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Abstract: This paper considers the specification and performance of jackknife estimators of the
autoregressive coefficient in a model with a near-unit root. The limit distributions of sub-sample
estimators that are used in the construction of the jackknife estimator are derived, and the joint
moment generating function (MGF) of two components of these distributions is obtained and its
properties explored. The MGF can be used to derive the weights for an optimal jackknife estimator
that removes fully the first-order finite sample bias from the estimator. The resulting jackknife
estimator is shown to perform well in finite samples and, with a suitable choice of the number of
sub-samples, is shown to reduce the overall finite sample root mean squared error, as well as bias.
However, the optimal jackknife weights rely on knowledge of the near-unit root parameter and
a quantity that is related to the long-run variance of the disturbance process, which are typically
unknown in practice, and so, this dependence is characterised fully and a discussion provided of the
issues that arise in practice in the most general settings.
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1. Introduction

Throughout his career, Peter Phillips has made important contributions to knowledge across
the broad spectrum of econometrics and statistics, providing inspiration to many other researchers
along the way. This paper builds on two of the strands of Peter’s research, namely jackknife bias
reduction and the analysis of nonstationary time series. Indeed, our own work on the jackknife
(Chambers 2013, 2015; Chambers and Kyriacou 2013) was inspired by Peter’s work on this topic with
Jun Yu, published as Phillips and Yu (2005), and the current contribution also extends the results on
moment generating functions (MGFs) contained in Phillips (1987a).

The jackknife has been proven to be an easy-to-implement method of eliminating first-order
estimation bias in a wide variety of applications in statistics and econometrics. Its genesis can be traced
to Quenouille (1956) and Tukey (1958) in the case of independently and identically distributed (iid)
samples, while it has been adapted more recently to accommodate more general time series settings.
Within the class of stationary autoregressive time series models, Phillips and Yu (2005) show that the
jackknife can effectively reduce bias in the pricing of bond options in finance, while Chambers (2013)
analyses the performance of jackknife methods based on a variety of sub-sampling procedures.
In subsequent work, Chambers and Kyriacou (2013) demonstrate that the usual jackknife construction
in the time series case has to be amended when a unit root is present, while Chen and Yu (2015) show
that a variance-minimising jackknife can be constructed in a unit root setting that also retains its
bias reduction properties. In addition, Kruse and Kaufmann (2015) compare bootstrap, jackknife and
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indirect inference estimators in mildly explosive autoregressions, finding that the indirect inference
estimator dominates in terms of root mean squared error, but that the jackknife excels for bias reduction
in stationary and unit root situations.

The usual motivation for a jackknife estimator relies on the existence of a Nagar-type expansion
of the original full-sample estimator’s bias. Its construction proceeds by finding a set of weights that,
when applied to a full-sample estimator and a set of sub-sample estimators, is able to eliminate fully the
first-order term in the resulting jackknife estimator’s bias expansion. In stationary time series settings,
the bias expansions are common to both the full-sample and sub-sample estimators, but Chambers and
Kyriacou (2013) pointed out that this property no longer holds in the case of a unit root. This is because
the initial values in the sub-samples are no longer negligible in the asymptotics and have a resulting
effect on the bias expansions, thereby affecting the optimal weights. Construction of a fully-effective
jackknife estimator relies, therefore, on knowledge of the presence (or otherwise) of a unit root.

In this paper, we explore the construction of jackknife estimators that eliminate fully the first-order
bias in the near-unit root setting. Near-unit root models have attracted a great deal of interest in time
series owing, amongst other things, to their ability to capture better the effects of sample size in
the vicinity of a unit root, to explore analytically the power properties of unit root tests and to
allow the development of an integrated asymptotic theory for both stationary and non-stationary
autoregressions; see Phillips (1987a) and Chan and Wei (1987) for details. We find that jackknife
estimators can be constructed in the presence of a near-unit root that achieve this aim of bias reduction.
Jackknife estimators have the advantage of incurring only a very slight additional computational
burden, unlike alternative resampling and simulation-based methods such as the bootstrap and
indirect inference. Furthermore, they are applicable in a wide variety of estimation frameworks and
work well in finite sample situations in which the prime objective is bias reduction. Although the
bootstrap is often a viable candidate for bias reduction, it was shown by Park (2006) that the bootstrap is
inconsistent in the presence of a near-unit root, and hence, jackknife methods offer a useful alternative
in these circumstances.

The development of a jackknife estimator that achieves bias reduction in the near-unit root case is
not simply a straightforward application of previous results. While Chambers and Kyriacou (2013)
first pointed out that under unit root non-stationarity, the effect of the sub-sample initial conditions
does not vanish asymptotically, thereby affecting asymptotic expansions of sub-sample estimator bias
and the resulting jackknife weights as compared to the stationary case, the extension of these results
to a local-to-unity setting is not obvious. With a near-unit root, the autoregressive parameter plays
an important role, and it is therefore necessary to derive the appropriate asymptotic expansion of
sub-sample estimator bias for this more general case, as well as the MGFs of the relevant limiting
distributions that can be used to construct the appropriate jackknife weights. The derivation of such
results is challenging in itself and is a major reason why we focus on the bias-minimising jackknife,
rather than attempting to derive results for the variance-minimising jackknife of Chen and Yu (2015).

The paper is organised as follows. Section 2 defines the near-unit root model of interest and
focuses on the limit distributions of sub-sample estimators, demonstrating that these limit distributions
are sub-sample dependent. An asymptotic expansion of these limit distributions demonstrates the
source of the failure of the standard jackknife weights in a near-unit root setting by showing that the
bias expansion is also sub-sample dependent. In order to define a successful jackknife estimator, it is
necessary to compute the mean of these limit distributions, and so, Section 3 derives the moment
generating function of two random variables that determine the limit distributions over an arbitrary
sub-interval of the unit interval. Expressions for the computation of the mean of the ratio of the two
random variables are derived using the MGF. Various properties of the MGF are established, and it is
shown that results obtained in Phillips (1987a) arise as a special case, including those that emerge as
the near-unit root parameter tends to minus infinity.
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Based on the results in Sections 2 and 3, the optimal weights for the jackknife estimator are defined
in Section 4, which then goes on to explore, via simulations, the performance of the proposed estimator
in finite samples. Consideration is given to the choice of the appropriate number of sub-samples to use
when either bias reduction or root mean squared error (RMSE) minimisation is the objective. It is found
that greatest bias reduction can be achieved using just two sub-samples, while minimisation of RMSE,
which, it should be stressed, is not the objective of the jackknife estimator, requires a larger number of
sub-samples, which increases with sample size. Section 5 contains some concluding comments, and all
proofs are contained in the Appendix A.

The following notation will be used throughout the paper. The symbol d
= denotes equality

in distribution; d→ denotes convergence in distribution;
p→ denotes convergence in probability; ⇒

denotes weak convergence of the relevant probability measures; W(r) denotes a Wiener process on
C[0, 1], the space of continuous real-valued functions on the unit interval; and Jc(r) =

∫ r
0 e(r−s)cdW(s)

denotes the Ornstein–Uhlenbeck process, which satisfies dJc(r) = cJc(r)dr + dW(r) for some constant
parameter c. Functionals of W(r) and Jc(r), such as

∫ 1
0 Jc(r)2dr, are denoted

∫ 1
0 J2

c for notational
convenience where appropriate, and in stochastic integrals of the form

∫
ecr Jc, it is to be understood

that integration is carried out with respect to r. Finally, L denotes the lag operator such that Ljyt = yt−j
for a random variable yt.

2. Jackknife Estimation with a Near-Unit Root

2.1. The Model and the Standard Jackknife Estimator

The model with a near-unit root is defined as follows.

Assumption 1. The sequence y1, . . . , yn satisfies:

yt = ρyt−1 + ut, t = 1, . . . , n, (1)

where ρ = ec/n = 1 + c/n +O(n−2) for some constant c, y0 is an observable Op(1) random variable and ut is
the stationary linear process:

ut = δ(L)εt =
∞

∑
j=0

δjεt−j, t = 1, . . . , n, (2)

where εt ∼ iid(0, σ2
ε ), E(ε4

t ) < ∞, δ(z) = ∑∞
j=0 δjzj, δ0 = 1 and ∑∞

j=0 j|δj| < ∞.
The parameter c controls the extent to which the near-unit root deviates from unity; when

c < 0, the process is (locally) stationary, whereas it is (locally) explosive when c > 0. Strictly
speaking, the autoregressive parameter should be denoted ρn to emphasise its dependence on the
sample size, n, but we use ρ for notational convenience. The linear process specification for the
innovations is consistent with ut being a stationary ARMA(p, q) process of the form φ(L)ut = θ(L)εt,
where φ(z) = ∑

p
j=0 φjzj, θ(z) = ∑

q
j=0 θjzj, and all roots of the equation φ(z) = 0 lie outside the unit

circle. In this case, δ(z) = θ(z)/φ(z), but Assumption 1 also allows for more general forms of linear
processes and is not restricted solely to the ARMA class. Under Assumption 1, ut satisfies the functional
central limit theorem:

1√
n

[nr]

∑
t=1

ut ⇒ σW(r) as n→ ∞ (3)

on C[0, 1], where σ2 = σ2
ε δ(1)2 denotes the long-run variance.

Equations of the form (1) have been used extensively in the literature on testing for an
autoregressive unit root (corresponding to c = 0) and for examining the power properties of the
resulting tests (by allowing c to deviate from zero). In economic and financial time series, they offer
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a flexible mechanism of modelling highly persistent series whose autoregressive roots are generally
close, but not exactly equal, to unity. Ordinary least squares (OLS) regression on (1) yields:

yt = ρ̂yt−1 + ût, t = 1, . . . , n, (4)

where ût denotes the regression residual, and it can be shown see Phillips (1987a) that ρ̂ satisfies:

n(ρ̂− ρ) =

1
n

n

∑
t=1

yt−1ut

1
n2

n

∑
t=1

y2
t−1

⇒ Zc(η) =

∫ 1

0
JcdW +

1
2
(1− η)∫ 1

0
J2
c

as n→ ∞, (5)

where η = σ2
u/σ2, σ2

u = E(u2
t ) = σ2

ε ∑∞
j=0 δ2

j and the functional Zc(η) is implicitly defined. The limit
distribution in (5) is skewed, and the estimator suffers from significant negative bias in finite samples;
see Perron (1989) for properties of the limit distribution for the case where σ2 = σ2

u and (hence) η = 1.
The jackknife estimator offers a computationally simple method of bias reduction by combining

the full-sample estimator, ρ̂, with a set of m sub-sample estimators, ρ̂j (j = 1, . . . , m), the weights
assigned to these components depending on the type of sub-sampling method employed. Phillips
and Yu (2005) find the use of non-overlapping sub-samples to perform well in reducing bias in the
estimation of stationary diffusions, while the analysis of Chambers (2013) supports this result in the
setting of stationary autoregressions. In this approach, the full sample of n observations is divided into
m sub-samples, each of length `, so that n = m× `. The generic form of jackknife estimator is given by:

ρ̂J = w1ρ̂ + w2
1
m

m

∑
j=1

ρ̂j, (6)

where the weights are determined so as to eliminate the first-order finite sample bias. Assuming that
the full-sample estimator and each sub-sample estimator satisfy a (Nagar-type) bias expansion of
the form:

E(ρ̂− ρ) =
a
n
+ O

(
1
n2

)
, E(ρ̂j − ρ) =

a
`
+ O

(
1
`2

)
,

it can be shown that the appropriate weights are given by w1 = m/(m− 1) and w2 = −1/(m− 1),
in which case:

E(ρ̂J − ρ) =
m

m− 1
E(ρ̂− ρ)− 1

m− 1
1
m

m

∑
j=1

E(ρ̂j − ρ)

=
m

m− 1

(
a
n
+ O

(
1
n2

))
− 1

m− 1

(
a
`
+ O

(
1
`2

))
=

a
m− 1

(
m
n
− 1

`

)
+ O

(
1
n2

)
= O

(
1
n2

)
,

using the fact that m/n = 1/`. Under such circumstances, the jackknife estimator is capable of
completely eliminating the O(1/n) bias term in the estimator as compared to ρ̂. However, in the pure
unit root setting (c = 0), Chambers and Kyriacou (2013) demonstrated that the sub-sample estimators
do not share the same limit distribution as the full-sample estimator, which means that the expansions
for the bias of the sub-sample estimators are incorrect, and hence, the weights defined above do not
eliminate fully the first-order bias. It is therefore important to investigate this issue in the more general
setting of a near-unit root with a view toward deriving the appropriate weights for eliminating the
first-order bias term.
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2.2. Sub-Sample Properties

In order to explore the sub-sample properties, let:

τj = {(j− 1)`+ 1, . . . , j`}, j = 1, . . . , m,

denote the set of integers indexing the observations in each sub-sample. The sub-sample estimators
can then be written, in view of (5), as:

`
(
ρ̂j − ρ

)
=

1
` ∑

t∈τj

yt−1ut

1
`2 ∑

t∈τj

y2
t−1

, j = 1, . . . , m. (7)

Theorem 1 (below) determines the limiting properties of the quantities appearing in (7), as well as the
limit distribution of `(ρ̂j − ρ) itself.

Theorem 1. Let y1, . . . , yn satisfy Assumption 1. Then, if m is fixed as n→ ∞ (and hence, `→ ∞):

(a)
1
`2 ∑

t∈τj

y2
t ⇒ σ2m2

∫ j/m

(j−1)/m
J2
c ;

(b)
1
` ∑

t∈τj

yt−1ut ⇒ σ2m
∫ j/m

(j−1)/m
JcdW +

1
2
(σ2 − σ2

u);

(c) `(ρ̂j − ρ)⇒ Zc,j(η) =

∫ j/m

(j−1)/m
JcdW +

1
2m

(1− η)

m
∫ j/m

(j−1)/m
J2
c

, j = 1, . . . , m,

η = σ2
u/σ2.

where the functional Zc,j(η) is implicitly defined.

The limit distribution in Part (c) of Theorem 1 is of the same form as that of the full-sample
estimator in (5), except that the integrals are over the subset [(j − 1)/m, j/m] of [0, 1] rather than
the unit interval itself. Note, too, that the first component of the numerator of Zc,j(η) also has the
representation:

∫ j/m

(j−1)/m
JcdW d

=
1
2

[
Jc

(
j

m

)2
− Jc

(
j− 1

m

)2
− 2c

∫ j/m

(j−1)/m
J2
c −

1
m

]
, (8)

which follows from the Itô calculus and is demonstrated in the proof of Part (b) of Theorem 1 in the
Appendix. The familiar result,

∫ 1
0 WdW = [W(1)2− 1]/2, follows as a special case by setting j = m = 1

and c = 0.
The fact that the distributions Zc,j(η) in Theorem 1 depend on j implies that the expansions for

E(ρ̂j − ρ) that are used to derive the jackknife weights defined following (6) may not be correct under
a near-unit root. When the process (1) has a near-unit root, we can expect the expansions for E(ρ̂j − ρ)

to be of the form:

E
(
ρ̂j − ρ

)
=

µc,j

`
+ O

(
1
`2

)
, j = 1, . . . , m;

indeed, we later justify this expansion and characterise µc,j precisely. Such expansions have been
shown to hold in the unit root (c = 0) case, as well as more generally when c 6= 0. For example,
Phillips (1987b, Theorem 7.1) considered the Gaussian random walk (corresponding to (1) with c = 0,
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δ(z) = 1, y0 = 0 and ut Gaussian) and demonstrated the validity of an asymptotic expansion for the
normalised coefficient estimator; it is given by:

n(ρ̂− 1) d
=

∫ 1

0
WdW∫ 1

0
W2

− ξ
√

2n
∫ 1

0
W2

+ Op

(
1
n

)
, (9)

where ξ is a standard normal random variable distributed independently of W. Taking expectations
in (9), using the independence of ξ and W and noting that the expected value of the leading term is
−1.7814 (see, for example, Table 7.1 of Tanaka 1996), the bias satisfies:

E(ρ̂− 1) = −1.7814
n

+ o
(

1
n

)
; (10)

see, also, Phillips (2012, 2014). In the more general setting of the model in Assumption 1, and assuming
that ut is Gaussian, Theorem 1 of Perron (1996) established that:

n(ρ̂− ρ)
d
=

∫ 1

0
JcdW +

1
2
(1− η) +

y0

σ
√

n

∫ 1

0
ecrdW −

v f

2σ2
√

n
ξ∫ 1

0
J2
c + 2

y0

σ
√

n

∫ 1

0
ecr Jc

+ Op

(
1
n

)
, (11)

where v2
f = 2π fu2(0) and fu2(0) denotes the spectral density of u2

t − σ2
u at the origin. The following

result extends the type of expansion in (11) to the sub-sample estimators.

Theorem 2. Let y1, . . . , yn satisfy Assumption 1 and, in addition, assume that ut is Gaussian. Then, for j =
1, . . . , m,

`(ρ̂j − ρ)
d
=

∫ j/m

(j−1)/m
JcdW +

1
2m

(1− η) +
2y0

σ
√
`

ξ1j −
v f

σ2m
√
`

ξ2j

m
∫ j/m

(j−1)/m
J2
c +

2
√

my0

σ
√
`

∫ j/m

(j−1)/m
ecr Jc

+ Op

(
1
`

)
,

where ξij ∼ N(0, s2
j ), ξ2j ∼ N(0, 1) and:

s2
j =

(
√

m− 1)2

2cm

(
ecj/m − ec(j−1)/m

)2
+

(m− 2
√

m− 2)
2cm

(
ecj/m − ec(j−1)/m

)

+
2(1 +

√
m)

m2 ecj/m.

The form of the expansion for `(ρ̂j− ρ) in Theorem 2 is similar to that for the full-sample estimator,
but also depends on m and j. Use of these expansions to derive expressions for the biases of ρ̂ and ρ̂j
would be complicated due to the dependence on y0. We therefore take y0 = 01, which results in the
following expectations:

E(ρ̂− ρ) =
E(Zc(η))

n
+ O

(
1
n2

)
, E(ρ̂j − ρ) =

E(Zc,j(η))

`
+ O

(
1
`2

)
,

1 If y0 6= 0, then additional random variables appear in the numerator and denominator of the bias, thereby complicating the
derivation of the required expectation. In the case of c = 0, the simulation results reported in Table 2.3 of Kyriacou (2011)
indicate that the bias of ρ̂ increases with y0/σ, but that the jackknife continues to be an effective method of bias reduction.
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these results utilising the independence of the normally distributed random variables (ξ1j and ξ2j)
and the Wiener process W. The next section provides the form of the moment generating function
that enables expectations of the functionals Zc(η) and Zc,j(η) to be computed, thereby enabling the
construction of a jackknife estimator that eliminates the first-order bias.

3. A Moment Generating Function and Its Properties

The following result provides the joint moment generating function (MGF) of two relevant
functionals of Jc defined over a subinterval [a, b] of [0, b] where 0 ≤ a < b. Although our focus is on
sub-intervals of [0, 1], we leave b unconstrained for greater generality than is required for our specific
purposes because the results may have more widespread use beyond our particular application.

Theorem 3. Let Nc =
∫ b

a Jc(r)dW(r) and Dc =
∫ b

a Jc(r)2dr, where Jc(r) is an Ornstein–Uhlenbeck process
on r ∈ [0, b] with parameter c, and 0 ≤ a < b. Then:

(a) The joint MGF of Nc and Dc is given by:

Mc(θ1, θ2) = E exp(θ1Nc + θ2Dc) = exp
(
− (θ1 + c)

2
(b− a)

)
Hc(θ1, θ2)

−1/2,

where, defining λ = (c2 + 2cθ1 − 2θ2)
1/2 and v2 = (e2ac − 1)/(2c),

Hc(θ1, θ2) = cosh ((b− a)λ)− 1
λ

[
θ1 + c + v2

(
θ2

1 + 2θ2

)]
sinh ((b− a)λ) .

(b) The individual MGFs for Nc and Dc are given by, respectively,

MNc(θ1) = exp
(
− (θ1+c)

2 (b− a)
)

×
[
cosh((b− a)λ1)− 1

λ1

(
θ1 + c + v2θ2

1
)

sinh((b− a)λ1)
]−1/2 (12)

MDc(θ2) = exp
(
− c

2
(b− a)

) [
cosh ((b− a)λ2)−

1
λ2

(
c + 2v2θ2

)
sinh ((b− a)λ2)

]−1/2
(13)

where λ1 = (c2 + 2cθ1)
1/2 and λ2 = (c2 − 2θ2)

1/2.
(c) Let:

g(θ2) = cosh
(
(b− a)(c2 + 2θ2)

1/2
)
−
(

c− 2v2θ2

) sinh
(
(b− a)(c2 + 2θ2)

1/2
)

(c2 + 2θ2)1/2 .

Then, the expectation of Nc/Dc is given by:

E
(

Nc

Dc

)
=
∫ ∞

0

∂Mc(θ1,−θ2)

∂θ1

∣∣∣∣
θ1=0

dθ2 = I1(a, b) + I2(a, b) + I3(a, b) + I4(a, b),

where:

I1(a, b) = − (b− a)
2

exp
(
− c(b− a)

2

) ∫ ∞

0

1
g(θ2)1/2 dθ2,

I2(a, b) = − (c(b− a)− 1)
2

exp
(
− c(b− a)

2

) ∫ ∞

0

sinh
(
(b− a)(c2 + 2θ2)

1/2
)

(c2 + 2θ2)1/2g(θ2)3/2 dθ2,
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I3(a, b) = − c
2

exp
(
− c(b− a)

2

) ∫ ∞

0

(
c− 2v2θ2

) sinh
(
(b− a)(c2 + 2θ2)

1/2
)

(c2 + 2θ2)3/2g(θ2)3/2 dθ2,

I4(a, b) =
c(b− a)

2
exp

(
− c(b− a)

2

) ∫ ∞

0

(
c− 2v2θ2

) cosh
(
(b− a)(c2 + 2θ2)

1/2
)

(c2 + 2θ2)g(θ2)3/2 dθ2.

The MGFs for the two functionals in Theorem 3 have potential applications in a wide range of
sub-sampling problems with near-unit root processes. A potential application of the joint MGF in
Part (a) of Theorem 3 is in the computation of the cumulative and probability density functions of the
distributions Zc,j(η) when setting a = (j− 1)/m and b = j/m. For example, the probability density
function of mZc,j(1) is given by (with i2 = −1):

pd f (z) =
1

2πi
lim

ε1→0,ε2→∞

∫
ε1<|θ1|<ε2

(
∂Mc(iθ1, iθ2)

∂θ2

)
θ2=−θ1z

dθ1;

see, for example, Perron (1991, p. 221), who performs this type of calculation for the distribution Zc,
while Abadir (1993) derives a representation for the density function of Zc in terms of a parabolic
cylinder function.

The result in Part (b) of Theorem 3 is obtained by differentiating the MGF and constructing the
appropriate integrals. When c = 0, the usual (full-sample) result, where a = 0 and b = 1, can be
obtained as a special case. Noting that v2 = 0 in this case and making the substitution w = (c2 + 2θ2)

1/2

results in:

I1(0, 1) = −1
2

∫ ∞

0

w
cosh(w)1/2 dw, I2(0, 1) =

1
2

∫ ∞

0

sinh(w)

cosh(w)3/2 dw, I3(0, 1) = 0, I4(0, 1) = 0;

these expressions can be found; for example, Gonzalo and Pitarakis (1998, Lemma 3.1). Some further
special cases of interest that follow from Theorem 3 are presented below.

Corollary to Theorem 3. (a) Let [a, b] = [0, 1] so that Nc =
∫ 1

0 Jc(r)dW(r) and Dc =
∫ 1

0 Jc(r)2dr. Then:

Mc(θ1, θ2) = exp
(
− (θ1 + c)

2

) [
cosh(λ)− 1

λ
(θ1 + c) sinh(λ)

]−1/2
,

MNc(θ1) = exp
(
− (θ1 + c)

2

) [
cosh(λ1)−

1
λ1

(θ1 + c) sinh(λ1)

]−1/2
,

MDc(θ2) = exp
(
− c

2

) [
cosh (λ2)−

c
λ2

sinh (λ2)

]−1/2
,

while taking the limit as c→ 0 yields:

M0(θ1, θ2) = exp
(
− θ1

2

) [
cosh (λ0)−

θ1

λ0
sinh (λ0)

]−1/2
,

MN0(θ1) = e−θ1/2(1− θ1)
−1/2,

MD0(θ2) = [cosh (λ0)]
−1/2 ,
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where λ0 =
√
−2θ2.

(b) Let [a, b] = [(j − 1)/m, j/m] so that Nc =
∫ j/m
(j−1)/m Jc(r)dW(r) and Dc =

∫ j/m
(j−1)/m Jc(r)2dr (j =

1, . . . , m). Then:

Mc(θ1, θ2) = exp
(
− (θ1 + c)

2m

) [
cosh

(
λ

m

)
− 1

λ

[
θ1 + c + v2

j−1

(
θ2

1 + 2θ2

)]
sinh

(
λ

m

)]−1/2
,

MNc(θ1) = exp
(
− (θ1 + c)

2m

) [
cosh

(
λ1

m

)
− 1

λ1

(
θ1 + c + v2

j−1θ2
1

)
sinh

(
λ1

m

)]−1/2
,

MDc(θ2) = exp
(
− c

2m

) [
cosh

(
λ2

m

)
− 1

λ2

(
c + 2v2

j−1θ2

)
sinh

(
λ2

m

)]−1/2
,

where v2
j−1 = (exp(2(j− 1)c/m)− 1)/(2c). Taking the limit as c→ 0 results in:

M0(θ1, θ2) = exp
(
− θ1

2m

) [
cosh

(
λ0

m

)
− 1

λ0

[
θ1 +

(j− 1)
m

(
θ2

1 + 2θ2

)]
sinh

(
λ0

m

)]−1/2

,

MN0(θ1) = exp
(
− θ1

2m

)(
1− θ1

m
− (j− 1)

θ2
1

m2

)−1/2

,

MD0(θ2) =

[
cosh

(
λ0

m

)
− 2(j− 1)θ2

mλ0
sinh

(
λ0

m

)]−1/2

.

The results in Part (a) of the corollary are relevant in the full-sample case, and the result for
M0(θ1, θ2) goes back to White (1958). The results in Part (b) of the corollary are pertinent to the
sub-sampling issues being investigated here in the case of a near-unit root, with the unit root (c = 0)
result for M0(θ1, θ2) having been first derived by Chambers and Kyriacou (2013).

It is also possible to use the above results to explore the relationship between the sub-sample
distributions and the full-sample distribution. For example, it is possible to show that MNc/m(θ1/m)

on [0, 1] is equal to MNc(θ1) for j = 1 in the sub-samples, while MDc/m(θ2/m2) on [0, 1] is equal to
MDc(θ2) for j = 1 in the sub-samples; an implication of this is that:

∫ 1/m

0
JcdW d

=
1
m

∫ 1

0
Jc/mdW,

∫ 1/m

0
J2
c

d
=

1
m2

∫ 1

0
J2
c/m.

Furthermore, this implies that the limit distribution of the first sub-sample estimator, `(ρ̂1 − ρ),
when ρ = ec/n = ec/m`, is the same as that of the full-sample estimator, n(ρ̂− ρ), when ρ = ec/mn.

The sub-sample results with a near-unit root can be related to the full-sample results of
Phillips (1987a). For example, the MGF in Theorem 3 has the equivalent representation:

Mc(θ1, θ2) =

{
1
2

exp ((θ1 + c)(b− a)) λ−1
[
(2λ + δ)(1 + δv2) exp(−z)

−
(

2λδv2 + δ(1 + δv2)
)

exp(z)
]}

(14)
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where λ and v2 are defined in the theorem, z = (b− a)λ and δ = θ1 + c− λ. When a = 0, b = 1, it
follows that v2 = 0, and the above expression nests the MGF in Phillips (1987a), i.e.,

Mc(θ1, θ2) =

{
1
2

exp(θ1 + c)(c2 + 2cθ1 − 2θ2)
−1/2

×
[(

θ1 + c + (c2 + 2cθ1 − 2θ2)
1/2
)

exp
(
−(c2 + 2cθ1 − 2θ2)

1/2
)

−
(

θ1 + c− (c2 + 2cθ1 − 2θ2)
1/2
)

exp
(
(c2 + 2cθ1 − 2θ2)

1/2
)] }

;

this follows straightforwardly from (14). It is also of interest to examine what happens when the
local-to-unity parameter c → −∞, as in Phillips (1987a) and other recent work on autoregression,
e.g., Phillips (2012). We present the results in Theorem 4 below.

Theorem 4. Let Jc(r) denote an Ornstein–Uhlenbeck process on r ∈ [0, b] with parameter c, and let 0 ≤ a < b.
Furthermore, define the functional:

K(c) = g(c)1/2
(∫ b

a
J2
c

)−1 (∫ b

a
JcdW +

1
2
(1− η)

)
,

where η = σ2
u/σ2 and:

g(c) = E
(∫ b

a
J2
c

)
=

1
4c2 (exp(2bc)− exp(2ac)) +

(
1
−2c

)
(b− a).

Then, as c→ −∞:

(a) (−2c)1/2
∫ b

a
JcdW ⇒ N(0, (b− a));

(b) (−2c)
∫ b

a
J2
c

p→ (b− a);

(c) K(c)⇒ N(0, 1) if σ2
u = σ2 (and hence η = 1) and diverges otherwise.

The functional K(c) in Theorem 4 represents the limit distribution of the normalised estimator
g(c)1/2`(ρ̂a,b − ρ), where ` denotes the number of observations in the sub-sample [bn − ` + 1, bn]
(so that a = b− (1/m) in this case) and ρ̂a,b is the corresponding estimator. However, as pointed out by
Phillips (1987a), the sequential limits (large sample for fixed c, followed by c→ −∞) are only indicative
of the results one might expect in the stationary case and do not constitute a rigorous demonstration.
The results in Theorem 4 also encompass the related results in Phillips (1987a) obtained when a = 0
and b = 1.

4. An Optimal Jackknife Estimator

The discussion following Theorem 2 indicates that the weights defining an optimal jackknife
estimator, which removes first-order bias in the local-to-unity setting, depend on the quantities:

µc(η) = E(Zc(η)) = µc(1) + λ1(η)E
(

1
Dc

)
,

µc,j(η) = E(Zc,j(η)) = µc,j(1) + λ2(η, m)E

(
1

Dc,j

)
, j = 1, . . . , m,

where λ1(η) = (1− η)/2, λ2(η, m) = λ1(η)/m2 and:

Dc =
∫ 1

0
J2
c , Dc,j =

∫ j/m

(j−1)/m
J2
c , j = 1, . . . , m.
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In particular, Part (c) of Theorem 3 can be used to evaluate the quantities:

µc(1) = E
(

Nc

Dc

)
, µc,j(1) = E

(
Nc,j

mDc,j

)
, j = 1, . . . , m,

where we have defined:

Nc =
∫ 1

0
JcdW, Nc,j =

∫ j/m

(j−1)/m
JcdW, j = 1, . . . , m.

The relevant MGFs for evaluating µc(1) and µc,j(1) are given in the corollary to Theorem 3.
Table 1 contains the values of µc,j(1) for values of m and c as follows: m = {1, 2, 3, 4, 6, 8, 12} and

c = {−50,−20,−10,−5,−1, 0, 1}.2 The entries for m = 1 correspond to µc(1) = E(Zc(1)) in view
of the distributional equivalence of Zc(1) and Zc,1(1) discussed following the corollary. For a given
combination of j and m, it can be seen that the expectations increase as c increases, while for given
c and j the expectations increase with m. A simple explanation for the different properties of the
sub-samples beyond j = 1 is that the initial values are of the same order of magnitude as the partial
sums of the innovations. The values of the sub-sample expectations when c = 0 are seen from Table 1
to be independent of m and to increase with j. Note that µ0,1(1) = −1.7814 corresponds to the expected
value of the limit distribution of the full-sample estimator ρ̂ under a unit root; see, for example, (10) and
the associated commentary. The values of µ0,j(η) can be used to define jackknife weights under a
unit root for different values of m; see, for example, Chambers and Kyriacou (2013). More generally,
the values of µc,j(η) can be used to define optimal weights for the jackknife estimator that achieve the
aim of first-order bias removal in the presence of a near-unit root. The result is presented in Theorem 5.

Theorem 5. Let µ̄c(η) = µc(η)−∑m
j=1 µc,j(η). Then, under Assumption 1, an optimal jackknife estimator is

given by:

ρ̂∗J = w∗1,c(η)ρ̂ + w∗2,c(η)
1
m

m

∑
j=1

ρ̂j,

where w∗1,c(η) = −∑m
j=1 µc,j(η)/µ̄c(η) and w∗2,c(η) = 1− w∗1,c(η) = µc(η)/µ̄c(η).

Theorem 5 shows the form of the optimal weights for the jackknife estimator when the process (1)
has a near-unit root. It can be seen that the weights depend not only on the value of c, but also on the
value of η, both of which are unknown in practice. The authors in Chambers and Kyriacou (2013) and
Chen and Yu (2015) have emphasised the case c = 0 and η = 1 and have reported simulation results
highlighting the good bias-reduction properties of appropriate jackknife estimators in that case. When c 6= 0
and η = 1, the optimal weights in Theorem 5 simplify to:

w∗1,c(1) = −
m

∑
j=1

µc,j(1)/µ̄c(1), w∗2,c(1) = µc(1)/µ̄c(1).

The values of µc,j(1) in Table 1 can be utilised to derive these optimal weights for the jackknife
estimator in this case; these are reported in Table 2 for the values of m and c used in Table 1, along with
the values of the standard weights that are applicable in stationary autoregressions. The entries in
Table 1 show that the optimal weights are larger in (absolute) value than the standard weights that
would apply if all the sub-sample distributions were the same and that they increase with c for given
m. The optimal weights also converge towards the standard weights as c becomes more negative;
this could presumably be demonstrated analytically using the properties of the MGF in constructing

2 The integrals were computed numerically using an adaptive quadrature method in the integrate1d routine in Gauss 17.
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the µc,j(1) by examining the appropriate limits as c → −∞, although we do not pursue such an
investigation here.

The relationship between the optimal weights when η = 1 and when η 6= 1 is not straightforward.
Noting that:

µ̄c(η) = µ̄c(1) + λ1(η)E
(

1
Dc

)
− λ2(η, m)

m

∑
j=1

E

(
1

Dc,j

)
and that:

m

∑
j=1

µc,j(η) =
m

∑
j=1

µc,j(1) + λ2(η, m)
m

∑
j=1

E

(
1

Dc,j

)
we find that:

w∗1,c(η) = −

m

∑
j=1

µc,j(1) + λ2(η, m)
m

∑
j=1

E

(
1

Dc,j

)

µ̄c(1) + λ1(η)E
(

1
Dc

)
− λ2(η, m)

m

∑
j=1

E

(
1

Dc,j

) .

This expression can be manipulated to write w∗1,c(η) explicitly in terms of w∗1,c(1) as follows:

w∗1,c(η) =

w∗1,c(1)−
λ2(η, m)

µ̄c(1)

m

∑
j=1

E

(
1

Dc,j

)

1 +
λ1(η)

µ̄c(1)
E
(

1
Dc

)
− λ2(η, m)

µ̄c(1)

m

∑
j=1

E

(
1

Dc,j

) . (15)

The second weight is obtained simply as w∗2,c(η) = 1 − w∗1,c(η). In situations where η 6= 1,
which essentially reflects cases where ut does not have a white noise structure, the optimal weights can
be obtained from the entries in Table 2 (at least for the relevant values of c) using (15), but knowledge
is still required not only of c and η, but also the expectations of the inverses of Dc and Dc,j. The latter
can be computed numerically; Equation (2.3) of Meng (2005) shows that:

E
(

1
Dc

)
=
∫ ∞

0
MDc(−θ2)dθ2, E

(
1

Dc,j

)
=
∫ ∞

0
MDc,j(−θ2)dθ2, j = 1, . . . , m,

where MDc(θ2) and MDc,j(θ2) are the MGFs of Dc and Dc,j, respectively, which can be obtained from
the corollary to Theorem 3.

In practice, however, the values of c and η are still required in order to construct the optimal
estimator. Although the localization parameter c from the model defined under Assumption 1 is
identifiable, it is not possible to estimate it consistently, and attempts to do so require a completely
different formulation of the model; see, for example, Phillips et al. (2001), who propose a block
local-to-unity framework to consistently estimate c, although this approach does not appear to have
been pursued subsequently. Furthermore η depends on an estimator of the long-run variance σ2,
which is a notoriously difficult quantity to estimate in finite samples. In view of these unresolved
challenges and following earlier work on jackknife estimation of autoregressive models with a
(near-)unit root, we focus on the case η = 1, but allow c 6= 0 with particular attention paid to
unit root and locally-stationary processes, i.e., c ≤ 0.
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Table 1. Values of µc,j(1) = E(Zc,j(1)).

j \ c −50 −20 −10 −5 −1 0 1

m = 1

1 −1.9995 −1.9972 −1.9912 −1.9758 −1.8818 −1.7814 −1.5811

m = 2

1 −1.9981 −1.9912 −1.9758 −1.9439 −1.8408 −1.7814 −1.6969
2 −1.9604 −1.9043 −1.8214 −1.6891 −1.3295 −1.1382 −0.8920

m = 3

1 −1.9962 −1.9838 −1.9595 −1.9175 −1.8234 −1.7814 −1.7283
2 −1.9412 −1.8613 −1.7502 −1.5921 −1.2722 −1.1382 −0.9791
3 −1.9412 −1.8613 −1.7500 −1.5845 −1.1515 −0.9319 −0.6759

m = 4

1 −1.9939 −1.9758 −1.9439 −1.8973 −1.8138 −1.7814 −1.7427
2 −1.9225 −1.8214 −1.6891 −1.5210 −1.2411 −1.1382 −1.0210
3 −1.9225 −1.8214 −1.6879 −1.5021 −1.1016 −0.9319 −0.7410
4 −1.9225 −1.8214 −1.6879 −1.5006 −1.0396 −0.8143 −0.5643

m = 6

1 −1.9884 −1.9594 −1.9175 −1.8698 −1.8037 −1.7814 −1.7564
2 −1.8867 −1.7502 −1.5921 −1.4268 −1.2085 −1.1382 −1.0616
3 −1.8867 −1.7500 −1.5845 −1.3812 −1.0482 −0.9319 −0.8059
4 −1.8867 −1.7500 −1.5843 −1.3732 −0.9697 −0.8143 −0.6472
5 −1.8867 −1.7500 −1.5842 −1.3717 −0.9243 −0.7348 −0.5331
6 −1.8867 −1.7500 −1.5842 −1.3715 −0.8958 −0.6761 −0.4450

m = 8

1 −1.9823 −1.9439 −1.8973 −1.8526 −1.7984 −1.7814 −1.7629
2 −1.8530 −1.6891 −1.5210 −1.3686 −1.1915 −1.1382 −1.0813
3 −1.8530 −1.6879 −1.5021 −1.2991 −1.0203 −0.9319 −0.8381
4 −1.8530 −1.6879 −1.5006 −1.2815 −0.9326 −0.8143 −0.6893
5 −1.8530 −1.6879 −1.5005 −1.2766 −0.8795 −0.7348 −0.5829
6 −1.8530 −1.6879 −1.5005 −1.2752 −0.8444 −0.6761 −0.5008
7 −1.8530 −1.6879 −1.5005 −1.2748 −0.8201 −0.6302 −0.4345
8 −1.8530 −1.6879 −1.5005 −1.2747 −0.8027 −0.5931 −0.3793

m = 12

1 −1.9693 −1.9175 −1.8698 −1.8324 −1.7929 −1.7814 −1.7693
2 −1.7916 −1.5921 −1.4268 −1.3016 −1.1742 −1.1382 −1.1007
3 −1.7916 −1.5845 −1.3812 −1.1979 −0.9916 −0.9319 −0.8698
4 −1.7916 −1.5842 −1.3732 −1.1612 −0.8943 −0.8143 −0.7313
5 −1.7916 −1.5842 −1.3717 −1.1464 −0.8328 −0.7348 −0.6335
6 −1.7916 −1.5842 −1.3715 −1.1403 −0.7904 −0.6761 −0.5585
7 −1.7916 −1.5842 −1.3714 −1.1376 −0.7595 −0.6302 −0.4981
8 −1.7916 −1.5842 −1.3714 −1.1365 −0.7362 −0.5931 −0.4477
9 −1.7916 −1.5842 −1.3714 −1.1360 −0.7183 −0.5622 −0.4047

10 −1.7916 −1.5842 −1.3714 −1.1358 −0.7041 −0.5358 −0.3674
11 −1.7916 −1.5842 −1.3714 −1.1357 −0.6928 −0.5131 −0.3346
12 −1.7916 −1.5842 −1.3714 −1.1356 −0.6837 −0.4931 −0.3055
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Table 2. Values of standard and optimal jackknife weights (η = 1).

m : 2 3 4 6 8 12

Standard weights

w1 2.0000 1.5000 1.3333 1.2000 1.1429 1.0909
w2 −1.0000 −0.5000 −0.3333 −0.2000 −0.1429 −0.0909

Optimal weights: c = −50

w∗1,c(1) 2.0206 1.5156 1.3470 1.2122 1.1544 1.1016
w∗2,c(1) −1.0206 −0.5156 −0.3470 −0.2122 −0.1544 −0.1016

Optimal weights: c = −20

w∗1,c(1) 2.0521 1.5385 1.3670 1.2292 1.1698 1.1151
w∗2,c(1) −1.0521 −0.5385 −0.3670 −0.2292 −0.1698 −0.1151

Optimal weights: c = −10

w∗1,c(1) 2.1026 1.5741 1.3969 1.2535 1.1909 1.1325
w∗2,c(1) −1.1026 −0.5741 −0.3969 −0.2535 −0.1909 −0.1325

Optimal weights: c = −5

w∗1,c(1) 2.1923 1.6336 1.4445 1.2898 1.2213 1.1565
w∗2,c(1) −1.1923 −0.6336 −0.4445 −0.2898 −0.2213 −0.1565

Optimal weights: c = −1

w∗1,c(1) 2.4605 1.7956 1.5678 1.3788 1.2937 1.2117
w∗2,c(1) −1.4605 −0.7956 −0.5678 −0.3788 −0.2937 −0.2117

Optimal weights: c = 0

w∗1,c(1) 2.5651 1.8605 1.6176 1.4147 1.3228 1.2337
w∗2,c(1) −1.5651 −0.8605 −0.6176 −0.4147 −0.3228 −0.2337

Optimal weights: c = 1

w∗1,c(1) 2.5689 1.8773 1.6355 1.4311 1.3373 1.2455
w∗2,c(1) −1.5689 −0.8773 −0.6355 −0.4311 −0.3373 −0.2455

Our simulations examine the performance of five estimators3 of the parameter ρ = ec/n.
The baseline estimator is the OLS estimator in (4), the bias of which the jackknife estimators aim
to reduce. Three jackknife estimators with the generic form:

ρ̂J = w1ρ̂ + w2
1
m

m

∑
j=1

ρ̂j

are also considered, each differing in the choice of weights w1; in all cases, w2 = 1− w1. The standard
jackknife sets w1 = m/(m− 1); the optimal jackknife sets w1 = w∗1,c; and the unit root jackknife sets
w1 = w∗1,0. The standard jackknife removes fully the first-order bias in stationary autoregressions,
but does not do so in the near-unit root framework, in which the optimal estimator achieves this
goal. However, the optimal estimator is infeasible because it relies on the unknown parameter c.4

3 The Gauss codes used for the jackknife estimators are available from the authors on request.
4 In the simulations, we are taking η = 1 as known.
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We therefore also consider the feasible unit root jackknife obtained by setting c = 0. In addition,
we consider the jackknife estimator of Chen and Yu (2015), which is of the form:

ρ̂CY
J = w1ρ̂ +

m

∑
j=1

w2,jρ̂j.

The weights are chosen so as to minimise the variance of the estimator in addition to providing
bias reduction in the case c = 0. Because the choice of weights is a more complex problem for this
type of jackknife estimator, Chen and Yu only provide results for the cases m = 2 and m = 3, in which
case the weights are w1 = 2.8390, w2,1 = 0.6771, w2,2 = 1.1619 and w1 = 2.0260, w2,1 = 0.2087,
w2,2 = 0.3376, w2,3 = 0.4797, respectively; see Table 1 of Chen and Yu (2015).

Table 3 reports the bias of the five estimators obtained from 100,000 replications of the model
in Assumption 1 with ut ∼ iid N(0, 1) and y0 = 0 using m = 2 for each of the jackknife estimators;
this value has been found to provide particularly good bias reduction in a number of studies,
including Phillips and Yu (2005), Chambers (2013), Chambers and Kyriacou (2013) and Chen and
Yu (2015). The particular values of c are c = {−10,−5,−1, 0}, which focus on the pure unit root
case, as well as locally stationary processes, and four sample sizes are considered, these being
n =24, 48, 96 and 192. The corresponding values of ρ are: {0.5833, 0.7917, 0.8958, 0.9479} (c = −10);
{0.7917, 0.8958, 0.9479, 0.9740} (c = −5); {0.9583, 0.9792, 0.9896, 0.9948} (c = −1); and ρ = 1 for all
values of n when c = 0. The values of ρ when c = −10 are some way from unity for the smaller sample
sizes, which suggests that the standard jackknife might perform well in these cases.

The value of the bias of the estimator producing the minimum (absolute) bias for each c and n is
highlighted in bold in Table 3. The results show the substantial reduction in bias that can be achieved
with jackknife estimators, the superiority of the optimal estimator being apparent as c becomes more
negative, although the unit root jackknife also performs well in terms of bias reduction.

Table 4 contains the corresponding RMSE values for the jackknife estimators using m = 2, as well
as the RMSE corresponding to the RMSE-minimising values of m, which are typically larger than m = 2
and are also reported in the table. The RMSE value of the estimator producing the minimum RMSE for
each c and n is highlighted in bold. In fact, the optimal jackknife estimator, although constructed to
eliminate first order bias, manages to reduce the OLS estimator’s RMSE and outperforms the Chen
and Yu (2015) jackknife estimator in both bias and RMSE reduction, although the latter occurs at a
larger number of sub-samples. The results show that use of larger values of m tends to produce smaller
RMSE than when m = 2, and again, the optimal jackknife performs particularly well when c becomes
more negative. The performance of the unit root jackknife is also impressive, suggesting that it is a
feasible alternative to the optimal estimator when the value of c is unknown.

Although in itself important, bias is not the only feature of a distribution that is of interest, and
hence, the RMSE values in Table 4 should also be taken into account when assessing the performance
of the estimators. The substantial bias reductions obtained with the bias-minimising value of m = 2
come at the cost of a larger variance that ultimately feeds through into a larger RMSE compared with
the OLS estimator ρ̂. This can be offset, however, by using the larger RMSE-minimising values of
m that, despite having a larger bias than when m = 2, are nevertheless able to reduce the variance
sufficiently to result in a smaller RMSE than ρ̂.
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Table 3. Bias of OLS and jackknife estimators (m = 2) when η = 1.

Estimator n = 24 n = 48 n = 96 n = 192

c = 0

OLS −0.0663 −0.0351 −0.0180 −0.0091
Standard jackknife −0.0343 −0.0155 −0.0072 −0.0035
Optimal/unit root jackknife −0.0163 −0.0045 −0.0011 −0.0003
Chen-Yu jackknife −0.0264 −0.0144 −0.0110 −0.0102

c = −1

OLS −0.0675 −0.0365 −0.0188 −0.0096
Standard jackknife −0.0323 −0.0145 −0.0067 −0.0032
Optimal jackknife −0.0161 −0.0044 −0.0011 −0.0002
Unit root jackknife −0.0124 −0.0021 0.0002 0.0004
Chen-Yu jackknife −0.0190 −0.0099 −0.0087 −0.0089

c = −5

OLS −0.0589 −0.0350 −0.0188 −0.0098
Standard jackknife −0.0193 −0.0088 −0.0038 −0.0017
Optimal jackknife −0.0116 −0.0037 −0.0009 −0.0001
Unit root jackknife 0.0031 0.0061 0.0048 0.0029
Chen-Yu jackknife 0.0037 0.0027 −0.0017 −0.0051

c = −10

OLS −0.0437 −0.0310 −0.0178 −0.0095
Standard jackknife −0.0114 −0.0055 −0.0022 −0.0009
Optimal jackknife −0.0080 −0.0029 −0.0006 −0.0001
Unit root jackknife 0.0069 0.0089 0.0066 0.0039
Chen-Yu jackknife 0.0090 0.0071 0.0013 −0.0035

In order to assess the robustness of the jackknife estimators, some additional bias results are
presented in Table 5 that correspond to values of η < 1, while the estimators are based on the
assumption that η = 1, as in the preceding simulations.5 The results correspond to two different
specifications for ut that enable data to be generated that are consistent with different values of η.
The first specifies ut to be a first-order moving average (MA(1)) process, so that ut = εt + θεt−1

where εt ∼ iid N(0, 1); in this case η = (1 + θ2)/(1 + θ)2. The second specification is a first-order
autoregressive (AR(1)) process of the form ut = φut−1 + εt, in which case η = (1− φ)2/(1− φ2).
In the MA(1) case, we have chosen θ = 0.5 in order to give an intermediate value of η = 0.5556, while
in the AR(1) case, we have chosen φ = 0.9 to give a small value of η = 0.0526. As in Table 3, the value
of the bias of the estimator producing the minimum (absolute) bias for each c and n is highlighted in
bold. Table 5 shows, in the MA case, that the jackknife estimators are able to reduce bias when c = 0,
but none of them is able to do so when c = −1 or c = −5. In the AR case, with a smaller value of
η, the jackknife estimators are still able to deliver bias reduction, albeit to a lesser extent than when
η = 1, and it is the unit root jackknife of Chambers and Kyriacou (2013) that achieves the greatest bias
reduction in this case. These results are indicative of the importance of knowing η and suggest that
developing methods to allow for η 6= 1 is important from an empirical viewpoint.

5 We thank a referee for suggesting that we investigate the performance of the estimators when η < 1.
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Table 4. RMSE of OLS and jackknife estimators when η = 1.

Estimator n = 24 n = 48 n = 96 n = 192

c = 0

OLS 0.1366 0.0719 0.0371 0.0187
Standard jackknife (m = 2) 0.1482 0.0766 0.0396 0.0199
Standard jackknife (m = 4, 6, 6, 8) 0.1310 0.0659 0.0333 0.0165
Optimal/unit root jackknife (m = 2) 0.1753 0.0915 0.0479 0.0242
Optimal/unit root jackknife (m = 4, 8, 12, 12) 0.1383 0.0642 0.0312 0.0154
Chen-Yu jackknife (m = 2) 0.1640 0.0864 0.0462 0.0249
Chen-Yu jackknife (m = 3) 0.1392 0.0719 0.0374 0.0188

c = −1

OLS 0.1428 0.0762 0.0396 0.0200
Standard jackknife (m = 2) 0.1524 0.0797 0.0415 0.0209
Standard jackknife (m = 4, 6, 6, 8) 0.1368 0.0698 0.0355 0.0176
Optimal jackknife (m = 2) 0.1724 0.0908 0.0477 0.0242
Optimal jackknife (m = 4, 8, 12, 12) 0.1416 0.0679 0.0334 0.0165
Unit root jackknife (m = 2) 0.1778 0.0939 0.0495 0.0251
Unit root jackknife (m = 4, 8, 12, 12) 0.1435 0.0680 0.0333 0.0165
Chen-Yu jackknife (m = 2) 0.1710 0.0916 0.0489 0.0262
Chen-Yu jackknife (m = 3) 0.1477 0.0778 0.0408 0.0207

c = −5

OLS 0.1626 0.0901 0.0476 0.0243
Standard jackknife (m = 2) 0.1745 0.0944 0.0498 0.0253
Standard jackknife (m = 6, 6, 8, 8) 0.1615 0.0855 0.0442 0.0223
Optimal jackknife (m = 2) 0.1813 0.0982 0.0520 0.0265
Optimal jackknife (m = 6, 8, 12, 12) 0.1641 0.0847 0.0432 0.0216
Unit root jackknife (m = 2) 0.1975 0.1078 0.0576 0.0295
Unit root jackknife (m = 6, 12, 12, 12) 0.1710 0.0852 0.0433 0.0219
Chen-Yu jackknife (m = 2) 0.2066 0.1138 0.0610 0.0318
Chen-Yu jackknife (m = 3) 0.1857 0.1014 0.0540 0.0279

c = −10

OLS 0.1809 0.1037 0.0558 0.0288
Standard jackknife (m = 2) 0.1971 0.1096 0.0584 0.0300
Standard jackknife (m = 8, 8, 12, 12) 0.1853 0.1016 0.0534 0.0272
Optimal jackknife (m = 2) 0.2003 0.1114 0.0595 0.0306
Optimal jackknife (m = 4, 12, 12, 12) 0.1877 0.1015 0.0530 0.0270
Unit root jackknife (m = 2) 0.2175 0.1217 0.0656 0.0340
Unit root jackknife (m = 6, 12, 12, 12) 0.1985 0.1032 0.0539 0.0277
Chen-Yu jackknife (m = 2) 0.2328 0.1315 0.0711 0.0372
Chen-Yu jackknife (m = 3) 0.2151 0.1202 0.0649 0.0338
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Table 5. Bias of OLS and jackknife estimators (m = 2) when η 6= 1.

Estimator n = 24 n = 48 n = 96 n = 192

η = 0.5556 (MA case)

c = 0

OLS −0.0191 −0.0105 −0.0054 −0.0028
Standard jackknife −0.0059 −0.0018 −0.0006 −0.0002
Optimal/unit root jackknife (η = 1) 0.0016 0.0031 0.0022 0.0012
Chen-Yu jackknife 0.0062 0.0054 0.0034 0.0018

c = −1

OLS −0.0060 −0.0040 −0.0022 −0.0012
Standard jackknife 0.0110 0.0068 0.0038 0.0020
Optimal jackknife (η = 1) 0.0188 0.0118 0.0065 0.0034
Unit root jackknife 0.0206 0.0129 0.0072 0.0037
Chen-Yu jackknife 0.0275 0.0167 0.0091 0.0048

c = −5

OLS 0.0631 0.0304 0.0150 0.0074
Standard jackknife 0.0885 0.0457 0.0234 0.0118
Optimal jackknife (η = 1) 0.0934 0.0486 0.0250 0.0127
Unit root jackknife 0.1028 0.0543 0.0281 0.0143
Chen-Yu jackknife 0.1129 0.0601 0.0312 0.0159

η = 0.0526 (AR case)

c = 0

OLS 0.0524 0.0237 0.0107 0.0049
Standard jackknife 0.0306 0.0137 0.0066 0.0033
Optimal/unit root jackknife (η = 1) 0.0183 0.0081 0.0043 0.0024
Chen-Yu jackknife 0.0293 0.0143 0.0076 0.0039

c = −1

OLS 0.0801 0.0386 0.0184 0.0089
Standard jackknife 0.0624 0.0305 0.0153 0.0077
Optimal jackknife (η = 1) 0.0542 0.0268 0.0139 0.0071
Unit root jackknife 0.0524 0.0260 0.0135 0.0070
Chen-Yu jackknife 0.0645 0.0331 0.0172 0.0088

c = −5

OLS 0.2116 0.1086 0.0547 0.0273
Standard jackknife 0.2096 0.1070 0.0541 0.0271
Optimal jackknife (η = 1) 0.2092 0.1067 0.0539 0.0271
Unit root jackknife 0.2084 0.1061 0.0537 0.0270
Chen-Yu jackknife 0.2212 0.1138 0.0575 0.0289

5. Conclusions

This paper has analysed the specification and performance of jackknife estimators of the
autoregressive coefficient in a model with a near-unit root. The limit distributions of sub-sample
estimators that are used in the construction of the jackknife estimator are derived, and the joint MGF
of two components of that distribution is obtained and its properties explored. The MGF can then
be used to derive the weights for an optimal jackknife estimator that removes fully the first-order
finite sample bias from the OLS estimator. The resulting jackknife estimator is shown to perform well
at finite sample bias reduction in a simulation study and, with a suitable choice of the number of
sub-samples, is shown to be able to reduce the overall finite sample RMSE, as well.

The theoretical findings in Sections 3 and 4 show how first-order approximations on sub-sample
estimators can be used along with the well-known full-sample results of Phillips (1987a) for
finite-sample refinements. The jackknife uses analytical (rather than simulation-based) results to
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achieve bias reduction at minimal computational cost along the same lines as indirect inference
methods based on analytical approximations in Phillips (2012) and Kyriacou et al. (2017). Apart from
computational simplicity, an evident advantage of analytical-based methods over simulation-based
alternatives such as bootstrap or (traditional, simulation-based) indirect inference methods is that they
require no distributional assumptions on the error term.

Despite its success in achieving substantial bias reduction in finite samples, as shown in the
simulations, a shortcoming of the jackknife estimator, and an impediment to its use in practice, is the
dependence of the optimal weights on the unknown near-unit root parameter, as well as on a quantity
related to the long-run variance of the disturbances.6 However, our theoretical results in Sections 3
and 4 reveal precisely how these quantities affect the optimal weights and therefore can, in principle,
be used to guide further research into the development of a feasible data-driven version of the jackknife
within this framework. Such further work is potentially useful in view of the simulations in Tables 3
and 4 highlighting that (feasible) jackknife estimators are an effective bias and RMSE reduction tool in
a local unit root setting, even if they do not fully remove first order bias. Moreover, the results obtained
in Theorems 1–4 can be utilised in a wide range of sub-sampling situations outside that of jackknife
estimation itself.

The results in this paper could be utilised and extended in a number of directions. An obvious
application would be in the use of jackknife estimators as the basis for developing unit root test statistics,
the local-to-unity framework being particularly well suited to the analysis of the power functions
of such tests. It would also be possible to develop, fully, a variance-minimising jackknife estimator
along the lines of Chen and Yu (2015) who derived analytic results for c = 0 and m = 2 or 3, although
extending their approach to arbitrary c and m represents a challenging task. However, considerable
progress has been made in this direction by Stoykov (2017), who builds upon our results and also
proposes a two-step jackknife estimator that incorporates an estimate of c to determine the jackknife
weights. The estimation model could also be extended to include an intercept and/or a time trend.
The presence of an intercept will affect the limit distributions by replacing the Ornstein–Uhlenbeck
processes by demeaned versions thereof, which will also have an effect on the finite sample biases.
Such effects have been investigated by Stoykov (2017), who shows that substantial reductions in bias
can still be achieved by jackknife methods. Applications of jackknife methods in multivariate time
series settings are also possible, a recent example being Chambers (2015) in the case of a cointegrated
system, but other multivariate possibilities could be envisaged.
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Appendix A.

Proof of Theorem 1. The proofs of Parts (a) and (b) rely on the solution to the stochastic difference
equation generating yt, which is given by:

yt =
t

∑
j=1

ec(t−j)/nuj + ect/ny0. (A1)

6 It should also be noted that we have assumed y0 = 0 in deriving the jackknife weights, whereas the expansion in Theorem 2
suggests that the bias functions (and, hence, the jackknife weights) will depend in a non-trivial and more complicated way
on y0 when y0 6= 0. Although we have not investigated the issue further here, the results in Kyriacou (2011) suggest that
jackknife methods can still provide bias reduction even when y0 6= 0.
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The normalised partial sums of ut, St = ∑t
j=1 uj, are also important, as is the functional:

Xn(r) =
1√
n

S[nr] =
1√
n

Sj−1,
j− 1

n
≤ r <

j
n

. (A2)

Under the conditions on ut, it follows that Xn(r)⇒ σW(r) as n→ ∞. Taking each part in turn:

(a) In view of (A1) and (A2), the object of interest can be written:

1
`2 ∑

t∈τj

y2
t =

1
`2 ∑

t∈τj

{
t

∑
j=1

ec(t−j)/nuj + ect/ny0

}2

=
1
`2 ∑

t∈τj


(

t

∑
j=1

ec(t−j)/nuj

)2

+ 2ect/ny0

t

∑
j=1

ec(t−j)/nuj + e2ct/ny2
0


=

n2

`2 ∑
t∈τj

∫ t/n

(t−1)/n

(
t

∑
j=1

ec(t−j)/n
∫ j/n

(j−1)/n
dXn(s)

)2

dr + op(1)

= m2
∫ j/m

(j−1)/m

(∫ r

0
ec(r−s)dXn(s)

)2
dr + op(1)

⇒ σ2m2
∫ j/m

(j−1)/m
J2
c

where, in the penultimate line, we note that j`/n = j/m and (j− 1)`/n = (j− 1)/m to give the limits
of the outer integral.

(b) Squaring the difference equation for yt, summing over t ∈ τj and noting that e2c/n = 1 + (2c/n) +
O(n−2), we obtain:

1
` ∑

t∈τj

y2
t =

e2c/n

` ∑
t∈τj

y2
t−1 +

2ec/n

` ∑
t∈τj

yt−1ut +
1
` ∑

t∈τj

u2
t

=
1
` ∑

t∈τj

y2
t−1 +

2c
n` ∑

t∈τj

y2
t−1 +

2
` ∑

t∈τj

yt−1ut +
1
` ∑

t∈τj

u2
t + op(1).

Solving for the quantity of interest yields:

1
` ∑

t∈τj

yt−1ut =
1
2

1
` ∑

t∈τj

y2
t −

1
` ∑

t∈τj

y2
t−1 −

2c
n` ∑

t∈τj

y2
t−1 −

1
` ∑

t∈τj

u2
t

+ op(1)

=
1
2


(

1√
`

yj`

)2
−
(

1√
`

y(j−1)`

)2
− 2c

m`2 ∑
t∈τj

y2
t−1 −

1
` ∑

t∈τj

u2
t

+ op(1).

Now, as n→ ∞,

1√
`

yj` =

√
m√
n

yj` ⇒ σ
√

mJc

(
j

m

)
,

1√
`

y(j−1)` =

√
m√
n

y(j−1)` ⇒ σ
√

mJc

(
j− 1

m

)
,
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noting that j` = (j/m)n and (j− 1)` = ((j− 1)/m)n. It follows that:

1
` ∑

t∈τj

yt−1ut ⇒
1
2

{
σ2mJc

(
j

m

)2
− σ2mJc

(
j− 1

m

)2
− 2c

m
σ2m2

∫ j/m

(j−1)/m
J2
c

}
− σ2

u
2

=
σ2m

2

{
Jc

(
j

m

)2
− Jc

(
j− 1

m

)2
− 2c

∫ j/m

(j−1)/m
J2
c

}
− σ2

u
2

.

Using the Itô calculus (see, for example, Tanaka (1996, p. 58), we obtain the following stochastic
differential equation for Jc(t)2:

d[Jc(t)2] = 2Jc(t)dJc(t) + dt;

substituting dJc(t) = cJc(t)dt + dW(t) then yields:

d[Jc(t)2] = 2Jc(t)dW(t) +
(

1 + 2cJc(t)2
)

dt.

Integrating the above over [(j− 1)/m, j/m], we find that:

Jc

(
j

m

)2
− Jc

(
j− 1

m

)2
= 2

∫ j/m

(j−1)/m
JcdW + 2c

∫ j/m

(j−1)/m
J2
c +

1
m

,

and hence, we obtain:

1
` ∑

t∈τj

yt−1ut ⇒
σ2m

2

(
2
∫ j/m

(j−1)/m
JcdW +

1
m

)
− σ2

u
2

= σ2m
∫ j/m

(j−1)/m
JcdW +

1
2
(σ2 − σ2

u)

as required.

(c) The result follows immediately from Parts (a) and (b) in view of (7).

Proof of Theorem 2. Proceeding as in the proof of Theorem 1, but retaining higher order terms, we
find that:

1
`2 ∑

t∈τj

y2
t =

n2

`2 ∑
t∈τj

∫ t/n

(t−1)/n

(
t

∑
j=1

ec(t−j)/n
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dXn(s)
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dr

+
2n3/2y0
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t
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+
n
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0
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2m3/2y0√
`
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0
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m
`2
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(j−1)/m
e2crdry2

0

d
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(j−1)/m
J2
c +

2σm3/2y0√
`

∫ j/m

(j−1)/m
ecr Jc + Op

(
1
`

)
.
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Next, as before, we have:

1
` ∑

t∈τj

yt−1ut =
1
2


(

1√
`

yj`

)2
−
(

1√
`

y(j−1)`

)2
− 2c

m`2 ∑
t∈τj

y2
t−1 −

1
` ∑

t∈τj

u2
t

+ Op

(
1
`

)
.

Now: (
1√
`

yj`

)2
d
=

(
σ
√

mJc

(
j

m

)
+

√
m√
`

ecj/my0

)2

+ Op

(
1
`

)
d
= σ2mJc

(
j

m

)2
+

2σmecj/my0√
`

Jc

(
j

m

)
+ Op

(
1
`

)
;

a similar result holds for (y(j−1)`/
√
`)2. Furthermore,

1
` ∑

t∈τj

u2
t =

1√
`

 1√
`

∑
t∈τj

(u2
t − σ2

u)

+ σ2
u

d
=

v f√
`

ξ2j + σ2
u + Op

(
1
`

)

where ξ2j ∼ N(0, 1) (j = 1, . . . , m). Combining with the result for (1/`2)∑t∈τj
y2

t , we find that:
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)
where ξ1j (j = 1, . . . , m) is defined by:

ξ1j = ecj/m Jc

(
j

m

)
− ec(j−1)/m Jc

(
j− 1

m

)
− 2c√

m

∫ j/m

(j−1)/m
ecr Jc.

The stated distribution of ξ1j then follows using the property that:

EJc(r)Jc(s) =
ec(r+s) − ec(max(r,s)−min(r,s))

2c

to calculate the variances and covariances; see Perron (1991, p. 234). In particular:

E
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ecj/m Jc

(
j

m

)
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(
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m
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=

1
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which combine to determine s2. The result for `(ρ̂j − ρ) follows from the above results.

Proof of Theorem 3. (a) The aim is to derive the joint MGF:

Mc(θ1, θ2) = E exp
(

θ1

∫ b

a
JcdW + θ2

∫ b

a
J2
c

)
.

We begin by noting that:

∫ b

a
JcdW =

1
2

[
Jc(b)2 − Jc(a)2 − 2c

∫ b

a
J2
c − (b− a)

]
so that the function of interest becomes:

Mc(θ1, θ2) = exp
(
− θ1(b− a)

2

)
E exp

(
θ1

2

[
Jc(b)2 − Jc(a)2

]
+ (θ2 − cθ1)

∫ b

a
J2
c

)
.

Evaluation of this expectation is aided by introducing the auxiliary O-U process Y(t) on t ∈ [0, b]
with parameter λ, defined by:

dY(t) = λY(t)dt + dW(t), Y(0) = 0.

Let µJc and µY denote the probability measures induced by Jc and Y, respectively. These measures
are equivalent and, by Girsanov’s theorem (see, for example, Theorem 4.1 of Tanaka 1996),

dµJc

dµY
(s) = exp

(
(c− λ)

∫ b

0
s(t)ds(t)− (c2 − λ2)

2

∫ b

0
s(t)2dt

)
is the Radon–Nikodym derivative evaluated at s(t), a random process on [0, b] with s(0) = 0. The
above change of measure will be used because, for a function f (Jc),

E ( f (Jc)) = E
(

f (Y)
dµJc

dµY
(Y)
)

.

Using the change of measure, we obtain:

Mc(θ1, θ2) = exp
(
− θ1(b− a)

2

)
E exp

(
θ1

2

[
Y(b)2 −Y(a)2

]
+ (θ2 − cθ1)

∫ b

a
Y2

+(c− λ)
∫ b

0
YdY− (c2 − λ2)

2

∫ b

0
Y2
)

.

Now, using the Itô calculus,
∫ b

0 YdY = (1/2)[Y(b)2 − b], and so:

θ1

2

[
Y(b)2 −Y(a)2

]
+ (c− λ)

∫ b

0
YdY =

(θ1 + c− λ)

2
Y(b)2 − θ1

2
Y(a)2 − (c− λ)

2
b,

while splitting the second integral involving Y2 yields:

(θ2 − cθ1)
∫ b

a
Y2 − (c2 − λ2)

2

∫ b

0
Y2 =

(λ2 − c2 − 2cθ1 + 2θ2)

2

∫ b

a
Y2 − (c2 − λ2)

2

∫ a

0
Y2.
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Hence, defining δ = θ1 + c− λ,

Mc(θ1, θ2) = exp
(

θ1a− δb
2

)
E exp

{
δ

2
Y(b)2 − θ1

2
Y(a)2

+
(λ2 − c2 − 2cθ1 + 2θ2)

2

∫ b

a
Y2 − (c2 − λ2)

2

∫ a

0
Y2
}

.

As the parameter λ is arbitrary, it is convenient to set λ = (c2 + 2cθ1 − 2θ2)
1/2 so as to eliminate

the term
∫ b

a Y2. We shall then proceed in two steps:

(i) Take the expectation in Mc(θ1, θ2) conditional on F a
0 , the sigma field generated by W on [0, a].

(ii) Introduce another O-U process V and apply Girsanov’s theorem again to take the expectation
with respect to F a

0 .

Step (i). Conditional on F a
0 , we obtain:

Mc(θ1, θ2;F a
0 ) = exp

(
θ1a− δb

2

)
exp

(
− θ1

2
Y(a)2 − (c2 − λ2)

2

∫ a

0
Y2
)

E
[

exp
(

δ

2
Y(b)2

)∣∣∣∣F a
0

]
.

Now, from the representation Y(b) = exp((b− a)λ)Y(a) +
∫ b

a exp((b− r)λ)dW(r), it follows that
Y(b)|F a

0 ∼ N(µ, ω2), where:

µ = E (Y(b)|F a
0 ) = exp((b− a)λ)Y(a),

ω2 = E
[
(Y(b)− E (Y(b)|F a

0 ))
2 |F a

0

]
=

exp(2(b− a)λ)− 1
2λ

.

Hence, using Lemma 5 of Magnus (1986), for example,

E
[

exp
(

δ

2
Y(b)2

)∣∣∣∣F a
0

]
= exp

(
δ

2
kY(a)2

)(
1− δω2

)−1/2
,

where k = exp(2(b− a)λ)/(1− δω2), and so:

Mc(θ1, θ2;F a
0 ) = exp

(
θ1a− δb

2

)(
1− δω2

)−1/2
exp

{(
δk− θ1

2

)
Y(a)2 − (c2 − λ2)

2

∫ a

0
Y2
}

.

Step (ii). We now introduce a new auxiliary process, V(t), on [0, a], given by:

dV(t) = ηV(t)dt + dW(t), V(0) = 0,

and will make use of the change of measure:

dµY
dµV

(s) = exp
(
(λ− η)

∫ a

0
s(t)ds(t)− (λ2 − η2)

2

∫ a

0
s(t)2dt

)
in order to eliminate

∫ a
0 Y2. We have Mc(θ1, θ2) = EMc(θ1, θ2;F a

0 ), and so:

Mc(θ1, θ2) = exp
(

θ1a− δb
2

)(
1− δω2

)−1/2
E exp

{(
δk− θ1

2

)
Y(a)2 − (c2 − λ2)

2

∫ a

0
Y2
}

.

With the change of measure, the expectation of interest becomes:

E exp
{(

δk− θ1

2

)
V(a)2 + (λ− η)

∫ a

0
VdV +

η2 − c2

2

∫ a

0
V2
}

.
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However, η is arbitrary, and so, we set η = c in order to eliminate
∫ a

0 V2. Furthermore, noting
that

∫ a
0 VdV = (1/2)[V(a)2 − a], we obtain:

E exp
{(

δk− θ1

2

)
V(a)2 + (λ− c)

∫ a

0
VdV

}
= exp

(
− (λ− c)

2
a
)

E exp
(

δ(k− 1)
2

V(a)2
)

.

Now, V(a) =
∫ a

0 ec(a−r)dW(r), and so, V(a) ∼ N(0, v2) where v2 = (e2ac − 1)/(2c), hence:

E exp
(

δ(k− 1)
2

V(a)2
)
=
(

1− δ(k− 1)v2
)−1/2

.

It follows that Mc(θ1, θ2) = exp(−(θ1 + c)(b− a)/2)Hc(θ1, θ2)
−1/2 where:

Hc(θ1, θ2) = exp(−(b− a)λ)(1− δω2)(1− δ(k− 1)v2). (A3)

Let z = (b− a)λ. Then:

e−z(1− δω2) = e−z − δe−z (e
2z − 1)
2λ

= e−z −
(

θ1 + c
λ
− 1
)

(ez − e−z)

2

=
(ez + e−z)

2
− (θ1 + c)

λ

(ez − e−z)

2

= cosh z− (θ1 + c)
λ

sinh z.

The second term involves the expression (k− 1)(1− δω2) = e2z − 1 + δω2, and so, we obtain:

e−z(k− 1)(1− δω2) = ez − e−z + δe−z (e
2z − 1)
2λ

= ez − e−z +

(
θ1 + c

λ
− 1
)

(ez − e−z)

2

=

(
1 +

θ1 + c
λ

)
(ez − e−z)

2
=

1
λ
(λ + θ1 + c) sinh z.

Noting that δ(θ1 + c + λ) = (θ1 + c− λ)(θ1 + c + λ) = (θ1 + c)2 − λ2 = θ2
1 + 2θ2 and combining

these components yields the required expression for Hc(θ1, θ2).

(b) The individual MGFs follow straightforwardly from Part (a), noting that MNc(θ1) = Mc(θ1, 0)
and MDc(θ2) = Mc(0, θ2).
(c) From the definition of Mc(θ1, θ2), we obtain:

∂Mc(θ1, θ2)

∂θ1
= − (b− a)

2
exp

(
− (θ1 + c)

2
(b− a)

)
Hc(θ1, θ2)

−1/2

−1
2

exp
(
− (θ1 + c)

2
(b− a)

)
Hc(θ1, θ2)

−3/2 ∂Hc(θ1, θ2)

∂θ1
.

Partial differentiation of Hc(θ1, θ2) yields:

∂Hc(θ1, θ2)

∂θ1
= c(b− a)

sinh(b− a)λ
λ

+ c
[
θ1 + c + v2(θ2

1 + 2θ2)
] sinh(b− a)λ

λ3

−
(

1 + 2θ1v2
) sinh(b− a)λ

λ
− c(b− a)

[
θ1 + c + v2(θ2

1 + 2θ2)
] cosh(b− a)λ

λ2 ,
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which makes use of the results:

∂ cosh(b− a)λ
∂θ1

= c(b− a)
sinh(b− a)λ

λ
,

∂ sinh(b− a)λ
∂θ1

= c(b− a)
cosh(b− a)λ

λ
.

We need to evaluate ∂Hc(θ1, θ2)/∂θ1 at θ1 = 0 and at −θ2, and this is facilitated by defining
x = (c2 + 2θ2)

1/2 to replace λ; this results in:

∂Hc(θ1,−θ2)

∂θ1

∣∣∣∣
θ1=0

= [c(b− a)− 1]
sinh(b− a)x

x
+ c

(
c− 2v2θ2

) sinh(b− a)x
x3

−c(b− a)
(

c− 2v2θ2

) cosh(b− a)x
x2 .

It is also convenient to define:

g(x) = Hc(0,−θ2) = cosh(b− a)x−
(

c− 2v2θ2

) sinh(b− a)x
x

.

Combining the results above yields:

∂Mc(θ1,−θ2)

∂θ1

∣∣∣∣
θ1=0

= − (b− a)
2

exp
(
− c(b− a)

2

)
g(x)−1/2

−1
2

exp
(
− c(b− a)

2

)
g(x)−3/2

{
[c(b− a)− 1]

sinh(b− a)x
x

+ c
(

c− 2v2θ2

) sinh(b− a)x
x3 − c(b− a)

(
c− 2v2θ2

) cosh(b− a)x
x2

}
.

Integrating with respect to θ2 yields the result in the theorem.

Proof of Corollary to Theorem 3. The results follow from Theorem 3 noting that:
(a) b− a = 1 and v2 = 0;
(b) b− a = 1/m and limc→0 v2

j−1 = (j− 1)/m.

Derivation of (14). From (A3), we can write:

Mc(θ1, θ2) =
{

exp((θ1 + c)(b− a)) exp(−z)(1− δω2)(1− δ(k− 1)v2)
}−1/2

,

where z = (b− a)λ. It can be shown that:

1− δ(k− 1)v2 =
1− δω2 − δv2[exp(2z)− (1− δω2)]

1− δω2

so that:
(1− δω2)(1− δ(k− 1)v2) = (1 + δv2)(1− δω2)− δv2 exp(2z).

Multiplying by exp(−z) and noting that:

exp(−z)(1− δω2) =
2λ + δ

2λ
exp(−z)− δ

2λ
exp(z)

results in the expression for Mc(θ1, θ2) in (14).

Proof of Theorem 4. We can examine what happens to the quantities in Parts (a) and (b) by considering
the joint MGF of (−2c)1/2

∫ b
a JcdW and (−2c)

∫ b
a J2

c , which is given by:

Lc(p, q) = Mc

(
(−2c)1/2 p,−2cq

)
.
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Using (14), we need to examine the asymptotic properties of λ, δ and v2 as c→ −∞. The following
asymptotic expansions facilitate this:

λ = (c2 + 2c(−2c)1/2 p + 4cq)1/2 = (c2 − 23/2(−c)3/2 p + 4cq)1/2

= −c− 21/2(−c)1/2 p− p2 − 2q + O(|c|−1/2);

δ = (−2c)1/2 p + c− λ = 21/2(−c)1/2 p + c + c + 21/2(−c)1/2 p + p2 + 2q + O(|c|−1/2)

= 23/2(−c)1/2 p + 2c + p2 + 2q + O(|c|−1/2);

2λ + δ = (−2c)1/2 p + c + λ = (−2c)1/2 p + c− c− 21/2(−c)1/2 p− p2 − 2q + O(|c|−1/2)

= −p2 − 2q + O(|c|−1/2);

δv2 = (exp(2ac)− 1)

(
23/2(−c)1/2 p + 2c + p2 + 2q + O(|c|−1/2)

−2(−c)

)

= (exp(2ac)− 1)
(
−21/2(−c)−1/2 p + 1− 2−1(−c)−1 p2 − (−c)−1q + O(|c|−3/2)

)
→ −1 as c→ −∞.

Combining these results, we find that:

Lc(p, q)→ exp
{(

1
2

p2 + q
)
(b− a)

}
as c→ −∞,

from which the results in (a) and (b) follow immediately. To establish (c), note that:

K(c) = (b− a)1/2
(
(−2c)

∫ b

a
J2
c

)−1 (
(−2c)1/2

∫ b

a
JcdW +

1
2
(1− η)

)
+ op(1).

The result then follows using (a) and (b).

Proof of Theorem 5. To determine the weights for ρ̂∗J , note that:

E(ρ̂) = ρ +
µc(η)

n
+ O

(
1
n2

)
, E(ρ̂j) = ρ +

µc,j(η)

`
+ O

(
1
`2

)
, j = 1, . . . , m,

where µc(η) is defined in the theorem. From the definition of ρ̂∗J , taking expectations yields:

E(ρ̂∗J ) =
(
w∗1,c(η) + w∗2,c(η)

)
ρ +

1
n

(
w∗1,c(η)µc(η) + w∗2,c(η)

m

∑
j=1

µc,j(η)

)
+ O

(
1
n2

)
.

In order that E(ρ̂∗J ) = ρ + O(1/n2), the requirements are that:

(i) w∗1,c(η) + w∗2,c(η) = 1, and

(ii) w∗1,c(η)µc(η) + w∗2,c(η)∑m
j=1 µc,j(η) = 0.

Solving these two conditions simultaneously yields the stated weights.
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