PSO is one of these, as it 

has been parallelized (Parallel PSO) to reduce search times. This research will therefore 

use Parallel PSO to optimize the negotiation process and reduce communication 

overheads, thus enhancing the speed of negotiation processes. The purpose of using 

meta-heuristic optimization in the SLA negotiation in cloud computing is to reduce the 

cost and time complexity of the negotiation process. PSO is a simple and effective 

algorithm, but it may be time consuming to use in a large search space (Koh et al. 

(2006)). The performance of sequential PSO is negatively affected when applied to 

complex optimization problems, which is a strong motivation for the development of 

parallel optimization (Chang et al. (2005)).  

 

1.2.2 Task Scheduling in Cloud Computing 

Task scheduling is one of the key issues in cloud computing environments and thus has 

garnered attention from several researchers (Masdari et al. (2016)). In cloud systems, 

task scheduling algorithms aim to spread the workload among the computing nodes to 

maximize utilization while minimizing the overall task execution time. Moreover, 

optimizing scheduling in cloud environments taking both performance and resource 

utilization into consideration is a significant goal (Al-Olimat et al. (2014)). In this 
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context, performance is viewed in terms of throughput, which is the total number of 

tasks executed to completion in a unit of time. The utilization of resources represents 

the overall utilized capacity of the cloud resources (Al-Olimat et al. (2014)). However, 

utilization and performance have an inverse relationship, i.e. increasing utilization may 

decrease the performance in terms of waiting time. Therefore, to achieve maximum 

utilization, resources should be allocated efficiently and simultaneously compromise 

conflicting objectives for consumers and providers. For instance, allocation will 

decrease the waiting time for consumers because they pay per time spent on the cloud, 

and it minimizes the costs of reserving resources while decreasing the utilization time.  

To address the problem of evaluating and satisfying multiple and conflicting objectives, 

several researchers have developed techniques using multi-objective optimization 

(MOO) which handles two or three objectives (Reyes-Sierra and Coello (2006)). Many-

objective optimization methods are developed to deal with more than three objectives. 

However as argued previously, there are often multiple and conflicting objectives that 

need to be satisfied in cloud systems.  

Optimization problems with more than three objectives are a very attractive topic for 

researchers due to their widespread applicability. Previous research efforts in the 

optimization field have resulted in the development of algorithms that are able to 

achieve good results by handling problems with two or three conflicting objectives (i.e. 

multi-objective optimization). However, these techniques do not present the same 

quality when the number of objectives increases to greater than three (Li et al. (2015)). 

Therefore, several attempts have been made to reduce the computational requirement 

of evaluating many-objective optimization. Currently, meta-heuristic algorithms have 

attracted the most research attention in this respect (Figueiredo et al. (2016)). Thus, the 

current research will tackle the problem by using many-objective PSO algorithms to 

improve task scheduling problems. 

Resource allocation problems have many objectives that need to handle and thus 

evaluate to adapt with an increased number of objectives. Thus, in the current research, 

the Pareto-optimal method will not be used, as the aim is to combine the ranking method 

with a weighted sum approach to handle many objectives in a short space of time and 

a simple process. These objectives include improving performance by reducing waiting 
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time, the cost of execution, and maximizing throughput, which leads to an increase in 

profits. 

 

1.2.3 Virtual Machine Allocation 

The third major goal of this work is to increase resource utilization and reduce power 

consumption by improving VM allocation and migration at the level of VMs. 

Specifically, VM allocation can be carried out in two phases: VM scheduling and VM 

migration. In this research, they will be dealt with as an integrated process to utilize the 

resources and reduce the number of migrations by selecting the best mapping. 

Specifically, the interaction between VM scheduling and VM migration is developed 

to take into consideration the tradeoffs between power consumption, QoS performance 

and resource utilization.  

In most VM scheduling algorithms, hosts are divided into two sets: a set that meets 

some of the criteria and a set that does not fulfil the criteria. Consequently, the set of 

hosts that meet the criteria is ordered to start VM scheduling with the first hosts on the 

list, and continues until all VMs have been placed or until the set of qualified hosts is 

exhausted. Based on different criteria, several algorithms have been developed to 

allocate VMs to hosts. To determine the qualified hosts, various allocation criteria are 

considered such as host load, execution cost and CPU processing speed.  

In particular, VM migration, for instance, is used to improve resource utilization and 

reduce power consumption (Masdari et al. (2016)). The process of determining when 

the machine is over-loaded or under-loaded is a critical consideration when allocating 

resources, different aspects of which have been addressed by many researchers such as 

(Beloglazov and Buyya (2010); Lin et al. (2011)). In general, the methods for 

classifying hosts inside data centers can be divided into two main approaches. In the 

first approach, the threshold level is used to detect the over-loaded hosts. These 

thresholds can be static or dynamic (Beloglazov and Buyya (2012)). In most cases, 

dynamic thresholds are used because static thresholds do not reflect the current change 

in the system load and thus unbalance the load. Dynamic thresholds are used to 

determine the machines' load status; thus, a threshold is the value related to the system 
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state that determines changes in system behavior (e.g. system load, waiting queue 

length, and storage size) (Huang et al. (2013)). VM migration algorithms can be 

implemented based on the utilization threshold, to allocate VMs and migrate them 

among hosts. However, defining thresholds with fixed values are unsuitable for an 

environment with dynamic and unpredictable workloads, where different numbers and 

types of application may share physical resources (Pietri and Sakellariou (2016)). Using 

the dynamic threshold is very important in determining and classifying VMs in data 

centers because the threshold values must be able to adjust according to changes in the 

system utilization.  

In the second approach, VM allocation is treated as a combinational optimization 

problem with specific constraints such as CPU utilization, power, performance, or a 

combination of these (Shabeera et al. (2017)). A meta-heuristic optimization algorithm 

is then executed to solve the problem. Using a meta-heuristic to solve VM allocation 

and migration provides an effective solution compared to the use of thresholds (Madni 

et al. (2016)). The research described in this thesis will determine how to use PSO in 

the clustering of hosts inside data centers to improve the migration process and enhance 

the load balance techniques. The novelty of this field lies in the process of clustering 

hosts based on PSO before applying VM migration, which considers the performance 

factor during the migration process. Thus, VM migration is performed from over-

loaded and under-loaded machines simultaneously to reduce power consumption.  

 

1.3 Research Contributions   

This thesis addresses how to apply PSO algorithms to optimize resource allocation in 

cloud computing regarding the negotiation process, scheduling tasks, and clustering 

hosts. The general aim of optimizing resource allocation is to satisfy the requirements 

of both cloud providers and consumers. More specifically, improvement in 

performance is measured by minimizing the waiting time, SLA violations, and power 

consumption, and by maximizing the utilization of resources, throughput and profits.  
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The proposed resource allocation model will be developed by improving three modules 

for allocating resources in cloud computing as shown in Figure 1.4. The objectives of 

this work can be summarized as follows:  

• Improving SLA negotiation based on Parallel PSO to reduce the waiting time 

for finding the data center that has the most suitable resources for executing 

tasks and increasing the throughput. In addition, the SLA violation rates will be 

reduced to increase the profits. 

• Enhancing the method of handling many-objective PSO task scheduling in 

cloud computing by using a modified ranking strategy to reduce the waiting 

time for scheduling tasks inside each data center and increase the throughput.   

• Improving VM allocation based on many-objective PSO to improve resource 

utilization, power consumption, and QoS performance. 

• Optimizing the utilization and balancing the load among cloud hosts by 

clustering the hosts inside each data center based on PSO and K-means 

algorithms. 

 

 

 

 

 

 

Figure 1.4: Resource Allocation Modules. 

Figure 1.5 summarizes the main objectives of each module in the proposed model based 

on the optimization objectives of resource allocation (see Figure 1.3).  

 

 
 

SLA Negotiation 

Task Scheduling 

VM Allocation 

Consumers Provider 



23 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Proposed Resource Allocation Objectives. 

The main contributions of this research in terms of knowledge can be summarized as 

follows:  

• In the SLA Negotiation Module:  

o Designing and developing a multi-objective SLA negotiation based on 

Parallel PSO algorithms to reduce negotiation time and increase 

throughput. 

o Developing a SLA Monitor, which monitors the execution of tasks and 

the utilization of resources to improve performance and reduce the 

number of SLA violations. 

o The originality of this module lies in applying Parallel PSO in SLA 

negotiation in cloud computing, an area in which there has been no 

previous research. 
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 In the Task Scheduling Module:  

o Developing a many-objective PSO (MaOPSO) algorithm to improve 

real-time task scheduling based on five objectives: Task Execution Time 

(TET), Task Execution Cost (TEC), the data transfer cost, data transfer 

time, and VM capacity under deadline constraints.  

o Developing a new modified ranking strategy to evaluate the five 

objectives as a separate objective in less time than state of the art 

methods to reduce the waiting time and increase the throughput. 

o The novelty of this approach lies in evaluating a many-objective PSO 

using a modified ranking strategy and applying it in task scheduling. 

 

 In the VM allocation Module:  

o Improving the method of allocating physical resources to satisfy QoS 

demands in terms of throughput, waiting time and balancing the load by 

using MaOPSO to utilize the resources efficiently.  

o The originality of this work lies in applying clustering based PSO with 

K-means in the VM allocation algorithm. 

o Developing a load balancer algorithm using the clustering technique to 

group the hosts into four classes: over-loaded, high-loaded, under-

loaded, and unloaded hosts. 

o Developing a VM migration algorithm to migrate VMs among hosts 

inside each data center based on the clustering results, thus reducing the 

power consumption and the imbalance factor between hosts inside each 

data center. 

 

These contributions have been disseminated in number of academic papers: 

• Alkayal, E. S., Jennings, N. R., & Abulkhair, M. F. (2016, November). Efficient 

Task Scheduling Multi-Objective Particle Swarm Optimization in Cloud 

Computing. In Local Computer Networks Workshops (LCN Workshops), 2016 

IEEE 41st Conference on (pp. 17-24). IEEE.  
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This paper presented a method of improving the ranking strategy for task scheduling 

based on multi-objective optimization. Three objectives were evaluated and the 

results were compared with weighted sum and Pareto set approaches. 

• Alkayal, E. S., Abulkhair, M. F., & Jennings, N. R. (2017, September). 

Automated Negotiation using Parallel Particle Swarm Optimization for 

Cloud Computing Applications. In Computer and Applications (ICCA), 2017 

International Conference on (pp. 26-35). IEEE. 

This paper described the model of applying Parallel PSO to improve SLA 

negotiation in terms of reducing negotiation time. The results were compared with 

standard PSO, where the model demonstrated several improvements in terms of 

performance. This paper is selected from the best papers in the conference to be 

extended as a chapter of book and will be published in Springer in December of 

2017. 

• Alkayal, E. S., Jennings, N. R., & Abulkhair, M. F. (2017, November). Survey 

of Task Scheduling in Cloud Computing based on Particle Swarm 

Optimization. The International Conference on Electrical and Computing 

Technologies and Applications, 2017. 

This paper is accepted to publish in IEEE and it is under the process of publishing. 

It discusses the previous work in the task scheduling that were applied PSO 

algorithms.  It classified them based on several factors. Finally, it summarized the 

main points that need to be explored in developing PSO.  

 

1.4 Thesis Structure  

The remainder of this thesis is organized as follows:  

Chapter 2: details the background to this work in the field of optimization algorithms 

and PSO. It also introduces and describes the SLA concept, SLA management and the 

SLA negotiation process. Moreover, it presents an overview of previous work related 

to resource allocation in cloud computing using PSO to optimize cloud computing 

environments. Finally, it concludes with a summary of the main points of comparison 

between this research and previous work in this field.  

https://edas.info/showPaper.php?m=1570403226
https://edas.info/showPaper.php?m=1570403226
https://edas.info/showPaper.php?m=1570403226
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Chapter 3: describes the general architecture of the proposed resource allocation model 

and its components.  The general design of the model, its objectives and constraints are 

also discussed in this chapter. The model includes three main algorithms: SLA 

negotiation based on Parallel PSO algorithm, MaOPSO task scheduling algorithm using 

ranking strategy, and a VM allocation and migration algorithm using clustering based 

PSO. Details the design of these algorithms and their implementation are presented in 

chapters 4, 5 and 6.  

Chapter 4: discusses details of the automated SLA negotiation algorithm and its 

specifications. Additionally, it presents the experimental strategies, evaluation 

procedures, and evaluation results of applying the Parallel PSO algorithm.   

Chapter 5: presents the MaOPSO task scheduling algorithm and how it can be 

improved using a modified ranking strategy. Additionally, it describes the 

implementation issues and the experimental procedures. Finally, it discusses the 

evaluation methodologies, and the results of the algorithm.   

Chapter 6: provides details of the VM allocation algorithm and its implementation. In 

addition, it presents the clustering methodologies used in VM migration based on the 

PSO and K-means algorithms. The experimental and evaluation processes are then 

discussed. Finally, it summarizes the results of the algorithm.   

Chapter 7: presents the results of the study, its general contributions and then 

highlights directions for future research. In addition, it offers several practical 

recommendations based on the findings. 

 

 

  



27 

 

Chapter 2 

 

Related Work 

 

This chapter presents and reviews the background information on essential concepts 

relevant to the research presented in this thesis. Each section presents a historical 

overview of the development of each concept up to the present. Section 2.1 discusses 

meta-heuristic algorithms in general and then focuses on swarm intelligence 

techniques. Section 2.2 presents an overview of the PSO and reviews applications of 

PSO in different fields related to this research. Section 2.3 describes the key concepts 

of SLA negotiation and then reviews previous research in this field. In Section 2.4, a 

general overview of task scheduling in cloud computing is presented and related work 

based on PSO is discussed. Section 2.5 describes virtual machine allocation and 

migration techniques. Finally, Section 2.6 summarizes the main ideas presented in this 

chapter. 

 

2.1 Meta-Heuristic Optimization Algorithms  

This section presents a general overview of meta-heuristic algorithms and then 

discusses meta-heuristic algorithms related to this study, namely Swarm Intelligence 

(Section 2.1.2) and heuristic optimization algorithms (Section 2.1.3).  Finally, several 

methods of evaluating multiple objectives will be discussed in Section 2.1.4. 

 

2.1.1 Overview  

Optimization algorithms are advanced techniques for solving an optimization problem 

by determining its optimality. Mathematically, an algorithm is a technique used to 

produce outputs for a given set of inputs under specific constraints (Blum and Roli 
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(2003)). In each optimization methodology, there is an objective function, which is used 

to evaluate objectives under specific constraints. Optimization algorithms work by 

defining the search space and attempting to maximize or minimize the objective 

function (Yang (2010)). When an optimization problem is formulated, the algorithm 

searches the space for optimal solutions using appropriate mathematical techniques. 

Depending on the objectives, a choice can be made to find the optimal solution, which 

takes time, or to find a near optimal solution with less time complexity.  

For distributed systems, there are many factors involved in selecting an appropriate 

algorithm and there is no efficient algorithm that can be used for all cases. Instead, there 

are specific aims and objectives for the optimization algorithm. In general, optimization 

techniques can be classified into several categories based on different factors. A 

common form of classification divides the algorithms into deterministic and stochastic 

algorithms depending on the nature of the algorithm and the method for finding 

solutions (Yang (2010)). Deterministic algorithms follow repeatable path and variables, 

while stochastic algorithms are based on the randomness in the path and the variables. 

For example, in Genetic algorithms, when searching for an optimal solution the 

population of solutions differs each time because it is based on randomness. 

Conversely, there is no major difference in the results of stochastic algorithms, although 

the paths in each population are repeated. Some approaches combine deterministic and 

stochastic algorithms to benefit from the advantages each provides whilst overcoming 

the limitations of both. 

Stochastic algorithms themselves can be divided into two types: heuristic and meta-

heuristic. Heuristic methods find a good optimal solution with low computational cost, 

but are not guaranteed to find an optimal solution (Madni et al. (2016)). The meta-

heuristic algorithms generally perform better than simple heuristics and use 

randomization with a local search (Yang (2010)). There is no specific definition that 

determines the difference between heuristic and meta-heuristic algorithms. However, 

some researchers describe all stochastic algorithms with a randomness property and 

global search as meta-heuristic (Gendreau and Potvin (2005)). Randomization in meta-

heuristic algorithms provides a method for moving from the local space to the global 

space when applied to global optimization (Blum and Roli (2003)). Meta-heuristic 

algorithms are used to find near optimal solutions in an acceptable time based on single 
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or multiple objectives (Gendreau and Potvin (2005)). Compared to deterministic 

algorithms, meta-heuristic algorithms present better results in terms of quality and 

computation time (Tsai and Rodrigue (2014)). For these reasons, meta-heuristic 

algorithms will be used in this research to optimize resource allocation in cloud 

environments.  

Optimization problems, on the other hand, are classified according to the type of 

variables involved and can be divided into two different categories: combinatorial and 

continuous optimization problems, based on discrete or continuous variables, 

respectively. This thesis will focus on discrete optimization problems because resource 

allocation includes discrete variables that represent the IDs of resources.  

 

Figure 2.1: Main Classification of Optimization Techniques. 

In general, all meta-heuristic algorithms follow the same steps when searching the space 

to find the optimal solution but with different forms of implementation and detail. The 

main steps all meta-heuristic algorithms follow are shown in Algorithm 2.1 (Tsai and 

Rodrigues (2014)). Specifically, each algorithm starts by initializing the solutions and 

defining the population (Line 1). The next step involves repeating three processes until 

the termination criteria are met (Lines 2-6). The details of these processes are as 

follows:  
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• Transition: this process changes the current state or position of the solution(s) 

to the next state by checking the available solutions. The complexity of this 

operation depends on the design of the meta-heuristic algorithm. 

• Evaluation: this process is responsible for evaluating the objective function of 

the solutions based on the predefined optimization factors.  

• Determination: this process controls the search by determining the directions 

and constraints that control the convergence speed and the movement inside the 

space. 

 
Algorithm 2.1: General Meta-heuristic Algorithm 

Start Procedure ( ) 
1. Initialization (s)                                 // initialize solution set  
2. while (the termination criterion is not met) do               // do while the condition is valid  
3.        v = Transition(s)                         // change the state or position of solutions   
4.        f = Evaluation (v)                         // evaluate the new state based on objectives 
5.        s = Determination (v, f)               // Comparing the current with the previous  
6. repeat                                                 // repeat until condition is not valid 
End Procedure 

Meta-heuristic algorithms include several different groups of algorithms that are 

classified according to the behavior and strategies of the algorithms. This research will 

focus on Swarm Intelligence algorithms. A general overview and discussion of these 

algorithms is presented in the following sections. 

 

2.1.2 Swarm Intelligence Algorithms  

Swarm intelligence algorithms describe several related approaches to solving problems 

that resemble biological swarms and are based on social behavioral models of insects 

or animals (Blum and Li (2008)). The SI algorithms include multiple swarms that share 

information in a search space to find a solution. Specifically, the SI is a meta-heuristic 

that has been developed by simulating the behavior of real swarms or insects to solve 

problems (Kennedy (2011)). SI algorithms are used to optimize complex problems that 

have a distributed structure. In addition, they can be applied in systems that have elastic 

and flexible properties without influencing the overall structure. Consequently, many 

SI techniques have been applied in cloud computing to improve resource scheduling, 
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for example ACO and PSO (Guo et al. (2012)). Details on each of these algorithms will 

now be presented. 

 

2.1.2.1 Particle Swarm Optimization Algorithms 

PSO is a global search algorithm that consists of a set of particles characterized by 

random velocities and positions. Each particle in PSO has a velocity, which represents 

the movement in the search space and it dynamically adjusts this based on its previous 

behaviour. Therefore, particles tend to move towards better points within the search 

space and thus they search the solution space by changing their position and velocity 

(Trelea (2003)).  

There are several SI algorithms in use; however, PSO has been shown to give better 

results in terms of performance and complexity in large-scale environments. It reduces 

the computational time compared to other SI algorithms such as Genetic algorithms. It 

also uses the real values of numbers and does not need to encode these to binary as 

happens in GA. Thus, in the current research, a PSO algorithm will be used in 

optimization. The PSO algorithm provides effective performance in a distributed 

environment such as cloud computing in terms of computational time, where it is faster 

than meta-heuristic algorithms such as GA and ACO. According to (Pongchairerks 

(2009)), PSO was found to be faster and simpler than GA in terms of both processing 

and implementation and it includes few parameters to adjust and improve the 

convergence speed (for more detail see Section 2.2.1). Thus, PSO will be used in this 

research to optimize the task scheduling problem.   

However, PSO does have some limitations as it suffers from local optima and a low 

convergence rate in the large space. PSO can overcome these problems in two ways. 

Firstly, a variant of the PSO algorithm can be used by changing some of its parameters 

and formulas. Secondly, it can be combined with other meta-heuristic algorithms (see 

Section 2.2.2 for more detail). In this thesis, the two methods will be used based on the 

nature of the problem and the objectives. For negotiation and task scheduling, the 

modified PSO will be used whilst in VM allocation PSO will be combined with another 

algorithm to improve its quality in data clustering with K-means algorithm.  In the next 
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section, general information on the most common meta-heuristic algorithms will be 

presented.   

 

2.1.2.2 Ant Colony Optimization Algorithms 

ACO is a meta-heuristic algorithm that can be used to solve complex optimization 

problems by simulating the behavior of ants when searching for foods.  It uses a 

mechanism that simulates the behavior of real ant colonies who cooperate using 

pheromone paths. When the ants move to find a food source, they follow a path and 

they leave pheromones on it. Other ants can then follow the trails to the food source by 

sensing the pheromone (Shishira et al. (2016)). Most ants select the shortest path as a 

larger amount of pheromones has accumulated on this path (Dorigo et al. (2006); 

Tawfeek et al. (2015)).   

The ACO algorithm has many advantages such as adaptability, robustness and 

redundancy. ACO methods are applied to solve discrete optimization problems that rely 

on finding the shortest path to the goal. Moreover, it has been successfully used in other 

applications such as routing problems in dynamic network, solving traveling salesman 

problems, multidimensional knapsack problems, job shop scheduling, and task 

scheduling in cloud environments (Shishira et al. (2016)). Its disadvantages are the 

overheads and the fact the algorithm converges to the local optimal solution. However, 

the main problem with the ACO is that convergence is slow; therefore, it is applied in 

a small area of space (Pongchairerks (2009)). 

The steps involved in the ACO algorithm are summarized in Algorithm 2.2. 

Specifically, the first step involved in searching for a solution is to initialize the 

pheromone and the optimal solution then distributes the ants randomly as shown in 

Lines 1-3. The pheromones of all the ants are detected and is computed (Line 6). Then, 

the fitness function is computed to detect the best path (Line 8). When the short path is 

detected, the best value is updated (Lines 9-11). The local value and the global value 

are updated in Lines 12-13. These steps are repeated until the shortest path is selected 

which based on the large amount of pheromones accumulated on this path.  
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Algorithm 2.2: Ant Colony Optimization Algorithm  

Procedure ACO 
1. Initialize (pheromone)     // initialize the pheromone value 
2. Optimal =null     // initialize the best path value 
3. Initialize(ants)     //distribute the ants randomly  
4. For each ants  
5.     For all the paths 
6.         detect the pheromones on each path  // detect the pheromone values 
7.     End For 
8.     Best=Computefitness (ants)    // compute the fitness function 
9.     If (Best < Optimal) 
10.         Optimal=Best     // detect the shortest path  
11.     End If 
12.     Update local pheromone ( ) 
13.     Update global pheromone ( ) 
14. Repeat the steps from 5 to 13 until end condition is met. 
15. Return Optimal  
End Procedure 

 

2.1.3 Evolutionary Algorithms  

Evolutionary algorithms are methods that draw on concepts from biological evolution, 

such as reproduction, mutation and recombination, to solve optimization problems 

(Simon (2013)). EA algorithms share the same basic idea but differ in their 

implementation depending on the problems that need to be solved. Evolutionary 

algorithms are a set of meta-heuristics used to solve many complex problems and aim 

to find a near-optimal solution because the optimal solution is too complex (Simon 

(2013)).  The most popular EA algorithm is the Genetic algorithm. In the following 

section the Genetic algorithm will described in more detail. 

 

2.1.3.1 Genetic Algorithms 

The GA method is one of the evolutionary algorithm and it is designed to obtain a near-

optimal solution in large space problems (Whitley (2014)). The development of a GA 

method is based on natural selection and Mendel’s laws of inheritance in that it 

simulates the process of natural evolution which involves encoding of chromosomes; 

selection of Genetic manipulation and evolution; crossover and mutation operation; 

and, finally, generating and evaluating new generations (Gendreau and Potvin (2005)). 
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GAs take a large amount of time during optimization because they include many 

parameters that need to be processed and encoded. 

Algorithm 2.3 describes the main steps involved in GA, which defines a set of solutions 

that collectively represent a population. The algorithm starts creating the population by 

randomly generating a collection of solutions in Line 1. The solutions are then 

evaluated by computing the fitness function (Line 3), following which the result is 

compared with the current solution. A new solution is subsequently formed by a 

crossover function in Line 5. The next step is a mutation function, which is invoked to 

replace the worst solution with a new one (Line 6). Finally, these steps are repeated 

until the stop condition is met (Lines 2-7).  

 
Algorithm 2.3: The pseudo code of the Genetic Algorithm 

Procedure Genetic ( ) 
1.   Initialize (P, C)           // initialize the population 
2.   while (the termination condition is satisfied) do 
3.                Evaluate (P)  
4.                Best =Select (P)       // select best fitness.  
5.                Crossover(P,C)       // to produce new solution   
6.                Mutation  (P,C)                     // replace worst solution with best one   
7.   end while  
8.   return Best                     // return best solution 
End Procedure 

When comparing these algorithms in terms of their application in cloud computing 

environments, the GA algorithm finds a near optimal solution, and it does not become 

trapped in local optimal solutions. However, there is no guarantee of finding a global 

maximum using GA and it can consume more time than PSO. The drawback of ACO 

is that it is inefficient in terms of load balancing, because it starts randomly and 

sometimes fails to find the global optimal solution. Moreover, the time for convergence 

using ACO is uncertain and depends on the problem space and the number of 

dimension. In comparison, PSO employs a fast search and its calculation is simple, but 

it may fall into local optima and suffers from premature convergence. In sum, the 

common meta-heuristic algorithms used in cloud computing have been explored and 

compared. Based on this analysis, PSO is chosen for this study. In the Section 2.2, the 

PSO algorithm will be presented in more detail. 
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2.1.4 Methods of Evaluating Multiple Objectives 

Optimization methods can deal with single or multiple objectives to evaluate solutions. 

The methods that deal with two or three objectives are called multi-objective 

optimization, whereas if the number of objectives is greater than three it is called many-

objective optimization (Maltese et al. (2016)). The scalability problems are produced 

using multi-objective optimization methods when the number of objective increases (Li 

et al. (2015)). 

Specifically, MOO is applied to problems that involve multiple objectives and is 

concerned with mathematical optimization problems where two or three objective 

needs to be evaluated simultaneously (Chow et al. (2004); Srinivasan and Seow 

(2003)). MOO is defined as a set of decision elements with specific constraints that 

optimizes the objective function when many objective functions are involved. MOO 

presents a possible set of solutions, which are evaluated using trade-offs among several 

objective functions. A selection strategy is then applied to choose an acceptable 

solution. The MOO problem, according to (Marler and Arora (2004)) can be 

mathematically defined as follows: 

𝐌𝐌𝐌𝐌𝐌𝐌 𝐅𝐅(𝐱𝐱)  = (𝐅𝐅𝐅𝐅(𝐱𝐱);  𝐅𝐅𝐅𝐅(𝐱𝐱); . . ;  𝐅𝐅𝐅𝐅(𝐱𝐱))         (2.1) 

where:  
k is the number of objectives in the fitness function 
F(x) is the objective function of the solution x  
F1(x) is the objective function for objective 1 for solution x 
Fk(x) is the objective function for objective k for solution x, in MOO the k=3  

 

Specifically, several methods have been proposed in the literature for dealing with 

multi-objective optimization, and these can be divided into three categories: 

domination, decomposition and ranking approaches (Reyes-Sierra and Coello (2006); 

Garza-Fabre et al. (2009)). Details on each of these strategies will now be presented 

and discussed. 

First, domination approaches will be considered. In these methods, multi-objective 

problems are optimized by simultaneously optimizing all the objectives using the 

concept of Pareto dominance. In most MOO algorithms, the concept of domination is 

defined as all the solutions that are not dominated by other solutions (Marler and Arora 

(2004)).  In general, the solution can be defined as Pareto optimal if and only if no other 
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solution exists that dominates it, whereupon the set is called the Pareto optimal set 

(Tripathi et al. (2007)). However, Pareto set has been shown that, as the number of 

objectives increases, the convergence ability and the performance of dominance 

approach decreases (Li et al. (2015)). These methods need to maintain a diverse set of 

solutions and they cannot apply these when the number of objectives increase.  

The second set of approaches are described as decomposition approaches. In these 

methods, the multiple objectives are aggregated into a single objective, the simple 

approach and widely used is the weighted sum approach (Garza-Fabre et al. (2009)). 

The weighted sum approach combines multiple objectives by using their weight, thus 

forming one single objective as shown in Equation 2.2. However, the complexity in this 

approach lies in determining the weight values for each objective depending on its 

importance (Reyes-Sierra and Coello (2006)). Different weight values produce 

variations in the results and in the processing time. 

𝐅𝐅(𝐱𝐱) = ∑ 𝑭𝑭 m (𝐱𝐱).  𝐖𝐖𝐦𝐦                         𝐌𝐌
𝐦𝐦=𝟏𝟏          (2.2) 

where:  
M is the number of objectives  
W is the weight value for each objective it ranges from [0-1] and ∑ Wm = 1   M

m=1  
F(x) is the value for x based on multi-objective  
F m (x) is the value for x based on objective m 
 
The final set of approaches are those based on ranking objectives that are non-Pareto 

techniques and do not require balancing the weights. Several ranking objectives have 

been developed such as average ranking, sum ranking, or maximum ranking (Garza-

Fabre et al. (2009)). However, instead of comparing two solutions directly, some 

researchers compare them by checking the rank of each one respect to specific goals. 

The ranking concept is a collection of items arranged in order according to some factors 

that they all possess (Gao et al. (2014)). The position of each element in the ranking is 

called the rank, which is usually represented with a numerical value that refers to its 

order in the ranking. Then these ranks are combined into a single value that is represent 

the rank of the solution according to all objectives based on the maximization and 

minimization of objectives.  

The ranking strategy can be applied using several methods such as an average ranking 

or a maximum ranking. An average ranking selects one objective and builds a ranking 
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list using the fitness of each solution for the chosen objective then compute the sum of 

the average rank as shown in Equation 2.3 (Garza-Fabre et al. (2009)). 

𝐀𝐀𝐀𝐀(𝐱𝐱) = ∑ 𝐑𝐑𝐦𝐦(𝐱𝐱)𝐌𝐌
𝐦𝐦=𝟏𝟏         (2.3) 

where: 
AR(x) is the average rank of solution x 
𝐑𝐑𝐦𝐦(𝐱𝐱) is the rank of solution x relative to objective m 
M is the number of objectives 

The minimum ranking strategy is similar to the average ranking but instead of taken the 

summation of rans it takes the smallest rank for each solution (Garza-Fabre et al. 

(2009)). In the next section, more detail about the PSO algorithm will be provided, 

including its parameters, variants and modifications. 

 

2.2 Particle Swarm Optimization  

In this section, the standard PSO algorithm and its improved variants will be discussed 

in detail. Specifically, Section 2.2.1 provides an overview of PSO algorithm 

characteristics and describes the steps involved in applying PSO in terms of its 

operations and parameters. Section 2.2.2 discusses several methods for improving PSO 

algorithms. General information on Parallel PSO is presented in Section 2.2.3. Finally, 

in Section 2.2.4 clustering using the PSO algorithm will be described and discussed. 

  

2.2.1 Overview  

PSO is one of the SI algorithms that comprise a simulation inspired by the social 

behavior of animals, and was first introduced by (Eberhart and Kennedy (1995)). It is 

a search optimization method that finds the best optimal solution through sharing 

information in the swarm (Reyes-Sierra and Coello (2006)). PSO algorithms deal with 

swarm of particles, where each particle represents a solution of the problem in the 

search space. Each particle has two values; one is the best personal experience (pbest) 

for the particle itself, while the other is (gbest) which represents the best solution among 

all particles in the swarm. The particle position is computed according to pbest and 

gbest values, and the velocity determines the speed of movement of the particle 
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depending on the difference between the particle's previous position and its current 

position (Kennedy (2011). The velocity of the particle is used to control the movement 

of the particles and to prevent particles from falling in the local optima by using the 

inertia w parameter.  

Specifically, PSO shifts the particle position in each iteration by updating particle xi at 

iteration t, as shown in Equation 2.4, and the velocity is then updated based on the two 

best values and inertia w as shown in Equation 2.5 (Eberhart and Kennedy (1995); 

Alkayal et al. (2016)). 

               𝐱𝐱𝐢𝐢 (𝐭𝐭)  =  𝐱𝐱𝐢𝐢 (𝐭𝐭 −  𝟏𝟏)  +  𝐯𝐯𝐢𝐢 (𝐭𝐭)                       (2.4) 

where: 
xi (t) is the current position of particle i at iteration t 
xi (t-1) is the position of the particle i at iteration t-1 
vi (t) is the velocity of particle i at iteration t  

𝐯𝐯𝐢𝐢 (𝐭𝐭) =  𝐰𝐰 ×  𝐯𝐯𝐢𝐢 (𝐭𝐭 −  𝟏𝟏) +  𝐫𝐫𝐫𝐫 × 𝐜𝐜𝟏𝟏 × (𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐢𝐢 −  𝐱𝐱𝐢𝐢 (𝐭𝐭)) + 𝐫𝐫𝐫𝐫 × 𝐜𝐜𝟐𝟐 ×

                                                      (𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐢𝐢 –  𝐱𝐱𝐢𝐢 (𝐭𝐭))                                               (2.5) 

where: 
xi (t) is the current position of particle i at iteration t 
vi (t) is the velocity of particle i at iteration t  
vi (t − 1) is the velocity of particle i at iteration t- 1 
pbesti is the best position of particle i 
gbesti is the position of best particle in a population 
w is the inertia weight with range [0, 1] 
r1, r2 are the random numbers with range [0, 1]  
c1, c2 are the acceleration coefficients with range [0, 1]    

In each iteration, there are two best values for each particle. One is the pbest, which is 

the best for each particle in the swarm, and then the best of all the pbest values is 

selected as gbest for all particles as shown in Equations 2.6 and 2.7.  

𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩(𝐢𝐢, 𝐭𝐭) = 𝐦𝐦𝐦𝐦𝐦𝐦 (𝐟𝐟(𝐩𝐩𝐩𝐩))            (2.6) 

𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠(𝐭𝐭) = 𝐦𝐦𝐦𝐦𝐦𝐦(𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 (𝐢𝐢, 𝐭𝐭))          (2.7) 

where:  
i is the index of particle 
t is the iteration number  
pbest (i, t) is the best value for particle i in iteration t 
f (pi) is value of fitness function of particle i  
gbest (t) is the global best for all particles in iteration t 
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In PSO, several parameters are used to control the execution of the PSO algorithm and 

improve the results. These parameters include the number of particles, the dimension 

of particles, the maximum number of iterations, Vmax, learning factors c1 and c2, 

inertia weight (w), and random numbers r1 and r2. Vmax controls the speed of 

movement of the particles, which is represented by velocities. The Vmax constant 

should be selected so that it allows particles to escape from local optima. According to 

several research studies, situations where the Vmax value is dynamically changing 

could result in better performance to a range [-Vmax +Vmax] to control the movement 

(Eberhart and Shi (2000)).  

The constant numbers c1 and c2 determine the acceleration values of the particles and 

their high values correspond to past sub-optimal solutions, whereas low values allow 

particles to fall in local optima. The c1 constant is related to pbest, while c2 determines 

how well the particle follows the swarm and is related to gbest. The particle is 

influenced by its own best position and the best position of its neighbors, so the values 

of c1 and c2 are set to fixed equal values (Reyes-Sierra and Coello (2006)). The random 

numbers r1 and r2 are used to provide random movement of particles inside the search 

space, and their values can be in the range [0-1]. 

The inertia weight w is computed as shown in Equation 2.8. It is a positive linear 

function based on the iteration of the algorithm and its value is selected to provide a 

balance between local and global exploration, and thus ensures the optimal solution can 

be found with a small number of iterations. (Reyes-Sierra and Coello (2006)) 

demonstrated that the dynamic value of inertia w performs better than the static value. 

The value of w therefore changes dynamically with the iteration of the algorithm in the 

range [0-1], as shown in Equation 2.8. 

                     𝒘𝒘 =  𝑼𝑼𝑼𝑼 −  ((𝒊𝒊) / 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴)  ∗  (𝑼𝑼𝑼𝑼 −  𝑳𝑳𝑳𝑳)      (2.8) 

where: 
w is the inertia value that controls the movement of particles and this range from 0-1 
UW is the high value of w, which is one 
LW is the low value of w, which is zero 
i is the iteration number  
Maxi is the maximum number of iterations 
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The main steps in a standard PSO algorithm are summarized in Algorithm 2.4 (Durillo 

et al. (2009)). The algorithm starts by initializing the particles with the available 

solutions. The fitness function of each particle is then computed according to predefined 

objectives that select the best fitness value (Lines 4 and 5). Following this, the velocity 

and position of each particle are updated using Equations 2.4 and 2.5 (lines 6-7). The 

best value for each particle is then selected and compared with pbest and gbest values 

(Lines 8-14). Finally, these steps are repeated until a stopping condition is met. 
 

Algorithm 2.4: Pseudo code of a Standard PSO Algorithm.  

Procedure PSO ( ) 
1.       INITIALIZE (S,V, P, pbest, gbest)    //initialize swarm, velocity, position, pbest, gbest 
2.       While (stop criteria does not satisfied) do      // iterate while not stop 
3.            For each p є S          // iterate through all particle  
4.                 f(p)=Computefitness(p)      // compute fitness function for particle p 
5.                 best=Selectbestvalue(f(p))          // select best value 
6.                 Updatevelocity(p)    // update velocity using Equation 2.4 
7.                 Updateposition(p)    // update position using Equation 2.5 
8.                 If (best < pbest)           
9.                              pbest=best        // update pbest value 
10.                 End if  
11.            End For 
12.            If  (best <gbest) 
13.                              gbest=best         // update gbest value 
14.            End if 
15.       End while 
16.       Return gbest 
End procedure  

 

PSO was originally developed for application in continuous optimization problems 

(Izakian et al. (2010)). Therefore, to apply PSO in a combinational problem, the 

problem needs to be transformed into discrete values and to encode the representation 

of the search space. The Small Position Value (SPV) rule is one of the most popular 

techniques used for this purpose and uses a 1 x n vector to encode n particles of PSO 

(Shishira et al. (2016)). Another technique known as Integer-PSO is presented in 

(Netjinda et al. (2012)), which is used when there is a substantial difference in the length 

of tasks and the processing speed of the resources technique outperforms the SPV. In 

Garg (2016), crossover and mutation strategies of the Genetic algorithm were applied 

in PSO to deal with discrete problems. Other researchers, such as Khanesar et al. (2007) 

have used the binary PSO method for discrete problems, especially in combinatorial 

optimization where its variables take only discrete values. 
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2.2.2 Improving Particle Swarm Optimization Algorithms  

Several researchers have improved the solutions generated by PSO algorithms using 

methods that include changing the initial population and modifying the values of the 

operators of PSO (see Section 2.2.2.1). In Section 2.2.2.2, methods for improving and 

evaluating objectives in the PSO algorithms will be discussed. 

 

2.2.2.1 Modifying the Initialization and Encoding of Particles  

Several methods have been applied to initialize the position and velocity of the particles 

(Li-Ping et al. (2005)). For example, in Wu et al. (2010) a greedy adaptive search 

algorithm was developed to initial swarm by mapping the shortest task to the fastest 

resource.  Alternatively, fuzzy matrices were used by (Yang et al. (2011)) to represent 

the position and velocities of particles such that each element in the matrix denotes a 

fuzzy relationship between the resources and tasks. In Izakian et al. (2009), a First 

Come First Serve (FCFS) method was used to initialize the PSO particles, whereas in 

Liu et al. (2013) randomness with constraints was used.  

Heuristic algorithms are sometimes combined with PSO to improve the initialization of 

the particles such as Max-min in (Miranda and Fonseca (2002)) and first Fit (FF) in 

(Low et al. (2010)). Alternatively, Alkhashai and Omara (2016) proposed a hybrid Best 

Fit, PSO, and Tabu Search (BFPSOTS) algorithm based on the PSO algorithm to 

achieve suitable scheduling of the users' tasks in cloud computing environments. Within 

the hybrid algorithm, the Best-fit algorithm has been merged into PSO to initiate the 

swarm rather than generating it randomly, and the Tabu search algorithm has been 

combined with PSO to improve local research by avoiding any fall in local optimality 

and improving the quality of the solution. 

Conversely, other researchers represent the particle, as a vector of 1 × n where n is the 

number of the dimensions of the solution (Kennedy (2011). Another representation of 

encoding particles occurs in a matrix with m × n, where m is the number of particles 

and n is the number of dimensions for particles (Abdi et al. (2014)). Deciding which is 

the most suitable encoding representation depending on the nature of the of problem's 

variables (continuous or discrete) and the number of solutions. In this thesis, the first 
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representation will be used for the negotiation problem where a vector will be used for 

each particle because there are a small number of particles representing data centers. In 

task scheduling, a vector of 1 × n will be used to represent the VMs. In the VM 

allocation, a matrix with m × n elements will be used to map VMs to hosts with the 

constraint that only one host can allocate each VM. This matrix representation will be 

used to simplify the process of controlling the migration of VMs from one host to 

another.  

 

2.2.2.2 Modifying Based on the Number of Objectives 

In this section, the strategies that are used to improve the PSO algorithms based on the 

number of objectives will be discussed. The complexity of MOO problems such as large 

search spaces, uncertainty and noise, which means that most single objective 

optimization techniques are not suitable to solve MOO. Consequently, many techniques 

have been developed to achieve MOO (Cagnina et al. (2005)). However, there are 

certain limitations in these programming techniques as they generate a single solution 

per run (Marler and Arora (2004)). This issue thus initiated the development of other 

approaches. Compared to traditional mathematical programming techniques, PSO 

algorithms were found to be suitable as they are population based and can manage a 

whole set of solutions at a time, rather than just one. In this research, PSO is focused 

upon because of its proven flexibility in responding to rapid changes in the system and 

its ability to adapt to the external environment during run-time (Blum and Li (2008)). 

PSO can use any methods of evaluating objectives that are discussed in Section 2.1.4.  

First, PSO can use the weighted sum method that considers each objective function 

separately by evaluating each particle for one objective function at a time, and the 

determination of the best position is performed in a similar way to the single-objective 

optimization case (Garza-Fabre et al. (2009)). 

Second, the Pareto set will be considered, which can be used in PSO to evaluate 

objective functions in each particle based on the concept of Pareto optimality (Durillo 

et al. (2009)). In the case of multi-objective, selecting the best solution is not 

straightforward as there can be many non-dominated solutions in the neighborhood of 

a particle and only one solution from leaders is selected to update the velocity (Li et al. 
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(2015)). For multi-objective optimization, the PSO needs to consider Pareto dominance 

every time it updates particles and stores non-dominated solutions (Reyes-Sierra and 

Coello (2006)). Because MOO problems involve a set of Pareto optimal solutions rather 

than a single optimum solution, two main points should to be addressed when the PSO 

is applied to MOO problems (Cabrera et al. (2010)). The first of these concerns the 

method of selecting the leader archive, which is used to store the set of non-dominant 

solutions, to control the particles' movement inside search space. The second concerns 

how to maintain the best solutions.  

The pseudo-code of a general multi-objective PSO (MOPSO) extends the steps of 

standard PSO and is specified in detail in Algorithm 2.5 (Durillo et al. (2009)). 

Specifically, the algorithm starts by initializing the particles, velocity, pbest, and 

archive to store the leaders. After initialization, the objective function must be 

calculated to evaluate objectives for all the particles. Non-dominant solutions for each 

particle are then selected using an evaluatefitness function (Line 4). Following this, the 

leader is then selected by using a select_leader function (Line 5). The velocity, position, 

and archive are then updated (Lines 6-8). The loop will continue until the stop criteria 

is met (Line 9). Finally, the best solution is returned in the archive value (Line 10). 

 
Algorithm 2.5: Pseudo code of a MOPSO Algorithm based on Pareto set. 

Procedure MOPSO ( ) 
1.  Initialize (particle ,position, velocity) 
2.  Initialize_archive ( archive) 
3.  do 
4.       non-dominate =Evaluatefitness (particle) 
5.       archive=Select_leader (non-dominate)  
6.       Updatevelocity (velocity) 
7.       Updateposition (position ) 
8.       Updatearchive(archive) 
9.  while (stopping criterion is reached) 
10.  return archive 
End Procedure  

Finally, when we consider the modified ranking methods with PSO algorithms, several 

ranking strategies had been applied with PSO. For example, Gao et al. (2014) used 

maximum ranking and took the smallest rank for all objectives.  In (Wan and Li (2008)), 

one objective was used and they ranked the fitness function of solutions based on PSO.  
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MaOO, on the other hand, differs from MOO because several issues required to be 

taken into account when dealing with problems that includes more than three objective 

functions (Figueiredo et al. (2016)). For example, using Pareto-based algorithms when 

the number of objectives increases, the process of comparing solutions using just the 

Pareto dominance relation become more difficult (Cabrera et al. (2010)). In addition, 

the process of selecting the leader from the archive in order to improve the convergence 

towards solutions using Pareto set is still needs to be addressed (Marler and Arora 

(2004)). Thus, it is difficult to solve a MaOO with a Pareto set and many techniques 

have been developed to overcome the limitations of applied Pareto-dominance 

(Figueiredo et al. (2016). There is, therefore, still a need to improve PSO algorithms to 

deal with many objectives. In fact, particle swarm based algorithms seem particularly 

suitable for multi-objective optimization and they can be extended to handle many-

objective optimization. In this research, we extend the MOPSO in order to deal with 

many-objective problems as one objective. This is because of the high convergence 

speed in single-objective optimization (Figueiredo et al. (2016)). In this research, a 

modified ranking strategy with many-objective will be developed to improve task 

scheduling and VM allocation based on four and five objectives. In the SLA 

negotiation, the weighted sum approach will be used because only three objectives are 

being dealt with. 

 

2.2.3 Parallel Particle Swarm Optimization  

Advances in computing technologies have improved parallel algorithms, which provide 

several advantages compared to serial algorithms. The methodology of parallel 

computing focuses on dividing large problems into smaller ones and distributing them 

among different nodes to find a solution in rapid time (Chang et al. (2005)). Parallel 

computing has the advantages of reducing time consumption, and increasing the rate at 

which complex problems are solved (Grama (2003)). The cost of complex optimization 

problems motivated the subsequent development of parallel optimization algorithms. 

These algorithms thus solve smaller problems simultaneously (Hao et al. (2016)). The 

parallel algorithm is concerned with running the same code on multiple processors with 

the goal of reducing the running time (Grama (2003)). Thus, for optimization, a parallel 

algorithm will be studied in this thesis.  
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The PSO algorithm is not time-consuming and can easily be parallelized because it 

consists of a set of particles that can move individually and then share the results of 

their movements. A PPSO approach is used to deal with different environments at the 

same time by applying the same algorithms in a different search space and exchanging 

the information obtained from these environments. This is applicable to the model of 

distributed data centers used in this thesis. This will therefore help to improve 

throughput and search speed. In PSO, one swarm consists of several particles, whereas 

in PPSO it can include many swarms. The PSO algorithm is used for applying parallel 

algorithms in a distributed system because, in each step of the iteration, all the particles 

are independent of each other and thus it is easy to evaluate each particle in parallel. 

The PPSO is therefore developed to maximize the throughput of the algorithm, reduce 

computation time, and improve the global search to prevent it falling in to local 

convergence.  

PPSO handles the local and global convergence of the problem to communicate 

between multiple swarms. PPSO can be implemented in two main ways: the first of 

which is the most commonly applied model. This is based on dividing the search space 

into N independent multi-swarms randomly and initializing each individual swarm. The 

PSO for each swarm is then applied and the fitness function of each independent swarm 

is evaluated to determine the particle best (pbest) and the swarm best (sbest) in each 

individual swarm. The velocity and position of each particle in every swarm is updated 

with new results. The global best (gbest) is determined by comparing the swarm best 

(sbest) across all the swarms as shown in Figure 2.2. The second method uses several 

nodes to run many swarms in parallel and the main node used for updating the next 

iteration then selects the best swarm. This model is used when the same data exists in 

all nodes and parallelism techniques are used to speed up the process of evaluation. In 

this work, the first method will be used which involves dividing the search space into 

smaller spaces and running the swarm in different nodes. This approach is suitable for 

the proposed model structure as it is based on distributed nodes and has a distributed 

data center with different numbers of resources and different characteristics. To apply 

parallel algorithms, the main performance problem concerns facilitating 

communication and cooperation between different nodes. Two main types of memory 

architecture can be used to apply parallel algorithms: shared memory and distributed 
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memory. In the former, all nodes communicate via main memory, while in the latter 

each node has its own memory. The structure of the proposed model in this research, 

which includes multiple distributed data centers, is suitable for use with a distributed 

memory architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Flowchart illustrating Parallel Particle Swarm Optimization. 

The PPSO algorithm follows the same steps as the PSO algorithm but with one extra 

step, which is the communication step. This step is required in PPSO to define the mode 

of cooperation between swarms. The communication between multi-swarms can be 

either synchronous or asynchronous. There are several parallel adaptations of PSO, 

including synchronous PSO (Schutte et al. (2004)) and asynchronous variants (Koh et 

al. (2006); Venter and Sobieszczanski-Sobieski (2006)). PPSO has been adapted to 
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solve multi-objective optimization problems (Fan and Chang (2009)).  The nature of 

the communication structure plays a major role in improving the optimization 

algorithm. Parallel Particle Swarm Optimizers based on the communication between 

particles are be classified into three categories, namely master/slave PSO, ring PSO and 

fully connected PSO, as shown in Figure 2.3 (Tu and Liang (2011)).  

In the master-slave model, there is generally one master node responsible for managing 

other slave nodes. Each slave node runs the swarm then sends the results to the master 

node. In this model, finding the global optimal is achieved in the master node, while 

evaluating the objective function and modifying particle velocities is executed in the 

slave nodes. It is simple and easy to implement, which has led to its widespread use in 

optimizing large-scale problems. In the Ring PSO model, the swarm is divided into 

multiple swarms, each of which is placed on one node. Each node runs a PSO algorithm 

on its swarm. Choosing the optimal value and modifying individual velocities occurs 

locally within each swarm. After a defined number of iterations, the best solution in 

each node is then migrated to neighboring nodes. In general, this model is suitable for 

small sized spaces that include small numbers of swarms. However, this model can only 

be implemented in a shared memory architecture because of its need for communication 

in each iteration. In the fully connected topology, all nodes are directly connected to 

each other. All particles in the entire swarm move directly to the best particle found in 

the whole swarm. This model, like the ring PSO, requires a great deal of communication 

as it takes more time to manage the swarm and control the movement of each particle. 

Based on the advantages of these topologies and the structure of the proposed model, 

the master/slave topology will be applied to the PPSO algorithm such that the Manager 

Agent in our model is the master node and distributed data centers are the slaves. This 

model is chosen because it is suitable for the proposed structure and involves the least 

amount of communication and control overheads in an efficient manner than other 

topologies. 
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Figure 2.3: PPSO Topologies. 

Most research on parallelized versions of the PSO scheme have involved testing 

different communication strategies asynchronously or synchronously (Koh et al 

(2006)).  Additionally, they have also focused on the implementation of the algorithm 

in the cluster or GPU processor (Zhou and Tan (2009); Laguna-Sánchez et al. (2009)). 

However, one of the implementation studies showed how to map the PSO on the 

parallel architecture. In this thesis, the focus will be on improving the method of 

communication between nodes to affect the design of the algorithm. In (Gonsalves and 

Egashira (2013)) the parallel version of the PSO algorithm was described without 

introducing any complexity in time and quality. In this research, the parallel version of 

the algorithm is used to improve throughput by reducing the data redundancy of nodes 

compared to the standard PSO algorithm. 

 

2.2.4 Clustering Based Particle Swarm Optimization  

Clustering is a technique for dividing a large dataset into small groups with similar 

characteristics (Adrian and Heryawan (2015)). It is an attractive and a major task in 

data mining that is used in many applications such as text mining and spatial data 

applications. The clustering method is divided into hierarchical clustering and 

partitioning clustering (Gan et al. (2007)). Hierarchical clustering can be applied by 

either merging two clusters or splitting a cluster in such that it iteratively merges the 

two nearest clusters until only one cluster remains in the dataset (Berkhin (2006)). 

(a) Master/Slave (b) Ring (c) Fully Connected  
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Another method of clustering is partition clustering which clusters the dataset into 

several clusters in one level.  

One of the most popular approaches to clustering has been to design clustering as an 

optimization problem with several objectives and constraints (Rana et al. (2011)). In 

this instance, the partitioning of a given dataset satisfies the objective function based 

on several objectives. The computed objective functions are based on statistical 

relationships between the data points in the dataset and the cluster-centroids of each 

cluster (Kuo et al. (2011)). Several optimization methods have been proposed to solve 

the clustering problem where the objective function aims to maximize or minimize the 

inter cluster distance. One of the most efficient algorithms applied to clustering is the 

PSO algorithm (Abdel-Kader (2010); Govindarajan et al. (2013)). However, PSO often 

leads to premature convergence and its performance is highly dependent on parameter 

tuning, therefore several researches have been made to improve its quality and 

performance in different ways (Rana et al. (2011)). For example, PSO is applied to 

determine the appropriate number of clusters and initialize their centroids. Upon 

initialization, PSO has a limitation in that it does not perform well on a large and 

complex dataset. This is because each solution is represented by a particle that has a 

boundary of the search space and it cannot then explore any further. Kuo et al. (2011) 

proposed a PSO algorithm to beat this problem by predefining the number of clusters 

at the beginning of the execution. To improve the efficiency of the PSO in data 

clustering, it is sometimes hybridized with other algorithms such as K-means in 

Mahendiran et al. (2012) and fuzzy techniques in Benameur et al. (2009).  

The K-means algorithm is regarded as the most popular technique for clustering data 

(Hatamlou et al. (2013)). This algorithm starts with random centroids and each object 

is assigned to the closest centroid as shown in Algorithm 2.6 (Line 1). The centroid 

values are then re-calculated based on the points of each cluster as shown in Lines 2-7. 

This procedure continues until a termination criterion is met. Although the K-means 

algorithm is simple, its performance varies greatly depending on the initialization 

values of centroids. To solve this limitation, research on the setting of initial centroids 

has been ongoing using K-means combined with optimization approaches such as GA 

and PSO to find the global optimization and escape from local optima (Premalatha and 

Natarajan (2009)). 
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Algorithm 2.6: K-means Clustering Algorithm. 
Input: dataset points, K          // where k is the number of clusters 
Output: k clusters with points assigned to each of them 
Procedure k-means (points, k)  
1. random initialization of k cluster centroids                 
2. do   
3. for all points  
4.            Assign points to closest cluster  
5. end for  
6. for all k clusters  
7.            compute the new centroids  
8. end for  
9. repeat until there is no more change in the centroid values 
End Procedure 

Various research studies have been conducted to improve the efficiency of the K-means 

algorithm using PSO. PSO provides the optimal initial centroids, thus using these 

values the K-means algorithm produces better clusters and more accurate results than 

it does when used alone. In Neshat et al. (2012), a combination of PSO and K-means 

was developed to take the feature of the PSO in the global search and the speed of 

convergence of K-means. Furthermore, Saini et al. (2014) developed clustering 

algorithm based on PSO and K-means to improve the quality of clustering results.  

Benameur et al. (2009) proposed a PSO method with a fuzzy clustering algorithm, 

which developed to produce a better clustering of solutions by dividing the dataset into 

multiple swarms. Moreover, (Attea (2010)) discovered that as the performance of 

clustering algorithms degrades there are increasingly more overlaps among clusters in 

a dataset. These issues have motivated researchers to develop an innovation multi-

objective PSO framework for clustering data that delivers more effective results than 

state-of-the-art clustering algorithms.  

GA operators, which involve selection, mutation and crossover, can be applied to 

produce a new generation of chromosomes to improve the quality compared with the 

previous generation. Premalatha and Natarajan (2009) used the hybrid approach of PSO 

with GA to select a better solution without becoming trapped in the local optima, and 

to provide a quicker convergence speed. This renders PSO-GA more flexible in 

providing better results within a reasonable processing time. However, in clustering 

data, GA is more time consuming than K-means. 

After studying different clustering techniques, the most common algorithms combined 

with PSO can be summarized as follows:  
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• K-means clustering, which produces greater accuracy and requires less 

computation time, although performance is based on the number of clusters. 

• Clustering data using fuzzy measures produces results similar to K-means 

clustering, but requires more computation time because the fuzzy measure 

involves more calculations.  

• GA yields effective results and, unlike K-means, does not require the number 

of clusters at the beginning of process. However, it consumes longer time to 

compute than K-means.  

Given these comparisons, the requirements of the current research problem involve 

applying PSO clustering to cluster hosts in the data centers. This requires high-speed 

methods where the number of clusters is predefined and limited. Therefore, in this 

research, the PSO combined with K-means will be used for clustering. 

 

2.3 Service Level Agreement Negotiation  

This section presents an overview of the SLA negotiation process and discusses related 

work on SLA negotiation in cloud computing. Section 2.3.1 outlines the key points 

related to SLA negotiation in cloud computing. In Section 2.3.2, the automated SLA 

negotiation process based on multiple agents will be described. Section 2.3.3 will 

discuss in detail previous work that has applied PSO to improve SLA negotiation. Using 

parallel algorithms in developing SLA negotiation will be discussed in Section 2.3.4. 

Section 2.3.5 will describe the techniques and the measurement factors used in SLA 

monitoring algorithms. Finally, Section 2.3.6 summarizes the main points along with 

results in the field of SLA negotiation.   

 

2.3.1 Overview 

An SLA is a formal agreement between the providers and the consumers that defines 

the parameters of the services the consumer expects and the provider guarantees (Son 

and Jun (2013)). SLA is a term widely used to specify QoS objectives, which are 

achieved through a negotiation process (Abdullah and Talib (2012)). SLA in a cloud 
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computing context is defined as a contract signed between a cloud provider and a 

consumer that determines the set of QoS metrics that are used to measure services and 

penalties in case of violations (Son and Jun (2013)). SLA is an important way of 

ensuring that the level of service is in line with the expectations of both providers and 

consumers. QoS is defined as a set of parameters that specify the properties of the 

service including response time, throughput, availability and failure rate. Some of these 

QoS parameters are based on consumer requirements and others are related to the 

provider. Different consumers can adopt different QoS values for the same cloud 

service depending on the specific requirements in each case (Thio and Karunasekera 

(2005)). 

To apply SLA in any system, the life cycle of management needs to be followed. SLA 

management is the process that incorporates allocated, negotiated, monitored, 

accounted and released resources. According to (Lissy and Mukhopadhyay, (2014)), 

the life cycle of SLA management comprises main four phases as shown in Figure 2.4. 

The first phase of the SLA life cycle involves creating the SLA Template based on the 

available and required information. The SLA Template involves a set of parameters 

that include definition of services, parties, penalty policies and QoS parameters. The 

next phase is SLA negotiation, which includes the process of completing the contracts 

between the providers and consumers. The third phase is the SLA implementation 

phase, which involves SLA generation according to the agreed contract between 

consumers and providers. After the SLA is completed, it is monitored and maintained 

in the final phase, SLA Monitoring, which is used to determine whether any changes 

are needed or if any SLA violation has taken place. The cycle then restarts from the 

beginning and will continue until the SLA is terminated. The research in this thesis will 

focus on two specific phases of SLA management, SLA negotiation and SLA 

monitoring. This is because these two phases play a significant role in the performance 

of cloud computing systems and improving them will therefore satisfy the objectives 

of cloud consumers and providers.  
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Figure 2.4: SLA Management Life Cycle. 

The SLA metrics for cloud computing are defined in the three layers that represent 

cloud services which are SaaS, PaaS, and IaaS (Section 1.1.1). In this research, the 

focus will mainly be on the IaaS layer and the significant parameters contained within 

it, including virtual and physical resources.  

Negotiation concept is generally defined as a decision-making process, where parties 

exchange information and attempt to reach a common acceptable agreement (Dastjerdi 

and Buyya (2012)). Such negotiation is necessary when there are conflicting objectives 

between different parties (Rajavel and Thangarathinam (2015)). During the negotiation, 

process the participants exchange negotiation offers to satisfy predefined negotiation 

goals under specific constraints.  

The automated negotiation model is based on agent technologies and includes four 

elements: negotiation agent, negotiation object, negotiation protocol, and negotiation 

strategies (Zheng (2014)). Details of each of these components (Dastjerdi and Buyya 

(2012)) can be summarized as follows:  

• Negotiation Agent: includes the parties involved in a negotiation process, 

which includes in cloud environment the providers, consumers and, in some 

models Brokers.  

1.SLA Template 
Creation

2. SLA 
Neogtiation

3.SLA 
Implementation 
and Execution

4.SLA 
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• Negotiation Object: a set of objectives that the negotiation agents must reach 

which can be single or multiple negotiation issues.  

• Negotiation Protocol: specifies the rules that should be followed to control the 

negotiation. There are different models of negotiation based on the protocol 

used and the procedure for negotiation between the parties. Models of 

negotiation protocols can be bilateral, one-to-many, or many-to-many. The 

model used in this research will employ a one-to-many protocol, as one 

consumer agent will negotiate with multiple data centers to find the best 

resources. 

• Negotiation Strategy: is the technique that negotiating agents use to achieve 

their objectives under the rules and protocol of negotiation. Negotiation 

strategies differ in terms of the number of criteria they handle and the number 

of parties involved in the process. Furthermore, they differ in the rules and 

constraints that control the negotiation process such as deadline time, the 

availability of resources or the other preferences of the parties. The most 

common negotiation strategies are categorized into four main types (Shen et al. 

(2002)): contract net, auction model, game theory based, and the discrete 

optimal control model. In the contract net, a manager agent evaluates the task 

announcements of other agents and bids for the tasks the agent is engaged with 

only two possible results: accept or reject. In the negotiation based on auction 

strategy, both parties need to agree on the offer without any penalties being 

imposed in case of rejection. In the model of game theory, each agent is 

responsible for providing a plan so that if all parties accept the plan the 

negotiation is finished. If they do not, agreement cannot be reached and the 

negotiation process is turned down. Finally, the optimal control model is 

developed as a market model. This model consists of three steps: collecting all 

the information, coming up with set of decisions, and making the final decision. 

This strategy aims to automate the negotiation process and provide the optimal 

solution. Thus, this approach will be used in the current proposed model to 

improve SLA negotiation in cloud computing. 
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SLA negotiation in cloud computing describes the process of allocating resources to 

fulfil the consumer’s requirements and the provider's objectives. If cloud providers and 

cloud consumers have conflicting objectives, SLA negotiation is initiated to reach an 

agreement. To apply SLA negotiation, cloud consumers determine their QoS 

requirements, and then negotiate them with cloud providers. Various models and 

strategies of negotiation are used in cloud computing. However, the negotiation 

function in cloud computing is complex because the resources are distributed and 

diverse, and the process of selecting resources for executing tasks depends on the 

requirements of both the provider and consumer (Dastjerdi and Buyya (2012)).  

An automated negotiation mechanism is thus necessary to achieve agreement and this 

has become a very important research topic in cloud computing in recent years. 

However, in an open and dynamic environment, individual negotiations may be 

initialized or finished during the process of negotiation. Concurrent negotiation based 

on multi-agents denotes a situation where negotiations are conducted in parallel or 

concurrently by an agent (Panagidi et al. (2014)). 

In most research, SLA negotiation in cloud computing can be achieved using concurrent 

negotiations. In the concurrent protocol, there is one consumer and many providers 

residing within the framework of a one-to-many structure. In this model, consumers 

and providers conduct negotiations in parallel. Consumer agents should decide the 

providers from which they will use the resource. The consumer utilizes several threads 

to negotiate with every provider. A negotiation offer is a proposal for an agreement that 

one negotiation party makes to another based on predefined issues. The offer describes 

the service specification in SLA that has been negotiated and the associated QoS in 

terms of satisfaction guarantees. The negotiation constraints are control rules used to 

express the requirements of a negotiating party during the negotiation processes. 

There has been a wide range of research conducted on improving SLA negotiation in 

cloud computing using meta-heuristic algorithms. Much of this has explored SLA 

formation, management, negotiation, and monitoring. Most work on SLA negotiation 

in cloud systems has focused on the IaaS level, and has explored how to improve 

communication between consumers and providers (Pittl et al. (2015)). Negotiation at 

the IaaS layer is concerned with virtual/ physical resources and their characteristics, 
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and is essentially conducted to enhance resource allocation. Resource providers must 

efficiently manage their infrastructure to run consumer tasks, satisfy consumers' needs, 

and maximize providers' profits. To achieve this, resource providers need to negotiate 

with consumers before allocating resources based on the agreed issues. The solutions 

then developed can be grouped into approaches based on multi-agent systems, PSO 

algorithms, or on parallel meta-heuristic algorithms. In subsequent sections, an 

overview of research on all these approaches will be provided and their respective 

benefits and drawbacks will be discussed. 

 

2.3.2 Automated SLA Negotiation Based on Multiple Agents  

Many researchers have proposed different ways of using a multi-agent system for 

automated negotiation. Using a multi-agent in developing negotiation strategies is 

suitable for application in a distributed environment such as cloud computing (Chen et 

al. (2014)). Specifically, (Chen et al. (2014) designed a multi-agent based negotiation 

framework using a dynamic model that incorporated several factors of the negotiation 

process such as degree of competition, time of negotiation, number of rounds, and 

historical information on trade. 

Several researchers have also explored automated concurrent negotiation, which is 

based on a one-to-many form of negotiation (Panagidi et al. (2014)). This strategy 

involves one buyer and several sellers who express their preferences by exchanging 

offers and counteroffers (An et al. (2010)). A multi-issue concurrent negotiation 

mechanism was developed to resolve multi-issues regarding price, time and service 

quality in cloud computing by (Mansour and Kowalczyk (2012)). Recent research has 

considered negotiation models for automated SLA negotiation, including strategic 

behaviors in bilateral negotiations (Silaghi et al. (2012)) or concurrent negotiation 

((Nurika et al. (2014)). Concurrent negotiation is a common type of negotiation in cloud 

computing where the consumer selects the appropriate strategy to be applied by each 

thread based on the preferences of each interaction (Nurika et al. (2014)). Concurrent 

negotiations provide many advantages, such as enabling a buyer to negotiate, in 

parallel, with many sellers (Mansour and Kowalczyk (2012)). This enables buyers to 

select the best possible agreement. Researchers, aware of the advantages of this 
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approach, have subsequently proposed a number of models. (Nurika et al. (2014)), for 

example explored one-to-many negotiation between a buyer and multiple sellers. In this 

approach, the buyer waits until all the threads send the offers before starting next 

iteration of negotiation. In (Rahwan et al. (2002)), three methods to coordinate one-to-

many negotiation were developed. The information changes between parties after the 

receipt of an offer and the coordinator decides when to finish the negotiation and how 

to compute the utility function. Nguyen and Jennings (2003) extended the work 

presented in Rahwan et al. (2002) and proposed methods to coordinate threads of 

concurrent negotiation. In Mehdi et al. (2011), the number of steps taken during the 

negotiation process to reach an agreement was reduced by allowing the broker agent to 

nominate the offers rather than the consumers. This reduced both the average waiting 

time and the number of tasks that failed. 

To accelerate the negotiation process, (Zhang and Liu (2016)) developed a concurrent 

automated bilateral multi-issue negotiation mechanism for different combinations of 

values of a discrete issue. The seller agent and the buyer agent can only respond by 

varying the price in each thread. This greatly reduced the exchange of information 

between the two agents and avoided strategic misrepresentations. Furthermore, in 

(Omezzine et al. (2016)) a negotiation-based scheduling algorithm was developed to 

deal with both the characteristics of the cloud market and the objectives of SaaS. Their 

experimental evaluation demonstrates the benefit of including negotiation in the 

scheduling process. 

Finally, in Messina et al. (2014), a cloud negotiation protocol was developed to deal 

with the problems that arise when having to negotiate SLAs with different providers. 

They used agent technology to improve and simplify the process of SLA negotiation. 

Dastjerdi and Buyya (2012) developed a method of automated negotiation based on 

agent systems. It aimed to offer reliability, balance the load between different VMs, 

and rank the offers.  

In this thesis, the aim will be to automate the process of SLA negotiation by using 

multiple agents based on multi-issue objectives within the constraints of deadline and 

cost. The difference in this research is that the focus will be on applying a PSO 
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algorithm in parallel model to minimize the negotiation time. SLA negotiation based 

on PSO algorithms will be discussed and analyzed in the next section.  

 

2.3.3 SLA Negotiation based on Particle Swarm Optimization 

The general methodology of using meta-heuristic algorithms in negotiation is based on 

representing the negotiators’ proposals and the counter proposals as points within the 

space of possible agreements (Tsai and Rodrigues (2014)). The algorithms calculate the 

solution according to the negotiators' objectives, and the utility functions. Recent efforts 

in automated negotiation have involved the use of meta-heuristic algorithms such as 

PSO algorithms (Kolomvatsos and Hadjiefthymiades (2014); Panagidi et al. (2014)).  

For example, in Copil et al. (2012), negotiation based on the PSO algorithm for creating 

counteroffers was developed to provide the energy consumed and the performance 

offered in the cloud. In their research, the swarm represents a potential counteroffer and 

the energy is used as an objective function. The PSO-based negotiation process 

evaluates the solution by considering Pareto optimality. The authors argue that 

providers must manage the trade-offs between the required energy and the charged 

price during negotiation by using PSO in both the consumer and provider sides.  

On the other hand, in Esmaeili and Mozayani (2010), a multi-attribute negotiation 

model was proposed, based on a multi-objective PSO algorithm that uses agents to 

conduct a separate negotiation with each opponent where each agent identifies the best 

offer among incoming offers. The research compared the results of using the weighted 

sum of multi-objective approaches with the results of an optimal set to demonstrate the 

model's effectiveness and the required convergence.  

Panagidi et al. (2014) developed the PSO approach for concurrent multi-issue 

negotiation. This was based on the number of threads, which represents the objective 

issue. However, it is an efficient technique when the number of threads is small because, 

when the number of issues increases, the profit decreases. In (Maitly and Chaudhuti 

(2014)), a novel method of SLA negotiation in cloud environments based on a multi-

objective GA algorithm was proposed. The model efficiently chooses the most 

optimized SLAs for inexperienced consumers in cloud environments. The framework 
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aims to simplify SLA negotiations and matches VM specifications. It offers high 

performance compared to most current SLA negotiation schemes where the focus is 

more on profit.  

In (Kattan and Fatima (2012)), a combination approach of GA and PSO was developed 

to improve the bilateral multi-issue sequential negotiation. The PSO is used to balance 

the computational budget between the two GA algorithms. In our model, when applying 

PSO algorithm in large scale distributed environments such as cloud computing, the 

quality of results will be minimized in line with an increase in number of elements to 

be explored in the search space. In addition, we aim to benefit from the distributed 

resources to increase the performance of the PSO to speed up the negotiation process. 

Thus, the emphasis will be on how to apply parallel PSO to deal with large space. In 

the next section, the methods of applying parallel algorithms in the SLA negotiation 

process will be discussed.  

 

2.3.4 SLA Negotiation based on Parallel Algorithms  

Parallel computing is a computational model involving several computational resources 

that can run simultaneously (Grama (2003)). Automated negotiations provide many 

advantages as a buyer can negotiate in parallel with many sellers. This improvement 

gives the negotiation process the opportunity to select the best possible agreement and 

reduce the negotiation time. Several researchers have used parallel computing to 

improve concurrent negotiation strategies by applying meta-heuristic techniques such 

as GA algorithms. For example, (Sim (2013)) proposed parallel negotiation models that 

promote negotiation activities between the consumer and provider agents through a 

broker agent. Multiple broker agent services receive requests from each consumer 

agent, and many consumer agents send requests to each broker agent. 

In (Hashmi et al. (2011)), a GA algorithm was developed for simultaneous web service 

negotiations. They introduced a parallel GA algorithm to enhance negotiation. 

Furthermore, (Nurika et al. (2014)) proposed a Genetic optimized performance oriented 

algorithm for concurrent SLA negotiations in the cloud environment that focuses on 

aspects such as network speed and execution time to improve overall profit and 
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performance. In Bousselmi et al (2016), a workflow-scheduling algorithm was 

developed to improve the QoS by extending the Parallel Cat Swarm Optimization 

(PCSO) algorithm to provide better results in performance compared to the standard 

PSO algorithm. In this research, SLA negotiation based on Parallel PSO will be 

developed to speed up the process of negotiation and improve the results of PSO 

algorithms (see Chapter 4 for further details). 

 

2.3.5 SLA Monitoring  

After the submission of the task to the selected data center, the resource needs to be 

monitored to avoid any SLA violation and to detect the status of the task. SLA 

monitoring is therefore an essential requirement for any cloud model as it traces the 

usage of cloud resources, performance, and ensures the SLA is met. It monitors the 

execution of the tasks to provide information to cloud providers to allow effective 

management of data center resources. 

Monitoring SLA also plays a significant role in determining the number of violations 

that have occurred. Most SLA violations happen during load fluctuations or delay time 

(Emeakaroha et al. (2010); Patel and Sarje (2012)). SLA violation monitoring process 

starts when an agreement has been initiated. Most importantly, monitoring plays a 

critical role in determining whether a SLA is achieved or violated.  

Consequently, SLA monitoring in cloud computing has been studied by many 

researchers from different perspectives. Some researchers have proposed the SLA 

violation approach in one layer of cloud computing, for example, (Emeakaroha et al. 

(2012); Sakr and Liu (2012)) developed approaches enabling SaaS to detect the SLA 

violation in applications in the SaaS layer. In fact, most researchers in SLA monitoring 

have focused on the cloud IaaS layer as a critical and essential asset for SLA violation 

in terms of security, privacy, quality of hardware, and availability (Emeakaroha et al. 

(2010)).  Generally, cloud providers need optimization algorithms to provide optimal 

resource allocation to meet the SLA and satisfy QoS (Sahal et al. (2013)). Some 

researchers have discussed different optimization-based approaches to resource 

allocation in the cloud environment such as using meta-heuristic algorithms. For 
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example, (Liu et al. (2011)) used the ACO technique to enable the SLAs to manage the 

provider's resources. In this research, the focus will be on QoS performance metrics i.e. 

response time, waiting time, and throughput. The SLA Monitor agent will be used to 

collect information about QoS metrics from the provider and the consumers. When the 

SLA agreement is established between the cloud provider and the cloud consumer, the 

SLA Monitor Agent needs to check the SLA status to detect any SLA violation. 

Therefore, the focus will be on IaaS layer monitoring to detect whether any SLA 

violation occurs. SLA violation detection is based on deadline constraints and the VM 

migration time.  The presented SLA monitoring does not include the reliability feature 

of the cloud computing and not predict the failure before occurrence. Adding this 

feature for future improvement of the model can improve the reliability of the system 

and reduce the failure rates. 

 

2.3.6 Discussion of SLA Negotiation Work  

Previous research has improved negotiation by using multiple agents to apply 

automated negotiation, which is particularly suitable for applying in cloud computing. 

However, there is a need to further improve and simplify the negotiation process in 

cloud computing to cope with the scalability and increase in the cloud's resources. There 

are many inherent limitations in current negotiation algorithms that can be discussed in 

relation to their applications in cloud environments. Such limitations can be 

summarized as revolving around the need for multi-issues to be simplified and sped up. 

Moreover, in some cases, the SLA is violated and this needs to be detected before it 

occurs. Using meta-heuristic techniques produces effective results compared to 

traditional methods. Parallel negotiation algorithms are superior in terms of negotiation 

time, number of proposals and average utility when compared with sequential 

negotiation (Nurika et al. (2014)). However, the parallel negotiation algorithms need to 

meet several objectives simultaneously. Some parallel meta-heuristic algorithms have 

been applied to enhance the negotiation process and reduce the time spent on 

negotiation, for example, GAs in (Hashmi et al (2011); Nurika et al. (2014), and the 

Cat Swarm algorithm in Bousselmi et al. (2016).  
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In our research, however, multi-issue concurrent negotiation based on PPSO will be 

developed to speed up the process of negotiation and reduce the time of migration. To 

date, no previous research has attempted this. Using PPSO will improve the quality of 

the results of PSO and speed up the process of negotiation because PSO is an inefficient 

algorithm when large spaces are involved. 

From another perspective, most of the existing research focuses on just the price or 

QoS. In the proposed model, consumer goals will be focused upon in terms of QoS, 

time and the provider objective (i.e. price). Thus, in the research reported in the thesis, 

the concern is SLA negotiation and monitoring, and the focus will be on the multi-issue 

parallel PPSO SLA negotiation model in cloud computing where a consumer agent 

negotiates with more than one agent in each data center and each agent is characterized 

by multiple negotiation issues. In comparison to Copil et al. (2012), PSO will be run in 

the Manager Module only to reduce communication time and the time spent on the 

process of negotiation. 

 

2.4 Task Scheduling in Cloud Computing   

Task scheduling is a vital process in the field of cloud computing because it affects 

overall system performance. Traditional scheduling methods are not effective when 

applied in cloud computing and many researchers have therefore explored cloud 

computing specifications to develop and optimize task scheduling in the cloud 

environment. In this section, various scheduling algorithms related to the proposed 

research will be presented and analyzed from different perspectives.  

Specifically, Section 2.4.1 presents a general overview of task scheduling in cloud 

computing. Section 2.4.2 discusses task scheduling based on PSO algorithms and 

analyzes the results based on the objectives. In Section 2.4.3, several methods for 

applying meta-heuristic algorithms will be presented and discussed. Additionally, 

Section 2.4.4 presents task scheduling algorithms based on heuristic approaches namely 

Min-min and Max-min algorithms. Real-time scheduling approaches will be discussed 

in Section 2.4.5. Finally, Section 2.4.6 discusses previous work in task scheduling and 

summarizes the main points that merit further study. 
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2.4.1 Overview  

Scheduling is the process of allocating or distributing work to processors, humans or 

machines to be completed within certain time constraints (Zhan et al. (2015)). In the 

cloud context, task scheduling maps tasks to suitable resources to satisfy specific 

objectives (Shaw et al. (2014)). Tasks must be allocated efficiently to VMs with 

minimum delay. The providers must follow the SLAs and meet the QoS requirements 

as defined by the consumers. One of the important research issues in cloud computing, 

in terms of performance efficiency, is therefore that of scheduling tasks and resources. 

Scheduling tasks in cloud environments is classified as an NP-hard problem because it 

involves large solution space and thus takes a long time to find an optimal solution (Tsai 

and Rodrigues (2014)). Meta-heuristic algorithms have been applied for task 

scheduling problems to find sub-optimal solutions within an acceptable time (Tsai and 

Rodrigues (2014)).   

The scheduling function maps tasks to available resources to optimize one or many 

objectives under certain constraints. Task scheduling can be categorized into two main 

types: static and dynamic (Singh and Chana (2016)). In the former, the tasks are 

scheduled in an environment depending on known information about the tasks and 

resources. In the latter, scheduling depends on the current state of the system (such as 

load, storage capacity, and network bandwidth), in addition to the submitted tasks. The 

dynamic allocation changes the decision of the selected resource depending on changes 

in the system, while static allocation depends on static information and does not 

consider system changes. In this research, dynamic scheduling is utilized because it is 

better suited to the elastic feature of most cloud infrastructures (Singh and Chana 

(2016)). Dynamic task scheduling can be applied in a real-time (online) mode or batch 

mode ((Mathew et al (2014)). In real-time scheduling, tasks are scheduled immediately 

when they arrive in the system while in the batch scheduling, tasks are queued when 

they arrive and then they scheduled (Liu et al. (2010)). From another perspective, tasks 

can be classified based on dependency factor as either independent or dependent 

(Pandey et al. (2010)). Task scheduling is called for scheduling independent tasks, and 

scheduling dependent tasks is called workflow scheduling. Task scheduling is much 

easier than workflow scheduling because the scheduling process deals with a set of 

tasks that are independent of each other and they can be executed individually without 
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any dependency on other tasks (Jayanthi (2014)). On the other hand, task scheduling 

can be preemptive or non-preemptive depending on the specification of the tasks and 

resources. In the non-preemptive scheduling, when a task starts running it is not 

interrupted until it finishes it's execution, while in preemptive scheduling the tasks are 

prioritized and then are executed depending on their priority.  

Several parameters are taken into consideration when optimizing scheduling algorithms 

in cloud computing, some related to providers whilst others benefit the consumers (Tsai 

and Rodrigues (2014)). The main parameters that summarize consumers' goals are 

performance and QoS (Zhan et al. (2015)), the details of which are as follows: 

• Performance: the efficiency provided by the scheduling algorithm in terms of 

providing services to consumers based on their requirements. The main 

attributes of the performance factor are: 

o Waiting Time: the time the task takes from submission to end 

execution. The waiting time should be reduced to increase the 

performance of the scheduling algorithm. Improving performance and 

reducing energy consumption are achieved by reducing the waiting time.  

o Response Time: the time that elapses between the submission time of 

the task and the start of execution. 

o Execution Time: the total time taken to execute the task from the start 

until it is completed. The aim of scheduling algorithms is to reduce the 

execution time.  

o Completion Time: the total time taken to complete the execution of a 

task. It also includes the execution time and the waiting time caused by 

the cloud system (Mathew et al. (2014)). Many scheduling algorithms 

prefer to minimize the completion time of tasks. 

• Quality of Service: this includes various constraints on consumer input such as 

meeting execution, cost, performance and deadline, which are 

defined in SLAs contract document. 
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o Budget: This constraint is defined by the cloud consumer and 

determines the maximum cost that can be paid for services. The 

scheduling policies are made to minimize the total execution time within 

the budget (Poola et al. (2014)).  

o Deadline: is the defined as the allowable time for execution time from 

submitting a task until the time of completion. A good scheduling 

algorithm always tries to ensure tasks are executed within the deadline 

constraints to reduce the number of failed tasks (Mathew et al (2014)). 

o Cost: indicates the total amount the cloud consumer will pay to the cloud 

provider for using the resources. The cost of services depends on the 

computation cost, the cost of transferring data, and the storage cost.  

The parameters related to providers' goals can be summarized as follows: 

• Resource Utilization: measures the resource used to increase the throughput of 

the system. It is used to keep the resources as busy as possible to maximize the 

profit.  

• Load Balancing: is the technique of distributing the load in a cloud data center 

across different nodes so that no node is under-loaded at any given time. The 

load should be balanced to increase the utilization of resources. Load balancing 

over the resources also improves resource utilization.  

• Energy Consumption: many different scheduling algorithms have been 

designed to reduce power consumption to improve performance. Reducing 

energy consumption in cloud data centers is an issue that has recently been 

considered in several scheduling algorithms. Energy consumption will be 

affected by utilization such as it becomes high when CPUs are not utilized 

because idle resources are not used effectively. 

In the following subsections, the work undertaken in task scheduling in cloud 

computing according to these goals will be briefly discussed. The focus will be on 

methods that apply PSO and previous work based on meta-heuristic, heuristic task 

scheduling, and real-time scheduling strategies will be discussed. 
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2.4.2 Task Scheduling Based on Particle Swarm Optimization   

Many scheduling algorithms have been proposed for task scheduling in cloud systems. 

In this thesis, the focus is on research that uses PSO in task scheduling. Many 

researchers have explored how to use PSO to improve task scheduling in cloud 

computing using different strategies. PSO is one of the most successful meta-heuristic 

algorithms for generating optimal solutions by scanning the search space during each 

iteration and evaluates solutions. This section presents a review of recent work on the 

use of PSO in task scheduling in a cloud environment. A classification of the scheduling 

schemes will be presented, based on their objectives for both consumers and providers, 

and on the numbers of these objectives, i.e. whether they are single, multi-objective or 

many-objective.  

First, task scheduling based on consumers' goals is considered. In this instance, 

consumers' QoS requirements include several parameters such as makespan and cost. 

In multi-data centers, there are additional parameters added for network and 

communication such as distance, bandwidth, and latency.   

In Abdi et al. (2014) three meta-heuristic approaches for task scheduling in a cloud 

environment were compared: PSO, a GA algorithm and a modified PSO. In this 

scenario, the researchers argued that the number of tasks was greater than the number 

of resources so tasks could not be migrated to different recourses. When compared, the 

performance of the modified PSO in which the SJFP (smallest job to fastest processor) 

algorithm is merged with PSO was better than other techniques in terms of minimizing 

makespan in task scheduling and thus improves performance. 

The PSO algorithm are used to develop task scheduling based on multi-objective 

optimization. MOPSO has therefore been proposed to evaluate multi-objective 

optimization problems using Pareto set. Lakra and Yadav (2015), for example, 

developed a multi-objective task scheduling algorithm that scheduled the tasks to VMs 

to improve the throughput and reduce the cost without violating the SLA. This model 

used non-dominated sorting after ranking the tasks based on QoS and VMs. Feng et al. 

(2012) were concerned with improving resource allocation and developed a MOPSO 

algorithm by using Pareto-dominance, which searches for optimal scheduling based on 

total task execution time, resource reservation, and the task's QoS. (Milani and Navin 
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(2015)) improved task scheduling using MOPSO according to three factors: reduced 

execution time, waiting time, and missed tasks.  

Alternatively, some researchers have focused on improving two objectives such as time 

and cost (Ramezani et al. (2013); Pandey et al. (2010)). Specifically, Ramezani et al. 

(2013) developed a MOPSO algorithm for optimizing task scheduling in relation to 

execution time, task transfer time, and task execution cost. However, in Pandey et al. 

(2010), the researchers used the cost for both data transmission and computation to 

minimize the total execution cost in cloud computing environments. Moreover, in 

(Wang and Zheng (2011)), the MOPSO was applied to optimize the cost of task 

execution, transfer time and task execution time. All the previous methods used the 

Pareto set in evaluating multiple objectives. In Zhao et al. (2015), task scheduling based 

on the completed time and cost was improved by using a weighted sum to develop the 

multiple-objective function based on QoS parameters. A similar method was used in 

(Beegom and Rajasree (2014)), whose multi-objective PSO scheduling algorithm was 

based on makespan and communication cost objectives using a weighted sum approach. 

(Guo et al. (2012); Verma and Kaushal (2014)) used the same parameters in terms of 

execution time and cost but differed in their method of evaluation function. For 

instance, Verma and Kaushal (2014) used a weighted sum approach while Guo et al. 

(2012) used the optimal Pareto set approach.  

The second set of approaches focus on task scheduling based on provider efficiency. 

Provider efficiency in this respect is related to the profit, utilization of the resources, 

SLA violation, load balancing among VMs, and the cost of power consumption. In this 

section, the work that will be presented aimed to improve provider objectives. 

Some researchers improved task scheduling by taking energy consumption and profit 

as objectives function, for example (Jena (2015)). The same objectives were considered 

in (Liu et al. (2013)). They developed a PSO task scheduling model for distributing 

tasks over VMs to minimize the cost of task execution and maximize the providers' 

profit in the cloud environment.  

In Awad et al. (2015), task scheduling was improved to increase the utilization of 

resources using a dynamic PSO scheduler. These researchers proposed a modified PSO 
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algorithm called load balancing PSO (LBMPSO), which aimed to minimize reliability, 

execution time, transmission time, and cost.  

The third set of approaches consider task scheduling in terms of the goals of both 

providers and consumers. Thus, many researchers have investigated how to 

compromise and balance the needs of providers and consumers to satisfy both sets of 

objectives. For example, Al-maamari and Omara (2015) proposed a dynamic adaptive 

PSO (DAPSO) algorithm to enhance the performance of basic PSO to schedule tasks 

for minimizing makespan and maximizing the utilization of resources. Similarly, Zhan 

and Huo (2012) proposed an improved PSO to reduce average execution time and 

increase the availability of resources.  

Feng et al. (2012) were concerned with improving resource allocation based on a 

MOPSO algorithm using Pareto-dominance that was based on three factors: total task 

execution time, QoS and resource utilization. In Al-Olimat et al. (2014), MOPSO task 

scheduling aimed to improve resource utilization and minimize makespan. Some 

researchers have developed a MOPSO algorithm by applying a ranking strategy, such 

as (Alkayal et al. (2016)). Three objectives are involved when computing the fitness 

function to improve the task scheduling algorithm based on a ranking strategy. 

On the other hand, there has been comparatively little research studying many-

objective. Amongst the work that has been conducted, (Ye et al. (2017)) considered a 

four objectives scheduling problem based on an improved knee point driven 

evolutionary algorithm. In contrast to previous research, our research aims to handle 

five objectives in task scheduling based on a modified ranking strategy to simplify the 

evaluation of objective function. 

When focusing on the type of optimized parameters, it is clear there are many 

parameters for scheduling algorithms in cloud environments. The most common 

parameters that are used to evaluate the performance of the scheduling algorithm are 

execution time, makespan, cost, energy consumption, QoS, and load balancing. Each 

algorithm addresses one or more of these parameters depending on its objectives. Some 

researchers also targeted cost optimization whereas others aimed to shorten the 

makespan. Additionally, some researchers strived to minimize the overall energy 

consumption, although these algorithms struggled to meet the QoS. Others aimed to 
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improve the cost, makespan and execution time. However, research efforts regarding 

load balancing and QoS need more work regarding the number of objectives because, 

as noted previously, most research focuses on multi-objective, which include just two 

or three objectives. Additionally, there is little in the way of research focusing on 

evaluating many objectives (more than three objectives) when scheduling tasks in cloud 

computing environments. 

 

2.4.3 Task Scheduling Based on Meta-Heuristic Algorithms 

Researchers have demonstrated that meta-heuristic scheduling algorithms provide sub-

optimal scheduling results than traditional scheduling algorithms (Tsai and Rodrigues 

(2014). Given this, different meta-heuristic algorithms have been applied to solve task 

scheduling in cloud computing such as GAs and ACO algorithms (Kaur and Chhabra 

(2016)). 

First, task scheduling based on ACO Algorithms will be considered. Many scholars 

have studied task scheduling using ACO algorithms. For example, Wen et al. (2012) 

proposed a task scheduling algorithm based on an improved PSO, which considers the 

total task completion time and the total task cost, but does not consider load balancing 

in the system.  In (Tawfeek et al. (2015)), the concept of ACO is used to schedule tasks 

in a cloud computing environment based on makespan. Alternatively, Madadyar and 

Bagherzadeh (2011) have introduced the method of initial ants based on the standard 

deviation of the pheromone of the tasks and the expected time to execute a task on a 

given VM. Chen and Zhang (2009) developed a task scheduling algorithm based on 

ACO to minimize the total cost in specific time within deadline constraints. Wen et al. 

(2012) proposed the ACO algorithm combined with PSO algorithm to improve the 

performance of task scheduling. This enhances the convergence speed and increases 

resource utilization ratio. Additionally, it prevents any descent towards a local optimum 

solution.  

A second approach to task scheduling is that based on Genetic algorithms. Several 

researchers aiming to optimize multi-objective task scheduling in cloud systems have 

used GAs. For instance, (Arfeen et al. (2011)) demonstrated that effective scheduling 
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for independent tasks can be completed using GAs in cloud computing environments. 

The GA in the scheduling tasks algorithm was developed by Zhao et al. (2009) to 

improve both resource and time utilization, so that the result obtained provides high 

satisfaction for their objectives. In (Dasgupta et al. (2013)), they developed a scheduling 

strategy for the load balancing of VMs using a GA. In their research, the scheduling 

strategy looks for the best solution by using a GA in each schedule. This method 

provides better load balancing and resource utilization than the static method of 

resources allocation. In Ying et al. (2009), two modified algorithms of PSO were used 

in resource allocation and the results were compared with a GA. The research 

demonstrated that PSO gives better results compared with a GA algorithm. Moreover, 

according to research conducted by (Pongchairerks (2009)), PSO was found to be better 

than GAs in most cases. Furthermore, according to Mirzayi and Rafe (2013), PSO was 

found to be faster and simpler than GAs in terms of the execution and implementation 

of independent tasks. Therefore, this work will focus on improving the PSO algorithm. 

 

2.4.4 Task Scheduling based on Heuristic Algorithms 

Different heuristic algorithms have been proposed for scheduling tasks in cloud 

environments (Mirzayi and Rafe (2013)). In this section, the heuristic strategies related 

to the proposed research will be presented. They schedule tasks based on predefine 

parameters such as completion time and execution time. The Minimum-Minimum 

Completion Time (Min-min) and the Maximum-Minimum Completion Time (Max-

min) are the most heuristic algorithms used in scheduling (Mirzayi and Rafe (2013)).  

The minimum completion time (MCT) algorithm maps each task to the VM that has 

the minimum completion time (Munir et al. (2007)). Conversely, the minimum 

execution time (MET) algorithm maps tasks to VMs based on the minimum execution 

time for that task irrespective of availability of the resource (Munir et al. (2007)).The 

Min-min algorithm begins with determines the MCT for each task on all resources, and 

then schedules each task to the minimum MCT (Aissi et al. (2005)). The main objective 

of the improved Max-min algorithm is to assign a task with MET to a resource, which 

provides MCT (Mao et al. (2014)). In Min-min, the shorter tasks are executed first, so 

if the number of shorter tasks is fewer than the number of longer tasks then the Max-
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min is used (Mao et al. (2014)). However, the Min-min algorithm does not involving 

loading balance technique while the Max-min algorithm may offer a better load balance 

among the resources in cloud environments. 

In this work, heuristic algorithms will not be used because they focus on minimum 

completed time and total execution time, and there are other factors that need to be 

taken into consideration, such as cost and transfer time. The VM load is an important 

factor because it affects the performance of the system. In addition, the cost factor is 

required for the consumers in that they want a reduced cost whilst the provider is 

concerned with profit. The Max-min and Min-min algorithms will therefore be 

considered in detail to assess their results in relation to the proposed research.  

 

2.4.5 Real-Time Task Scheduling Algorithms 

Real-time task scheduling strategies should ensure that tasks could be completed in 

accordance with deadline constraints. In this section, several real-time scheduling 

algorithms in cloud computing will be discussed. In real-time cloud applications, the 

consumers and the providers must have a strong SLA to control the timing of 

applications and ensure that the deadlines for tasks are met (Zhan et al. (2015)). In the 

context of cloud computing, deadline means meeting the consumer’s requirements, as 

well as QoS and SLA within the constraints of a specified time (Mathew et al. (2014)). 

Several researchers have discussed deadlines in task scheduling algorithms while others 

view the cost budget as a constraint on the scheduling algorithm. The primary 

objectives of real-time scheduling are to increase throughput and minimize waiting time 

rather than meeting deadlines.  

The Earliest Deadline First (EDF) algorithm assigns priorities to tasks then the task 

with the shortest deadline is the one that is scheduled (Liu et al. (2010)). EDF is a form 

of dynamic scheduling in such that if a scheduling event occurs then the queue will be 

searched for the process that is closest to its deadline. The selected task will then be the 

next scheduled for execution. EDF is more popular in real-time research because the 

principle of the EDF algorithm is very simple to understand and implement.  In Gupta 

et al. (2014), a Priority EDF Scheduling method was used involving two task scheduling 
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algorithms, one of which was EDF and the other was a priority based scheduling 

algorithm. 

He et al. (2014) proposed an algorithm to achieve real-time task scheduling and develop 

cloud computing resources. In their research, the degree of resource load balancing and 

task completion time were objective functions. Multi-objective PSO was used to 

achieve task scheduling. The deadline guaranteed scheduling algorithm proposed by 

Shin et al. (2015) enhances the guarantees of deadline and resource utilization. The first 

algorithm receives all tasks that have arrived at the data center, and then sorts those 

tasks in ascending order depending on their priority, which is assigned according to the 

deadline. The research described in this thesis will develop a model of task scheduling 

that meets both the consumers' deadline and the cost budget.   

 

2.4.6 Discussion of Task Scheduling Algorithms 

Many task scheduling algorithms have been used in cloud environments. These can be 

divided into three categories and are presented below: 

1. Real-time algorithms: These include that approaches schedule tasks with time 

constraints. 

2. Heuristic algorithms: These techniques find the optimal or near optimal 

solution by using a sample space of random solutions. The Min-min and Max-

min algorithms, previously discussed, are examples of these. 

3. Meta-heuristic algorithms: These algorithms use a random solution space for 

scheduling the tasks, however the main difference between heuristic and meta-

heuristic methods is that heuristic methods are problem specific while meta-

heuristic methods are problem independent (Masdari et al. (2016)). They 

generally use population-based concepts inspired by the social behavior of 

insects and include PSO, ACO and GAs algorithm. 

Regarding task scheduling optimization, there are many studies that have developed the 

optimization of scheduling in cloud computing. However, most of the previous research 

on multi-objective optimization is based on objectives that do not conflict with each 
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other. Specifically, these studies apply single objective optimization to solve their 

problems. The studies then combine previously optimized objectives into a single 

objective, and treat them as a single objective using a weighted sum equation. This is 

an inappropriate approach for dealing with many objectives because our work will be 

based on five objectives while most approaches work well with three objectives. 

As discussed in Section 2.4.2, PSO has already been used to improve scheduling in the 

cloud. For example, PSO that was utilized to satisfy one objective was shown in 

research by (Suresh et al. (2014); Wang et al. (2014); Pacini et al. (2014)). Other 

researchers have used multi-objective PSO to achieve different objectives and have 

combined them into a single objective (Adamuthe et al. (2013); Moorthy et al. (2014)). 

However, this approach of combined multi-objectives is inefficient especially with 

conflict objectives because objectives have positive and negative values. Therefore, an 

effective method is needed to deal with these objectives separately. Thus, the possibility 

of extending the process of evaluating objective functions in a many-objective PSO 

algorithm will be explored to find the best solutions for many objectives. 

Based on the research that has applied PSO algorithms to schedule tasks in cloud 

environments, the main points for further study can be summarized as follows:  

1- The quality of using PSO algorithms can be improved by redesigning the 

operator and improving the initialization step of the swarm. This can be 

achieved by using local search techniques or heuristic algorithms such as Min-

min (as discussed in Section 2.4.2).  

2- More work is needed to overcome some of the difficulties of PSO. For example, 

by combining it with another population-based meta-heuristic technique or a 

local search technique to improve the quality of results (Madni (2016)), as 

discussed in Section 2.4.3. 

3- Several areas still need to be addressed when applying PSO to optimize task 

scheduling problems in cloud computing (as discussed in Section 2.4.2). These 

areas include:  

• Applying dynamic scheduling based on the consumer budget so resources 

can be located and released according to consumer need. PSO needs to be 
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applied with QoS when establishing an SLA between the consumer and the 

provider (as discussed in Section 2.4.1). 

• PSO needs to be improved and applied to the load balancing problem, the 

energy optimization problem, and VM placement and migration. 

• Scheduler algorithms in cloud applications need to be scaled with an 

increase in the number of requests and resources in the cloud infrastructure. 

Furthermore, the distribution of cloud resources is another issue that needs 

to be considered. Therefore, PSO applied to these properties of the cloud 

needs to be improved by using the distributed capabilities of PSO to apply 

Parallel PSO (as discussed in Section 2.4.2). 

• Most of the current research focuses on the cost of using resources by 

considering the processing resources. However, there are other applications 

involved including storing and transferring a large dataset. Thus, there is a 

need to develop scheduling methods that consider the storage issues for 

applications. In addition, execution time and storage cost trade-off need to 

be improved and evaluated (as discussed in Section 2.4.2). 

• Applying new strategies for providing effective communication and sharing 

information between multiple data centers should be studied (as discussed 

in Section 2.4.1). 

• Applying PSO with real-time algorithms is a concern that requires greater 

scrutiny through research (as discussed in Section 2.4.5).  

• Most work on scheduling tasks is based on two or three factors. However, 

there are many factors that can be used to evaluate resources in cloud 

computing. There is a pressing need to enhance the method of evaluating 

many-objective optimization to deal with the increased numbers of 

objectives and compromise the conflicts inherent in the best method (as 

discussed in Section 2.4.2).  

 

2.5 Virtual Machine Allocation  

Virtual machine allocation is the process of mapping a virtual machine to the most 

suitable host (Pietri and Sakellariou (2016)). There are many hosts and each can run 
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several VMs in cloud computing infrastructure. Mapping VMs among hosts in an 

efficient manner is a complex function especially when the number of VMs and hosts 

increased. VM allocation is a key role in cloud management because it directly affects 

system performance. Specifically, VM allocation involves mapping between hosts and 

VMs (Adrian and Heryawan (2015)). VM allocation and migration are an integral part 

of any resource allocation algorithm in cloud data centers and therefore, our research 

aims to improve VM allocation and migration.  

In cloud computing, VM allocation is responsible for selecting resources and 

scheduling tasks so that the consumer's requirements and provider's goals are met 

((Pietri and Sakellariou (2016))). In general, the main requirement of consumers is to 

minimize response time while the provider's goals are to maximize resource utilization 

and profits. The VM allocation's main goal can be either to maximize the usage of 

available resources or conserve power by being able to shut down idle resources 

(Shankar and Bellur (2010)).   

The VM allocation problem is a type of optimization problem and several optimization 

techniques are used to address it such as deterministic, heuristic and meta-heuristic 

algorithms (Lopez-Pires and Bar´an (2015)). Deterministic algorithms include the 

optimization techniques that follow the same steps at each iteration and provide the 

same results such as linear programming, binary integer programming and constraint 

programming. Heuristic algorithms are those used in VM allocation such as First Fit 

(FF), Best Fit (BF), and First Fit Decreasing (FFD) (Lopez-Pires and Bar´an, (2015); 

Mastelic et al. (2014)). Meta-heuristic algorithms are those that solves problem with 

certain constraints by using randomness such as GA, ACO and PSO. In this thesis, the 

focus will be on PSO algorithms and their variants duo to the advantages they provide 

in solving problems, as discussed in Section 2.1.2.1. 

Specifically, VM allocation includes two main processes: VM scheduling and VM 

migration. VM scheduling involves mapping the VM to the host whilst migration 

transfers VMs from one host to another to satisfy specific objectives. VM allocation 

has been viewed as an optimization problem by researchers such as (Shah et al (2013); 

Panchal and Kapoor (2013)). On the other hand, research has also been conducted 

where VM allocation has been broken down in to the separate problems of VM 
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scheduling and VM migration (Xu and Li (2011)). In the following sections, the two 

methods will be reviewed in detail and research in this area discussed.  

In Section 2.5.1, VM scheduling will be discussed in detail and the main objectives in 

developing it will be presented. The VM migration process will be described and 

presented in Section 2.5.2. Section 2.5.3 discusses the strategies of applying load 

balancing during the allocation of resources. Section 2.5.4 discusses related work on 

VM allocation.  Finally, Section 2.5.6 summarizes the key points and outlines the issues 

that need to be discussed and studied in VM allocation. 

 

2.5.1 Virtual Machine Scheduling  

Many beneficial advantages of cloud computing such as scalability, load balancing and 

flexibilities because of applying the virtualization technology in term of VMs (Mastelic 

et al. (2014)). These VMs are scheduled to a set of hosts, which is known as VM 

allocation. Automating the process of virtual machine scheduling has become a 

necessity due to a growth in the number of data centers. Generally, the VM allocation 

method aims to maximize the utilization and minimize the number of idle resources. 

VM Scheduling can be applied to the allocation of new VMs to an appropriate host or 

for reallocating VMs that have migrated from one host to another. The VM scheduling 

process involves categorizing the virtual machines' characteristics and resource 

requirements, the utilization of resources and the allocation goals. VM scheduling goals 

can be single objective such as maximize the utilization of resources, saving power 

consumption and cost reduction. Some approaches to VM scheduling have been 

developed to achieve two or more objectives. Nowadays, VM allocation includes more 

than three objectives because several objectives need to be taken into consideration 

(Lopez-Pires et al. (2016)). The main policies of VM scheduling according to their 

concerns can be summarized as follows:  

• Efficient Resource Utilization:  Improving resource utilization and decreasing 

communication overheads are the most promising topics in managing resource 

at the IaaS layer. Unutilized resources on each data center may vary largely 
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with different VM scheduling solutions. The resources should be utilized in an 

efficient method to increase the total profits.  

• Efficient Power Consumption: This concerns the scheduling of VMs for a 

small number of hosts to reduce overall power consumption. It seeks to 

minimize the total power consumption of the data center. VM scheduling is one 

of the most important and efficient forms of technology for reducing power 

consumption in the cloud. The proposed method of rescheduling the power of 

VMs efficiently is to place them on only part of the hosts and transform the 

others into a low power state (sleep or off). 

• Cost Reduction: This aims to optimally schedule the VMs over the hosts to 

reduce the overall cost. In addition, reducing the cost of the power consumed 

will reduce the overall costs. Meeting the QoS and SLA prevents violations and 

reduces the penalties, which improves profit. 

• Efficient Load balance: Load balancing is very challenging in cloud 

computing due to the dynamic changes in the resource requirements (Shah et 

al. (2013)). An efficient load balancing approach can reduce the number of 

migrations and energy consumption by minimizing the number of active 

resources. It is responsible for distributing the dynamic workload evenly across 

all the resources in the entire system to avoid over-loaded or idle resources 

(Shaw et al. (2014)).   

The extent to which VM allocation can improve these objectives will now be discussed. 

First, VM will be considered in terms of effective resource utilization. A multi-

objective ACO algorithm to place VMs was proposed by (Gao et al. (2013)). The 

objectives to be met were minimization of the total resource utilization of hosts and the 

number of VM migrations. In (Zhong et al. (2010)), an improved GA algorithm was 

designed that could assign VMs efficiently, enabling the maximum utilization of 

available resources. Consequently, the physical resources reached the maximum usage 

rate and thus the number of physical resources decreased.  

Second, VM scheduling for power conservation is considered. Quang-Hung et al. 

(2012) proposed a power-aware VM allocation algorithm that represents several 

combinations of FF and the shortest duration time heuristics. However, their VM 

allocation algorithms did not lead to an optimal solution because they run as an FCFS 
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algorithm. Given this problem, several researchers have explored how to modify the FF 

algorithm to find the optimal solution. Specifically, (Lu and Zhang (2015)) developed 

a Modified Best Fit Decreasing (MBFD) algorithm. The MBFD algorithm takes a 

sorted list of VMs as input and migrates them in descending order based on their host 

utilization. It allocates them to the selected host that provides the smallest remaining 

processing capacity. Thus, this algorithm ensures high utilization of resources as none 

of them will be idle. Wang et al. (2013) implemented PSO to solve an energy-aware 

VM scheduling optimization problem in the cloud data center.  

Buyya et al. (2010), on the other hand, proposed a model of power consumption based 

on a correlation between the energy of CPU utilization and the time of the work. 

Furthermore, (Bohra et al. (2010) developed a correlation model between consumption 

of power and resource utilization. Several researchers have also attempted to minimize 

power consumption in cloud environments by virtualization that involves applying VM 

migration to optimize the utilization of resources (Ye et al. (2010); Luo et al. (2012)).  

Third, VM scheduling for cost effectiveness is considered. In Mark et al. (2011), a 

hybridized approach combined the GA, ACO and PSO algorithms for efficient 

scheduling of VMs on physical resources. The authors reported that the Evolutionary 

Optimal VM Placement (EOVMP) algorithm could provide a near optimal solution for 

stochastic problems and the prediction of the demand forecaster exhibited acceptable 

efficiency. In (Lee et al. (2010)), a GA approach was developed that used topological 

information to schedule VM resources. Additionally, a prediction engine was employed 

to take advantage of topological intelligence and for performance evaluation. The target 

was to decrease the total finishing time of an application, which automatically results 

in price reduction.  

Finally, load balancing can be applied at many levels such as the data center level, hosts 

level, VM level and the task level. Load balancing at the level of VM scheduling deals 

with the assignment of VMs on relevant hosts to balance the load on each host. VM 

scheduling plays an important role in balancing the load of the system so that the 

resource utilization is increased. This policy therefore tries to balance the load in order 

to utilize the resources in an efficient way and minimizes the difference between the 
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loads. In this research, the focus will be on balancing the load between hosts inside the 

data center. 

Some SI approaches, such as ACO and PSO, have also been used to schedule VMs over 

available hosts. In (Lu and Gu (2011)), for example, an ACO approach was introduced 

to find the closest idle or under-loaded cloud resource quickly, and for sharing the load 

of an over-loaded virtual machine flexibly. For optimal identification of hosts and load 

sharing of over-loaded virtual machines, the behavior of ants was adopted. In (Cho et 

al. (2015)), a hybrid algorithm based on a meta-heuristic approach was proposed for 

load balance oriented VM scheduling in the cloud environment using a combination of 

PSO and ACO.  

Research by (Patel and Sarje (2012)) explored VM scheduling policies to increase the 

utilization of cloud resources. Zhao et al. (2016) implemented a clustering based load 

balancing heuristic using Bayes Theorem, whilst (Panchal and Kapoor (2013)) used a 

K-means clustering approach for the scheduling of VMs in a cloud computing 

environment. In this thesis, a new dynamic VM allocation policy is introduced that 

takes VMs as per consumer requirements and allocates them in cluster form to the 

available data centers. These clusters of VMs are formed using a K-means clustering 

algorithm.  

In the next section, methods of applying VM migration in cloud computing and their 

benefits they provide in achieving their goals will be discussed. 

 

2.5.2 Virtual Machine Migration  

A VM migration strategy is used in cloud systems to maximize the utilization of 

resources by moving the VMs from under-loaded and over-loaded hosts to unloaded 

hosts. Moreover, VM migration reduces the power consumed in the cloud data center 

by switching off the idle hosts. Several methods are used to migrate VMs from one host 

to another. These methods differ in terms of the factors that are used for applying 

migration and the main objectives of migration. Thus, an intelligent and efficient 

migration algorithm is required to balance the load and improve the utilization and 



80 

 

performance of the system. VM migration algorithm aims to minimize energy 

consumption, minimize violation of SLAs and reduce the number of hosts active at a 

given time. In some cases, VM migration can increase the number of SLA violations 

when it applied without taken QoS performance into consideration as a factor in the 

migration process. For example, a VM is migrated from one host to another it must 

transfer its primary memory to the destination host which leads to increase the 

migration time and waiting time. Additionally, in the transfer process, the requested 

CPU cannot be delivered, as the VM will be in a transitional state. For this reason, along 

with the demands of power consumption, the amount of VM migration must be 

minimal, as this will reduce the number of SLA violations. An efficient VM migration 

strategy will minimize power consumption as well as minimize the number of SLA 

violations.  

VM migration can be broken down into three sub-problems, the details of which are as 

follows: 

• Host Detection: To detect the status of the hosts, which may be generally either 

over-loaded or under-loaded.  

• VM Selection: After detecting the over-loaded host, the VMs are selected for 

migration and several strategies for selecting VMs can be used. 

• VM Placement: The process of selecting the host to which the VM is migrated. 

The destination host must not become over-loaded after the placement of the 

migrated VM.  

In the following subsections, VM migration processes are discussed in detail along with 

the main research conducted on each. 

 

2.5.2.1 Host Detection Strategies  

The objective of the host detection algorithm is to recognize when a host is over-loaded 

or under-loaded. Detection is based on the usage and load of host resources in terms of 

CPU, RAM, storage and bandwidth. To detect the status of the hosts several methods 
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are used. In this research, the focus will be on methods using threshold detection and 

the clustering based on meta-heuristic algorithms.  

Some researchers have used threshold concepts in VM allocation to determine the status 

of machines and tasks. For example, (Lin et al. (2011)) used a threshold-based scheme 

for allocating resources and distributing the available VMs over cloud requests to 

improve resource utilization and reduce the usage cost based on changes in the system 

load.  

A single threshold method is based on defining the high limit of the utilization of the 

host's CPU (Beloglazov and Buyya (2010)). In deploying the VMs, it maintains the 

usage rate of CPUs below this threshold to reserve idle resources and prevent SLA 

conflict. The double threshold method involves setting the upper and lower limit 

threshold of the utilization rate of the host's CPU. Thresholds can be used for detecting 

the status of the hosts and this can be static or dynamic. For example, Beloglazov and 

Buyya (2010) introduced the concept of adaptive threshold for VM allocation. 

Specifically, they used predictions based on VM resource usage to dynamically 

determine upper and lower utilization thresholds to classify the hosts. However, static 

threshold policies do not work well in a highly dynamic environment such as cloud 

computing (Verma et al. (2014)). Thus, a dynamic strategy for detecting status of hosts 

will be developed in this research.  

Selecting the thresholds values based on the resource utilization is particularly 

important, because the research described in this thesis will study dynamic thresholds, 

which can define the thresholds dynamically based on the current utilization of the 

resources to improve the efficiency of the resource scheduling strategy. Compared to 

previous work in this field, most algorithms only rely on CPU utilization for host 

detection. Multiple factors will be used to enhance VM migration such as CPU 

utilization, memory utilization and bandwidth utilization.  

In this research, we focus on clustering algorithm to detect the status of hosts. The 

clustering approach combines hosts into one group based on their state, which may be 

free, fully loaded, partially loaded, or underutilized. Shindler et al. (2011) proposed a 

K-means clustering which is accurate and fast approach to deal with allocation of VM 

issues. (Panchal and Kapoor (2013)), on the other hand, proposed a dynamic VM 
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allocation algorithm that also uses the K-means clustering method and it mapped the 

VMs to the nearest clusters.  

(Hemalatha et al. (2013)) proposed a honey bee clustering algorithm, which searches 

for the host that can best serve new VM requests in the manner of a bee. It also provides 

support for the reallocation of VMs and reduces network latency. Alternatively, 

(Malathy and Somasundaram (2012)) proposed a novel approach based on a reservation 

cluster. In this approach, unscheduled VM request tasks are placed into the reservation 

cluster schedule. The reservation cluster schedules all tasks concurrently, which means 

less computation time and reduced usage of resources.  

(Panchal and Kapoor (2013)) allocated the VMs dynamically in cloud computing 

applications, using K-means clustering algorithms where the parameter was costs in the 

data center and clustering was carried out according to the number of data centers. 

Alternatively, (Veeramallu (2014)) conducted VM allocation using K-means clustering 

algorithms based on energy saving and the number of data centers; each cluster was 

then allocated to available hosts on the data center similar to the process outlined by 

(Panchal and Kapoor (2013)). In this research, clustering based on PSO and K-means 

will be applied to improve detection of hosts' statuses and the results of migrating VMs. 

 

2.5.2.2 Virtual Machine Selection  

VM selection is the process of selecting one or more VMs from a set of VMs in one 

host to be migrated to another host to balance load or reduce power (Beloglazov and 

Buyya (2012)). Several VM placement strategies have been developed based on many 

factors such as utilization, migration time and load. In more detail, (Verma et al. (2014)) 

proposed an algorithm to solve the selection problem of VMs by migrating from the 

over-loaded hosts to rebalance the load for all hosts in the data center. Beloglazov and 

Buyya (2012) have proposed algorithms to solve the problems of detection of over-

loaded hosts and VM selection. They proposed that host over-loaded detection 

algorithms and Local Regression provide the best results compared to other algorithms. 

For example, a Power Aware Best Fit Decreasing (PABFD) algorithm is used for VM 

placement, but this is only based on a power consumption metric that specifies the best 
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host to which the VMs should be migrated. In this research, several parameters are used 

to allocate and cluster hosts including power, cost, capacity, utilization and execution 

time. 

In Shidik et al. (2016), the use of K-means clustering as a VM selection technique for 

dynamic VM scheduling has been evaluated. Several attributes, such as VM processing 

in MIPS and VM memory size, are applied in clustering VMs. Moreover, Median 

Absolute Deviation (MAD) has been used as a form of over-loaded detection that works 

before the VM selection mechanism. The results of the experiment show that the 

number of clusters using K-means can influence energy consumption and QoS in the 

cloud data center. 

 

2.5.2.3 Virtual Machine Placement  

VM Placement selection algorithms are used to determine the allocation of new VMs 

or to reallocate the migration VMs. Many VM placement approaches based on meta-

heuristic algorithms were developed in the cloud environment. Specifically, (Xiong and 

Xu (2014)) have addressed this issue and presented a model using the PSO technique. 

Their fitness function is based on the total distance between actual utilization and their 

best value of utilization, taking into consideration energy efficiency. Wang et al. (2013) 

solved the same problem using a modified PSO. Their modification consists of 

redefining the parameters and operators of PSO, implementing an energy efficient local 

fitness first technique and developing a new two-dimensional particle encoding scheme 

to achieve better quality solutions. The algorithm is compared with FF, BF and MBFD 

algorithms. Wang et al. (2013) overcome the energy optimization problem by 

combining PSO with a FF mechanism with the additional aim of maximizing revenue 

acquisition. On the other hand, (Beloglazov and Buyya (2012)) introduced an algorithm 

for VM migration based on three different criteria: migration time, CPU utilization and 

power consumption. A VM is selected if it requires the minimum time to complete a 

migration. Although this work highlights multiple objectives, the researchers did not 

use multi-objective techniques. Instead, they dealt with it as a single objective. This 

method combines the set of objectives into a single objective by multiplying each 

objective according to a pre-defined weight. In the work described in this thesis, the 
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migration will be based on CPU utilization for each host and the general load of the 

system. In this way, the performance is improved by decreasing the waiting time and 

the utilization of all hosts is increased. 

Some researchers have focused on balancing the load to utilize the resources. These 

include (Madhusudhan and Sekaran (2013)), who developed a GA VM placement and 

load balancing to utilize the resources effectively. Several algorithms use the GA 

approach, which is based on the current available resources on the host and the current 

demand of the VMs parameters, which are used to make decisions regarding placing 

VMs on hosts. However, sometimes VM migration algorithms increase the number of 

migrations. Thus, the current research aims to improve the migration process by 

minimizing the number of VM migration as possible.  

 

2.5.3 Discussion of VM Allocation Related Work  

Many different researchers aiming to improve the methods of selecting hosts to execute 

the VMs have studied the issue of VM allocation. In particular, several meta-heuristic 

algorithms have therefore been used to solve VM scheduling problems and optimize 

energy consumption, profit, resource utilization and load balancing. Researchers such 

as (Khanna et al. (2006)) have developed VM selection based on CPU utilization load 

without considering other resource factors such as memory load, storage size and 

network bandwidth. 

Regarding VM migration, previous work presented by (Beloglazov and Buyya (2012); 

(Luo et al. (2012)) (analyzed in Section 2.5), focused on migrating all VMs to under-

loaded hosts.  However, this is not always a good strategy, because to reduce migration 

time not all the VMs should be migrated to under-loaded hosts. In contrast, it is better 

to check the load after migration and compare it with the load before migration to 

evaluate the effect of migration because in some cases the migration process has 

negative effective on the load. Moreover, detecting the status of hosts requires 

intelligent mechanisms that are more adaptive than thresholds such as meta-heuristic 

clustering. 
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Finally, most of the research deals with multi-objective optimization while the VM 

allocation problem often includes many objectives to be evaluated, leading to greater 

improvement in many-objective optimization techniques. 

 

2.6 Summary   

This chapter has presented background information on cloud computing, SLAs, 

optimization techniques and resource allocation, which are the main processes that will 

be drawn upon in this thesis. Firstly, the key concepts of heuristic and meta-heuristic 

algorithms were presented. Optimization based on particle swarm algorithm was then 

discussed and the algorithms based on PSO were briefly introduced. These represent 

the main methods underlying the proposed algorithms for allocating resources in cloud 

computing. The chapter then presented an overview of SLA negotiation and analyzed 

key research in this area. The general concepts and models of task scheduling 

algorithms in cloud computing were then presented. Finally, the VM allocation process 

was discussed along with work to optimize VM scheduling and migration. 

The research on resource allocation in cloud systems still requires further study and 

improvement. Several existing issues have not been fully addressed while new 

challenges continue to emerge. Subsequently, an effective resource allocation system 

is required to achieve consumer satisfaction and maximize the profit for cloud service 

providers. A great deal of research has been conducted and many solutions have been 

presented in cloud computing environment in respect to task scheduling and the VM 

allocation problem. However, several issues and challenges require further research, 

before an optimal solution that is practical for most cloud environments is found. 

Some of the challenging issues raised in relation to previous research are as follows: 

1) There is a need to reduce consumer SLA violations when utilizing resources 

because most of the models reduce performance in order to reduce the cost and 

improve the utilization (as discussed in Section 2.3.1). 
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2) There is a need to improve resource allocation strategies to reduce scheduling time 

and thus to improve the real-time scheduling framework (as discussed in Section 

2.4.1). 

3) There is an urgent need to handle conflicting objectives such as minimizing the cost 

for cloud consumers and maximizing the profit for cloud providers. At the same 

time, it is important for cloud providers to utilize and manage the resources in an 

efficient manner to reduce power consumption (as discussed in Section 2.4.1). 

4) Load balancing is a key concern in managing and scheduling the workload in the 

cloud infrastructure. This will satisfy several objectives such as meeting the QoS 

requirements of consumers, maximizing profit and enhancing the usage of 

resources. To balance the load, VM migration is considered as a means of utilizing 

the resources efficiently (as discussed in Section 2.5.2). 

In sum, the differences in our research compared to previous research can be 

summarized as follows:  

 
In terms of SLA Negotiation: 

• An automated SLA negotiation model based on PPSO will be developed; no 

previous study has attempted this. PPSO will be developed to enhance the 

results of PSO by dividing the large search space into small spaces and reducing 

the time complexity of the algorithm. 

• Most of the previous research has focused on the price or QoS. In contrast, in 

our model, the focus will be on the consumer goal of price and QoS in terms of 

throughput, waiting time and completion time. Additionally, the provider goals 

of resource utilization and profits will be considered. This is because balancing 

these conflicting objectives can improve the performance of cloud services. 

• For multi-objective optimization, the optimizer needs to consider Pareto 

dominance every time it updates particles and stores non-dominated solutions 

to approximate the Pareto front. In our model, the strategy of using multi-

objective based on a weighted sum strategy to reduce the time spent updating 

the particles is improved by using parallel computing. 
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• An SLA monitoring function will be developed to detect the number of 

violations that related to the number of tasks that missed deadlines or migration 

time. 

In terms of Task Scheduling:  

• Our work differs from previous work in that it focuses on optimizing task 

scheduling based on many objectives to satisfy several goals for consumers and 

providers simultaneously.  

• Most existing research on task scheduling dealing with multi-objective 

optimization evaluates two or three objectives. Specifically, these studies often 

apply methods that may not provide better quality when there are more than 

three objectives, as discussed in section 2.1.4. In this work, the modified ranking 

strategy will be developed, combining two methods to evaluate many-objective 

optimization, involving more than three objectives, in shorter time than other 

methods. 

In terms of VM allocation:   

 A VM scheduling algorithm based on MaOPSO will be developed to deal with 

many-objective optimization and will use the same strategy used in task 

scheduling to rank the objectives according to different factors related to VM 

allocation. 

 The load balancing technique will be optimized by applying clustering with 

PSO and K-means in the hosts of data centers to detect the over-loaded and 

under-loaded hosts and balance the load.  

 A VM migration algorithm based on the results of clustering will be developed 

to utilize the resources effectively and reduce power consumption. 
 

The specification of the presented model in this thesis and its main structure will be 

discussed in detail in Chapter 3. Additionally, Chapter 3 will describe all the modules 

in the model and explains their responsibilities in resource allocation. Finally, the 

general information on the implementation and evaluation of the model will be 

provided. 
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Chapter 3  

 

A Resource Allocation Model  

 

 

This chapter details the architecture and design of the proposed optimized resource 

allocation model presented in Section 1.3, which involves three modules. The first 

section presents an overview of the model and explains its goals and objectives.  The 

second section describes the design issues and constraints on the model and its 

objectives. Section 3.3 presents the main architecture modules of the model and the 

responsibilities of each component. Section 3.4 presents information on the 

implementation and configuration of the proposed model. In addition, it discusses the 

main parameters for the evaluation used in the experiments. The final section 

summarizes the main elements of the proposed model. 

 

3.1 Overview  

The provider infrastructure model can include one or multiple data centers. The 

provider architecture in the proposed model consists of multiple distributed data centers 

that are controlled and managed by one manager. This model was chosen because it 

offers several benefits such as scalability using many data centers. However, allocating 

resources in multiple data centers is more complicated than using one data center. There 

are many factors and parameters that need to be considered such as data center location, 

network bandwidth, latency, data transfer cost and data transfer time. The proposed 

model of resource allocation consists of three phases: SLA Negotiation, Task 

Scheduling and VM Allocation as described in Section 3.1. Each phase of the model 

aims to improve the specific problem of resource allocation to satisfy certain goals. 

Specifically, when scheduling tasks at the level of VMs and hosts, the model aims to 
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apply PSO to optimize SLA negotiation between cloud consumers and the provider. 

The main goal is to dynamically allocate resources (virtual or/and physical) to execute 

the tasks requested by consumers in ways that simultaneously benefit both consumers 

and providers. Consequently, the optimized model will improve resource utilization, 

maximize throughput and profit and reduce waiting time to enhance performance. 

Furthermore, it also reduces power consumption by switching off idle resources, which 

indirectly increases profit by minimizing the cost of power consumption. 

In the model, the provider has multiple data centers modeled as a set of DC= 

{𝐷𝐷𝐷𝐷1, 𝐷𝐷𝐷𝐷2,…, 𝐷𝐷𝐷𝐷𝑑𝑑}; where d denotes the number of data centers in the provider 

structure. Each data center contains several hosts and the cost of using data center 

resources comprises the costs of processing, memory usage, bandwidth, storage usage 

and power. Each data center 𝐷𝐷𝐷𝐷𝑖𝑖=1,…,𝑑𝑑 consists of a number of physical machines 

(hosts) modeled as a set of Host = {𝐻𝐻𝑖𝑖1, 𝐻𝐻𝑖𝑖2,…, 𝐻𝐻𝑖𝑖ℎ}; where h is the numbers of hosts 

inside data center i. Thus, in this model, the number of hosts in each data center differs 

according to its capabilities. Each host is described by a CPU processing speed defined 

in Millions of Instructions Per Second (MIPS), numbers of CPU cores, the amount of 

available RAM, size of storage capabilities and the required network bandwidth. In this 

instance, storage denotes the network storage device that is used to store the data files 

for the task.  

Each host 𝐻𝐻𝑗𝑗=1,...,ℎ can deploy many VMs represented as a set of VM= 

{𝑉𝑉𝑉𝑉𝑗𝑗1,𝑉𝑉𝑉𝑉𝑗𝑗2,….𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗}; where v denotes the numbers of VMs that can be run in each 

Host j. Different types of VMs associated with data centers will be used in the model. 

Each VM is characterized by specific properties representing the capabilities of the 

processing storage and the cost, which includes {VM type, CPU speed, Memory size, 

Storage size and Network bandwidth}.  

In our model, the tasks denote the software file that needs to be run in the cloud 

resources and to return results in the output file. The tasks in this model are independent 

which means there are no dependencies between them. The task is characterized by 

specific properties that represent the requirements of the consumers regarding the 

execution of tasks, which includes:  
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{𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐼𝐼𝐼𝐼,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀),𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ, 𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 }.  The consumers specify 

these requirements when they submit the tasks. 

Specifically, our model of optimized resource allocation includes many phases, as 

shown in Figure 3.1. The first phase is SLA negotiation, which is responsible for 

selecting the data center to execute the tasks and uses Parallel PSO to reduce negotiation 

time and increase throughput. The second phase is the MaOPSO tasks scheduling 

algorithm, which maps tasks inside each data center to satisfy many objectives: 

maximizing resource utilization, increasing profits and reducing waiting time. The third 

phase is VM allocation, which maps VMs to hosts using clustering based on PSO and 

K-means to improve the utilization of resources and reduce power consumption. Details 

of each algorithm and related information are presented in Chapters 4, 5 and 6 

respectively.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Optimized Resource Allocation Phases. 
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3.2 Design of an Optimized Resource Allocation Model 

It is important to identify constraints on the design of the proposed model before 

discussing its structural detail. The resource allocation model is designed and 

implemented according to the following constraints:  

• The model includes n data centers where each data center has its own resources. 

• Each task should be allocated to only one data center at the negotiation phase. 

• The task needs to be assigned to one VM, which is compatible with its 

requirements in terms of CPU power, RAM size, storage size and cost. 

• When a task is assigned to a VM, the execution of that task should be completed 

in the same VM, i.e., the tasks are non-preemptive (see Section 2.4.1). 

• The VM can process one task at a time because it is assumed that each VM has 

one core to prevent the problem of contention when running many tasks. 

• The total processing requirements of all tasks hosted on a resource should not 

exceed the maximum processing capacity of that resource. 

• The total memory requirements of all tasks hosted on a resource should not 

exceed the maximum memory available for that resource. 

• The number of host and VMs are not fixed because some of the hosts will be 

switched off if there is no more work to save power. 

• At any time, the total number of virtual machines used in a host should not 

exceed its capacity, which is dependent on the number of CPU cores and 

assumes that one core can run only one VM. 

• All tasks are independent and the scheduling algorithm assumes there is no 

communication between them. 

The main design goals of the proposed allocation model can be summarized as follows: 

 All decisions regarding the allocation of the (VMs/physical) machines should 

be made automatically based on the proposed algorithms.  

 Utilization of the system can be improved by balancing the load to avoid over-

loaded and under-loaded hosts. This ensures the efficient use of resources. 

 Dynamic resource allocation in the proposed system is used to adhere to QoS 

requirements and reduce SLA violations. 
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 Reducing the time required for mapping and allocation to reduce the waiting 

time and improve performance 

 The task should be finished before the deadline to improve throughput and 

increase profit. 

 The profit is increased by maximizing the utilization of the resource and 

reducing the number of SLA violations. 

 Reduce power consumption by improving the migration method to turn off idle 

resources.  

 

3.3 General Resource Allocation Architecture  

The architecture of the proposed model comprises four main entities: Consumer Agent, 

Broker Agent, Manager Module and Provider Modules. These main entities represent 

all layers of cloud computing and each is responsible for a specific function regarding 

resource scheduling and allocation. Specifically, Consumer Agents in the SaaS layer 

interface and deal with consumers. The Manager Module in the PaaS layer provides the 

negotiation and management capabilities of the model for consumers and the provider 

infrastructure. The Provider Module is in the IaaS layer and manages the infrastructure 

of the cloud, which includes virtual and physical resources. The general architecture of 

the proposed model is illustrated in Figure 3.2. The details of each module involved in 

this architecture are discussed below, along with their functions and responsibilities. 

• The Consumer Agent: This agent is located on the consumer’s side and represents 

the interface the consumers deal with to submit the tasks. It is responsible for 

receiving tasks from consumers who submit their specified requirements in terms 

of cost budget, CPU speed, storage size and deadline. The Consumer Agent then 

sends the tasks with their requirements to the Broker Agent. 

 

• The Broker Agent: This Agent acts as a mediator between the Consumer Agent 

and the Manager Module. The Broker receives tasks from the Consumer Agent, 

represents these tasks in the form of proposals, and then sends them to the Manager 

Module. When consumers submit tasks, they are accepted through the Broker 
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Agent, which defines the QoS requirements based on the consumer's request. In 

addition, this Agent collects the results of feedback and acknowledgements and 

sends them to the Consumer Agent, which is concerned with the state of each task.  

 

• The Manager Module: This module is a central module in the proposed 

architecture. It is responsible for allocating resources according to the information 

received from the DC Manager Agent in the Cloud Provider module. Interaction 

between the three submodules is needed to satisfy the objectives of the proposed 

model. The submodules of the Manager are the SLA Monitor Agent, The 

Negotiation Agent and the Task Dispatcher Agent, as shown in Figure 3.3. The 

Manager accepts proposals from the Broker Agent through the SLA Negotiator 

Agent and receives offers from the DC Manager Agent in each data center. Then 

the negotiation process begins in this module based on the predefined objectives of 

the providers and consumers. In addition, it manages the execution of the 

consumer’s task in the data centers of cloud providers. It receives updates on the 

state of each task from the DC Manager Agents. The Manager submodules are 

described in more detail below:  

 

• The SLA Negotiator Agent: this agent receives proposals from the Broker 

Agent and offers from each data center through DC Manager Agents. It 

starts the negotiation by determining the most appropriate offer for each 

proposal within the constraints of the cost budget and deadline. It selects the 

data center that can execute a task in line with the specified requirements. It 

applies Parallel PSO negotiation to conduct the mapping between 

consumers and data centers. It then creates the agreement form, and signs it 

on behalf of the consumer and providers. The design and implementation of 

the Parallel PSO negotiation algorithm are discussed in Chapter 4.  

• The Task Dispatcher Agent: The function of this Agent is to assign tasks 

to the selected data center based on the results from the SLA Negotiator 

Agent, which decides the data center ID for each task.  

• The SLA Monitor Agent: this agent is responsible for collecting 

information about the agreed SLA and monitoring it to detect any SLA 



94 

 

violation.  It is responsible for monitoring the progress of the submitted tasks 

and detects any violation of the SLA. A violation in this model relates to the 

deadline time constraint. 

• Cloud Provider Module: This module represents the IaaS layer in the cloud 

environment, which includes the VMs and hosts. It consists of many distributed 

data centers, which in this instance is assumed ten in order to evaluate our model 

with a large number of data centers. Each data center is a centralized repository for 

both physical and virtual resources and has five components: DC Manager Agent, 

Host Monitor Agent, Task Scheduler, Load Balancer Agent and VM Manager 

Agent (Figure 3.4). The details and responsibilities of each of these components is 

as follows: 

• The DC Manager Agent:  It acts as an interface between the data center 

resources and the Manager Module. It is the local manager for each data 

center. The DC Manager Agent in each data center sends offers that can 

satisfy the QoS of the consumer to the Manager Agent. This agent has many 

responsibilities, periodically sends the status of the cloud to the Manager 

Agent from the Host Monitor Agent, and receives the list of tasks to be 

executed from the Manager Module.  

• The Host Monitor Agent: It is responsible for monitoring the load in each 

host and notifying VM migration if there is an unbalanced load among the 

hosts. It collects information about all hosts and VMs in the data center, 

which includes the status of the host, utilization of resources, and power 

consumption. This module also provides information to the VM Scheduler 

to map the VMs to hosts.   

• The Task Scheduler Agent: The Task Scheduler Agent utilizes the latest 

status information from the Host Monitor Agent regarding VM availability 

and load. The MaOPSO task scheduling algorithm is used to search the VMs 

inside the data center to find the best VM for each task based on five 

objectives: Task Execution Time (TET), Task Execution Cost (TEC), Data 

Transfer Time (DTT), Data Transfer Cost (DTC) and VM capacity. Details 

of the MaOPSO task algorithm will be presented in Chapter 5. 



95 

 

• The Load Balancer Agent: This module detects over-loaded and under-

loaded hosts. It clusters the available hosts to apply the VM migration 

algorithm inside each data center. It applies PSO based clustering to cluster 

hosts into four classes: over-loaded, high-loaded, under-loaded, and 

unloaded. Details of the VM migration algorithm are provided in Chapter 6. 

Figure 3.2: General Architecture of Resource Allocation in Cloud  
 

• The VM Manager Module: This module is responsible for allocating the VMs 

inside the data center. It begins the VM migration process based on the 

information from the Host Monitor Agent. The VM Manager Module includes 

two submodules: VM Scheduler Agent and VM Migrator Agent. The details of 

these are as follows: 

• The VM Scheduler Agent: This Agent is responsible for allocating 

VMs over hosts inside the data center. It uses MaOPSO to allocate 

VMs to reduce the time and improve throughput based on four 
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objectives. This algorithm maps the VMs to the available hosts. It 

periodically collects information from the Host Monitor Agent to 

make decisions on the placement of VMs.  

• The VM Migrator Agent: This is responsible for starting the 

migration of VMs from unloaded and over-loaded hosts to unloaded 

ones. It triggers the migration of VMs to hosts depending on the 

information provided by the Host Monitor Agent. 

 

Figure 3.3: Manager Module Architecture. 

Figure 3.4: Architecture of Provider Module. 
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Figure 3.5: The Entity Relationship Diagram for the Proposed Database. 

                   

3.4 General Resource Allocation Implementation  

This section will discuss the main points related to the implementation of the proposed 

model, and the main setting of the simulation components that will be used to 

implement the required modules. In addition, it describes the factors that will be used 

to evaluate the resource allocation phases. However, the special configuration for each 

algorithm and its evaluation will be discussed in subsequent chapters. 

First, we consider the reasons for using simulation. In cloud computing environments, 

various resources exist including hardware, software, and the network. In addition, 

consumers have different dynamic and sometimes competing QoS requirements. Using 

a real cloud environment, such as Amazon EC2 or Microsoft Azure, to design and 

evaluate the model's performance metrics with different configurations and settings is 

difficult because of the limitations of these infrastructures. This is because, in the 

proposed model, several configurations of the data center with different specifications 

need to be tested. Moreover, using real environments restricts the evaluation process 

because there are limits on the infrastructure, and the reevaluation of experiments then 

becomes very difficult in terms of measurement. Thus, retesting is extremely difficult 
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and requires additional changes to the environment and infrastructure. Furthermore, it 

is expensive, costly in terms of budget, and time-consuming to re-configure 

benchmarking parameters to change the applications and workloads so they can run 

more tests. Because of these limitations, most developers and researchers prefer to use 

simulators for benchmarking experiments and evaluations (Sakellari and Loukas 

(2013)). Using simulation tools and environments give developers many advantages 

such as testing and retesting the different configurations of the infrastructure in less 

time and using easier methods. Moreover, using simulators can improve the flexibility 

of the models by allowing the developer to define a structure that is easy to use, modify 

and customize depending on the different requirements. For all these reasons, the model 

will be evaluated using simulator software. 

However, there are various simulation tools available for cloud systems, such as 

CloudSim, GreenCloud, and MDCSim (Malhotra and Jain (2013)). In this research, the 

three phases of our model will be implemented and evaluated using a CloudSim 

environment. There are several reasons for this. Firstly, CloudSim is an open source 

simulator developed using the Java language so it is available for the public to use and 

to improve. In addition, it includes several submodules that simulate the main 

components and layers of cloud environments. This enables flexible customization of 

the simulation by adding or modifying modules according to the desired design. 

Specifically, the model in this research was implemented using CloudSim 3.0.3 which 

was the most recent version up until the middle of 2017. CloudSim is a general and 

extendable simulation model that facilitates the modeling and evaluation of cloud 

computing infrastructures and services (Calheiros et al. (2011)). It supports several 

functionalities, such as the queuing and processing of events, the creation of cloud 

system entities (services, hosts, data centers, brokers, and virtual machines), 

communication between components, and management of the simulation clock 

(Calheiros et al. (2011)).  

CloudSim includes the following main classes: 

• Data center: models the main hardware infrastructure of the cloud and is 
managed by the providers. 

• Broker: represents a broker module, which manages the communication and 
negotiation between consumers and providers. 
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• Host: models a host inside the data center. 

• VM: models a virtual machine that is running on the host and executes the 
tasks. 

• Cloudlet: models the cloud applications and services in the SaaS layers (in 
this model it is denoted by the term task).  

• VmAllocation: a policy that determines the method of allocating VMs to hosts 
and is specified in the data center characteristics. 

• VmScheduler: a policy of allocating processing cores inside the host for VMs. 
It runs on each physical host in the data center to distribute CPU cores among 
VMs. 

• CloudletScheduler: a policy of scheduling cloudlets to CPU inside the VM 
and is specific to each VM.  

To implement the model, several modifications were made to the CloudSim simulator 

classes to customize them to the specified problem. Existing classes were therefore 

modified and new classes added for negotiation, monitoring, computing the load, and 

clustering hosts. Details of these modifications will be discussed in subsequent 

chapters. 

The architecture of CloudSim consists of five layers, as shown in Figure 3.6. These 

layers represent the main structure of any cloud computing environment. In our model, 

the five layers are Cloud Data center, Manager, VM, Network, and Broker, as shown 

in Figure 3.7. In this research, the Network layer is required because the tasks will be 

scheduled among multiple data centers. The Cloud Data center layer provides APIs to 

start and terminate the instances of cloud components, which represent the Provider 

Module in our model. The Manager layer is responsible for management, resource 

allocation in the SLA negotiation phase and the task scheduling phase. This represents 

the Manager module in the model. In addition, it collects information from each data 

center and allocates resources. The VM layer manages the mapping of VMs to hosts 

within a data center, and represents the VM Manager in the model. In addition, it 

collects resource utilization information (e.g. CPU, memory, disk, etc.) on each host 

and on the virtual machines. The Broker layer provides the interface between the 

consumer and the Manager layer. In the proposed model, the Consumer Agent 

represents this layer. 
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Figure 3.6: CloudSim Architecture (Calheiros et al. (2011)). 

 

 

 

 

 

 

Figure 3.7: Proposed Model Layers 

 

3.4.1 Configurations and Specifications of Resources   

To evaluate the proposed resource allocation model, a series of experiments were 

performed to evaluate the objectives discussed previously in Chapter 1. Each phase of 

the proposed model has several such objectives; these will be evaluated after discussing 

the implementation information in detail in Chapters 4, 5, and 6. In this section, general 

information related to the simulation and specification details that will be used in all 
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phases will be described, including the characteristics of the data centers, hosts, VMs, 

and the tasks that will be used in the evaluation experiments.  

Table 3.1 specifies the data centers that are used in our model which include the 

supposed values for cost of using the resources in the data center. To simulate the host 

machines, Amazon’s Elastic Compute Cloud (EC21) instances that differ according to 

CPU type were used. Four types of EC2 were selected: high-CPU, extra, small, and 

micro, with different characteristics for each host, as shown in Table 3.2. The data 

centers in the proposed model differ in terms of the costs of processing, memory, 

storage, transferring data, and power. The selected values are based on EC2 instances 

for general-purpose applications.  

It should be noted that the network bandwidth values in the host specification used in 

the evaluation tests of our model in the three phases is multiplied by 100 (see Table 3.1) 

and for VM bandwidth (see Table 3.2) is multiplied by 10.  

  

DC 
ID 

Cost 
per 

Processing 
$/ seconds 

Cost 
per 

Memory 
$/ MB 

Cost 
per 

Storage 
$/ MB 

Data 
Transfer 

cost 
$/ Mb 

No. of  
Host 

Cost 
Power 

$/ 
seconds 

1 3.0 0.05 0.1 0.1 4 0.5 
2 3.0 0.05 0.1 0.1 4 0.5 
3 2.0 0.04 0.1 0.05 4 0.5 
4 2.0 0.04 0.1 0.05 4 0.5 
5 3.0 0.05 0.1 0.05 4 0.5 
6 3.0 0.05 0.05 0.1 2 0.3 
7 3.0 0.04 0.05 0.1 2 0.3 
8 3.0 0.04 0.05 0.1 2 0.3 
9 2.0 0.04 0.05 0.1 2 0.3 
10 2.0 0.04 0.05 0.1 2 0.3 

Table 3.1. Specification of Data centers. 

 

 

                                                           
1  https://aws.amazon.com/ec2/instance-types/ 
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Host 
ID 

Host 
Type 

RAM 
(GB) 

Bandwidth 
(Mb/s) 

CPU 
(GHz) 

Storage Size 
(GB) 

No. of 
cores 

1 Micro 1 1000 Up to 
3.3 

100000 2 

2 Small 2 10000 Up to 
3.3 

200000 2 

3 Extra 4 20000 Up to 
3.3 

400000 4 

4 high-
CPU 

8 40000 Up to 
3.3 

400000 4 

Table 3.2. Specification of Host Types. 

VMs were simulated with the specification that fits in the simulated hosts. Four types 

of VM that vary in CPU speed and memory size with the specification of EC2 instances 

were used as shown in Table 3.3, which shows that each VM has one core. In cloud 

computing, the creation of a VM is implemented in two ways. The first VM is creating 

based on task requirements then it is mapped to a host that can fit, while the other 

depends on creating a VM in the host after which the task is mapped to a suitable VM. 

In our model, we combine the two methods in such that VMs were created depending 

on the host specification and tasks then mapped to them. In each data center, there are 

specific type of VMs based on the specification of the hosts. This is because it manages 

the VMs in a more efficient way than the first method and reduces the number of created 

VMs, therefore utilizing the resources more efficiently. In contrast, the first method 

creates a number of VMs that is equal to the number of tasks, and thus leads to 

complexity when allocating VMs to hosts. The specific characteristics for each VM are 

shown in Table 3.3 below.   

 
VM 

ID 

VM 

Type 

RAM 

(MB) 

Bandwidth 

(Mb/s) 

CPU 

(MIPS) 

Storage Size 

(MB) 

PE 

1 Small 4048 1000 10000 10000 1 

2 Medium 4048 2000 20000 20000 1 

3 Large 8096 4000 40000 40000 1 

4 xLarge 8096 8000 80000 80000 1 

Table 3.3: Specification of VM Types. 
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To simulate the tasks, a dataset called the Large Hadron Collider Computing Grid 

(LCG) were used (Schwickerath et al. (2005)). This describes the work of 11 days of 

activity from multiple nodes. It includes 188.041 lines, and each line in the file contains 

information about the completed task along with information on the submission time, 

consumer ID, compute element name, and task runtime. This dataset was used because 

it includes task information relative to that needed in the proposed model. Tasks that 

are not included in our model are tightly coupled tasks and complex workflow 

applications. The tasks are simulated to be submitted to our system, which includes 

different number of VMs and hosts with random types based on the predefined 

specifications.  The tasks are taken from the file without sorting and thus the results are 

varied because the tasks are different in length and specifications. In the model we 

consider the process of dealing with tasks are dynamic and online and the tasks are 

scheduled directly when they arrived and are not queued. 

 

3.4.2 Evaluation Parameters  

After running the simulation, specific parameters were measured based on the 

objectives of the proposed model. The main parameters used, as indicators of the 

model's goals (see Section 1.3) were average waiting time, average execution time, 

throughput, resource utilization, cost, profit, and power consumption. Details on each 

factor are presented as follows:  

• Average Waiting Time (AWT): The average waiting time of a task is defined 

as the ratio of the sum of waiting times of all tasks to the total number of tasks. 

The average waiting time is measured by computing the difference between the 

time the task is submitted to the system and the time of starting the execution of 

all the tasks, as shown in Equation 3.1. The waiting time includes the time taken 

for negotiation, mapping tasks to VMs, data transfer time, and the time at which 

VMs are migrated.   

𝐀𝐀𝐀𝐀𝐀𝐀 = ∑ (𝑺𝑺𝑺𝑺(𝒊𝒊) − 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝒊𝒊)𝒎𝒎
𝒕𝒕=𝟎𝟎 )/m             (3.1) 

where:  
AWT is the average waiting time of all tasks in seconds 
m denotes the number of tasks running in the system per unit of time 
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ST (i) denotes the start time of execution of the task i in seconds 
SubT (i) denotes the time for submission of the task i in seconds 

 

• Average Completed Time (ACT): This is the total time taken by each task to 

finish execution. It is measured by computing the difference between the time 

of submission of each task and the time of ending execution of each task. 

𝐀𝐀𝐀𝐀𝐀𝐀 =   ∑ (𝑬𝑬𝑬𝑬𝑬𝑬(𝒊𝒊) − 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝒊𝒊))𝒎𝒎
𝒕𝒕=𝟎𝟎 /m        (3.2) 

where: 
ACT is the average completed time of all tasks in seconds 
m denotes the number of tasks running in the system per unit of time 
Ext (i) denotes the finish execution time of the task i in seconds 
Subt (i) denotes the time of submission of the task i in seconds 

• Throughput (TH): The throughput measures the overall performance of the 

system. Throughput indicates the number of tasks that our model can execute in 

a specific time.  

                  𝐓𝐓𝐓𝐓 = (𝐂𝐂/𝐓𝐓) × 𝟏𝟏𝟏𝟏𝟏𝟏                       (3.3) 

where: 
TH denotes the throughput of the system 
C is the total number of completed tasks  
T denotes the simulation time in seconds  

 

• Average VM Utilization (AVU): This represents the utilization of the VM in 

terms of the CPU, memory, storage and bandwidth used by all tasks to finish 

execution. The CPU utilization for each VM is defined as a percentage ratio of 

the CPU, memory, storage and bandwidth utilization divided by 4 (which is the 

number of factors including in computing VM utilization). The CPU utilization 

is the amount of CPU used for all tasks in a VM over the total CPU of the VM. 

Memory utilization, storage utilization, and bandwidth utilization are computed 

in the same way as CPU utilization, as shown in Equations 3.4, 3.5, 3.6 and 3.7.  

  CVM (i) = ∑ (𝑼𝑼𝑼𝑼(𝒊𝒊) / 𝑨𝑨𝑨𝑨(𝒊𝒊)) ∗  𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏
𝒊𝒊=𝟎𝟎      (3.4) 

 MVM (i) = ∑ (𝑼𝑼𝑼𝑼(𝒊𝒊) / 𝑨𝑨𝑨𝑨(𝒊𝒊))  ∗  𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏
𝒊𝒊=𝟎𝟎         (3.5) 
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SVM (i) = ∑ (𝑼𝑼𝑼𝑼(𝒊𝒊) / 𝑨𝑨𝑨𝑨(𝒊𝒊)) ∗  𝟏𝟏𝟏𝟏𝟏𝟏    𝒏𝒏
𝒊𝒊=𝟎𝟎       (3.6) 

BVM (i) = ∑ (𝑼𝑼𝑼𝑼(𝒊𝒊) / 𝑨𝑨𝑨𝑨(𝒊𝒊))  ∗  𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏
𝒊𝒊=𝟎𝟎        (3.7) 

 UVM (i) = (CVM (i) + MVM (i) + SVM (i) +BVM (i))/4     (3.8) 

where: 
UVM (i) is the average utilization of VM i  
CVM (i) is the CPU utilization of VM i 
UC (i) is the used CPU for all tasks executed in VM i      
AC (i) is the total CPU of VM i 
MVM is the memory utilization of VM i 
UM (i) is the used memory for all tasks executed in VM i      
AM (i) is the total memory of VM i 
SVM (i) is the storage utilization of VM i 
US (i) is the used storage for all tasks executed in VM i      
AS (i) is the total storage of VM i 
BVM (i) is the bandwidth utilization of VM i 
UB (i) is the used bandwidth for all tasks executed in VM i      
AB (i) is the total bandwidth of VM i 
 n denotes the number of VMs  
  

• Average Resource Utilization (ARU): Host utilization in our model represents 

the total utilization of all VMs running on the host. The average resource 

utilization is computed by summing the host utilization of all available hosts in 

the data center (Equations 3.9 and 3.10).  

HU (j) = (∑ 𝑼𝑼𝑼𝑼𝑼𝑼(𝒊𝒊)𝒊𝒊=𝒏𝒏
𝒊𝒊=𝟎𝟎 )/𝒏𝒏                    (3.9) 

where: 
HU is the average host utilization for host j  
UVM (i) denotes the utilization of all VMs in the host j 
n denotes the number of VMs in host j 

𝑨𝑨𝑨𝑨𝑨𝑨 = ∑ 𝑯𝑯𝑯𝑯(𝒋𝒋)𝒋𝒋=𝒎𝒎
𝒋𝒋=𝟎𝟎  /m         (3.10) 

where: 
ARU denotes the resource utilization  
HU is the average host utilization for host j as shown in Equation 3.9 
m denotes the number of hosts in the data center 

• Execution Cost (EC): This factor denotes the cost consumers should pay to 

execute tasks in the providers' resources. It includes the cost of CPU processing, 

memory, using data storage, and transferring data (Equation 3.11). These costs 

are all defined in the data center specifications and differ based on the resources. 
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This is an important factor for consumers and one that most resource allocated 

algorithms aim to minimize.  

𝑬𝑬𝑬𝑬 =   ∑
((𝑻𝑻(𝒊𝒊) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) + (𝑹𝑹(𝒊𝒊) ×  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒊𝒊))

+ (𝑺𝑺(𝒊𝒊) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒊𝒊)) + (𝑫𝑫(𝒊𝒊) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒊𝒊)))
𝒊𝒊=𝒏𝒏
𝒊𝒊=𝟎𝟎     (3.11) 

where: 
EC is the cost of execution of all tasks  
n denotes the number of tasks executed in the data center 
T (i) is the execution time in seconds of task i 
costCPU is the cost of processing CPU in $ / seconds  
R (i) is the size of RAM of task i in MB 
costRAM is the cost of memory used in $ / MB   
S (i) is the size of storage of task I in MB 
costStorage is the cost of storing data in $ / MB   
D (i) is the size of the task I file in Kb 
costB (i) is the cost of transferring data in $ / Mb   

• Total Profit (TP): The profit model is based on a pay-as-you-go policy that is 

applied in many cloud systems to address the highly variable demand for cloud 

resources and to calculate the cost of executing tasks in the cloud data center 

(Lee et al. (2012)). Thus, profit represents the total income the provider can gain 

from executing tasks in their resources. It is calculated depending on the total 

execution cost for all tasks, penalty costs, and power consumption costs, as 

shown in Equation 3.12. The penalty cost is computed based on the provider 

policy and is defined in the SLA; it represents the costs the provider can afford 

to pay if the SLA is not satisfied. In the proposed model, the penalty is paid for 

execution delay and is computed according to the delay constraints, as shown 

in Equation 3.13. 

             𝑻𝑻𝑻𝑻 =  (𝑬𝑬𝑬𝑬–  𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 −  ∑ 𝑷𝑷𝑷𝑷𝑷𝑷 (𝒊𝒊) 𝒊𝒊=𝒕𝒕
𝒊𝒊=𝟎𝟎 )                            (3.12) 

 𝑷𝑷𝑷𝑷𝑷𝑷(𝒊𝒊) = �(𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝒊𝒊) − 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆(𝒊𝒊)) × 𝑷𝑷      𝒊𝒊𝒊𝒊 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝒊𝒊) > 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆(𝒊𝒊)
𝟎𝟎                                                      𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

           (3.13) 

where: 
TP is the total profit the provider gains from execution of all tasks  
EC is the cost of execution of tasks  
Pen (i) is the penalty the provider can afford to pay for delay in task i 
Pcost is the cost of using power for executing tasks, as shown in Equation 3.14  
reqt (i) is the time task i is required for execution 
exet (i) is the time task i is taken for execution 
P is the penalty cost defined for the delay  
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T is the number of tasks 

 Power Consumption (PCost): This is based on the power cost in kWh, which 

differs according to the specifications of the data center. It is computed by 

multiplying the power cost by the total execution time for all tasks, as shown in 

Equation 3.14. 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 =  𝑷𝑷𝑷𝑷 ×  𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷                       (3.14) 

where: 
PCost is the total power cost of execution of all tasks  
PC is the total execution time for all tasks  
Powercost is the cost of power defined in $/seconds  

• Task Completed Rate (TCR):  This is the number of completed tasks over 
the total number of submitted tasks.  

𝐓𝐓𝐓𝐓𝐓𝐓 = 𝐓𝐓𝐜𝐜 / 𝐓𝐓𝐒𝐒              (3.15) 
where: 
TCR is the rate of completed tasks, and ranges from [0-1] 
Tc is the number of completed tasks 
Ts is the number of submitted tasks 

• The SLA Violation (SLAV): In this research, an SLA violation can occur in 

relation to deadline and migration time. A SLA violation of deadline constraints 

occurs when the task deadline is missed and is computed according to the rate 

of completed tasks computed as shown in Equation 3.16.  

    𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 =  (𝟏𝟏 −  𝐓𝐓𝐓𝐓𝐓𝐓)  × 𝟏𝟏𝟏𝟏𝟏𝟏       (3.16) 

where: 
SLAD denotes the SLA violation based on deadline  
TCR is the task completed rate computed by Equation 3.15 

A SLA violation for migration time occurs when the consumer does not receive 

their requested resources. In technical terms, SLA violations occur when VMs 

cannot acquire the amount of MIPS that are requested. In this case, the SLA 

violation occurs when the requested CPU is greater than the available capacity 

of CPU. It is computed as the sum of unallocated MIPS to the sum of the 

requested MIPS as shown in Equation 3.17.  

 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 = ∑ (𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝒊𝒊) − 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝒊𝒊))/𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝒊𝒊)𝒊𝒊=𝒎𝒎
𝒊𝒊=𝟎𝟎         (3.17) 
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where: 
SLAM denotes the SLA violation based on migration time 
RMIPS (i) denotes the MIPS requested by the VM i for running the task 
AMIPS (i) denotes the actual MIPS that were allocated to the VM i.  

 

The overall SLA violations are computed as shown in Equation 3.18.  

  

  𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 + 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒                                               (3.18) 

where: 
SLAD denotes the SLA violation based on deadline  
SLAM denotes the SLA violation based on migration time 
SLAV denotes the overall SLA violation  

• The Imbalance Factor (IF): This refers to the balance of the load among VMs. 

It is measured based on the time for executing tasks in VMs. A small value of 

IF indicates good load balancing. Equation 3.19 shows how to compute IF. 

𝐈𝐈𝐈𝐈 = (𝐓𝐓𝐦𝐦𝐦𝐦𝐦𝐦 − 𝐓𝐓𝐦𝐦𝐦𝐦𝐦𝐦)/ 𝐓𝐓𝐚𝐚𝐚𝐚       (3.19) 

where:  
IF is an imbalance factor  
Tmax is the maximum time for execution of tasks  
Tmin is the minimum time for execution of tasks  
Tav is the average time for execution of tasks  

• Average Fitness Values (AFV): The average fitness value for each solution is 

calculated by applying the PSO algorithm and evaluating selected objectives, as 

shown in Equation 4.20. 

𝐀𝐀𝐀𝐀𝐀𝐀 =  ∑ 𝐅𝐅(𝐢𝐢)𝐦𝐦
𝐢𝐢=𝟏𝟏             (3.20) 

where: 
AFV is the average fitness value for all tasks  
i is the index of the task  
m is the total number of tasks in the simulation 
F (i) is the value of fitness function for all solutions 

• Processing Time (PT): the processing time is the time taken to run a specific 

algorithm. In the SLA negotiation, it is called negotiation time and in VM 

migration, it is called migration time.  
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3.5 Summary 

This chapter described the general architecture of the resource allocation model 

presented in Section 1.3. The proposed model comprises three phases: SLA negotiation, 

task scheduling, and VM allocation. In addition, the chapter discussed the specifications 

of each phase of the model. The chapter also presents general issues related to 

implementation of the model using the CloudSim simulator and the main classes that 

are used or modified. Finally, it outlines the main parameters used in the evaluation of 

each phase of the model.  

The model phases will be discussed and presented in subsequent chapters where 

Chapter 4 covers the SLA negotiation, Chapter 5 describes the task scheduling 

algorithms and Chapter 6 presents the VM allocation algorithm. 
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Chapter 4 

 

SLA Negotiation Based on Parallel Particle 

Swarm Optimization 

 

This chapter discusses details of the SLA Negotiation phase based on Parallel PSO, 

which is the first phase of the proposed model (see description in Chapter 3). It starts 

by providing an overview of the SLA Negotiation algorithm. In Section 4.2, the 

sequential PSO Negotiation algorithm is then presented. Section 4.3 discusses the 

design of the synchronous and asynchronous Parallel PSO negotiation algorithms. 

Implementation details for the proposed algorithms are covered in Section 4.4.  In 

Section 4.5, evaluation methods and discussion of the results of applying the algorithms 

are presented. The last section summarizes the main contributions of these algorithms 

according to the objectives discussed in Section 1.3. 

 

4.1 Overview  

The proposed model includes many distributed data centers consisting of several virtual 

and physical resources. Resource allocation in cloud computing needs to be able to deal 

with the features of cloud computing which are described as large-scale, scalable, and 

dynamic (see Section 1.1.1). Thus, dynamic real-time scheduling algorithms are 

required to allocate cloud resources. In a dynamic real-time scheduling algorithm, the 

waiting time should be reduced; therefore reducing waiting time is one of the key goals 

of our model. This will be achieved by reducing the time for mapping between task and 

cloud resources. Searching inside each data center for suitable resources for each task 

is a complex process, and this complexity is increased as the number of resources and 

tasks grows. The proposed model utilizes techniques from meta-heuristic optimization 
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and the structure of the model (the distributed data center) to reduce mapping time. It 

improves the negotiation strategy between consumers and providers by applying the 

Parallel PSO algorithm. Thus, instead of searching all the providers' resources, the 

search space is divided into smaller spaces, which are then searched concurrently. 

Consequently, the time spent on mapping is reduced which leads to improved 

throughput and increased profit. Specifically, Parallel PSO in the proposed model 

divides the swarm into multi-swarms, each of which is run on one data center, and the 

best solutions are then returned to the Manager Module. Using a Parallel PSO algorithm 

rather than a sequential PSO is more effective, because better solutions are provided by 

searching small spaces than by searching large spaces. In addition, the structure of the 

distributed data center is suitable for applying parallel PSO because each data center 

can evaluate one set of solutions rather than evaluate all in one node. 

Cloud consumers aim to reduce the time of execution and providers aim to maximize 

their profit by reducing the number of tasks that exceed deadline. The negotiation is 

conducted to satisfy the goals of both parties. The negotiation steps can be reduced to 

save time if both parties agree. In addition, negotiation can be improved if the 

consumers and providers allow a third party to select resources based on their objectives 

and perform mapping processes on their behalf to reduce traffic and communication 

messages. In this way, the overall waiting time can be reduced, including mapping time. 

Thus, the throughput of the system will be increased.  

Specifically, in this work, the cloud consumers and the providers must define the 

requirements and objectives, and the Manager Module then starts the negotiation 

process based on these requirements. The SLA Negotiator Agent in the Manager 

Module selects the best offer for each task from the available data centers by applying 

the Parallel PSO algorithm. The objective function of this algorithm is based on three 

factors: execution cost, network delay, and current load in the data center. Specifically, 

the Broker Agent send tasks to the SLA Negotiator Agent along with QoS requirements 

and constraints such as deadline, cost budget, CPU speed, and memory size. The SLA 

Negotiator Agent then begins the negotiation process by communicating with all data 

centers through the DC Manager Agent, collecting the results and then selecting the 

most appropriate solution. If the request is accepted, a formal SLA agreement is created 

and signed which guarantees QoS between both parties, including the consumer's 
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requirements and the penalty cost if the agreement is violated. The Negotiator Agent 

uses the Parallel PSO algorithm to map tasks to the data center to satisfy predefined 

goals such as improving performance by reducing waiting time, avoiding SLA 

penalties, and improving throughput. Specifically, the SLA Negotiator selects the data 

center from those in the cloud infrastructure according to a set of parameters that 

include CPU speed, RAM size, storage size, cost budget, deadline and penalty. 

The process for the proposed SLA negotiation algorithm is shown in Figure 4.1. It 

involves communication between four components: Broker Agent, Negotiator Agent, 

Task Dispatcher Agent and DC Manager Agent. The Broker Agent accepts the tasks, 

including the requirements from consumers, and then prepares the proposal for the SLA 

Negotiator Agent. The SLA Negotiator Agent acts as a mediator between the consumers 

and the DC Manager Agent, and is located in each data center to manage the resources. 

These components then communicate to manage the SLA Negotiation and create SLA 

agreements. The SLA Negotiation Processes can be summarized as follows: 

1. The Broker Agent receives proposals from the consumers that describe all 

the tasks along with their requirements and constraints including the deadlines 

and cost budget. The Broker Agent then sends these proposals to the SLA 

Negotiator Agent.  

2. In the proposed model, the DC Manager Agent collects information about 

data center resources from the Host Monitor Agent. Resource information 

includes data center status, which describes the current load of the data center, 

the types of VMs, the specifications of each VM in terms of software, hardware, 

and the cost, and dynamic information such as availability and current load.  

3. The SLA Negotiator Agent accepts proposals from the Broker Agent and then 

starts the Parallel PSO algorithm by sending the proposals for each data center 

in parallel.  

4. In each data center, based on the type of VMs, a set of offers for the proposals 

is prepared. The PSO algorithm then runs to find a suitable mapping between 

each proposal and the offers prepared; the result, which includes the data center 
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ID, is sent back to the SLA Negotiator Agent. The steps undertaken by the PSO 

algorithm are presented in Algorithm 4.4. 

5. The SLA Negotiator Agent accepts the results and selects the best. These 

tasks are then passed to the selected data centers to execute and a confirmation 

message is then sent with the agreed SLA to the Broker Agent. However, when 

the negotiation fails because of deadline or cost constraints or there is no data 

center, the failed message is sent to the Consumer Agent. 

 

 

 

 

 

 

 

 

Figure 4.1: SLA Negotiation Processes. 
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The data centers provide a set of offers based on the type of VMs that can initiate and 

run on the hosts. The offer includes both static information and dynamic information 

based on the existing status of the system. The main attributes of the offer are: {Data 

center ID, VM Cost, VM Type, CPU Processing Speed, RAM Size, Storage Size, network 

Bandwidth, Data center load, Penalty}. 

The input and output data are considered first. In this instance, the SLA negotiation 

algorithm receives a set of tasks in the form of proposals and the ID of the data centers 

as input data. The output results of this algorithm are the mapping between tasks and 

data centers, which then enables tasks to dispatch into the selected data centers. 

Next, the problem constraints are addressed. The negotiation process is conducted 

under specific constraints to reach an agreement. These constraints include: 

1) Tasks should be assigned to one data center at a time so that, in the mapping 

matrix, each row has only one element with a value of 1, as shown in Equation 

4.1.  

∑ 𝒎𝒎𝒎𝒎𝒎𝒎 (𝒊𝒊, 𝒋𝒋)  ≤ 𝟏𝟏 ∀ 𝒋𝒋 = 𝟏𝟏,𝟐𝟐, … ,𝒎𝒎  𝒏𝒏
𝒊𝒊=𝟏𝟏               (4.1) 

where: 
i is the task index  
j is the data center index  
m is the total number of tasks  
n is the total number of data centers  
m (i, j) is a binary value {0, 1} 

 
2)  Each task should be scheduled within a deadline, which indicates the maximum 

response time of cloud providers to tasks from consumers. Cloud providers must 

respond to consumers' requests within a reasonable time, otherwise an SLA 

violation occurs and cloud providers need to pay the penalty for violation to the 

consumer. The deadline can be computed in several ways; in this research, Equation 

4.2 is used because execution time is based on processing time, which relates to the 

CPU speed of the VM in such that the minimum and maximum time for executing 

task are considered. The deadline is computed as an absolute value because it is 

should be a positive value.  

𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊, 𝒋𝒋) = |(𝑳𝑳(𝒊𝒊, 𝒋𝒋)  +  𝟎𝟎.𝟓𝟓 (𝑳𝑳(𝒊𝒊, 𝒋𝒋) –𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯(𝒊𝒊, 𝒋𝒋))) ∗ 𝟏𝟏𝟏𝟏𝟏𝟏 |      (4.2) 
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where:  
i is the index of the task 
j is the index of the VM type in the data center 
Del (i, j) is the delay for task i using VM type j 
L (i, j) is the minimum time for executing task i using VM type j 
High (i, j) is the maximum time for executing task i in VM type j. 

The execution time of a task with a network delay should not exceed the deadline, 
as shown in Equation 4.3.     

𝑬𝑬𝑬𝑬𝑬𝑬 (𝒊𝒊, 𝒋𝒋)  +  𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 (𝒊𝒊, 𝒋𝒋)   <  𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊, 𝒋𝒋)                 (4.3) 
where:  
Exe (i,j) is the time for executing task I in VM j.  
Del (I,j) is the maximum delay time allowed to execute task i in VM j, which 
is computed as shown in Equation (4.2).  
NDelay (i, j) is the network delay of task i in VM j as shown in Equation 4.6 

3) Cloud providers require prices for using the VM. The consumer must pay the 

price requested by the cloud providers based on the resources used. The amount 

a consumer must pay per hour for using a VM from a resource provider should 

be determined and the consumer specifies the maximum cost allowed as 

follows:  

             𝐓𝐓𝐓𝐓𝐓𝐓 (𝐢𝐢, 𝐣𝐣) < 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 (𝐢𝐢)               (4.4) 
where: 
TEC (i, j) is the execution cost of task i in VM j that is computed by using 
Equation 4.5 
Costbudget (i) is the maximum permitted cost specified by the consumer. 

4) The minimum requirement in terms of the processing speed of the VM in MIPS, 

minimum memory size, and storage disk size should be satisfied in the selected 

data center such that  𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 ,     

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎,𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎.  

where: 

CPUreq is the requested CPU in term of MIPS 
CPUav  is the available CPU in term of MIPS 
Memoryreq is the requested Memory in term of MB 
Memoryav  is the available Memory in term of MB 
Stroagereq is the requested Storage in term of MB  
Storageav  is the available Storage in term of MB  
Bwreq  is the requested Bandwidth in term of Mb/s 
Bwav is the available Bandwidth in term of Mb/s 



116 

 

The objective function is the next issue to be considered. The aim in SLA negotiation 

is to find the best mapping to a data center within existing constraints. The best mapping 

is determined by using the fitness function, which is based on minimizing three factors: 

cost of execution, network delay, and data center load. Details on these factors are as 

follows: 

• The Task Execution Cost (TEC):  This is the total cost needed to execute the 

task in the VM, which includes the cost of processing per second, the cost of 

storage, the cost of memory and the cost of bandwidth, as shown in Equation 

4.5. 

𝑻𝑻𝑻𝑻𝑻𝑻(𝒊𝒊, 𝒋𝒋) = ((𝑬𝑬𝑬𝑬𝑬𝑬(𝒊𝒊, 𝒋𝒋) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒋𝒋) + (𝑹𝑹(𝒊𝒊) ×  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒋𝒋))
+ (𝑺𝑺(𝒊𝒊) × 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒋𝒋)) + (𝑫𝑫(𝒊𝒊) × 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒋𝒋)))      

 (4.5) 

where: 
TEC (i, j) is the cost of execution task i in VM j in $  
Exe (i, j) is the execution time in seconds of task i in VM j in seconds 
costCPU is the cost of processing CPU in $ / seconds  
R (i) is the size of RAM in task i in MB 
costRAM is the cost of memory used in $ / MB   
S (i) is the size of storage of task i in MB 
costStorage is the cost of storing data in $ / MB   
D (i) is the size of the task i file in Kb 
costB (i) is the cost of transferring data in $ / Mb   

 

• The Network Delay: This is the time required to transfer data between two 

nodes and depends on the topology of the network. This is computed based on 

the data length of the task and the VM bandwidth, as shown in Equation 4.6. 

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 (𝒊𝒊, 𝒋𝒋) = 𝑻𝑻𝑻𝑻(𝒊𝒊)/𝑩𝑩(𝒋𝒋)               (4.6) 
where: 
NDelay (i, j) is the delay when moving task i to VM j 
TL (i) is the length of task i in MI 
B (i) is the bandwidth of VM j in Mbs 

 
• The Data Center Load:  This encompasses by the utilization of all hosts in the 

data center, as shown in Equation 4.7. The host utilization is computed as the 

summation of used MIPS in all VMs in the host divided by the total MIPS in 
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the host, as shown in Equation 4.8. In this model, only the utilization of CPU 

processing is considered because the proposed model focuses on the tasks that 

need high processing speed rather than large storage capabilities. The 

processing speed is measured in MIPS. The data center load is a percentage 

value in the range (0-1) 

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 =  ∑ 𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 (𝒋𝒋)𝒎𝒎
𝒋𝒋=𝟏𝟏            (4.7) 

          𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 (𝒋𝒋)  = (∑ 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒊𝒊)/ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻(𝒋𝒋))/𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏
𝒊𝒊=𝟎𝟎       (4.8) 

where:  
Dload is the load of the data center  
Hload (j) is the utilization of the host j 
usedMIPS (i) is the MIPS used by all tasks executed in the VM i 
TotalMIPS (i) is the total MIPS in the VM i 
m is the number of hosts in the data center 
n is the number of VMs in host j 

The objective function aims to determine the lowest cost for execution with the least 

amount of network delay and the smallest data center load. The fitness function is 

formulated using a weighted sum approach, as shown in Equation 4.9. The cost of 

execution is given a more substantial weight because it has a high preference amongst 

consumers.  

𝑴𝑴𝑴𝑴𝑴𝑴 𝑭𝑭(𝒙𝒙𝒙𝒙) =  𝟎𝟎.𝟒𝟒 ∗  𝑻𝑻𝑻𝑻𝑻𝑻(𝒊𝒊)  +  𝟎𝟎.𝟑𝟑 ∗  𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 +  𝟎𝟎.𝟑𝟑 ∗  𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫     (4.9) 

where:  
TEC (i) is the cost of execution task i in the resource in seconds (Equation 4.5). 
NDelay is the delay of the network in seconds. (Equation 4.6). 
DCload is the load of the data center (Equation 4.7). 

In the next section, the SLA negotiation based on sequential PSO will be described in 
detail and the results compared with the Parallel PSO algorithm. 

 

4.3 Sequential PSO Negotiation Algorithm 

Initially, the SLA negotiation is developed using the PSO technique to compare it with 

the Parallel PSO proposed in the current model. PSO starts with a specific number of 

particles; each particle denotes specific solutions for the tasks during the negotiation 

process (Section 2.2.1). In this case, the search space is large because it includes all 
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VMs in all data centers. Specifically, Algorithm 4.1 summarizes the main steps of SLA 

negotiation based on the PSO algorithm. The algorithm maps arrival task to the data 

center in Line 2 by calling upon the Procedure Negotiation_PSO (Algorithm 4.2) in 

sequential PSO or Negotiation _PPSO to run the Parallel PSO algorithm specified in 

Algorithm 4.3. In this model, we deal with real time scheduling which includes dealing 

with tasks directly and do not queued them to reduce the waiting time. 

 

Algorithm 4.1: SLA Negotiation Algorithm. 

Inputs: T, D, type                 // list of tasks and data centers 
Outputs: map (t, d)                                                            // map matrix of tasks and data center ID 
Procedure SLANegotiation (T, D, type)                     // negotiation type parallel or sequential 
1.    for arrival tasks in T list 
2.        If type ==sequential then     
3.   ID=Negotiation_PSO (t, D)                 // map tasks to data center by algorithm 4.2 
4.        Else if type == parallel  
5.   ID=Negotiation_PPSO (t, D)              // map tasks to data center by algorithm 4.3  
6.        End if  
7.        If (ID!= null)                            // there is suitable resource for task 
8.                          Update map (t, ID) 
9.                          Dispatch task to selected data center 
10.      Else  
11.                        Update t status to failed                // there is no suitable resource for tasks, task failed 
12.      End         
13.   End for 
14.   Update T list                
15.   Repeat for step 2 until Task list T is empty      
End procedure  

 

The details of the Negotiation_PSO algorithm in Line 3 are listed in Algorithm 4.2. The 

algorithm begins by initializing the main values of particles, number of iterations, 

position, and velocities. The initialization step includes encoding the particle values to 

deal with discrete PSO. The SPV method (as described in Section 2.2.1) is used in this 

model because it is the strategy most commonly applied in existing research. In this 

method, the particles are represented by a 1 × n vector; where n is the number of tasks 

and the value assigned to each position is the index for all data centers. The position is 

represented by an m × n matrix and an encoding strategy must be used to represent the 

solutions, where m is the index of the data center and n is the number of tasks. The 

values for each element in the position matrix can be either 0 or 1 with the constraint 

that only one element can take the value of 1 in each column. This is because each 

column represents a task allocation and each row represents an allocated task to the 
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specific resource. This ensures that during allocation, each task is assigned to only one 

data center. The velocity is represented by an m × n like position but it also includes 

integer values to control the movement of the particles, as shown in Equation 2.4. It 

revalues the changes in each iteration according to the new best values. 

After initialization, the fitness function for all elements in the particle is computed 

based on Equation 4.9 and the best value is updated. The PSO algorithm searches for 

solutions with the minimum fitness value. The velocity and position are then updated 

based on the new best value, as shown in Equations 2.4 and 2.5 (see Chapter 2). These 

steps are repeated until the maximum number of iterations is reached. Finally, the best 

solution is the last best value of the particle, which includes the best mapping of tasks 

and the data center IDs. Figure 4.2 depicts a flowchart illustrating SLA negotiation 

based on a sequential PSO algorithm. 

 

Figure 4.2: Flowchart for the SPSO Algorithm. 
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Algorithm 4.2: Sequential PSO Negotiation Algorithm. 

Procedure Negotiation_PSO (t, D) 
Inputs: t, D                        // task t and D data centers 
Outputs: d data center                                                // the output is the selected data center ID 
1.     Initialize (V, P, pbest, gbest)              // initialize velocity, position, pbest, gbest 
2.  while (stop criteria do not satisfied) do              // iterate while not stop 
3.        For each p in t       // iterate through all values in particle t     
4.            b=Evaluation (p)               // objective function using Equation 4.9 
5.            If (b < pbest)               // update pbest value 
6.                    pbest=b 
7.            End if  
8.        End For 
9.        Update (V, P)                                              // using Equations 2.4 and 2.5 
10.      If (b < gbest) 
11.                  gbest=b 
12.      End if 
13.   End while 
14.   Return gbest                                                       // include data center ID 
End procedure  

 

4.4 Parallel PSO Negotiation Algorithms 

The Parallel PSO algorithm needs to be improved to solve the SLA negotiation 

problem. As described in Section 2.2.3, the Parallel PSO is a set of independent swarms 

that communicate through a specific topology. The communication topology between 

multi-swarms has a significant effect on the performance of the Parallel PSO algorithm. 

It defines the method for transforming the parameters among swarms. The most 

common Parallel PSO topology is a master-slave topology model (Belal and El-

Ghazawi, 2004). In this model, a single module (master) controls the optimization 

algorithm, and utilizes an external (slave) module to compute solutions. This model 

treats each slave as a swarm then selects the best solution from those available. Most 

research results indicate that the best architecture for applying Parallel PSO is a global 

best, which is based on the master-slave model (Belal and El-Ghazawi, 2004). 

Therefore, our model is also based on a master-slave model (as described in Section 

2.2.3). 

Several PPSOs have been proposed and they can be implemented in two main ways. 

The first method divides the search space into multiple swarms and each swarm 

executes the same algorithm on different nodes (Schutte et al. 2004). The second 

method is based on designing an algorithm using many nodes (equal to the number of 

particles) to compute and evaluate the fitness function separately and simultaneously 
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(Koh et al. (2006); Venter and Sobieszczanski-Sobieski (2006)). The second method of 

applying PPSO is suitable for complex problems whose fitness evaluations take a large 

time to compute in order as they help reduce computation time (Gonsalves and Egashira 

(2013)). In this research, the first method will be used because there are many 

distributed data centers with different characteristics and the aim is to speed up the 

process of negotiation to decide the best data center to run the task. 

Specifically, the implementation of the Parallel PSO algorithm starts by considering 

each data center as a separate swarm and runs PSO. The master receives the best 

solutions, compares them and selects the minimum value, which is then deemed the 

best. The PPSO divides the search space into multiple swarms to focus on optimizing 

the smaller space of the problem. In our model, the search space is divided because 

there are resources in each data center that it needs to discover. The general steps of 

Parallel PSO are summarized in Algorithm 4.3. It starts by initializing the best value 

(Line 1). Then it sends tasks t to all data centers in parallel (Lines 3-7). The best results 

are selected as shown in Line 8. These steps are repeated while there is a task in the 

task list. 

Algorithm 4.3: Parallel PSO Negotiation Algorithm. 

Procedure Negotiation_PPSO (t, D) 
Inputs: t, D                // task t and data centers 
Outputs: d data center                                  // the output is the selected data center ID 
1.    Initialize best                                                   // initialize best 
2.    While (there are tasks in t) do      // iterate while there are tasks  
3.     Parallel  
4.     For i=0: N         // where N is the numbers of data centers 
5.            Result[i] = NPSO (i, t);             // tasks t send to all DCs to run NPSO (Algorithm 4.4) 
6.     End for 
7.  end Parallel        
8.  Select best result (result)                            // sort the result to select the minimum  
9.  end while 
10. return best                                                        // return the best solutions for tasks  
End procedure  

In more detail, Algorithm 4.4 runs in each data center. It starts with initializing values 

as shown in Line 1. After the initialization step, the objective function is calculated 

using the fitness function, as shown in Equation 4.9 (Lines 3-10). The objective 

function value is calculated for each particle, and the particles' pbest and gbest values 

are then evaluated (Lines 12-14). Finally, when the algorithm is finished, the global 

best value is sent to the Negotiator Agent in the Manager Module (Line 14). 
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Algorithm 4.4: PSO Negotiation Algorithm in data center. 

Procedure NPSO (task t, data center i) 
1.     Initialize (V, P, pbest, gbest)   // initialize swarm, velocity, position, pbest, gbest 
2.  while (stop criteria do not satisfied) do         // iterate while not stop 
3. for each p in t                                            //  // iterates all tasks in particle t    
4.      for each v in data center i     // iterates all VM in data center i     
5.             b=Evaluation (p (v))     // objective function using Equation 4.9 
6.             If (b < pbest)      // update pbest value 
7.                    pbest=b 
8.             End if  
9.         End For 
10.   End for   
11.   Update (V, P)            // using Equations 2.4 and 2.5 
12.      If (b < gbest) 
13.                   gbest=b 
14.      End if 
15.   End while 
16.   Return gbest                      // best value resource in data center i 
End procedure  

Based on the communication methods between swarms and the master node, there are 

two parallel adaptations of PSO: synchronous PSO (Schutte et al. (2004)) and 

asynchronous PSO (Koh et al. (2006); Venter and Sobieszczanski-Sobieski (2006)). In 

synchronous Parallel PSO (SPPSO), the master node waits for all swarms to finish 

searching before it decides the best solution whereas in synchronous Parallel Particle 

Swarm Optimization (ASPPSO) algorithm, the master node can select the first best 

solution and does not wait for the others to finish. Both approaches will now be 

discussed. 

In SPPSO, the optimization algorithm waits at the end of every iteration until solutions 

for all the particles have been returned before updating particle velocities and positions 

(Zhou and Tan (2009)). The synchronization is required to ensure that all swarms have 

completed the evaluation of the fitness function and that results are returned before the 

velocity and position calculations can be executed (Belal and El-Ghazawi, 2004). In the 

SPPSO implementation, all swarms are running in separate data centers in parallel and 

the master node therefore waits for all swarms to be completed before selecting the best 

solution, as shown in Algorithm 4.3.  

The problem for the SPPSO algorithm is that all the swarms need to wait for others to 

finish before deciding which is the best. To improve the PSO algorithm, an 

asynchronous parallel variant has been developed to speed up the convergence of the 

PSO to an approximate optimal solution (Gonsalves and Egashira (2013)). In the 
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ASPPSO, the algorithm does not wait for all solutions to be returned before selecting 

the best solution (Line 5) (Venter and Sobieszczanski-Sobieski (2006)). The difference 

between synchronous and asynchronous optimization lies in Line 5 of the Algorithm 

4.3. In the synchronous approach, the master node waits for all swarms to compute the 

results then the best solution is chosen. However, in the asynchronous model, the first 

result from any swarm is used to continue the algorithm. In our model, Algorithm 4.3 

is run in the SLA Negotiator Agent while Algorithm 4.4 is executed in each DC 

Manager Agent. The results of both are then sent to the SLA Negotiator Agent, which 

selects the solution. 

 

4.5 SLA Monitoring Algorithm 

The SLA Monitor Agent monitors the SLA for each task to find any violation. In each 

data center, the SLA Monitor collects information from agreed SLAs and checks 

whether there is any SLA violation before sending an alert. The SLA Monitor detects 

whether the SLA violation comes from missing the task deadline. Another type of 

violation is detected using the Host Monitor Agent. Algorithm 4.5 presents the main 

steps of the SLA Monitor Agent. It starts by initializing the SLAV by zero (Line 1). It 

checks the deadline and the execution time. If the execution time exceeds the deadline, 

then the SLA violation is increased by one (Lines 2-5). Finally, the number of SLA 

violations is returned (Line 6). 

 
Algorithm 4.5: SLA Monitoring Algorithm. 

Input: SLA parameters (deadline, execution time) 
 
Output:  number of SLAV 
Procedure VMMonitoring (deadline, execution time) 
1. Initialize the SLAV with 0 
2. For each task in Task list 
3.        If execution time > deadline then  
4.        SLAV = SLAV +1  
5. End for 
6. Return SLAV 
End Procedure 
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4.6 Parallel PSO Implementation  

The model was implemented using CloudSim 3.0.3 as described in Section 3.4. This 

simulation model involves many data centers and many consumers. Virtual machines 

are created according to the specifications of the data center, and many tasks are 

simulated by using data from the dataset file. To implement the model, several 

modifications are made to the CloudSim simulator classes to customize them to 

evaluate the algorithm.   

To implement the algorithm, the same specification of tasks, VMs, Hosts, and data 

centers were used that were described previously in Chapter 3. To run the SLA 

negotiation algorithm as a parallel algorithm, a conceptual model was used because it 

was not affected by the underlying details of the implementation. To simulate parallel 

computing, the focus was on parallel implementation using multi-threading. The 

rationale of a container (e.g., using agent frameworks like Jade) (Taranti et al. (2011)) 

was not adopted because this was a simulator rather than a real system. In addition, Jade 

is restricted to iterative computation and can be adaptive to recursive computation but 

not with the same performance (Gautier et al. (2007)). The approach is based on multi-

threading programming in Java. Most of the previously developed algorithms in 

Parallel PSO negotiations have focused on the implementation of the Parallel PSO 

algorithm and the type of hardware that is used. In this research, the focus was on 

evaluation of the Parallel PSO algorithm itself and its role in improving resource 

allocation. In the proposed model, ten data centers are assumed so the swarm is split 

into ten multi-swarms containing the same number of data centers. These are then 

evaluated in parallel.  

The CloudSim classes are then extended by adding some classes and modifying the 

available classes to adapt to the goals. For example, the Data center Broker class that 

represents the manager of the data center was parallelized to manage many data centers 

and a dispatcher function was added to submit tasks to the selected data center. In 

addition, a negotiation class was added to represent the negotiation process and 

determine the data center ID that can execute the task. Moreover, several classes were 

added to run and execute the PSO algorithm. 
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4.7 Experimental Evaluation 

The methodology of the experiments and the specifications of the simulation 

environment used to test and evaluate the proposed algorithms will be described in 

Section 4.7.1. The results of the experiments will be presented and discussed in Section 

4.7.2. 

 

4.7.1 Experimental Methodology  

The important issue in this chapter is evaluation of the effectiveness of the PPSO only. 

Therefore, it is assumed that in this case that after the selection of SLA negotiation, the 

task scheduling inside the data center is based on FCFS. The VM is then scheduled to 

available hosts based on FCFS. This is because it is important to evaluate each phase 

alone without any influence from other algorithms. 

The performance of the Parallel PSO Negotiation algorithms was evaluated and 

compared with the results of the sequential PSO. The performance and the efficiency 

were then measured in terms of the negotiation time, average fitness values, and 

speedup to compare both the synchronous and asynchronous algorithms. The proposed 

model was then evaluated in terms of the resources allocated to determine whether the 

model satisfies the objectives discussed previously in Chapter 1. The details of these 

experiments are as follows: 

• Methodology 1: This includes several experiments to test the effectiveness of 

the Parallel PSO by changing the number of iterations and comparing the results 

with the sequential PSO.  In addition, it determines the best parameters within 

which to run Parallel PSO and satisfy the objectives by changing the number of 

iterations. 

• Methodology 2: This was implemented for each of the Parallel PSO algorithms 

to measure the performance factors of the model in terms of negotiation time, 

waiting time, completed time and throughput. The results were then compared 

with the sequential PSO algorithm to determine the effectiveness of the 

proposed algorithms. 
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The specification of the data center, host, and VMs was as the same as described in 

Chapter 3. The specific numbers used in the Parallel PSO Negotiation algorithm are 

listed in Table 4.1. To simulate the task, the dataset LCG was used, as described in 

Chapter 3. Each experiment was run ten times and the average score across all 

experiments was then calculated with 95% confidence intervals.  

# Data centers 10 

# Hosts  50 per Dara 

center 

# VMs 50 per Data 

center 

# Tasks 50-500 

Table 4.1: Setting of the Parameters for Experiments. 

The values of the parameters used in the PSO are listed in Table 4.2, and include the 

number of particles and the number of iterations. Other parameters also control the PSO 

such as c1, c2, r1, r2, and inertia w values. These values are chosen to improve the 

quality of the solutions and the specific reason for selecting each parameter is described 

in Table 4.2. 

PSO Parameters Values Reason  

# swarms 10 Depends on the number of 
data centers 

# particles 10 Depends on the number of 
data centers 

# iterations 5-50 Based on the results of the 
tests of fitness function, there 
is no further change after 50 

iterations in PSO  
W  [0-1] Specified based on Equation 

2.8 
c1 , c2 2.0,2.0 As reported in (Li-Ping et al. 

(2005)) r1, r2 [0-1] 

Table 4.2: Setting of the Parameters for PSO. 
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After running the simulation, the following parameters are measured and used as 

indicators to test the effectiveness of the proposed algorithm. To evaluate the 

performance of the Parallel PSO, the following factors needed to be computed: 

• Negotiation Time (NT): This is the total time (in seconds) that the PSO 

algorithm takes to reach solutions, as shown in Equation 4.10. 

𝑵𝑵𝑵𝑵 =  ∑ 𝑻𝑻(𝒊𝒊)𝒎𝒎
𝒊𝒊=𝟏𝟏             (4.10) 

where: 
NT is the total negotiation time for all tasks  
i is the index of the task  
m is the total number of tasks in the simulation 
T (i) is the time, in seconds, taken for negotiation until an agreement is reached 
 

• Speedup (Sp): This measures the improvement in execution time using 

parallelism. The speedup is computed by dividing the total execution time in 

the sequential algorithm by the total execution time using the parallel 

algorithms, as shown in Equation 4.11. 

𝐒𝐒𝐒𝐒 =  𝐓𝐓𝐓𝐓/𝐓𝐓𝐓𝐓        (4.11) 

where:  
Sp is the speedup of the algorithm 
T1 is the total execution time in the sequential algorithm in seconds. 
Tc is the total execution time of the parallel algorithm on c processors in 
seconds.  

• Average Waiting Time:  is defined in Equation 3.1. 

• Average Completed Time: is defined in Equation 3.2. 

• Throughput:  is defined in Equation 3.3. 

• Execution Cost:  is defined in Equation 3.11. 

• Profit: is defined in Equation 3.12. 

• SLA Violation: In the evaluation of SLA negotiation, the focus is on the SLA 

violation, which comes from the missing deadline as defined in Equation 3.16. 

This is because no method for migration is presented in this phase of the model. 
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In Chapter 6, the model for SLA violation for both missed deadline and 

migration time will be evaluated as shown in Equation 3.18. 

• Imbalance Factor: is defined in Equation 3.19. 

• Average Fitness Values: This is the mean of the fitness values across the entire 

swarm. It is defined in Equation 3.20. 

 

4.7.2 Experimental Results  

The results of methodology #1 will be considered first. In this experiment, the Parallel 

PSO algorithms were evaluated in terms of finding the desired solution compared to 

sequential PSO. This was achieved by changing the number of iterations from 5 up to 

50, then computing the comparison factors. Table 4.3 presents the results of the 

negotiation time that show that negotiation time is reduced until iteration 15, after 

which it then increases (see Figure 4.3). Thus, regarding the results of waiting time, 

increasing the iteration numbers reaches the objective of minimizing waiting time (see 

Figure 4.4). Regarding throughput, the results in Figure 4.5 show throughput is 

increased until iteration 20, after which it slowly decreases. Thus, selecting the number 

of iterations as 20 is reasonable given these factors. 

 

# 
Iteration  

Negotiation Time (seconds) Average Waiting Time 
(seconds) 

PSO SPPSO ASPPSO PSO SPPSO ASPPSO 
5 6931 3439 2888 128 114 66 

10 8600 5488 3494 122 111 63 
15 3686 2835 2106 118 97 56 
20 4127 3517 2679 98 85 62 
25 4913 3254 2974 92 76 58 
30 5411 4021 3189 88 74 57 
35 5815 4267 3256 84 67 52 
40 6457 3036 3571 78 61 51 
45 6999 3966 3660 69 60 48 
50 7137 3523 2896 66 57 41 

Table 4.3: Negotiation Time and Average Waiting Time Results (in seconds). 
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Figure 4.3: Negotiation Time Results (data shown with 95% confidence intervals). 

 
Figure 4.4: Average Waiting Time Results (data shown with 95% confidence 

intervals). 

# Iteration PSO SPPSO ASPPSO 

5 62 64 78 

10 65 67 74 

15 66 68 77 

20 68 72 82 

25 66 75 79 

30 65 72 76 

35 67 73 81 

40 69 75 82 

45 69 77 79 

50 71 75 78 

Table 4.4: Throughput Results. 
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Figure 4.5: Throughput Results (data shown with 95% confidence intervals). 

To illustrate the effectiveness of the ASPPSO compared to sequential PSO, the average 

fitness values for both are compared. The results of SPPSO are not considered because 

they are approximately similar to those of the ASPPSO. The results in Figure 4.6 show 

that the ASPPSO fitness values change as the number of iterations increases, while in 

the PSO the convergence speed is low while the fitness values remain steady and do 

not change. This means that the PSO may fall in local optima and there is no 

improvement in the results as the number of iterations increases. 

 

# 
Iteration  PSO ASPPSO 

5 49 81 
10 52 70 
15 51 62 
20 50 65 
25 55 59 
30 52 60 
35 54 70 
40 56 61 
45 53 73 
50 51 78 

Table 4.5: Average Fitness Value Results. 
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Figure 4.6: Average Fitness Value Results (data shown with 95% confidence 

intervals). 

The results of methodology #2 will now be considered. These involve comparing the 

performance of the two versions of the Parallel PSO algorithms and the sequential PSO 

algorithm in terms of negotiation time, speedup, waiting time, completed time, and 

throughput. When the negotiation time in the SPPSO and ASPPSO algorithms was 

evaluated and compared with the results of the sequential PSO algorithm, it was found 

that the ASPPSO algorithm takes the least amount of time. This is because ASPPSO 

reduces the time spent processing by using multiple swarms in different nodes and 

updates the particles based on the swarm that finishes first. Specifically, the negotiation 

time is the highest in sequential PSO (as shown in Figure 4.7). 

 

   

 

 

 

 

 

Table 4.6: Negotiation Time (in Seconds) and Speedup Results.  
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# Task Negotiation Time Speedup Results 
PSO SPPSO ASPPSO SPPSO ASPPSO 

50 1395 590 469 1.364407 1.974414 
100 1668 950 738 1.455789 2.260163 
150 2909 1504 1205 1.934176 2.414108 
200 3396 2268 1688 1.997354 2.911848 
250 4944 3083 2176 2.361425 3.272059 
300 6255 3568 2500 2.660032 3.502 
350 9596 3869 3063 3.301751 3.932876 
400 10022 4365 3400 3.695991 4.176471 
450 12379 4714 3954 3.826008 4.507537 
500 14428 5813 4450 4.248202 4.742247 
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Figure 4.7: Negotiation Time Results (data shown with 95% confidence intervals). 

Table 4.6 presents the speedup results of the SPPSO and ASPPSO algorithms. From 

these, it is apparent that the speedup when applying ASPPSO is higher than when using 

SPPSO. For example, running 300 tasks in ASPPSO gives 2.5, while executing the 

tasks using SPPSO gives 1.9. This means that the speedup in APPOS is increased by a 

ratio of approximately 20% compared to SPPSO.  

 

Figure 4.8: Speedup Results (data shown with 95% confidence intervals). 
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The results of the waiting time experiment are presented in Table 4.9 and in Figure 4.9. 

These show that increasing the number of tasks increases the waiting time of the tasks. 

The waiting time includes mapping time and the time taken to schedule the tasks until 

they begin execution. ASPPSO gives the shortest waiting time compared to the other 

algorithms because it searches for the optimum VM for each task and does not wait for 

all swarms to finish searching. The ASPPSO and SPPSO algorithms give shorter 

waiting times compared to PSO especially as the number of tasks increases. For 

example, with 450 tasks they reduce the waiting time by 20% using SPPSO and 30% 

using ASPPSO. 

 

# Task Average Waiting Time Average Completed Time 
PSO SPPSO ASPPSO PSO SPPSO ASPPSO 

50 16.17 36.14 17.3 3150 1437 1365 
100 62.01 106 97.27 9487 3535 2980 
150 147 149.7 148.53 12280 6894 5231 
200 201 215.98 195.7 15306 7295 6033 
250 239.8 224.25 205.25 19005 7679 7121 
300 295.04 290.6 261.5 22717 10184 8972 
350 370.2 369.25 348.5 24236 11394 10594 
400 426 417 384.6 25605 15455 13281 
450 515.8 468.95 456.6 27751 17339 13535 
500 527.3 486.4 476.42 32103 19529 15747 

Table 4.7: Average Waiting Time and Average Completed Time Results (in seconds).  

 

Figure 4.9: Average Waiting Time (data shown with 95% confidence intervals). 
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The results of completed time show that the ASPPSO algorithm takes the least time to 

complete the tasks compared to SPPSO and PSO, as shown in Figure 4.10. From Table 

4.7, the results show that both SPPSO and ASPPSO offer good performance in terms 

of reducing the time taken to complete the tasks compared to PSO. This is because our 

model tries to select the best mapping for each task, which reduces the mapping time. 

The results in Figure 4.10 show that the time for completing tasks using the ASPPSO 

algorithm improves by 15% compared to the SPPSO and by 35% compared to the 

sequential PSO. 

 

Figure 4.10: Average Completed Time Results (data shown with 95% confidence 

intervals). 

The throughput measurement indicates the performance of the proposed model when 

executing many tasks in a small amount of time. The results in Table 4.8 show that the 

model offers good performance in terms of throughput when many tasks are involved. 

This is because our model tries to select the best mapping for each task, which increases 

the number of tasks executed in a short time. By comparing the results in Figure 4.11, 

it is clear that the throughput of the ASPPSO algorithm is the highest. It improves the 

throughput by 10 % compared to the SPPSO and by 20% compared to the sequential 

PSO. 
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Table 4.8:  Throughput Results. 

 

 

Figure 4.11:  Throughput Results (data shown with 95% confidence intervals). 

When the SLA violation rates are evaluated to check the number of tasks that missed 

deadlines when applying the SLA Negotiation algorithm, it was found that the SLA 

violation rates using ASPPSO give the lowest value. This means that ASPPSO reduces 

the number of violations and is more efficient in satisfying the QoS than PSO and 

SPPSO. This is because the deadline factor is taken as a constraint of the evaluation 

function in Equation 4.9. With a small number of tasks, the difference between 

algorithms is not great but with an increased number of tasks, the difference becomes 

substantial.  

 

# Task PSO SPPSO ASPPSO 
50 48.9 54.8 55.19 
100 60.7 62.15 66.21 
150 61.05 65.85 68 
200 62.2 68.75 70.3 
250 65.45 70.75 72.14 
300 66.5 71.88 73.2 
350 68.35 72.88 74.5 
400 70.3 73.59 75 
450 72.2 74.4 76.3 
500 73.39 75.35 77 
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Table 4.9: SLA Violation Rate Results. 

 
Figure 4.12:  SLA Violation Rate Results (data shown with 95% confidence 

intervals). 

When the total profit is computed to check the effect of providing QoS in the SLA after 

applying the SLA Negotiation algorithm, it was found that the total profits using 

ASPPSO gives the highest value as shown in Figure 4.13. This means that ASPPSO 

increases the profit by about 15% more than SPPSO and 25% more than PSO. This is 

because it reduces the SLA violation rates. 

 

# Task PSO SPPSO ASPPSO 
50 17.4 16 10.6 
100 20.8 18.5 15.5 
150 24.7 21.3 19.8 
200 28.6 24.5 22.16 
250 36.2 29.8 25.9 
300 44.6 33.7 27.6 
350 53.4 36.6 29.8 
400 58.3 42.8 34.2 
450 64.5 50.6 39.3 
500 70.7 65.7 44.9 
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Table 4.10: Total Profit Results. 

 
Figure 4.13:  Total Profit Results (data shown with 95% confidence intervals). 

 

4.8 Summary 

The main goals of this phase were to improve the QoS in terms of throughput and 

waiting time, and increase the profits. Thus, a model for SLA negotiation in cloud 

computing was proposed to reduce the negotiation time and increase the throughput of 

the system. The Parallel PSO algorithm was used to optimize negotiation between the 

cloud consumers and the cloud providers. Two versions of the Parallel PSO algorithms 

were developed: SPPSO and ASPPSO. The results of the negotiation strategy were used 

in task scheduling to find the best VM for each task. These improvements increased the 

# Task PSO SPPSO ASPPSO 
50 570 627 754 
100 896 905 1164 
150 1034 1134 1305 
200 1296 1673 2003 
250 1776 2189 2512 
300 2014 2632 2990 
350 2465 3090 3532 
400 2834 3471 3937 
450 3461 3910 4420 
500 3971 4265 4708 
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speed of the negotiation process. Specifically, they increased the performance in terms 

of both waiting time and throughput. Furthermore, there is an improvement in ASPPSO 

compared to SPPSO in terms of waiting time and throughput.  

The main findings from the experimental analysis are as follows:  

• Comparing the ASPPSO results with the SPPSO results shows an improvement 

in waiting time of up to 20% and in completed time of up to 15%. 

• The ASPPSO algorithm shows an improvement in performance compared to 

the PSO algorithms of approximately 35% for waiting time and 30% for 

completed time. 

• The throughput in the ASPPSO algorithm increased by about 10% compared to 

the SPPSO and by approximately 20% compared to the PSO. 

• The speed of ASPPSO increased by about 20% compared to the SPPSO. 

• The average fitness values of the ASPPSO converged more quickly than those 
of the PSO algorithm.  

• Profits when applying ASPPSO increased by about 15% more than with SPPSO 
and by 25% more than with PSO. 

• SLA violation rates when using ASPPSO decreased by 15% compared to 
SPPSO and 25% compared to PSO. 
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Chapter 5 

  

Task Scheduling Based on Many-Objective 

Particle Swarm Optimization  

 

 

In this chapter, the task scheduling technique based on the MaOPSO algorithm will be 

discussed. This is the second phase of the proposed model as described in Section 1.3. 

Section 5.1 provides a general overview of task scheduling in cloud computing. In 

Section 5.2, the design of the proposed MaOPSO algorithm will be presented in detail. 

Section 5.3 describes the main issues involved in implementing the MaOPSO algorithm 

and the main configuration used to run the simulation. In Section 5.4, the methodologies 

and the results of the evaluations will be discussed. Finally, Section 5.5 summarizes the 

primary contributions of the task scheduling phase. 

 

5.1 Overview  

Task scheduling is one of the most important research fields, because it needs to be 

optimized to produce efficient performance in a cloud environment. Task scheduling in 

cloud environments aims to find a sub-optimal solution in quick time, which involves 

mapping the task to resources in order to meet the required objectives. PSO algorithms 

have been shown to find sub-optimal solutions within a reasonable amount of time (as 

discussed in Section 2.2.1). When the number of tasks and VMs increases, the task 

scheduling process becomes a challenge because the complexity of mappings is 

increased and this complexity is increased further if many objectives are evaluated. As 

argued in Section 2.4.6, this research will focus on optimizing the scheduling 

algorithms to handle many objectives in a short time (compared to current solutions). 
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However, the process of finding the best mapping is based on simultaneously meeting 

the objectives of both consumers and providers. For the consumer, QoS in terms of 

reduced waiting time and less cost is preferable, while for providers the utilization of 

the system and profit are the main objectives. As presented in Chapter 2, MOO has been 

developed with PSO to deal with multiple objectives. The available solutions are 

effective with two or three objectives; however when the number of objectives is greater 

than three new or modified methods are required (as discussed in Section 2.2.2.2). To 

address this issue, MaOPSO was developed to deal with many objectives in a short 

time. It improves the methodology of evaluating multi-objective based on simple 

ranking that are presented in (Alkayal et al. (2016)). Thus, a modified ranking 

methodology is presented that will evaluate the objectives in less time than the Pareto 

set and weighted sum methods (as discussed in Section 2.2.2.2). Specifically, the 

presented MaOPSO algorithm aims to improve the efficiency of scheduling tasks over 

VMs in each selected data center to minimize mapping time. This, in turn, will improve 

the waiting time and increase the throughput of the system. The goal of scheduling in 

our algorithm is to submit each task to VMs inside the data center to minimize waiting 

time and execution cost and at the same time, increase the throughput and providers' 

profit by increasing the number of successfully executed tasks within the deadline 

limits.  

Thus, after the PPSO SLA negotiation phase has finished, as shown in Algorithm 4.1 

(see Chapter 4), each task is dispatched to the selected data center through the 

Dispatcher Agent in the Manager Module. The second phase of the model then involves 

scheduling tasks over VMs inside selected data centers. In the data center Module, there 

is a DC Manager, which accepts tasks from the Manager Module and sends them to the 

Task Scheduler Agent, as shown in Figure 5.1. In the task scheduling phase, the Task 

Scheduler Agent in each data center schedules the tasks over VMs based on the many-

objective PSO task scheduling algorithm (Algorithm 5.1).  
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Figure 5.1: Task Scheduling Phase. 

The many-objective PSO was therefore developed to deal with many-objective 

problems involving more than three objectives. From the literature discussed in Section 

2.2.3, it is apparent that appropriate methods for applying many-objective PSO 

algorithms in our case including ranking and decomposition approaches. This is 

because a simple and quick strategy is required to evaluate many objectives in a short 

time. A new modified method will be used based on combining ranking strategies and 

the weighted sum. This will select a suitable VM for each task at a quicker time and a 

simpler process compared to Pareto set methods.  

Thus, to address how to improve many-objective PSO, five objectives must be 

evaluated separately to find the best solution. These objectives are task execution time, 

task execution cost, data transfer time, data transfer cost, and the VM capacity (as 

discussed in Section 2.4). The first objective is to minimize task execution time (as 

shown in Equation 5.2). The second is to minimize TEC, as presented in Equation 4.5. 

The third is DTT, which involves minimizing the data transfer time (as shown in 

Equation 5.3). The fourth is to minimize DTC, which is presented in Equation 5.4. The 

fifth is to maximize the VM capacity (as shown in Equation 5.5). The VM with the best 

fitness value according to these objectives is then selected and a task is assigned.  In 
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the following section, the design and details of the MaOPSO algorithm based on the 

modified ranking strategy are presented.  

 

5.2 MaOPSO Task Scheduling Algorithm  

The task scheduling problem consists of n tasks and m virtual machines. Each task must 

be processed by one of the VMs such that the overall scheduling time is minimized. 

The proposed algorithm focuses on the QoS parameters and costs relating to execution 

time, execution cost, data transfer time, data transfer cost and VM capacity. The 

algorithm follows the same rules as the model presented in Chapter 3 whereby each 

task can be executed on just one VM at a time and each VM handles only one task at a 

time.   

In general, the first step in applying a MaOPSO scheduling algorithm is to represent 

the problem, which involves converting it from continuous to discrete values. A 

commonly used method that has been applied in most research is to represent the 

particle as a 1 × n vector of n number of VMs associated with the number of dimensions 

based on the number of objectives (see Section 2.2.1), as shown in Table 5.1. The value 

inside the particle vector is a random integer number between 1 and M where M is the 

number of VMs. A matrix m × n is used to represent velocity and position, where m is 

the number of VMs and n is the number of tasks that need to be scheduled. The elements 

of the position matrix can have values of either 0 or 1 with the constraint that there must 

be a single element with the value 1 in each column. Similarly, velocity is represented 

in the form of a matrix m × n. In the proposed method, the initial population is generated 

at random. For this purpose, the algorithm generates a random integer between 1 and 

M, representing the number of VMs onto which the task is mapped. Randomness in 

PSO initialization helps maintain population diversity and means all particles have an 

equal chance of being selected (Al-maamari et al. (2015)).  
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 𝐓𝐓𝟏𝟏 𝐓𝐓𝟐𝟐 𝐓𝐓𝟑𝟑 𝐓𝐓𝟒𝟒 … 𝐓𝐓𝐧𝐧 

VM 𝑉𝑉𝑉𝑉1 𝑉𝑉𝑉𝑉3 𝑉𝑉𝑉𝑉1 𝑉𝑉𝑉𝑉2 … 𝑉𝑉𝑉𝑉𝑚𝑚 

Table 5.1: Particle Vector Direct Representation. 

Algorithm 5.1 describes the task scheduling steps taken in the proposed model, which 

represents the main processes involved in scheduling tasks inside each data center. The 

algorithm invokes the MaOPSO algorithm (Algorithm 5.2) which finds a suitable VM 

for the arrival tasks (Line 1). If there is a suitable VM for the tasks then the tasks are 

mapped to VMs (Lines 3-4). Otherwise, the tasks status are updated with failed (Lines 

5-7). The list of tasks is then updated to check if there are arrival tasks (Line 8). The 

steps are repeated while there is tasks in task list (Line 9). In our model, we deal with 

dynamic online scheduling by scheduling arrival tasks and not queue the tasks to reduce 

the waiting time and provide real time scheduling. Thus, the particle includes the arrival 

tasks with supposed the limit is 10 tasks at each particle. If the tasks more than 10, it 

will be kept in task list for next iteration. 

 
Algorithm 5.1: Task scheduling algorithm. 

Procedure TASKSCHEDULING (T, VMs) 
Inputs: T, VMs           // list of tasks and VMs 
Outputs: mapping (T, VM)  
1.     for all arrival task in T list 
2.  v=MaOPSO (t, VM)             // map tasks to specific VMs by algorithm5.2 
3.           If (v != null)                            // there is suitable VM for task 
4.                 mapping (t, v)          // maps tasks to selected VMs 
5.           Else  
6.                Update t status to failed 
7.           End else          
8.           Update T list                
9.   Repeat for step 2 until T list is empty  
10.   Return mapping     
End procedure 

Algorithm 5.2 includes the standard PSO (presented in Algorithm 2.4); however, 

instead of using one objective, it uses five objectives. It starts by defining the number 

of particles and initializing other parameters (Line 1). It then calculates the TET, TEC, 

DTT, DTC and VMC for each task with available VMs in the data center using CTET, 

CTEC, CDTT, CDTC and CVMC functions (Lines 2-8). These functions apply 



144 

 

Equations 5.1, 4.5, 5.2, 5.3 and 5.4 to compute the five objectives’ values, which will 

be discussed in the following sections. The steps from Lines 11 to 23 are the main 

functions that represent the MaOPSO algorithm used to schedule tasks over VMs. The 

MaOPSO algorithm is improved by using the modified ranking function (as shown in 

Algorithm 5.2). This includes the process of computing the objective function based on 

five objectives, using the modified ranking strategy. Specifically, the rank value for 

each particle (i.e.VM ID) is determined by computing the rank of each objective, and 

then the smallest value of the rank value for each particle is selected. Thus, the particle 

with the smallest rank among all the values of the corresponding objectives is selected 

as the best solution. 
 

Algorithm 5.2: MaOPSO Task scheduling algorithm. 

Procedure MaOPSO (t, VM) 
1.    Initialize (V, P, pbest, gbest, best) 
2.    For each p є t                // for each task in the particle t 
3.       For each v є VMs do 
4.      TEC (v) ← CTEC (v)             // cost of each task  
5.      ECT (v) ←CECT (v)              //task execution time 
6.      DTT (v) ←CDTT (v)             //data transfer time 
7.   DTC (v) ←CDTC (v)             //data transfer cost 
8.      VMC (v) ←CVMC (v)            //VM capacity 
9.       End for 
10.   End for  
11.   While t < Iteration do 
12.     For each p є t 
13.              f=Ranking (p, TET, TEC, DTT, DTC, VMC) 
14.              best =SelectFitness (f) 
15.              If best <pbest (p) 
16.                         Pbest =best 
17.     End if 
18.      End for 
19.      If best <gbest 
20.             gbest =best 
21.      End if 
22.      Update (V, P)              //using Equations 2.4, 2.5 
23.  End while 
24.  Return gbest 
End Procedure 
 

The particle's best fitness values are calculated according to the five factors mentioned 

previously (i.e. the least TET, TEC, DTT, and DTC and the highest VMC). Details of 

these objectives are as follows: 
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1. Task Execution Time:  

The algorithm utilizes the task execution time as a vector for each arrival task 

because the proposed scheduling algorithm is dynamic; the expected time for 

executing each task on VM(i) is therefore computed accordingly. The TET is 

computed for a task in each VM, represented in a 1× n matrix where n represents 

the number of VMs in the data center. For each task, the TET at each VM is 

computed by considering the following parameters: the task length measured in 

Machine Instruction (MI) and the VM processing speed in MIPS. The task 

execution time is calculated by dividing the task length measured in MI by the VM 

processing measured in MIPS, as shown in Equation 5.1. 

𝑻𝑻𝑻𝑻𝑻𝑻 (𝒊𝒊, 𝒋𝒋)  =  𝑻𝑻𝑻𝑻 (𝒊𝒊) / 𝑷𝑷𝑷𝑷𝑷𝑷 (𝒋𝒋)             (5.1) 

where: 
TET (i) is the execution time for task i 
TL (i) is the length of task i measured in MI 
PSV (j) is the processing speed of VM j measured in MIPS 

2. Task Execution Cost:  

This has been defined in Equation 4.5. 

3. Data Transfer Time  

The data transfer time for each task is computed according to the size of the task's 

input and output files and the bandwidth for each VM, depending on the VM type. 

𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊, 𝒋𝒋)  =  𝑭𝑭𝑭𝑭 (𝒊𝒊) / 𝑽𝑽𝑽𝑽𝑽𝑽 (𝒋𝒋)          (5.2) 

where: 
DTT (i, j) is the data transfer time of task i in VM j  
FS (i) is the size of the task i input and output files in MI 
VMB (j) is the bandwidth of VM j 

4. Data Transfer Cost  

The data transfer cost is computed according to data transfer time which is 

computed in Equation 5.2 and the cost of bandwidth of VM, as shown in Equation 

5.3. 

𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊, 𝒋𝒋)  = 𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊)  ∗  𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒋𝒋)          (5.3) 

where:  
DTC (i, j) is the data transfer cost of task i in VM j  
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DTT (i, j) is the data transfer time of task i in VM j, as shown in Equation 5.2 
CostBW (j) is the cost of bandwidth per second using VM j  

 

5. VM Capacity  

VM capacity is computed based on the utilization of the VM in terms of CPU, 

memory, storage size and bandwidth, as shown in Equation 5.4. 

𝑽𝑽𝑽𝑽𝑽𝑽 (𝒋𝒋)  = (∑ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 (𝒊𝒊)𝒎𝒎
𝒊𝒊=𝟎𝟎 )/ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒋𝒋)  × 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 (j)     

 (5.4) 

where: 
VMC (j) is the capacity load of the VM j 
Tlength (i) is the total length for all tasks assigned to VM  
CMIPS(j) is the CPU speed of VM j in MIPS 
Ncores (j) is the number of cores in VM j  

The modified ranking strategy of the MaOPSO algorithm can now be considered. The 

novel contribution of this work concerns the method used to evaluate the objective 

functions, which involves ranking each objective to select the best solution using the 

MaOPSO algorithm. In this research, the modified ranking function is invoked to 

evaluate the objectives in MaOPSO. Using this function, the ranking strategy is applied 

to evaluate the solutions in each iteration, where each objective is represented by a two-

dimensional matrix. Algorithm 5.3 illustrates the main steps for computing the fitness 

value, which involves ranking the solution according to the objective functions, thus 

improving the MaOPSO task scheduling algorithm.  

The design of the fitness function is based on the sum ranking and minimum ranking 

strategies. The minimum ranking of the objectives is summarized in Equation 5.5, and 

the sum of ranking is presented in Equation 5.6. Finally, the weighted sum is computed 

for the two ranks to find the final rank of the solution x as shown in Equation 5.7. 

 𝐅𝐅𝐅𝐅(𝐱𝐱)  = 𝐌𝐌𝐌𝐌𝐌𝐌 (𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐓𝐓𝐓𝐓𝐓𝐓), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐓𝐓𝐓𝐓𝐓𝐓), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐃𝐃𝐃𝐃𝐃𝐃), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐃𝐃𝐃𝐃𝐃𝐃),

𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐕𝐕𝐕𝐕𝐕𝐕))             (5.5) 

𝐅𝐅𝐅𝐅(𝐱𝐱) =  𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐓𝐓𝐓𝐓𝐓𝐓) + 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐓𝐓𝐓𝐓𝐓𝐓) + 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐃𝐃𝐃𝐃𝐃𝐃) + 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐃𝐃𝐃𝐃𝐃𝐃) +

𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝐕𝐕𝐕𝐕𝐕𝐕)                                        (5.6) 

          Min F(𝐱𝐱)  =  𝟎𝟎.𝟓𝟓 ∗ 𝐅𝐅𝐅𝐅(𝐱𝐱) +  𝟎𝟎.𝟓𝟓 ∗  𝐅𝐅𝐅𝐅(𝐱𝐱)            (5.7) 
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Regarding the proposed ranking, Algorithm 5.3 illustrates the main steps for computing 

the fitness value based on the modified ranking of solutions according to the objective 

functions in order to improve the MaOPSO task scheduling algorithm. The algorithm 

begins by computing the minimum rank, following which the sum rank is computed as 

shown in Lines 2 and 3 for all objectives. The rank value for the particle is computed 

using the weighted sum method of the sum rank and minimum rank as shown in Line 

4. Finally, the final rank for particle p is selected as a minimum rank as shown in Line 

6, then it returned to continue the process of Algorithm 5.2 (Line 7).  

Algorithm 5.3:  Modified Ranking Strategy Algorithm. 

Procedure MaOPSO (p, TET, TEC, DTT, DTC, VMC) 
1.     For each v є p do 
2.          f1 (v) = Min (p, TET, TEC, DTT, DTC, VMC) 
3.          f2 (v) = Sum (p, TET, TEC, DTT, DTC, VMC) 
4.          rank (v) =f1 (v)*0.5 + f2 (v) *0.5 
5.     End for  
6.     r=min (rank) 
7.     Return r 
End Procedure 

To illustrate this approach, suppose there is one task with five VMs and the five 

objectives for each VM are computed using Equations 5.1, 4.5, 5.2, 5.3 and 5.4. The 

results are shown in Tables 5.2 - 5.6.  The ranking of the VMs is based on the minimum 

rank and sum rank values, which involves sorting them in ascending order. The rank of 

the objectives is then computed by applying weighted sum, as shown in Equation 5.7, 

and the VM with the lowest rank value is selected, as shown in Table 5.7. All the shaded 

cells in Tables 5.2-5.7 represent the best solution, i.e. the best VM for the task.  

 

The values of TET    The rank values after sorting 
Task V1 V2 V3 V4 V5    Task V1 V2 V3 V4 V5 
T1 10 12 8 15 12    T1 2 3.5 1 5 3.5 

Table 5.2: Task Execution Time (TET). 

 

The values of TEC    The rank values after sorting 
Task V1 V2 V3 V4 V5    Task V1 V2 V3 V4 V5 
T1 21 24 30 22 25    T1 1 3 5 2 4 

Table 5.3: Task Execution Cost (TEC). 
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The values of DTT    The rank values after sorting 
Task  V1 V2 V3 V4 V5    Task  V1 V2 V3 V4 V5 
T1 10 14 8 12 16    T1 2 4 1 3 5 

Table 5.4: Data Transfer Time (DTT). 

 

The values of DTC    The rank values after sorting  
Task  V1 V2 V3 V4 V5    Task  V1 V2 V3 V4 V5 
T1 20 26 20 21 30    T1 1.5 4 1.5 3 5 

Table 5.5: Data Transfer Cost (DTC). 

 

The values of DTC    The rank values after sorting  
Task  V1 V2 V3 V4 V5    Task  V1 V2 V3 V4 V5 
T1 13 26 22 16 30    T1 5 2 3 4 1 

Table 5.6: VM Capacity (VMC). 

The value of the rank of each objective in a specific VM is then summed to find the 

rank of VM for this task. However, if two VMs are equal, for example VM1 = 6.25 and 

VM3= 6.25, then both have the smallest rank. The strategy to adopt in this case is that 

if there are many VMs with an equal smallest value, the first in the sequence is chosen 

which in this case is V1. 

 

Task V1 V2 V3 V4 V5 
Min 
rank 

1 2 1 2 1 

Sum 
rank 

2+1+2+1.5
+5 

=11.5 

3.5+3+4+4
+2 

=16.5 

1+5+1+1.5
+3 

=11.5 

5+2+3+3+
4 

=17 

3.5+4+5+
5+1 

=18.5 
Total 1*0.5+11.5

*0.5=6.25 
0.5*2+0.5*
16.5=9.25 

1*0.5+0.5*
11.5=6.25 

2*0.5+0.5
+17=9.5 

1*0.5+18.
5*0.5=9.7

5 

Table 5.7: VMs Rank Values. 
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5.3 MaOPSO Task Scheduling Implementation 

MaOPSO is implemented using CloudSim 3.0.3. The simulation model involves many 

data centers with different specifications, as shown in Chapter 3. Virtual machines are 

created to provide cloud services from the data center and many tasks are simulated 

using data from the dataset file. The details of these resources are presented in Section 

3.4.1 in Tables 3.1, 3.2, and 3.3. The value of parameters used to apply the MaOPSO 

algorithm are listed in Table 5.8, which includes the number of particles, the maximum 

number of iterations and other parameters of PSO algorithms. 

PSO 
Parameters 

Values Reason  

# particles 10 Depends on the number of data centers 
# iterations 5-500 Based on the results of the tests of fitness function , 

there is no further change after 500 iterations  
w  [0-1] Specified based on Equation 2.8 

c1 ,c2 2.0,2.0 As reported in (Li-Ping et al. (2005)) 
r1,r2 [0-1] 

Table 5.8: The Setting of the Parameters for PSO. 

To implement MaOPSO, several classes from CloudSim were used and modified to 

represent cloud environment such as classes for defining Data center, Host, VM, and 

Cloudlet. In addition, classes for managing resources such as CloudletScheduler, 

VMScheduler, and DatacenterBroker were modified to run in the proposed model. 

Moreover, new classes such as Task Dispatcher, Ranking, MaOPSO, Particle, and 

Problem Set classes were also added. 

 

5.4 Experimental Evaluation 

It is important to point out that the aim in this chapter is testing the effectiveness of the 

MaOPSO in scheduling task only before discussing the methods that will used to 

conduct the experimental tests and evaluate the effectiveness of the MaOPSO in task 

scheduling by comparing it with other methods. It can therefore be assumed in this case 

that after the selection of SLA negotiation, the tasks are scheduled inside the data 

center; the VM is then scheduled to available hosts based on FCFS.  
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In terms of evaluation, several experiments were conducted to measure the objectives 

of our model. 

• First, several experiments were performed to analyze the effectiveness of 

MaOPSO and determine the best parameters for running the algorithm by 

changing the number of iterations. 

• Second, experiments are performed to evaluate the performance of the modified 

ranking strategy in the task scheduling algorithm, the results of which are 

compared with the Pareto set and weighted sum approaches. 

• Third, experiments are conducted to compare the scheduling task algorithm 

with state of the art algorithms used in task scheduling in cloud systems, which 

were previously discussed in Chapter 2. 

• Fourth, experiments are performed to compare the modified ranking with the 

simple ranking strategy that developed in (Alkayal et al. (2016)).  

Each experiment was run ten times and the average score across all experiments was 

then calculated with 95% confidence intervals. After running the simulation, the 

following parameters are measured and used as indicators to test the effectiveness of 

the proposed algorithm. To evaluate the performance of the MaOPSO task scheduling, 

the following factors were computed: 

• Average Waiting Time:  is defined in Equation 3.1. 

• Average Completed Time: is defined in Equation 3.2. 

• Throughput:  is defined in Equation 3.3. 

• Average VM Utilization: is defined in Equation 3.8. 

• Execution Cost:  is defined in Equation 3.11. 

• Profit: is defined in Equation 3.12. 

• Imbalance Factor: is defined in Equation 3.19. 

• Average Fitness Values: is defined in Equation 3.20. 
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5.4.1 The MaOPSO Algorithm: Analysis Results  

The model that has been developed aims to minimize the waiting time, completed time, 

and the cost. The results of the modified ranking (denoted as Ranking in the evaluation) 

strategy were normalized to show the effectiveness of the algorithm. The results are 

normalized to be represented in one figure as shown in Figure 5.2.The results in Figure 

5.2 show that the ranking strategy minimizes the objectives with an increasing number 

of iterations until it reaches 100, after which there is no significant difference in the 

quality of the results. In terms of maximizing the throughput and the resource 

utilization, good results are shown after 50 iterations (see Figure 5.3). Thus, the 

maximum number of iterations in task scheduling evaluation results was selected as 

100 to balance the objectives of minimization and maximization. 

#Iteration Minimizing Objectives Maximizing Objectives 
Waiting 

Time 
Completed 

Time 
Cost Throughput Utilization  

5 0.3 0.58 0.3 0.4 0.19 
10 0.25 0.38 0.3 0.42 0.3 
50 0.108 0.33 0.29 0.41 0.31 
100 0.102 0.29 0.28 0.45 0.29 
200 0.095 0.33 0.27 0.51 0.32 
300 0.11 0.35 0.25 0.52 0.33 
400 0.13 0.35 0.23 0.51 0.35 
500 0.13 0.38 0.2 0.54 0.35 

Table 5.9: Results of MaOPSO in terms of Minimizing and Maximizing Objectives. 

 

Figure 5.2: Results of MaOPSO in terms of Minimizing Objectives (data shown with 

95% confidence intervals). 
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Figure 5.3: Results of MaOPSO in terms of Maximizing Objectives (data shown with 

95% confidence intervals). 

 

5.4.2 Evaluating Ranking Method Efficiency in MaOPSO Task Scheduling  

In this section, the effectiveness of the ranking in dealing with five objectives will be 

assessed and compared to the weighted sum of objectives and the Pareto optimal 

solution using a non-dominant set. In this research, the weighted sum is computed by 

multiplying each objective with the weight that represents its importance in the system. 

The values of the objectives that need to be maximized are positive and those that 

should be minimized are negative. For simplicity, equal weights are used for each 

objective because they all have the same importance in this model, as shown in 

Equation 5.8. To analyze the performance of the method, the results of processing time 

and average fitness will be compared. These results are presented in Figures 5.4 and 

5.5.   

𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂 (𝒊𝒊) = ∑ (𝒐𝒐𝒐𝒐𝒐𝒐 (𝒊𝒊,𝒌𝒌) ×  𝒘𝒘 (𝒌𝒌))𝟓𝟓
𝒌𝒌=𝟏𝟏                        (5.8) 

where: 
k   represents the objective value, and k=1, 2, 3, 4 and 5 
obj (i, k) is the value of the objective k in the solution i 
w (k) is a non-negative weight value such that ∑𝑤𝑤(𝑘𝑘) = 1, k=1, 2, 3, 4 and 5. 
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Specifically, the ranking strategy gives the best results in terms of reducing the 

processing time when compared to the weighted sum and the Pareto optimal set 

approaches, as shown in Figure 5.4.  The processing time is the time that be consumed 

to finish evaluation objectives to find the results of scheduling process. In addition, with 

respect to the average fitness value, the results of ranking strategy converge on a 

specific solution, which is a weakness because the algorithm falls in to local optima. 

Therefore, to solve this problem, the VM utilization should be used as a factor to 

balance the tasks over VMs.  

 

# Tasks  Weighted sum Pareto Ranking 
5 366 1050 403 
10 856 1520 990 
50 1485 3907 1672 
100 4567 8143 3673 
150 6597 10068 4684 
200 7113 12911 5515 
250 9677 14156 6783 
300 11978 15762 8175 
350 13537 16600 8758 
400 14713 18710 10317 
450 15149 20760 12353 
500 17714 22450 13405 

Table 5.10: Processing Time Results. 

 
Figure 5.4: Processing Time Results (data shown with 95% confidence intervals). 
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# Tasks  Weighted sum Pareto Ranking 
5 39.4 85.1 99.88 
10 31.65 64.5 112.28 
50 37.5 75.7 120.9 
100 42.2 68.2 122.56 
150 32.9 74 122.36 
200 37.3 81 124.7 
250 43.9 88 125.8 
300 34.1 94.7 127.88 
350 30.5 97.2 129.89 
400 34.98 80.1 131.5 
450 32.4 76.5 133.2 
500 32.79 78 135 

Table 5.11: Average Fitness Results. 

 

Figure 5.5: Average Fitness Results (data shown with 95% confidence intervals). 

 

5.4.3 Evaluating MaOPSO Task Scheduling Compared to Other Scheduling 

Algorithms  

In the research literature, different heuristic and meta-heuristic algorithms have been 

utilized to perform task scheduling in various fields (as discussed in sections 2.4.3 and 

2.4.4). The performance of the algorithm used in this research is therefore compared 

with three task scheduling techniques Genetic, ACO, Max-min and Min-min algorithms 
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(described in sections 2.4.2, 2.4.3 and 2.4.4 respectively). Their performance is 

compared in terms of waiting time, completed time, average utilization of VMs, and 

the VM imbalance factor.  

The results show an improvement in ranking strategy in terms of waiting time compared 

to other algorithms, especially when the number of tasks increases to more than 250. 

This is because the ranking strategy reduces the mapping time. With a smaller number 

of tasks, for example between 50-100, the Genetic algorithm gives a short waiting time 

compared to Minimax and Minimin algorithms, as shown in Figure 5.6. However, ACO 

reduces the waiting time less than the Genetic algorithm. The ranking algorithm reduces 

the waiting time by about 15%, and this is because it reduces the mapping time of tasks. 

 
# Task  Ranking Genetic ACO Max-

min 
Min-
min 

50 27 26.6 30 40 30 
100 35 34.15 87 68 76 
150 93 138 119 108 126 
200 140 189 169 189 144 
250 177 290 224 206 227 
300 226 305 298 278 255 
350 245 329 305 318 310 
400 280 346 332 331 326 
450 315 393 420 443 386 
500 410 483 470 515 490 

Table 5.12: Waiting Time Results. 

 
Figure 5.6: Waiting Time Results (data shown with 95% confidence intervals). 
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Reducing waiting time will reduce the time taken to complete tasks, as shown in Figure 

5.7. The results show a decrease in completed time for the ranking strategy over other 

algorithms. In addition, Max-min and Min-min algorithms take a shorter amount of 

time compared to the Genetic and ACO algorithms.  

# Task Ranking Genetic ACO Max-
min 

Min-
min 

50 330 350 345 291 304 
100 348 398 372 339 351 
150 382 436 417 383 368 
200 419 492 455 454 437 
250 454 524 487 497 477 
300 483 597 524 549 525 
350 510 621 566 595 577 
400 536 683 583 635 592 
450 551 705 628 656 632 
500 590 788 657 693 677 

Table 5.13: Completed Time Results. 

 

Figure 5.7: Completed Time Results (data shown with 95% confidence intervals). 

With respect to the utilization of resources, the results in Table 5.14 show the best 

resource utilization in applying ranking strategy compared to other algorithms. 

Moreover, the ACO algorithm offers better resource utilization than the others; this is 

because they distribute the tasks over VMs during the scheduling process in an efficient 
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method. However, Figure 5.8 shows that the improvement in resource utilization is 

limited to about 10% because in this phase there is no focus on improving utilization. 

In the next chapter, the method of improving resource utilization associated with 

reduced power consumption will be considered. 

# Task  Ranking Genetic ACO Max-
min 

Min-
min 

50 0.53 0.38 0.39 0.22 0.35 
100 0.56 0.46 0.45 0.31 0.39 
150 0.58 0.49 0.48 0.35 0.42 
200 0.64 0.52 0.52 0.39 0.48 
250 0.67 0.56 0.63 0.43 0.52 
300 0.69 0.6 0.67 0.49 0.55 
350 0.73 0.65 0.69 0.53 0.57 
400 0.75 0.68 0.72 0.57 0.63 
450 0.78 0.72 0.75 0.62 0.65 
500 0.85 0.74 0.79 0.67 0.68 

Table 5.14: Average Utilization of Resources.  

 

Figure 5.8: Average Utilization of Resources (data shown with 95% confidence 

intervals). 

Regarding the results of total profits presented in Figure 5.9, the ranking strategy 

provides the highest profits compared to other algorithms. This is because it reduces 

the waiting time and executes more tasks within specific times. The profit is increased 
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by about 15% more than for other algorithms as a result of improving the throughput 

of the system. 

 
# Task  Ranking Genetic ACO Max-

min 
Min-
min 

50 6370 5269 5423 4096 4982 
100 12896 10405 11754 10164 10696 
150 20607 14383 17830 15395 14041 
200 22636 16993 20145 19390 19556 
250 27181 21788 24930 22389 23157 
300 36816 26118 30150 27306 28350 
350 42438 30289 36120 29470 32970 
400 45285 34157 39784 31818 35038 
450 48224 39810 43453 33366 38165 
500 51956 44265 47403 36900 42174 

Table 5.15: Total Profits Results.  

 

Figure 5.9: Total Profits (data shown with 95% confidence intervals). 

 

5.4.4 Evaluating MaOPSO Task Scheduling Compared to Simple Ranking 

Algorithms  

In this section, the proposed task scheduling algorithm is compared with the simple 

ranking algorithm that was presented in (Alkayal et al. (2016)). The simple ranking is 
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evaluated with three and five objectives to test its effectiveness with increased number 

of objectives.  

Regarding the results of processing time presented in Figure 5.10, the ranking strategy 

provides the smallest processing time comparing to other algorithms. This is because it 

reduces the waiting time by about 15% less than for other algorithms. The simple 

ranking provides better results with three objectives than with five ones. 

 

 

  Figure 5.10: Processing Time Results (data shown with 95% 

confidence intervals). 

 

Regarding the results of average waiting time presented in Figure 5.11, the ranking 

strategy provides the lowest compared to other algorithms. This is because it reduces 

the processing time as shown in Figure 5.10. The waiting time is decreasing by about 

15% more than for other algorithms. 
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Figure 5.11: Waiting Time Results (data shown with 95% confidence intervals). 

 

Regarding the results of total throughput presented in Figure 5.12, the ranking strategy 

provides the highest throughput compared to other algorithms. This is because it 

reduces the waiting time and execute more tasks within specific times. The throughput 

is increased by about 25% more than for other algorithms. The simple ranking provides 

higher throughput with three objectives than with five objectives. 

 

 

Figure 5.12: Throughput Results (data shown with 95% confidence intervals). 
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5.5 Summary  

MaOPSO task scheduling in cloud computing is applied to distribute tasks over VMs 

inside data centers. It was optimized by applying a many-objective PSO algorithm using 

a modified ranking strategy. This modified strategy is an improvement and extension 

of the simple ranking strategy that presented in (Alkayal et al. (2016)). In so doing, this 

work advanced the field by improving task scheduling in terms of QoS, resource 

utilization, and profits. Thus, a new modified ranking strategy has been devised to 

evaluate the five objective functions: TET, TEC, DTT, DTC and VMC in a short space 

of time. The modified ranking method combines the weighted sum approach with 

ranking strategies to provide an evaluation method that can be adapted in line with an 

increase in the number of objectives.  

The results of proposed ranking strategy were evaluated and compared with the simple 

ranking strategy, weighted sum and Pareto set approaches. The results from the ranking 

strategy are used in MaOPSO task scheduling to find the most appropriate VM for each 

task. This improvement accelerates and simplifies the process of evaluating objectives 

in MaOPSO algorithms when compared to other approaches. Because of these 

improvements, this work has increased performance by increasing the throughput and 

reducing waiting time. Moreover, it has provided an improvement of up to 20% in 

completion time compared to the weighted sum approach. 

The main findings from the experimental analysis are as follows:  

• Comparing the ranking results with the weighted sum results and Pareto set 

shows an improvement in processing time of up to 10% and in completed time 

of up to 15%. 

• The throughput in the ranking algorithm increased by about 10% compared to 

the Min-min and by approximately 15% compared to the Genetic Algorithm. 

• The completed time for ranking decreased by about 20% compared to the other 

benchmarks. 

• The average fitness values of the ranking converged more quickly than the 

Genetic algorithm.  

• The profits increased by about 15% more using the ranking strategy when 

compared to other algorithms. 
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Chapter 6  

 

Virtual Machine Allocation using Particle 

Swarm Optimization  

 

The VM allocation using the PSO algorithm, which is the third phase of the proposed 

resource allocation model described in Chapter 3, is discussed in this chapter in detail. 

In the first section, an overview of the VM allocation process and key objectives are 

presented. Section 6.2 then presents and describes the clustering algorithm based on K-

means and PSO that was used to cluster hosts in the data centers. In Section 6.3, the 

VM scheduling algorithm based on a many-objective PSO algorithm and modified 

ranking strategy is discussed.  An overview of the migration algorithm used to balance 

the load among hosts is presented in Section 6.4. Section 6.5 discusses the experimental 

procedures and parameters used to evaluate VM allocation and compares the results 

with state of the art algorithms in this field. Finally, Section 6.6 summarizes the main 

results and conclusions arising from this phase of the proposed model.  

 

6.1 Overview  

As discussed in Section 2.5, the virtual machine allocation problem is a crucial research 

issue in cloud computing. VM allocation involves finding an appropriate means of 

mapping VMs to hosts so that cloud resources are utilized efficiently to reduce power 

consumption and increase profits. Optimization of the current allocation of VMs 

requires the development of VM migration methodology, which distributes the load 

between hosts to satisfy the goals of balancing load and reduces power consumption by 

switching off unused hosts. At the same time, VM allocation algorithms aim to satisfy 

the QoS and prevent SLA violation. 
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In this thesis, a clustering mechanism was developed to divide the hosts into different 

classes based on the K-means and PSO algorithm. Based on the results of the clustering 

algorithm, the VM scheduling and VM migration processes were then conducted. A 

PSO based K-means algorithm was proposed by combining the globalized search 

ability of PSO and the fast convergence of K-means. This algorithm consists of two 

modules, namely PSO and K-means algorithms. In K-means, the convergence rate is 

quicker at finding a local optimum solution but slower at finding a global solution and 

thus justifies the combination of PSO and K-means by combining the advantages of 

both algorithms when clustering hosts in data centers (Neshat et al. (2012)). 

The VM scheduling problem is an NP-hard problem and can be treated as a many-

objective optimization problem (Panchal and Kapoor (2013)). The key goals of 

optimizing VM allocation involve simultaneously improving resource utilization, 

power consumption, QoS and profits. One of the main drawbacks of current research 

on VM migration solutions is that it only focuses on one or two major goals such as 

power consumption or resource utilization and ignores other objectives such as QoS 

performance, profits and SLA violation (see the discussion in Section 2.5.2). However, 

some researchers have proposed the use of a multi-objective VM allocation in cloud 

data centers. The aim of this study is to satisfy five objectives and, thus, a novel 

modified ranking strategy is applied to deal effectively with many objectives by using 

a modified ranking methodology. Moreover, MaOPSO not only addresses the aims of 

power consumption and reductions in SLA violation, it also strives to reduce the 

number of VM migrations and migration time to maintain QoS performance. To satisfy 

these objectives, five important criteria are considered, namely: power consumption by 

the host during the allocation of a VM, the host capacity, the host utilization, the data 

transfer time and the data transfer cost. In most research studies, only two dimensions 

of host utilization are considered, namely CPU capacity and memory size. In our 

research, other factors are taken into consideration when computing host utilization 

such as the network bandwidth and the storage size. This is because there are several 

applications that require large storage size and the distribution of data centers means 

that network bandwidth is an additional concern.  

The proposed model used for allocating VMs to available hosts involves several 

processes. Specifically, the VM allocation methodology can therefore be divided into 
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three steps, which run in each data center. These steps are summarized in Algorithm 

6.1. The first function is carried out by the Load Balancer Agent, which is responsible 

for clustering available hosts based on their utilization and capacity by using PSO and 

K-means algorithms (as described in Section 3.3). The clustering results produce four 

distinct lists of hosts namely high-loaded, over-loaded, under-loaded and unloaded (see 

Algorithm 6.2) (Line 2). The VMs are then scheduled over unloaded hosts based on a 

many-objective PSO algorithm that satisfies the required VM specification and reduces 

migration time as shown in Algorithm 6.5 (Line 3). The migrating process is conducted 

to move all VMs from unloaded hosts, and some VMs from high-loaded and over-

loaded hosts (Line 4).  

 
Algorithm 6.1: VM Allocation Algorithm. 
 
Input: VMs, Hosts lists 
Output:  
Start Procedure VMAllocation (VMs, Hosts) 
1.  Initialize unloaded, over-loaded, under-loaded, high-loaded lists 
2.  Clustering (unloaded, over-loaded, under-loaded, high-loaded, c) 
3.  VMScheduling (VMs, unloaded, over-loaded) 
4.  VMmigration (unloaded, over-loaded, under-loaded, high-loaded) 
End procedure  
 
In the following sections, each step involved in allocating VMs will be described in 
detail.  
 
 

6.2 Clustering Hosts Based on PSO and K-means  

The novelty of the VM allocation strategy in this model is that it begins by clustering 

the hosts in each data center into four classes, which determine the status of the hosts 

based on their utilization. The main goals of applying clustering in the VM allocation 

are to automate the process of detecting the states of hosts rather than using static 

threshold points. In addition, using clustering techniques provides a more accurate and 

dynamic method for detecting the hosts' status, reflecting the current load of the data 

center. Once the clustering process is finished, the many-objective PSO algorithm 

assigns a VM to the unloaded hosts, a process that will be discussed in the next section.  
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In this thesis, a combination algorithm based on K-means and PSO clustering 

algorithms was therefore used to cluster hosts into four distinct groupings.  As discussed 

in Section 2.2.5, the K-means algorithm is easy to implement and offers high processing 

performance. In addition, its computations are low in complexity and it efficiently deals 

with the collection of large amounts of data.  

According to (Neshat et al. (2012)) one of the weaknesses of K-means is that it does 

not handle noisy data, which means that if K-means alone is applied in VM allocation 

it may cause imbalances among the hosts. The K-means algorithm also takes more 

iterations than other algorithms to initialize cluster centroids. Given this, (Baswade and 

Nalwade (2013)) demonstrated that if the centroid point is initially taken by a 

modification in the K-means algorithm, rather than random selection, it could increase 

performance, accuracy and reduce the number of iterations in the algorithm. The PSO 

is less sensitive to initial conditions due to its sub-optimal population-based nature, and 

is therefore more likely to find a near optimal solution. Thus, the proposed method for 

improving K-means using a PSO algorithm is based on applying PSO to find the initial 

centroids of the clusters, after which the K-means is used to enhance the results of the 

PSO.  

An improved PSO-based K-means algorithm was developed by (Zheng and Jia (2011)) 

to overcome the problem of local optima in K-means clustering. Naik et al. (2012) then 

proposed a hybrid K-means and PSO (KPSO) clustering algorithm to obtain optimal 

centers for cluster analysis. In the proposed clustering model, unlike previous research, 

a PSO algorithm will be used to initialize the centroids of clusters. The K-means 

algorithm is used to refine the clustering results. Thus, by applying PSO and K-means 

with different objective functions, a strategy similar to that used by (Ahmadyfard and 

Modares (2008)) has been adopted. 

The proposed clustered algorithm is summarized in Algorithm 6.2. It begins by 

initializing of the centroids (Line 1). Then the new values of centroids are computed 

using PSO in Algorithm 6.3 (Line 2). These values are then used as threshold limits to 

determine the status of the hosts (unloaded, over-loaded, under-loaded, and high-

loaded). The hosts are assigned to clusters by comparing their utilization with the values 

of centroids, as shown in Lines 3-14.  
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Algorithm 6.2: Clustering Hosts Algorithm. 
Inputs: unloaded, over-loaded, under-loaded, high-loaded, c                          // c is the number of clusters 
Outputs:  Clusters of Hosts  
Procedure Clustering (unloaded, over-loaded, under-loaded, high-loaded, c) 
1. Initialize centroid list with size of c 
2. centroid =KPSOClustering (Hosts, c)                 // using Algorithm 6.3  
3. For all host in Hosts  
4.        If host utilization < centroid [0] then  
5.               Add host into under-loaded list  
6.        Else if     centroid [0] ≤ host utilization < centroid [1] then 
7.               Add host into un-loaded list 
8.        Else if     centroid [1] ≤ host utilization < centroid [2] then 
10.              Add host into over-loaded list 
11.        Else if     centroid [2] ≤ host utilization then 
12.               Add host into high-loaded list 
13.        End if 
14.  End For   
End Procedure 
 

The process of clustering hosts based on PSO is summarized in Algorithm 6.3. It begins 

by computing the utilization of hosts based on four attributes (CPU processing, memory 

size, storage size, and network bandwidth), as described in Equation 3.9 (Line 1). The 

host capacity is calculated as shown in Line 2. The PSOClustering module is initially 

conducted using the utilization of hosts as data points and the number of clusters to find 

each clusters’ centroid (Line 3). The centroid values are then used in the K-means 

module as inputs to refine the centroids and generate the final clustering solution (Line 

4). The K-means utilizes the centroid results from the PSO, following which the 

distance for all hosts is computed and the hosts are reassigned to the new clusters as 

shown in Equation 6.1, until there is no change in the distance results (Lines 5-9). Then 

the centroids are updated with the new cluster points as shown in Line 10 by using 

Equation 6.2, which computes the point's values in each cluster to find the new centroid. 

Finally, the centroid values are sorted in ascending order so that they can be used in the 

VM migration and monitoring as thresholds to determine the status of hosts (Line 11). 

𝒅𝒅 (𝒙𝒙𝒙𝒙, 𝒄𝒄𝒄𝒄) = │𝒙𝒙𝒙𝒙 − 𝒄𝒄𝒄𝒄│  , ∀ 𝒙𝒙𝒙𝒙 ∈ 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒋𝒋                     (6.1) 

where: 
d (xi, cj) is the distance between point x and centroid of cluster j 
xi is the point x in the space 
cj is the centroid of cluster j 

𝒄𝒄𝒄𝒄 = ∑ 𝒙𝒙𝒙𝒙 /𝒏𝒏𝒊𝒊∈𝒋𝒋                                 (6.2) 

where 
n is the number of points in the cluster j 
xi is the point x in the space 
cj is the centroid of cluster j 
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Algorithm 6.3: KPSO Clustering Algorithm. 

Inputs: List of Hosts, c                                                  // c is the number of clusters 
Outputs:  Centroids of Clusters 
Procedure KPSOClustering (Hosts, c) 
1. U= Calculate utilization(Hosts)                              // using Equation 3.9 
2. N=HostCapacity (Hosts)                                             //   using Equation 6.4 
3. centroid=PSOClustering (U, n, c)                 // using Algorithm 6.4 to create clusters by PSO 
4. Repeat 
5.    For all n clusters. 
6.         For all Hosts 
7.             Compute the distance of host from cluster centroids     // using Equation 6.1 
8.             Assign host to the cluster that have closer centroid  
9.         End for  
10.         Compute the new centroid of all cluster                         // using Equation 6.2. 
11.    End for 
12. Repeat until the centroid distance does not change. 
13. Sort the clusters centroids                                  // sort the centroid in ascending order  
14. Return the clusters centroids 
End  
 

Specifically, the steps taken by the clustering algorithm based on PSO are shown in 

Algorithm 6.4. PSO deals with the clustering problem like any other problem by 

defining particles with the centroids of the clusters as discussed in Section 2.2.4. It 

begins with the initialization of the particles with the centroid of clusters, whereby the 

number of dimensions in the particles forms the number of the cluster (Line 1). For all 

particles, the distance of all hosts to all clusters is then computed as shown in Line 6. 

Each host is assigned to the closest cluster, which therefore involves a short distance as 

shown in Line 7. Following this, the fitness function is computed according to the new 

distribution of the hosts based on Equation 6.3 (Line 8). The new centroids are then 

computed after the velocity and position have been updated, as shown in Lines 11 and 

12. Finally, the gbest is returned which includes the centroid values of the cluster (Line 

15). 

The fitness function of the PSO algorithm is computed according to the utilization and 

capacity of the hosts as shown in Equation 6.3. The objective function aims to minimize 

the inter cluster distance of the utilization and capacity because the hosts are clustering 

based on the both utilization and the capacity. The host capacity is computed based on 

the available resources in the host in terms of available CPU MIPS and Memory size 

as shown in Equation 6.4 and the utilization is computed as shown in Equation 3.9.  

𝒇𝒇(𝒙𝒙) = �(𝑯𝑯𝑯𝑯(𝒙𝒙)− 𝑨𝑨𝑨𝑨𝑨𝑨 (𝒙𝒙))𝟐𝟐 − (𝑯𝑯𝑯𝑯(𝒙𝒙) − 𝑨𝑨𝑨𝑨𝑨𝑨 (𝒙𝒙))𝟐𝟐               (6.3) 
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where: 
HU is the utilization of the host x as shown in Equation 3.9 
AHU is the average utilization of all hosts 
HC is the capacity of the host x as shown in Equation 6.4 
AHC is the average capacity of all hosts  
 

𝐇𝐇𝐇𝐇(𝐱𝐱) = (𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀(𝐱𝐱) − 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝐱𝐱)) + (𝐀𝐀𝐀𝐀(𝐱𝐱)− 𝐔𝐔𝐔𝐔(𝐱𝐱))                             (6.4) 

where: 
HC(x) is the capacity of the host x  
ACPU(x) is the available CPU in the host x 
UCPU(x) is the used amount of CPU in the host x  
AM(x) is the available memory in the host x 
UM(x) is the amount of memory used in the host x  
 

Algorithm 6.4: PSO Clustering Algorithm.  

Inputs: List of utilization of the hosts U, c                         // c is the number of clusters 
Outputs:  Centroids of Clusters 
Procedure PSOClustering (U, n, c) 
1. Initialize each particle with c random cluster centers. 
2.   For iteration = 1 to max-iterations 
3.      for all particles 
4.    for all n hosts 
5.              for all c clusters  
6.                    Compute the distance of host from all cluster centroids. 
7.                    Assign host to the cluster that have closer centroid  
 8.                  Calculate the fitness function                                        // using Equation 6.3  
9.              End for  
10.       End for  
11.    Find the Pbest, Gbest position of each particle. 
12.    Update the cluster centroids according to velocity updating  
13.  End for  
14.  Iteration ++ 
15.  Return Gbest                          // return the best centroid values 
End  
 

6.3 Virtual Machine Scheduling Algorithm  

In this phase, the VM is mapped to the unloaded hosts using a many-objective PSO 

(MaOPSO) VM scheduling algorithm, which is based on five objectives. The new 

aspect contained in the proposed model is that VMs are allocated to idle, under-loaded, 

or over-loaded hosts only to save power. This algorithm runs in each data center and 

selects the most appropriate host to run the VM in order to increase utilization and 

profits, whilst at the same time reducing power consumption and waiting time.  
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After determining the state of hosts using clustering algorithms (as shown in Algorithm 

6.2), the scheduling of VMs over unloaded hosts is conducted. The algorithm starts 

mapping VMs to unloaded hosts based on the many-objective PSO. After the VM is 

assigned to the selected host, the unloaded host's list is updated and re-sorted after each 

mapping. Finally, the algorithm returns the mapping matrix, which contains the best 

host for each VM. Through modification of the MaOPSO algorithm, the unloaded hosts 

are ranked according to five objectives.  

Specifically, Algorithm 6.5 summarizes the main steps involved in scheduling VMs 

inside the data center. The algorithm starts by checking the unloaded host's and over-

loaded lists, if they contain hosts then the list and the VMs are sent to the MaOPSO for 

scheduling as shown in Line 3. If the unloaded list is empty, the algorithm then searches 

in the over-loaded list (Lines 4,5). If the over-loaded list is empty, the allocation will 

be carried out in one of the hosts in the sleep mode (Line 7). Finally, the selected host 

is then updated in term of utilization after allocation using Algorithm 6.7 (Line 10). 

Algorithm 6.5: VM Scheduling Algorithm. 

Input: List of VMs and List of unloaded, over-loaded  
Output: the mapping results of VMs and Hosts  
Procedure VMScheduling (VMs, unloaded, over-loaded) 
1. For all VMs   
2.      If unloaded is not empty then  
3.                 Host = MaOPSO_VMScheduling (VM, unloaded)   
4.      Else if over-loaded is not empty then  
5.                 Host = MaOPSO_VMScheduling (VM, over-loaded) 
6.      Else  
7.                Assign VM to the first host in the sleep mode list      // list already sorted 
8.      End  if 
9.       UpdateUtilization (Host ,VM)                          //using Algorithm 6.7 
10.   End for  
End Procedure 

The VM scheduling problem formulation is now considering. The algorithm for 

allocating VM is based on input values with specific constraints to satisfy the 

objectives. The specification of these inputs and outputs will now be presented along 

with details of the objectives and their constraints. The input data will be considered 

first. There are several hosts with different specifications in each data center. In 

addition, each host can run one or more virtual machines based on the cores in each 

host. In the proposed algorithm, the VMs are allocated to unloaded, over-loaded and 

idle hosts. 
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Second, the output data is considered. The output of the VM scheduling algorithm is 

the placement matrix, which incorporates the mapping of hosts for each VM. A two-

dimensional encoding scheme is used for solving the VM scheduling problem. The first 

dimension of a particle is an n vector where n is the number of unloaded hosts, while 

the second dimension represents the set of m VMs to be mapped to these hosts. Next, 

the constraints are considered. The VM placement is conducted according to the 

following conditions:  

 The VM is running on one host at a time. Supposing that h matrix is used to 

represent the hosts in the data center with m × n elements where m is the number 

of VMs and n is the number of hosts, and then the total number of each row 

should be 1, ∑ ℎ𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 ≤ 1 ∀𝑗𝑗 ∈ 𝑚𝑚 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ℎ𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖 𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 0 𝑜𝑜𝑜𝑜1 . 

 The host should be sufficient for all VMs allocated to it such that 

∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑚𝑚
1=1  ≤ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗,∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦𝑖𝑖𝑚𝑚

1=1  ≤ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗, ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑚𝑚
1=1  ≤ 𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗 

where: 
VCPUiis the CPU processing speed of VM i 
HCPUjis the CPU processing speed of Host j 
VMemoryiis the Memory size of VM i 
HMemoryjis the Memory size of Host j 
VStiis the Storage size of VM i 
HStjis the Storage size of Host j 

 

Finally, the objective functions are considered. The VM scheduling algorithm involves 

five objectives; the details of each of these are described as follows: 

• Power Consumption of the host after allocation (PH): the power 

consumption by VMs and the host inside the data center is mainly computed in 

terms of CPU utilization of VMs and PMs (in MIPS) based on the power of 

active hosts and idle hosts. According to (Beloglazov et al., 2012), the power that 

has been consumed by the host in ideal condition is the 70% of their total power 

consumed by the host when it is 100% utilized.  

𝐏𝐏𝐏𝐏 =  𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 +  𝐔𝐔 ∗  (𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 –  𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏)               (6.5) 

where: 
PH is the total power consumed by a host 
Pidle is the power consumed by idle hosts (70% Pmax (Beloglazov et al., 2012)) 
Pmax is the maximum power consumed by a host, (suppose 250 W)  
U is the CPU utilization when the host is active  
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2. Host Capacity (HC): is computed as shown in Equation 6.4. 

  

3. Host Utilization (HU): the utilization of the host in terms of CPU, memory, 

storage, and bandwidth, unlike previous work (see Section 2.5.1) which 

includes only CPU and memory utilization. This objective is computed as 

shown in Equation 3.9. 

 

4. Data Transfer Time (DTT):  the time taken to transfer the data files; this is 

based on the bandwidth of the host as shown in Equation 5.3. 

 

5. Data Transfer Cost (DTC): the cost of transferring the data files to the host; 

this is based on the cost of bandwidth as shown in Equation 5.4. 

 

Based on these objectives, the fitness function is computed using the modified ranking 

algorithm discussed in Chapter 5. Thus, the fitness function is computed by determining 

the rank for each objective after which the modified ranking is applied. The minimum 

rank is calculated as shown in Equation 6.6 and the sum ranking as shown in Equation 

6.7. Finally, the weighted sum of the minimum ranking and the sum ranking is 

computed as shown in Equation 6.8. 

𝐅𝐅𝐅𝐅(𝐱𝐱)  =  𝐦𝐦𝐦𝐦𝐦𝐦 (𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐏𝐏𝐏𝐏), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐇𝐇𝐇𝐇), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐇𝐇𝐇𝐇), 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐃𝐃𝐃𝐃𝐃𝐃),

𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐃𝐃𝐃𝐃𝐃𝐃))                                          (6.6) 

𝐅𝐅𝐅𝐅(𝐱𝐱) =  𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐏𝐏𝐏𝐏) +  𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐇𝐇𝐇𝐇) +   𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐇𝐇𝐇𝐇) +        𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐃𝐃𝐃𝐃𝐃𝐃)   +

𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐃𝐃𝐃𝐃𝐃𝐃)         (6.7) 

min𝐅𝐅(𝐱𝐱) =  𝟎𝟎.𝟓𝟓 × 𝑭𝑭𝑭𝑭(𝒙𝒙) + 𝟎𝟎.𝟓𝟓 × 𝑭𝑭𝑭𝑭(𝒙𝒙)                (6.8) 

Algorithm 6.6 outlines the steps involved in scheduling VM over hosts using PSO. It 

begins by setting the number of elements in the particles with the number of hosts (Line 

1). It then initializes the particles randomly with hosts (Line 2). For each particle, it 

calculates the fitness function using Equation 6.8 (Line 4). The values of pbest and 

gbest are updated (Lines 5-10), following which the velocity and the position for each 

particle are updated as shown in Lines 13 and 14. These steps are repeated until the 

iteration maximum is reached, after which the gbest is returned which includes the host 

number (Line 17).  
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Algorithm 6.6: MaOPSO VM Scheduling Algorithm. 
Input: VM and List of Hosts in the data center 
Output: the best host for VM  
Procedure MaOPSO_VMScheduling (VM, Hosts) 
1.  Set elements in the particles = number of Hosts, t=1, tmax=10 
2.  Do  
3.  for each particle 
4.       Calculate solution fitness value                                              // using Equation 6.8 
5.       If the fitness value is better than Pbest 
6.             Set Pbest = current fitness value 
7.       End If 
8.       If Pbest is better than Gbest 
9.           Set Gbest = Pbest 
10.     End If 
11. End for  
12. for each particle 
13.     Update particle Velocity                                       // use Equation 2.4 
14.     Use Velocity to update particle Position                // use Equation 2.5 
15. End for  
16. while (t < tmax) 
17. Return Gbest                         // return the best host for VM        
End Procedure  
 

After VM scheduling is finished for each VM, the utilization of the selected host and 

the host cluster's lists are updated as shown in Algorithm 6.7. The utilization is 

computed according to the number of VMs in the host using Equation 3.8. The 

algorithm starts by setting the utilization as zero. Then if the host does not contain VM 

then only the utilization of the allocated VM is computed (Lines 1-3). Otherwise, the 

utilization of the available VMs is computed as shown in Lines 6-8. The utilization of 

the host is updated with the new value and the host's cluster will update (Lines 10 and 

11).  

Algorithm 6.7: Updating Utilization after VM Scheduling. 
Input: Host, VM  
Output: update the utilization of Host 
Procedure UpdateUtiliazation (Host, VM) 
1.   Set utilization = 0 
2.   If Host contains no VM then 
3.      Set utilization = utilization of VM         // using Equation 3.8 
4.   Else  
5.       for each v in the Host do 
6.            utilization = utilization + utilization of v 
7.       End for 
8.   End else  
9.  Set Host utilization with utilization 
11. UpdateHostcluster (Host) 
End Procedure 
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6.4 Virtual Machine Migration Algorithm  

VM migration in cloud computing is one of the techniques that has recently drawn 

researchers’ attention and is now an active field of research (see discussion in Section 

2.5.2). Power consumption can be reduced considerably because an inactive host or a 

host in sleep mode consumes minimal energy (Pietri and Sakellariou (2016)). Reducing 

power consumption, which is one of the benefits of VM migration, can be achieved by 

switching idle resources to inactive mode when the load is low, and then turning them 

on again when the load is high (Wood, 2007). However, to achieve this outcome, VMs 

need to be migrated VMs from one host to the other, which may have a negative effect 

upon performance or take a long time, which may then lead to an SLA violation. Bad 

migration decisions may therefore waste resources and take time, increasing the waiting 

time and decreasing the performance in terms of throughput. The migration algorithm 

must therefore be designed in a way that not only reduces power consumption, but also 

satisfies QoS performance to prevent SLA violation especially in tasks with limited 

deadlines, as is the case in this research. In the VM migration method, selecting which 

VM to migrate to is another challenging task for which researchers have proposed 

several different solutions (see discussion in Section 2.5.2.2).  

There are several different approaches to applying VM migration. For example, one 

way is to migrate all the VMs in the over-loaded machine to the under-loaded machine 

whose residual capacity is big enough to hold them (Lin et al. (2011)). In research 

conducted by Beloglazov and Buyya (2010), the under-loaded machines were migrated 

to free the resources and then switched off to save power. Such migration can result in 

performance degradation of the resources if it is applied without taking into 

consideration system load and time as migration is often time consuming. Therefore, a 

continuous monitoring scheme can be applied to minimize the number of VM 

migrations and ensure optimal performance. 

In the proposed model, based on the results of clustering (Section 2.5.2.1), the load 

balancer Agent responsible for clustering the hosts checks the lists and if there are hosts 

in the high-loaded and under-loaded lists, it calls the VM Manager Agent to start the 

migration process. The under-loaded hosts are then placed in sleep mode to save power. 

VMs from the hosts that are over-loaded are migrated to other hosts to reduce the 

waiting time of the tasks. In addition, all VMs from the under-loaded hosts are migrated 



174 

 

to other unloaded hosts and the corresponding hosts are then switched off. The aim is 

to balance the load to prevent SLA violations due to long migration time in cases if 

migrating many VMs.  

The migration algorithm in this model are conducted in the level of hosts by migration 

VMs from hosts to another inside data center. This make limitation of applying 

migration process and to overcome this limitation, the network communication between 

data center is should developed by improving the topology of VMs network to simplify 

the communication among VMs which can be improved to developed the proposed 

model in future work. 

In more detail, Algorithm 6.8 outlines the steps undertake in VM migration. It begins 

by checking the high-loaded list if it is not empty it calls the MigrationLoaded 

procedure to transfer the VMs from these hosts to unloaded hosts (Lines 1 and 2). It 

then checks the over-loaded list to transfer VMs (Lines 3 and 4). Finally, VMs are 

migrated from the under-loaded list by calling the MigrationUnderloaded procedure 

(Lines 5 and 6). 
 

Algorithm 6.8: VM Migration Algorithm.  

Inputs: high-loaded, over-loaded, unloaded, under-loaded lists 
Outputs: migration of VMs 
Procedure VMmigration (high-loaded, over-loaded, unloaded, under-loaded) 
1. If high-loaded is not empty then 
2.      MigrationLoaded (high-loaded)     
3. If over-loaded is not empty then 
4.      MigrationLoaded (over-loaded)  
5. If under-loaded is not empty then 
6.      MigrationUnderloaded (under-loaded) 
7. End if  
End Procedure  
 
The procedures involved in VM migration are similar but the difference is that from 

under-loaded lists all VMs are migrated to switch off the hosts whilst in the over-loaded 

and high-loaded lists one VM is transferred to avoid high-loaded hosts. In Algorithm 

6.9, the migration steps start by setting the flag value to false then, for all hosts, it tries 

to transfer the VMs to unloaded or under loaded hosts (Lines 4-8). If all VMs transfer 

from one host, it is then switched off and removed from under-loaded hosts (Lines 9-

11). 
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Algorithm 6.9: Migration from under-loaded host. 
Procedure MigrationUnderloaded (under-loaded) 
1. Flag=false; 
2. For each host in under-loaded list  
3.         For each vm in the VM list of the host  
4.         If (Migratedto (vm, unloaded)) or (Migratedto (vm, under-loaded) 
5.            Flag = true  
6.            Continue for all vm   
7.         Else go to next host 
8.         End if   
9.         If flag=true 
10.            add host to sleep list  
11.            Remove host from under-loaded list 
12.         End if 
13.   End for 
End Procedure 
 
If VM migration takes place from high-loaded and over-loaded lists, then Algorithm 

6.10 is applied. The algorithm starts by selecting one VM from the host for transfer 

based on the minimum migration time, which is computed in Equation 6.9 (Line 2). It 

is then migrated to the unloaded list (Line 3). The utilization of the host and the cluster 

are then updated (Lines 4-5) and the host is removed from the high-loaded list. The 

same process for over-loaded lists is followed in Algorithm 6.11 where, instead of high-

loaded lists, the over-loaded lists are used. 

Algorithm 6.10: Migration from high-loaded host. 

Procedure MigrationLoaded (high-loaded) 
1. For each host in high-loaded list 
2.              vm = selectvm (host)   
3.         If (Migratedto (vm, unloaded)) 
4.             Computehost utilization(host)  
5.             Updatehostcluster(host) 
6.             Remove host from high-loaded list 
7.         Else  
8.              go to next host 
9.         End if  
10.   End for 

End Procedure 

 

The minimum migration time approach is used to select the VM for migration. This 

approach depends on selecting the VM with the least memory to be migrated. This 

because a VM with less memory can be migrated faster depending on the bandwidth of 

the host. The migration time for each VM is computed by dividing the memory size of 

the VM by the bandwidth of the host as shown in Equation 6.9.  
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𝐌𝐌𝐌𝐌 = 𝐑𝐑𝐑𝐑𝐑𝐑(𝐯𝐯)/𝐁𝐁𝐁𝐁(𝐢𝐢)              (6.9) 

where: 
MT is the migration time in seconds  
Ram (v) is the size of VM v in MB  
BW (i) is the bandwidth of the hosts i 
 

Algorithm 6.11: Migration from high-loaded host. 

Procedure MigrationLoaded (over-loaded) 
1. For each host in high-loaded list 
2.         vm = selectvm (host)  
3.         If (Migratedto (vm, unloaded)) 
4.             Computehost utilization(host)  
5.             Updatehostcluster(host) 
6.             Remove host from over-loaded list 
7.         Else  
8.              go to next host 
9.         End if  

End Procedure 

The processes involved in VM migration from host are listed in Algorithm 6.12. It starts 

by initializing the selected host with a null value (Line 1). The MaOPSO algorithm is 

then applied to select the host for VM (Line 3). If the process of allocation succeeds, 

the utilization of the selected host and the cluster are updated (Lines 7-9). 

 
Algorithm 6.12: Select Host for migration VM. 

Procedure migratedto (VM, hosts) 
1. selectedhost=null 
2. For each host in hosts  
3.         selectedHost =MaOPSO_VMScheduling (VM, hosts) 
4.         If selectedHost=null 
5.               return false  
6.         Else  
7.               update selectedhost utilization  
8.               Updatehostcluster(selectedhost) 
9.                return true 
10.         End if  
11. End for  
End procedure  
 

6.5 Experimental Evaluation  

To evaluate the proposed model of VM allocation algorithms the CloudSim simulator 

is used. Several classes such as VM_migration, VMScheduling, MaOPSO, modified 

Ranking and Clustering classes are added to the simulator to execute our model. In 
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addition, some classes of CloudSim are modified such as Datacenter, Broker, VM and 

cloudlet classes.  

The specification and characteristics of resources and tasks presented in Section 3.4.1 

are used. In the following sections, the experimental methodology and the results of the 

evaluation of our proposed model are discussed. 

 

6.5.1 Experimental Methodology  

In this section, the methodology for evaluating the proposed model will be discussed. 

To evaluate the strategy of VM allocation developed in this research, it will be 

compared with single and double thresholds, and the First Fit algorithm (see Section 

2.5.2.1) to demonstrate the effectiveness of our approach and determine whether there 

is a difference in the results. The First Fit is based on choosing the first host that can fit 

the VM without considering any other objectives. In the next section, the results of 

these algorithms are compared with the proposed algorithm. 

Each experiment was run ten times and the average score across all experiments was 

then calculated with 95% confidence intervals. After running the simulation, the 

following parameters are measured and used as indicators to test the effectiveness of 

the proposed algorithm. To evaluate the performance of the MaOPSO VM allocation 

algorithm, the following factors were computed: 

• Average Waiting Time:  is defined in Equation 3.1. 

• Average Completed Time: is defined in Equation 3.2. 

• Throughput:  is defined in Equation 3.3. 

• Average Resource Utilization: is defined in Equation 3.9. 

• Profit: is defined in Equation 3.12. 

• Power Consumption: is defined in Equation 3.14. 

• SLA Violation: is defined in Equation 3.18. 

• Imbalance Factor: is defined in Equation 3.20. 
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6.4.2 Experimental Results  

In this section, the experimental results will be presented.  The model was evaluated 

according to several factors that reflect the research goals. These factors include 

completion time, waiting time, resource utilization, throughput, profit, power 

consumption, migration time, and the number of migrations.  

First, the completion time and waiting time are considered. The VM allocation 

completion time was tested by determining the submission and finishing time of the 

task. The test was repeated using different numbers of tasks in each experiment (see 

Table 6.1). As can be seen in Figure 6.1, the completion time for the proposed algorithm 

is less than for other algorithms. This is because the selection of hosts to allocate VMs 

based on MaOPSO, which depends on five objectives, was improved. The enhancement 

in the model is based on selecting the host from an unloaded cluster, which leads to a 

reduction in allocation and migration time. The proposed model reduces the completion 

time by about 15% compared to other algorithms.   

# Task Clustering  
KPSO 

Single 
Threshold 

Double 
Threshold 

First Fit 

50 88 100 100.2 102 
100 88 102 101.8 104 
150 90 97 102.6 104 
200 93 100 100 105 
250 97 99.5 101.5 107 
300 98 101.3 103.5 107.3 
350 98 100.5 104 108 
400 99 102.5 105 109 
500 101.3 105.4 106 110 

  Table 6.1: Average Completion Time Results (in seconds). 
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Figure 6.1: Average Completion Time (data shown with 95% confidence intervals). 

The results of the waiting time experiment are presented in Table 6.2 and Figure 6.2. 

These show that an increase in the number of tasks causes the waiting time to increase. 

Waiting time includes the mapping time, the time spent queuing the tasks and migration 

time prior to the start of execution. This model gives the shortest waiting time compared 

to other algorithms because it searches for an optimal allocation of VM. The First Fit 

algorithm gives the longest waiting time because it allocates VM to the first fitting host.  

# Tasks Clustering  
KPSO 

Single 
Threshold 

Double 
Threshold 

First Fit  

50 5.063 15.002 10.054 15.114 
100 10.028 15.606 12.854 20.042 
150 15.403 20.405 18.109 25.062 
200 20.088 25.178 21.957 30.919 
250 25.388 33.005 28.604 35.118 
300 30.991 37.084 35.9 40.916 
350 35.521 45.203 40.902 51.505 
400 40.578 53.52 47.825 55.969 
500 50.934 63.701 57.57 67.231 

Table 6.2: Average Waiting Time Results (in seconds). 
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Figure 6.2: Average Waiting Time (data shown with 95% confidence intervals). 

Second, the throughput factor is considered. It is used to measure the performance of 

the proposed model regarding the execution many tasks in a small amount of time. The 

results in Table 6.3 show that, when there is a large number of tasks, the model offers 

good performance regarding throughput. This is because our model tries to select the 

best host for each VM, which leads to an increase in the number of tasks executed in a 

short space of time. By comparing the results in Figure 6.3, it can be inferred that the 

throughput of our model is the highest, whereas the throughput of First Fit is the 

smallest. Thus, our model maps VMs to hosts in a way that requires less utilization and 

high CPU processing, thereby executing more tasks in a shorter space of time. 

#Tasks Clustering 
 KPSO 

Single 
 Threshold 

Double 
 Threshold 

First Fit  

50 60.3 54.8 55.19 48.9 
100 69 62.15 66.21 60.7 
150 70.4 65.85 68 61.05 
200 73.5 68.75 70.3 62.2 
250 76.8 70.75 72.14 65.45 
300 79.1 71.88 73.2 66.5 
350 81.5 72.88 74.5 68.35 
400 83 73.59 75 70.3 
450 85.6 74.4 76.3 72.2 
500 87.2 75.35 77 73.39 

Table 6.3:  Throughput Results. 
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Figure 6.3:  Throughput Results (data shown with 95% confidence intervals). 

Third, the average resource utilization is considered. When the resource utilization in 

our system was evaluated and compared to the results of other algorithms, the proposed 

model gave the highest utilization. This is because the methodology for allocating hosts 

to VMs is taking the host utilization as a factor of evaluating hosts. Moreover, the VM 

migration algorithm aims to improve utilization by moving VMs from under-loaded 

hosts to unloaded ones to maximize utilization by hosts. Specifically, the resource 

utilization increased in line with an increase in the number of tasks (as shown in Table 

6.4). Thus, the new algorithm improves utilization by up to 10% compared to single 

and double threshold algorithms and up to 20% compared to the First Fit algorithm.  

# Tasks Clustering 
KPSO 

Single 
Threshold 

Double 
Threshold 

First Fit  

50 0.22 0.2 0.21 0.15 
100 0.2 0.2 0.22 0.18 
150 0.35 0.31 0.29 0.25 
200 0.55 0.39 0.42 0.34 
250 0.6 0.41 0.46 0.39 
300 0.61 0.47 0.52 0.41 
350 0.65 0.49 0.51 0.45 
400 0.72 0.55 0.63 0.51 
450 0.75 0.61 0.62 0.57 
500 0.77 0.62 0.66 0.6 

Table 6.4: Average Resource Utilization Results. 
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Figure 6.4: Average Resource Utilization (data shown with 95% confidence 

intervals). 

Fourth, the profits are considered. These are computed as the difference between the 

cost of executing all tasks and the cost of power consumed during execution, and the 

penalty cost if an SLA violation occurs. Table 6.5 displays the profit results. From 

these, it is clear the profit in our model is the greatest. For example, running 300 tasks 

in our algorithm gives $38 while executing the tasks using a single threshold algorithm 

gives $28.6 and $26.2 when using double thresholds. This means that the profit 

increases by a ratio of approximately 30% compared to a single threshold algorithm 

and 40% compared to a First Fit. This is because our strategy improves the throughput 

by increasing the number of executed tasks, which indirectly improves profit. In 

addition, our model reduces the cost of power by moving the unused running hosts into 

sleep mode. The profits also benefit from a reduction in the number of failed tasks. 

#Tasks Clustering 
KPSO 

Single 
Threshold 

Double 
Threshold 

First Fit  

50 5.5 2.9 3.07 2.1 
100 6.9 4.3 5.03 3.3 
150 13 11.7 9.2 8.3 
200 15.7 13.6 12.5 11.9 
250 25 20.1 18.8 17.4 
300 38 28.6 26.2 23 
350 45 37.5 40.7 33.2 
400 50 43.6 46.8 41.1 
450 56 47.7 48 45 
500 63 52.1 51 49.2 

Table 6.5: Profit Results. 
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Figure 6.5: Profit Results (data shown with 95% confidence intervals). 

Fifth, we consider power consumption. As shown in Table 6.6, there is a reduction in 

the power consumed when using the proposed algorithm compared to that consumed 

by others. This is because using the VM migration strategy increases the hosts' 

utilization and saves power by moving under-loaded hosts to sleep mode. In Figure 6.6, 

single and double thresholds give high ratios of power consumption compared to the 

proposed algorithm, as they depend on static values that do not reflect the status of the 

hosts' utilization for all cases. The clustering KPSO algorithm consumes the least 

amount of power compared to all other algorithms because it migrates VMs from under-

loaded hosts to conserve the power of the host. It reduces the consumed power by 15% 

compared to the threshold approach and 25% compared to the First Fit algorithm. 

# 
Tasks 

Clustering 
KPSO 

Single 
Threshold 

Double 
Threshold 

First Fit  

50 0.05 0.09 0.07 0.1 
100 0.07 0.1 0.08 0.12 
150 0.08 0.12 0.09 0.14 
200 0.09 0.14 0.1 0.17 
250 0.1 0.16 0.12 0.19 
300 0.11 0.18 0.14 0.23 
350 0.12 0.21 0.16 0.25 
400 0.14 0.23 0.18 0.27 
450 0.15 0.27 0.23 0.32 
500 0.2 0.31 0.25 0.35 

Table 6.6: Power Consumption Results.  
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Figure 6.6: Power Consumption Results (data shown with 95% confidence intervals). 

Next, the imbalance factor is considered. The imbalance factor results in Figure 6.7 

indicate that the proposed algorithm balances the load better than any other algorithm. 

This because the load balancer was applied to balance the load and migrate VMs from 

over-loaded and high-loaded lists. The First Fit results yield high imbalance factors, 

which means that it unbalances the load between hosts because it does not consider the 

load balance as a factor during the allocation process. 

# 
Tasks 

Clustering 
KPSO 

Single 
Threshold 

Double 
Threshold 

First Fit  

50 5.3 7.01 8.7 9.09 
100 5.8 7.97 9.41 10.2 
150 6.6 8.57 9.57 11.5 
200 7.5 9.75 10.6 12.4 
250 8.01 10.09 11.29 13.6 
300 9.3 10.7 12.59 15.9 
350 9.8 12.31 14.7 18.3 
400 11.3 13.2 15.66 20 
450 12.5 14.9 17.34 23.5 
500 15.3 18.2 23.87 27.5 

Table 6.7: Imbalance Factor Results. 
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Figure 6.7: Imbalance Factor Results (data shown with 95% confidence intervals). 

Finally, the SLA violation rate is considered. An SLA violation occurs if the tasks miss 

deadlines or if the VM is assigned a greater number of MIPS than was initially 

allocated, which increases the waiting time. The SLA violation comparisons in Figure 

6.9 show that the proposed model decreases SLA violation by about 25% compared to 

the single and double thresholds and by 35% compared to the First Fit algorithm.  

# Task  
Clustering 

KPSO 
Single 

Threshold 
Double 

Threshold First Fit  

50 34.3 45.8 40.3 47.3 
100 32.9 52.1 46.4 54.3 
150 35.2 55.5 48.2 57.4 
200 36.6 58.2 49.5 60.7 
250 38.1 60.3 51.2 63.5 
300 39.4 61.8 52.8 65.1 
350 41.5 62.3 53.6 66.75 
400 42.7 63.1 54 68.13 
450 39.4 62.6 55.7 71.7 
500 37.5 62.9 57.4 72.95 

Table 6.8: SLA Violation Rate Results. 
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Figure 6.8: SLA Violation Rate Results (data shown with 95% confidence intervals). 

The algorithm will now be evaluated in relation to clustering, where the results will be 

compared to PSO and K-means algorithms separately to demonstrate the effective of 

the proposed KPSO, which combined the two algorithms. The results were evaluated 

in term of clustering time, waiting time, throughput and power consumption. The results 

in Figures 6.9 and 6.10 show that the proposed algorithm consumes less in the way of 

clustering time and waiting time than the K-means and PSO algorithms because it uses 

PSO to initialize the cluster centroids. Consequently, the proposed model executes 

more tasks and therefore gives high throughput as shown in Figure 6.11.  

# 
Task  KPSO  K-means PSO 

50 0.17 0.28 0.21 
100 0.3 0.44 0.37 
150 0.4 0.6 0.46 
200 0.45 0.72 0.57 
250 0.6 0.8 0.65 
300 0.71 0.84 0.79 
350 0.82 0.92 0.87 
400 0.85 1.2 0.96 
450 0.9 1.5 1.13 
500 1.2 1.6 1.54 

Table 6.9: Waiting Time Results. 
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Figure 6.9: Clustering Time Results (data shown with 95% confidence intervals). 

 

# Task  KPSO K-means PSO 
50 0.61 0.73 0.65 

100 0.73 0.85 0.78 
150 0.82 0.94 0.8 
200 0.95 1.5 0.98 
250 1.3 1.7 1.5 
300 1.6 1.93 1.76 
350 1.8 2.3 2.13 
400 2.2 2.67 2.46 
450 2.4 2.91 2.87 
500 2.6 3.4 3.07 

Table 6.10: Average Waiting Time Results. 

 

 

Figure 6.10: Average Waiting Time (data shown with 95% confidence intervals). 
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# Task   KPSO K-
means PSO 

50 60.3 40.8 52.19 
100 69 42.7 57.3 
150 70.4 51.5 61.2 
200 73.5 56.4 65.5 
250 76.8 60.5 68.43 
300 79.1 63.2 70.1 
350 81.5 66.81 72.35 
400 83 69.3 74.7 
450 85.6 70.4 77.5 
500 87.2 73.4 79.2 

Table 6.11: Throughput Rate Results. 

 

Figure 6.11: Throughput Results (data shown with 95% confidence intervals). 

 

6.6 Summary  

In this chapter, the specification of VM allocation was presented and discussed in detail. 

Essentially, the proposed model of VM allocation consists of four steps:  

 Clustering hosts based on the host load and utilization using K-means and PSO 

algorithms 

 Scheduling the VMs to unloaded hosts by finding the appropriate host for each 

VM using a MaOPSO algorithm and a modified ranking strategy 

 Migrating VMs from high-loaded, over-loaded and under-loaded hosts based on 

the minimum migration time 
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 Monitoring the load of the hosts to avoid high-loaded and under-loaded hosts. 

The main findings from the experimental analysis are as follows:  

• The proposed algorithm provides an improvement in waiting time of up to 15%, 

in completion time of up to 15%, and in throughput of up to 15%. 

• The utilization of the resources in our model is increased by about 20% 

compared to the K-means algorithm due to the effective use of VM migration. 

• A noticeable enhancement in profits in our model was observed when increasing 

the number of tasks. This is because improving resource utilization indirectly 

improves profit by about 20% compared to the single threshold algorithm and 

by about 30% compared to the First Fit algorithm.  

• Power consumption in our model is reduced by 20% compared to other 

algorithms because the VM migration algorithm has been improved. 

• The proposed model also provides a small imbalance factor, which means that 

it balances loads by about 40% more effectively than other methods. 

• Our model reduces SLA violation rates by about 35% compared to the First Fit 

algorithm and 25% with thresholds. 

• The proposed algorithm reduces waiting time and clustering time compared to 

PSO and K-means algorithms.  
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Chapter 7 

 

Conclusions and Future Work 
 

 

7.1 Conclusions 

A model for allocating resources in cloud computing was proposed in this thesis, which 

involved improving three aspects: SLA negotiation, task scheduling and VM allocation. 

Particle swarm optimization was used to optimize these modules with different variants 

depending on the nature of the problem in each case.  

For SLA negotiation, parallel PSO is used to improve the process of negotiation 

between consumers and multiple distributed data centers with different resources. The 

parallel PSO algorithm is used to quicken the process of negotiation and automate the 

process to reach agreement in a short amount of time with a reasonable quality solution. 

The proposed algorithm for SLA negotiation reduces the waiting time by about 30% 

compared to PSO and 20% compared to SPPSO. The throughput increases by about 

20% compared to the PSO algorithm. SLA violation rates are improved by about 25% 

compared to PSO.  

The task scheduling algorithm was improved using a many-objective PSO algorithm 

based on a modified ranking strategy. In so doing, this work advanced the state of the 

art by improving task scheduling using MaOPSO based on five objectives, and it 

devised a modified ranking strategy to evaluate the objective functions. The results of 

the modified ranking strategy were used in MaOPSO task scheduling to find an 

appropriate VM for each task. This improvement accelerates and simplifies the process 

of evaluating objectives in MaOPSO algorithms compared to using Pareto set method 

or weighted sum. The work was evaluated empirically by comparing it to a Genetic 

algorithm and ACO algorithm for optimization and two heuristic algorithms (Min-min 

and Max-min). Our results show that the new algorithm outperformed these algorithms 
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in terms of profits, performance (waiting time, execution time, and throughput), 

resource utilization and power consumption. Specifically, MaOPSO maximized 

resource utilization and minimized waiting time, demonstrating improvements of up to 

40% compared to Min-min. In addition, the VM migration reduced power consumption 

by 25% compared to a Genetic algorithm. Profits were improved indirectly by 

improving the utilization, as much as 40% in some cases. The improved task scheduling 

aimed to reduce the completion time of the tasks, which improves both throughput and 

profits.  Additionally, the SLA needed be satisfied to reduce any SLA violation caused 

by missing task deadlines. Finally, the MaOPSO task-scheduling algorithm increases 

throughput, reduces waiting time and shows an improvement up to 30% greater than 

the weighted sum objective. 

Regarding VM allocation and migration, the strategy for allocating hosts based on 

many-objective PSO was improved, enabling it to handle many objectives 

simultaneously. Clustering based on PSO and K-means algorithm was applied to define 

the threshold limits, improve the migration process and increase the utilization of 

resources. Additionally, the VM migration, based on clustering results was developed 

to decrease power consumption. The proposed VM allocation algorithm decreases both 

the waiting time and completed time by 15% and increased the throughput by about 

15%. Moreover, by applying the migration process, it reduced the power consumption 

by about 25% and reduced the imbalance factor by 40%. Regarding SLA violation rates, 

it reduced violations by about 35%, which improved profits by about 20%. 

Thus, from these improvements, performance in terms of waiting time and throughput 

was enhanced by reducing the negotiation time and mapping time. Moreover, utilization 

of resources was increased and balanced in an efficient way by applying VM migration. 

At the same time, power consumption was reduced by closing the under-loaded hosts 

during migration process. The profit was indirectly increased due to maximization of 

resource utilization and increasing the overall throughput.  

 

7.2 Future Work  

Based on the analysis of the literature in Section 2.6 and the results obtained from 

applying our model, the following issues need to be addressed in future work. 
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• Improving the Initialization of PSO with Heuristic Algorithms 

The MaOPSO used in the scheduling task can be extended to explore different options 

for creating an initial population, for example using a Max-min or Min-min approach, 

as this will influence the quality of solutions and convergence speed of the algorithm 

(as discussed in Section 2.2.2). During the study, it became apparent that, in future 

research, further improvements can be made to the initialization of the PSO algorithm, 

improving the fitness function, and incorporating the advantages of other clustering 

algorithms to improve the efficiency and performance of clustering (see discussion in 

Section 2.2.4). It is relatively easy to find more effective algorithms for clustering in 

the pattern recognition domain as this depends on the problem and the PSO algorithm 

can be used to optimize the clustering algorithm parameters. 

  

• Improving the Load Balancing at The VM Level 

In our model, we balance the load of VMs in the hosts. Many benefits can be gain if we 

applying balancing load at the level of VMs by distributing the tasks between VMs.  

Another meta-heuristic can be combined with PSO to overcome the limitations of PSO. 

One suggestion would be to use the Cuckoo search algorithm (CSA), which is a meta-

heuristic optimization algorithm inspired by the behavior of certain cuckoo species 

(Yang and Deb (2009)). CSA is mostly used as a single parameter and is well known 

for its simplicity and ease of implementation. CSA works with an initial population that 

represents a set of cuckoos. The population of cuckoos in the nest will depend on the 

host bird. Eggs that are like those of the host have more chance to grow and become a 

cuckoo and other eggs will be identified and destroyed by the host bird (Yang and Deb 

(2009)).  

Compared to the PSO algorithm, which can converge to local optima prematurely, the 

CSA algorithm often converges to global optimal solutions. Moreover, the CSA 

algorithm can effectively balance the local and global search with the help of a 

switching parameter.  
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• Automating the Process of Defining Consumers' Requirements 

In this research, it was assumed that the consumer specifies their requirements (see 

discussion in Section 3.1). However, a more intelligent method is needed to determine 

the consumers' requirements. Moreover, an assessment of the consumers' service 

requirements based on different types of application can improve resource utilization, 

such that services delivered to the consumer as the ones they require, no more or less. 

For example, if consumer's request is running tasks on a resource, the tasks are mapped 

to the required resource. In our model and most of the developed scheduling algorithms, 

the requirement is determined in terms of CPU, memory, storage and bandwidth rather 

than determined by the consumers, which is neither accurate nor precise. 

 

• Scheduling Workflow Applications 

The proposed model of task scheduling in Section 5.1 can be improved to handle 

applications that have dependencies between tasks, enabling it to deal with workflow 

scheduling. This is discussed in Section 2.4.1, and incorporating such functionalities 

would extend our approach and allow it to be applied in the scheduling of a wider range 

of applications including bioinformatics applications and computational biology. 

 

• Fault Tolerance Factors 

The notion of resource failure can be integrated with the allocation process to enhance 

reliability. At present this is absent from our approach, as discussed in Section 2.3.5 

Resource performance variation should also be added to the monitoring services to 

predict the possibilities of failure before it occurs. Incorporating these features into the 

proposed model will build greater robustness into the scheduling process. Detecting 

faults and recovering the system after failure need to be improved and optimized 

because it is a significant requirement in developing any resource management model. 
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• Dynamic SLA   

In the scheduling process, there is currently no mechanism to detect the changes in the 

SLA violation and adapt the changes in the SLA as discussed in Section 2.3.1. Our 

model deals with a static form of SLA that is determined at the beginning of negotiation, 

if the SLA can be changed during the execution with specific constraints then more 

benefits can be gained in terms of performance and resource utilization. The SLA form 

can be checked and evaluated while the resource allocation is proceeding to reflect 

changes in system utilization and performance. This suggestion can form part of a long-

term agreement because more changes can be made after the agreement is signed. 

  

• Communication between Data centers  

Currently model of resource allocation there is one entity that manages all data centers 

and no communication between data centers. This architecture can therefore be applied 

to a small number of data centers. However, as the number of data centers increases, 

the management process through a centralized manager becomes more complicated and 

can be a single point of failure.  

To improve the architecture and reduce the communication overheads a multi-agent 

system can be used to facilitate communication between data centers, enabling agents 

to negotiate to select the best data center for each task to develop distributed manager 

model. In addition, improving the strategies of communication between data centers 

can improve the balancing load among them and increasing the performance of the 

system.  

 

• Improve the network topology of the VM  

The main limitation of applying VM migration between data centers is the network 

communication, as discussed in Section 2.5.2. In our model, the migration of VMs from 

one host to another inside the data center was developed. In future research, VM 

migration between data center can be developed to manage the network VM more 

efficiently.  
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One of the suggested ways to improve this is to develop virtualized VM in data centers 

by optimizing network topologies among virtualized VMs, as discussed in Section 6.4. 

This will reduce network communication traffic during the migration of VMs from one 

data center to another.  
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