

The Physics and Applications of Coherent Control of Metasurfaces

Nikolay I. Zheludev^{1,3}, Kevin F. MacDonald¹, Eric Plum¹, and Daniele Faccio²

¹Optoelectronics Research Centre and Centre for Photonic Metamaterials
University of Southampton, Highfield, Southampton SO17 1BJ, UK

²School of Engineering and Physical Sciences
SUPA, Heriot-Watt University, Edinburgh EH14 4AS, UK

³Centre for Disruptive Photonic Technologies
School of Physical and Mathematical Sciences and The Photonics Institute
Nanyang Technological University, 637371, Singapore

Abstract— Coherent control of absorption in thin films can be used for optical data processing, spectroscopy and in nonlinear and quantum optics applications.

The new research direction of coherent control of light in 2D matter has its roots in plasmonics, metamaterials, quantum and coherent optics. As has been shown in recent years, the optical properties of films much thinner than the wavelength of light, manifest differently in travelling wave and standing wave light fields in free space. In the latter case, ‘coherent control’ of the energy exchange between incident and scattered waves leads to a plethora of new technological opportunities including image processing and recognition, all-optical logic gates, ultrafast all-optical modulators, quantum optical devices and new spectroscopy technique that can distinguish different multipole contributions to absorption.