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ABSTRACT 

 
Before releasing statistical outputs, data suppliers have to assess if the privacy of the 

statistical units is endangered and apply Statistical Disclosure Control (SDC) methods if 

necessary. SDC methods perturb, modify or summarize the data, depending on the 

format for releasing the data, whether as micro-data or tabular data. The goal is to choose 

an optimal method that manages disclosure risk below a tolerable risk threshold while 

ensuring high utility and high quality statistical data. In this article we first overview 

several SDC methods for continuous and categorical micro-data. All the methods perturb 

the data in some way. Changing values, however, will cause fully edited records in 

micro-data to fail edit constraints (i.e., logical rules or edits), resulting in low utility data. 

Moreover, an inconsistent record will signal it as having been perturbed for disclosure 

control and attempts can be made to unmask the data. In order to deal with these 

problems, we develop new implementation methods for the perturbation and minimize 

record level edit failures as well as overall measures which assess information loss and 

utility. This is done by perturbing within control strata and imputing for failed edits, 

ensuring additivity constraints, and preserving totals, means and covariance matrices. 
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necessary. SDC methods perturb, modify or summarize the data, depending on the format for 

releasing the data, whether as micro-data or tabular data. The goal is to choose an optimal method 

that manages disclosure risk below a tolerable risk threshold while ensuring high utility and high 

quality statistical data. In this article we first overview several SDC methods for continuous and 

categorical micro-data. All the methods perturb the data in some way. Changing values, however, 

will cause fully edited records in micro-data to fail edit constraints (i.e., logical rules or edits), 

resulting in low utility data. Moreover, an inconsistent record will signal it as having been 

perturbed for disclosure control and attempts can be made to unmask the data. In order to deal 

with these problems, we develop new implementation methods for the perturbation and minimize 

record level edit failures as well as overall measures which assess information loss and utility. 

This is done by perturbing within control strata and imputing for failed edits, ensuring additivity 

constraints, and preserving totals, means and covariance matrices.   
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1. Introduction 

The aim of statistical disclosure control (SDC) is to prevent sensitive information about 

individual respondents from being disclosed. SDC is becoming increasingly important due to the 

growing demand for information provided by Statistical Agencies. The information released by 

Statistical Agencies can be divided into two major forms of statistical data: tabular data and 

micro-data. Whereas tables have been released traditionally by Statistical Agencies, micro-data 

sets released to researchers is a relatively new phenomenon. Nowadays, many Statistical 

Agencies have provisions for releasing micro-data from social surveys for research purposes 

usually under special license agreements and through secure data archives. Micro-data from 

business surveys  are typically not released because of their disclosive nature due to high 

sampling fractions and skewed distributions. In order to preserve the privacy and confidentiality 

of individuals responding to social surveys, Statistical Agencies must assess the disclosure risk in 

micro-data and if required choose appropriate SDC methods to apply to the data (see also 

Willenborg and De Waal, 2001; Shlomo and De Waal, 2005; Shlomo and Young, 2006; and 

Willenborg and Van den Hout, 2006). Measuring disclosure risk for the SDC decision problem 

involves assessing and evaluating numerically the risk of re-identifying statistical units. SDC 

methods perturb, modify, or summarize the data in order to prevent re-identification by a 

potential attacker. Higher levels of protection through SDC methods however impact negatively 

on the utility and quality of the data. The SDC decision problem involves finding the optimum 

balance between managing disclosure risk to tolerable thresholds depending on the mode for 

accessing the data and ensuring high utility in the data. 

In any released micro-data set direct identifying key variables, such as name, address or 

identification numbers, have obviously been removed for else identification of units would be 

quite trivial. Disclosure risk typically arises from attribute disclosure where small counts on 

cross-classified indirect identifying key variables (such as: age, sex, place of residence, marital 

status, occupation, etc.) can be used to identify an individual and confidential information may be 

learnt. Generally, identifying variables are categorical ones. Sensitive variables are often 

continuous ones, but can also be categorical.  

We will illustrate the problem by means of an example. Suppose, for instance, that a micro-data 

set containing a sample of the participants of the UN/ECE Work Session on Statistical Data 

Editing held in September 2006 in Bonn (where a version of the present article was presented) 
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were released. Suppose furthermore that the micro-data set contains information on the affiliation 

of authors and their co-authors, and sensitive information on, for instance, the income (a 

continuous variable) of the authors. Now consider the record: “Affiliation author = Statistics 

Netherlands”, “Affiliation co-author = University of Southampton”, and “Income = 95,000 euro”. 

At the UN/ECE Work Session on Statistical Data Editing in Bonn there was only one author from 

Statistics Netherlands with a co-author from the University of Southampton. If the record were 

released in this form, it would be quite easy to re-identify this person and disclose that his income 

is 95,000 euro.  

The above example shows that micro-data may need to be protected against disclosure. However, 

absolute prevention of disclosure of sensitive information about individual respondents can only 

be guaranteed if no or hardly any information is released. This aim would therefore be far too 

restrictive for Statistical Agencies. A more realistic aim is to limit the probability that sensitive 

information about individual respondents can be disclosed. This aim can be achieved by applying 

SDC techniques. 

SDC techniques for micro-data include perturbative methods which alter the data and non-

perturbative methods which limit the amount of information released in the micro-data without 

actually altering the data. Examples of non-pertubative SDC techniques are global recoding, 

suppression and sub-sampling (see e.g. Willenborg and De Waal, 2001). Perturbative methods for 

continuous variables (see Section 2) include adding random noise, micro-aggregation (replacing 

values with their average within groups of records), rounding to a pre-selected rounding base, and 

rank swapping (swapping values between pairs of records within small groups). Perturbative 

methods for categorical variables (see Section 3) include record swapping (typically swapping 

geography variables) and a more general post-randomization probability mechanism (PRAM) 

where categories of variables are changed or not changed according to a prescribed probability 

matrix and a stochastic selection process.  

With non-perturbative SDC methods, the logical consistency of the records remain unchanged 

and so-called edit rules, or edits for short, will not begin to fail as a result of these methods. Edits 

describe either logical relationships that have to hold true, such as “a two-year old person cannot 

be married” or “the profit and the costs of an enterprise should sum up to its turnover”, or 

relationships that have to hold true in most cases, such as “a 12-year old girl cannot be a mother”. 
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Perturbative methods, however, alter the data, and therefore we expect consistent records to start 

failing edits due to the perturbation  

In this article we focus on perturbative SDC techniques to protect micro-data against disclosure. 

We provide an overview of the most common perturbative SDC techniques found in the literature 

and show how they can be extended and modified so as to take edits into account. We also 

demonstrate new implementation methods that preserve sufficient statistics (totals, means and 

covariance matrices).  This ensures a high level of utility in the data. We generally propose 

several alternatives for a given SDC method, and provide some results obtained from evaluation 

studies to illustrate the effects of these alternatives on the information loss.  

The innovative aspect of our work is the extension to edits so that the protected data are 

consistent and have high utility. For some academic statisticians the emphasis on consistent data, 

i.e. the wish of Statistical Agencies to let the data satisfy specified edits, may be difficult to 

understand. Statistically speaking there is indeed hardly a reason to let a data set satisfy edits, 

apart from hoping that enforcing internal consistency results in data of higher statistical quality. 

Statistical Agencies, however, have the responsibility to supply data for many different, both 

academic and non-academic, users in society. For the majority of these users, inconsistent data 

are incomprehensible. They may reject the data as being an invalid source or make adjustments 

themselves. This hampers the unifying role of the Statistical Agency in providing data that are 

undisputed by different parties such as policy makers in government, opposition, trade unions, 

employer organizations etc. As mentioned by Särndal and Lundström (2005, p. 176) in the 

context of imputation “Whatever the imputation method used, the completed data should be 

subjected to the usual checks for internal consistency. All imputed values should undergo the 

editing checks normally carried out for the survey”. This holds even more true in our context of 

protecting micro-data against disclosure as inconsistent perturbed records may pinpoint to 

potential intruders that these records have been protected. 

In order to protect a data set by means of perturbative techniques one can either perturb the 

identifying variables or perturb the sensitive variables. In the first case identification of a unit is 

rendered more difficult, and the probability that a unit is identified is hence reduced. In the 

second case, even if an attacker succeeds in identifying a unit by using the values of the indirectly 

identifying key variables, the sensitive variables would hardly disclose any useful information on 

this particular unit as they have been perturbed. One can also perturb both the identifying 
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variables and the sensitive ones simultaneously. This offers more protection, but also leads to 

more information loss. 

We illustrate the above by returning to our simple example. As the value of income is considered 

relatively high (at least for statisticians working at Statistics Netherlands!) this record is 

considered to require protection. Say we decide to protect the record by adding noise to the 

variable “income”. Without the presence of edits, one would draw a value from an appropriate 

probability distribution. Say, we draw a value of 20,000 euro and obtain a perturbed income of 

115,000 euro. Suppose, however, that it is well-known that statisticians working at Statistics 

Netherlands never earn more 100,000, which we use as an edit rule. As this edit is violated an 

attacker would be able to conclude that this records has been protected; probably because the true 

value of income was relatively high. In this very simple case we can take this edit into account by 

drawing again. Say, we now draw a value of -35,000 euro. We then obtain an income of 60,000 

euro. The record seems sufficiently protected now. 

We can also decide to perturb the categorical identifying variables by means of PRAM (see 

Section 3). The record “Affiliation author = Statistics Netherlands”, “Affiliation co-author = 

University of Southampton”, “Income = 95,000 euro” might then be modified into a record 

“Affiliation author = Statistics Canada”, “Affiliation co-author = University of Southampton”, 

“Income = 95,000 euro”. However, at the UN/ECE Work Session on Statistical Data Editing in 

Bonn there was no author from Statistics Canada with a co-author from the University of 

Southampton. This (edit) rule is violated by our “protected” record. This inconsistency might 

trigger a potential attacker to further examine and unmask this record. The record we have 

obtained after application of PRAM, “Affiliation author = Statistics Canada”, “Affiliation co-

author = University of Southampton”, “Income = 95,000 euro”, can be processed further by 

imputing values for the non-perturbed data in such a way that a feasible record results. Suppose 

that we impute “Affiliation co-author” and obtain a record “Affiliation author = Statistics 

Canada”, “Affiliation co-author = Statistics Canada”, “Income = 95,000 euro”. This is a feasible 

record as there were couples of authors and co-authors from Statistics Canada at the UN/ECE 

Work Session on Statistical Data Editing. In fact, there were more than one couple, implying that 

the final record cannot be misused to falsely deduce that a specific author from Statistics Canada 

has an income of 95,000 euro. Note that sensitive categorical data in a micro-data set can also be 

protected by means of PRAM. 
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SDC techniques have received ample attention in the literature. However, SDC techniques for 

micro-data that take edits into accounts is a new topic that only recently has received attention by 

researchers from academia and official statistics. Willenborg and Van den Hout (2006) have 

examined an SDC technique that takes edits into account. A difference between their article and 

ours is that Willenborg and Van den Hout focus on one particular SDC technique, which they 

refer to as Peruco. This is a deterministic delete/impute method for only those records having 

unsafe combinations with respect to a frequency threshold. This method introduces bias into the 

micro-data and there is no guarantee that marginal distributions, means and variance estimates are 

preserved.  

The application of SDC measures to prevent the disclosure of sensitive data leads to a loss of 

information. It is therefore important to develop quantitative information loss measures in order 

to assess whether the resulting disclosure controlled micro-data set is fit for purpose. Obviously, 

information loss measures should be minimized in order to ensure high utility. Information loss 

measures assess the impact on statistical inference: the effects on bias and variance of point 

estimates, distortions to distributions, effects on goodness of fit criteria for statistical modeling, 

etc. Assessing the information loss of the various SDC methods that we consider in this article is 

an important aspect of our article. 

The article is split into two parts: Section 2 describes the perturbation of sensitive continuous 

variables and Section 3 describes the perturbation of identifying categorical key variables. In 

Section 2, Sub-Sections 2.1 through 2.4 describe the SDC methods under analysis in this article: 

additive noise, micro-aggregation, rounding, and rank swapping. This analysis is carried out on 

survey micro-data from the 2000 Israel Income Survey where the variables that are perturbed are 

all continuous income variables: gross income, net income and taxes. In Section 3, Sub-Section 

3.1 describes the Post-randomization (PRAM) methodology which generalizes other SDC 

methods such as record swapping and impute/delete techniques. Sub-Section 3.2 describes the 

evaluation dataset based on the 1995 Israel Census sample, including the edit constraints. Sub-

Section 3.3 presents the algorithm for implementing PRAM under various methods of controlling 

variables in order to minimize edit failures and maximize data utility. Sub-Section 3.4 presents 

results of the algorithm and the impact on the edits and information loss. Finally, we conclude in 

Section 4 with a discussion on the entire analysis and future work.  
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2.  Perturbation of sensitive continuous variables  

2.1 Protecting continuous variables by means of additive noise  

Additive noise is an SDC method that is carried out on continuous variables. In its basic form 

random noise is generated identically independently distributed with a mean of zero in order to 

ensure that no bias is introduced into the original variable and a positive variance. The random 

noise is then added to the original variable. It has been shown that re-identification can occur 

using this SDC method based on probabilistic record linkage techniques (Yancey, Winkler and 

Creecy, 2002). This has led towards some development of mixture models for generating random 

noise which achieve higher protection levels. Adding random noise will not change the mean of 

the variable but may introduce more variance for the estimate of the mean of the variable. This 

will impact on the ability to make statistical inference, particularly for estimating parameters in a 

regression analysis. In this section we examine several methods for adding random noise which 

focus on preserving edits and minimizing information loss measures.  

As mentioned in the Introduction, adding noise to a variable such as income may cause edit 

failures at the record level. For example, consider the edits: 

 E1a: gross income (gross)  0, ≥

 E1b: net income (net) ≥  0, 

 E1c: taxes (tax) ≥  0 

and 

 E2: IF age ≤  17 THEN gross income ≤  mean income. 

Adding noise across the whole file may cause these edits to start failing. For example, in the 2000 

Israel Income Survey, out of 32,896 individuals aged 15 and over surveyed, 16,232 individuals 

earned an income from salaries. The mean of their gross income from salaries was 6,910 IS 

(Israeli shekel) with a standard deviation of 7,180 IS. Random noise is generated using a normal 

distribution with a mean of 0 and a variance that is 20% of the variance of the income variable 

( ). After adding the random noise to the income variable gross, 1,685 individuals 

failed the non-negativity edit E1a and out of 119 individuals under the age of 17, 6 individuals 

failed edit E2. It is clear that more control should be placed into the perturbation scheme in order 

to minimize the number of failed edits.  

2180,72.0 ×
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More control can be achieved by generating, for example, random noise for each strata defined by 

percentiles (for example, quintiles) of gross income as follows: sort the file according to the 

variable gross; define quintiles; generate random noise separately in each quintile using 20% of 

the variance of the variable gross in the quintile as described above. Based on this method, we 

obtain that now only 66 individuals fail the non-negativity edit E1a and no individuals under the 

age of 17 fail edit E2. Moreover, based on the first method using the overall variance of the 

variable gross, the resulting perturbed variable had a standard deviation of 7,849 compared to 

7,180. However, when perturbing the variable gross within quintiles, this led to an increase in the 

standard deviation to only 7,487.  

In order to reduce information loss, we can also carry out a method for generating additive 

random noise that is correlated with the variable to be perturbed, thereby ensuring that not only 

are means preserved but also the variance. Some methods for generating correlated random noise 

have been discussed in the literature based on transformations and fixed parameters (Kim, 1986, 

Fuller 1993, Brand, 2002, Yancey, Winkler and Creecy, 2002). We propose, however, an 

alternative method for generating correlated random noise that preserves means and variances 

that is very easy to implement. We demonstrate our method first on the univariate income 

variable gross. Define δ  which controls the amount of random noise added and calculate: 

)1( 2
1 δ−=d  and 2

2 δ=d . 

Now, generate random noise ε  with a mean of µµ
2

11
d

d−
=′ , where 910,6=µ  is the mean of the 

original income variable, and a variance  of the original income variable. Calculate 

the perturbed variable as a linear combination: 

22 180,7=σ

ε×+×=′ 21 dgrossdsgros . 

Note that )()](1[)()(
2

1
21 grossEgrossE

d
ddgrossEdsgrosE =

−
+=′  and  

)()()()1()( 22 grossVargrossVargrossVarsgrosVar =+−=′ δδ . 

As defined earlier, the above method can also be carried out within quintiles in order to minimize 

the number of edit failures. Indeed, based on this method within quintiles and using 3.0=̀δ  

(which is similar to the amount of noise generated earlier), we obtain that now only 9 individuals 

fail the non-negativity edit E1a and no individuals under the age of 17 fail edit E2. Moreover, the 

overall standard deviation of the perturbed variable has remained unchanged with a value of 

7,198.  
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An additional problem when adding random noise is that there may be several variables to 

perturb at once, and these variables may be connected through an edit constraint. For example, 

again consider in the 2000 Israel Income Survey the three variables: gross, tax and net. The 

original micro-data set that has undergone edit and imputation processing will have ensured that 

no records fail the following edit: 

E3: net + tax = gross. 

However, after perturbing each variable separately, this edit constraint will not be guaranteed. 

Therefore, we considered two possibilities for adding noise, preserving means and the co-

variance matrix and preserving the edit constraint of additivity:  

• Split the procedure into two separate processes: (1) first carry out the perturbation method of 

adding random noise on each of the variables as described above; (2) implement an 

additional stage of post-editing for correcting the additivity of the variables based on linear 

programming under the minimum change paradigm. This linear programming can be carried 

out as follows. 

Let the number of continuous variables be given by n. Denote the perturbed continuous 

variables after the first step by  (i=1,…,n) and the adjusted perturbed continuous variables 

by  (i=1,…,n). The linear programming problem for the second step can then be 

formulated as 

ix

ix̂

 minimize ∑ , −
i

iii xxw |ˆ|

subject to the constraint that the  (i=1,…,n) satisfy all edits. Here the  (i=1,…,n) are 

non-negative weights expressing how serious a change in the i-th perturbed value is 

considered to be. In our case, we perturb variables tax and net, so n = 2. The constraints are 

based on: non-negativity (edits E1a, E1b and E1c), and additivity to the fixed total (gross). 

We also aim to preserve the ratio 

ix̂ iw

21 xx  before and after the adjustments, where x1 denotes 

the value of tax and x2 the value of net. Aiming to preserve the ratio 21 xx  before and after 

perturbation gives us another linear constraint, namely α=21 xx  leads to 21 xx α= . The 

resulting linear programming problem can easily be solved, e.g. by means of the EXCEL 

solver.  
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• Implement the procedure in only one step by a priori generating additive random noise 

variables that preserve the edit constraint of additivity. Therefore when combining the 

constrained additive random noise to the original values of the variables, the additivity of the 

final perturbed variables is preserved. Note also that we want to maintain same means and 

same co-variance structure before and after the perturbation. This technique is described as 

follows. 

Generate multivariate random noise in each quintile (note that we drop the index for quintile: 

, where the superscript T denotes the transpose. The vector 

 contains the corrected means of each of the three variables: gross income, net income and 

taxes: 

),(~),,( )()()( Σµ′NT
TAXNETGROSS εεε

µ′

)
1

,
1

,
1

(),,( )(
2

1
)(

2

1
)(

2

1
)()()(

T
TAXNETGROSSTAXNETGROSS d

d
d

d
d

d
µµµµµµµ

−−−
=′′′=′ . The matrix  is the 

original covariance matrix. For each separate variable, calculate the linear combination of 

the original variable and the random noise as described earlier, for example: 

Σ

)(21 GROSSdgrossdsgros ε×+×=′  using a parameter δ . The mean vector and the covariance 

matrix remain the same before and after the perturbation, and the additivity is exactly 

preserved. 

 

We used the parameter 3.0=δ  for the linear combination between the original variables and their 

generated noise. For our data set, there were only 3 individuals that failed the non-negativity edit 

E1c based on the variable tax and no individuals failed the non-negativity edits for the other 

income variables net and gross (edits E1a and E1b). No individuals failed edit E2 for any of the 

income variables. To correct for the negativity of the variable tax, the value was set to zero and 

the other variables gross and net adjusted accordingly to ensure the preservation of the additivity 

edit E3.  

2.2     Protecting continuous variables by means of micro-aggregation 

Micro-aggregation is another disclosure control technique for continuous variables. Records are 

grouped together in small groupings of size k. For each individual in the group, the value of the 

variable is replaced with the average of the values of the group to which the individual belongs. 

This method can be carried out both on a univariate or multivariate setting where the latter is 
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implemented through sophisticated computer algorithms. In this article, we focus on the simple 

univariate case.  

Replacing values of variables with their average in a small group will not initiate edit failures of 

the types described in E1 and E2, although there may be problems at the boundaries and the edits 

may have to be adjusted slightly. Micro-aggregation preserves the mean (and the overall total) of 

the income variable but will lead to a decrease in the variance of the mean because of the 

following reason. 

Let n be the sample size, m the number of groups of size p. The variance components are:  

 SST: ∑∑
= =

−
m

i

p

j
ij XX

1 1

2)(  n-1 degrees of freedom    

 (1) 

SSB: 2

1
)( XXp i

m

i
−∑

=

  m-1 degrees of freedom    

 (2) 

SSW: ∑∑
= =

−
m

i

p

j
iij XX

1 1

2)(  n-m degrees of freedom    

 (3) 

The total sum of squares SST of the income variable Xi (for i=1,…,n) can be broken down into the 

“within” sum of squares SSW which measures the variance of the mean income variable within 

the groups and the “between” sum of squares SSB which measures the variance of the mean 

income variable between the groups. When implementing micro-aggregation and replacing values 

by the average of their group, the variance that is calculated is based on the SSB only and not SST. 

In general, there may not be that much difference between SST and SSB since the size of the 

groups p is small and this results in a very small SSW. In order to minimize this information loss 

measure of a decrease in the variance, we can generate random noise according to the magnitude 

of the difference between the two variances and add it to the micro-aggregated variable. Besides 

raising the variance back to its expected level, this method will also result in extra protection 

against the risk of disclosure since it was shown in Winkler (2002) that micro-aggregation (and in 

particular univariate micro-aggregation) can be “unpicked” by intruders using elementary 

software.  
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We demonstrate our algorithm of adding random noise to a micro-aggregated variable for the 

15,708 individuals that paid tax from among the 16,232 individuals that earned an income in the 

2000 Israel Income Survey. We define small groupings of size 5 where the last grouping may 

contain less than 5 units. We define the groupings within the quintiles as defined in Section 2 in 

order to ensure that edits of types E1 and E2 will not begin to fail as a result of adding random 

noise. In each small group, the value of the variable tax is replaced by the average of the group. 

To generate random noise for each quintile, we calculate the difference between the two 

variances SST and SSB and generate the random normal distributed noise with a mean of zero and 

a variance equal to the difference. Table 1 presents the standard deviations for the mean of the 

variable tax at the different stages of the micro-aggregation/additive random noise process. Note 

that 8 individuals failed edit E2 with a negative value for the perturbed variable tax. These 

individuals had their perturbed value changed to zero.  

 

[PLACE TABLE 1 AROUND HERE] 

 

To ensure the edit constraint E3 based on the additivity of the three income variables, note that 

carrying out the micro-aggregation on each of the three variables within group i will preserve the 

additivity since the sum of the means of the two variables net and tax will equal the mean of the 

total variable gross. In order to ensure the correct variance for the means of the variables, we can 

generate random noise separately for each variable as described earlier. However generating 

random noise separately will not result in preserving the additivity and therefore the linear 

programming technique will have to be applied.  

Another method which will preserve the additivity edit E3 is to generate multivariate normal 

noise which a priori preserves the edit constraint as defined in Section 2.1: 

. For each of the variables, we define the linear combination 

of the group mean 

),(~)( )()()( Σµ′NT
TAXNETGROSS εεε

iµ where i is the small group. Let r(i) be the quintile of i. The random noise 

variable is generated within quintiles. For example, the perturbed variable gross in group i 

belonging to quintile r(i) is equal to: )(21 irii ddsgros εµ ×+×=′  where )1( 2
1 δ−=d  and 

2
2 δ=d  as defined in Section 2.1. Since the random multivariate noise itself maintains the 

additivity property, the additivity will hold when combining the random noise with the group 

 12



means for each of the three income variables. However, this algorithm will not completely return 

the original level of the true variance since: 

)].()([)()()()1()( 222
iiiiii VargrossVarVargrossVarVarsgrosVar µδµδµδ −+=+−=′   

The last term is the “within” variance and therefore the only way to get back the full covariance 

structure is to define 1=δ . This however is the definition of synthetic data which is out of scope 

of this article. By increasing δ  slightly we can gain back most of the original variance, although 

if δ  is too high then edits of types E1 and E2 will likely begin to fail.  

We compare these two methods of preserving additivity and ensuring correct variance estimation. 

Adding random noise separately to each variable, gross, net and tax resulted in correcting the 

variance but large discrepancies occurred between the sum of variables net and tax and the total 

variable gross. In this process, 9 records failed edit E1b with a negative perturbed value for tax. 

These values were changed to zero. Table 2 presents the absolute difference between the 

perturbed variable gross and the sum of the perturbed variables net and tax.  

 

[PLACE TABLE 2 AROUND HERE] 

In order to correct these differences, the linear program technique as described in Section 2.1 

(first bullet point) was applied. This resulted in the preservation of the additivity constraint, no 

additional edit failures and also preserved the original ratio between the adjusted perturbed 

variable tax and the adjusted perturbed variable net.  

Adding correlated noise with a slightly higher 5.0=δ  preserved the additivity constraint E3. 

Some edit failures occurred using this high value for δ : 47 out of the 16,232 records had 

negative values in one of the variables. These were corrected automatically by setting them to 

zero and adjusting the additivity of the other variables.  

Table 3 summarizes the standard deviations of the means of the variables gross, tax and net at the 

different stages of micro-aggregation for both procedures: additive noise and the linear 

programming to preserve the edits and adding correlated random noise.  
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[PLACE TABLE 3 AROUND HERE] 

Comparing these two methods in Table 3 for improving the micro-aggregation with respect to 

maintaining edits and the preservation of the variance, it appears that the first procedure based on 

adding random noise and the linear programming to preserve additivity achieves these aims with 

the final variance structure closer to the original variance structure. Both of the methods are 

similar with respect to the resulting correlation structure between the three income variables. 

2.3      Protecting continuous variables by means of rounding  

Rounding to a predefined base is a form of adding noise, although in this case the exact width of 

the perturbation is known a priori and can be controlled. Therefore, it is likely that edits of types 

E1 and E2 will not fail due to the rounding. However, rounding continuous variables separately 

may cause edit failures of the type defined by E3 since the sum of rounded variables will not 

necessarily equal their rounded total. Indeed, there are some software applications (and in 

particular the Tau-Argus Statistical Disclosure Control Software Package developed within the 

framework of the European Initiative CASC. see Salazar-González, Bycroft and Staggemeier, 

2005) that have a controlled rounding option based on sophisticated linear programming which 

preserves the additivity of the rounded numbers. This method however is biased and in addition, 

the option is not always available to data suppliers.  

In our case, where we are dealing with micro-data with rather simple edit restrictions, rounding 

procedures can be relatively easy to implement, similar to the problem of rounding one or two 

dimensional tables. In this example, we describe a one dimensional random rounding procedure 

which not only has the property that it is stochastic and unbiased, but it can be carried out in such 

a way as to preserve the exact overall total (and hence the mean) of the variable being rounded. 

The algorithm is as follows. Let x be the value to be rounded and let  be the largest 

multiple k of the base b such that 

)(xFloor

xbk < . In addition, define the residual of x according to the 

rounding base b by . For an unbiased random rounding procedure, x is 

rounded up to  with probability 

)()( xFloorxxres −=

))(( bxFloor + bxres )(  and rounded down to  with 

probability 

)(xFloor

))(1( bxres− . If x is already a multiple of b, it remains unchanged. The expected 

value of the rounded entry is the original entry. The rounding is usually implemented with 

replacement in the sense that each entry is rounded independently, i.e. a random uniform number 
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u between 0 and 1 is generated for each entry. If bxresu )(<  then the entry is rounded up, 

otherwise it is rounded down. The expectation of the rounding is zero and no bias should remain 

in the table. However, the realization of this stochastic process on a finite number of values in 

micro-data may lead to overall bias since the sum of the perturbations (i.e., the difference 

between the original and rounded value) going down may not necessarily equal the sum of the 

perturbations going up. In order to preserve the exact total of the variable being rounded, we 

define a simple algorithm for selecting (without replacement) which entries are rounded up and 

which entries are rounded down: for those entries having , randomly select a fraction of )(xres

bxres )(  of the entries and round upwards, the rest of the entries round downwards. Repeat this 

process for all .  )(xres

Rounding as described above should be carried out within sub-groups in order to benchmark 

important totals. For example, rounding income in each group defined by age and sex will ensure 

that the total income in that group will remain unchanged. This may, however, distort the overall 

total across the whole file, although users are generally more interested in smaller sub-groups for 

analysis and therefore preserving totals for sub-groups is more important than the overall total. 

Reshuffling algorithms can be applied for changing the direction of the rounding for some of the 

records in order to correct the totals. This algorithm will be described in the paragraph below.  

For our data set of 16,232 individuals that earned an income in the 2000 Israel Income Survey, 

we randomly round each of the variables net and tax to base 10. The method is carried out 

separately for each of the variables using the algorithm that controls and preserves the overall 

total. In order to ensure the edit of additivity E3, we calculate the rounded variable gross by 

summing the rounded variables net and tax. The rounded variable gross now has its overall total 

preserved (since the individual variables net and tax had their totals preserved), however since it 

is derived by adding the two rounded variables, this has caused the resulting sum to jump a base 

on some of the records. We carry out a reshuffling algorithm to correct this as follows:  

 

1. Select the records with more than a difference of 10 (in absolute value) between the original 

variable gross and the rounded variable gross that was obtained by summing the rounded 

variables, net and tax;  

2. Determine and select which of the variables net or tax had the most difference from its 

original value;  
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3. If the summed rounded variable gross was jumped to a higher base, drop the selected variable 

down a base and if the summed rounded variable gross was jumped to a lower base, raise the 

selected variable up a base.  

The results of this procedure are presented in Table 4 and include the impact on the overall totals 

of each of the variables. Note that ensuring that the summed rounded variable gross is within the 

base has distorted slightly the controlled total. However the distortion is not large, especially 

when compared to the alternative of no controls in the totals.  

 

[PLACE TABLE 4 AROUND HERE] 

2.4     Protecting continuous variables by means of rank swapping  

In its simplest version, rank swapping is carried out by sorting the continuous variable and 

defining groupings of size k. In each group, random pairs are selected and their values swapped. 

If the groupings are small, this method will not likely initiate edits to fail. In particular, the 

concern is for edits that are based on the logical consistency between highly correlated variables, 

such as edit E2 relating the level of income to age. This is because the method introduces bias on 

joint distributions that involve the swapped variable. Information loss measures that need to be 

minimized are based on minimizing the distortions to distributions and the effects on statistical 

inference. The larger the size of the groupings k the more possibilities of edit failures and loss of 

information, however the size of the groupings also impacts inversely on the disclosure risk, i.e. 

the larger the groupings the less disclosure risk. Therefore, a balance must be struck based on the 

parameter k which minimizes edit failures and information loss and also manages the disclosure 

risk to a tolerable risk threshold. Note that in order to preserve the edit of additivity as defined in 

edit E3, all variables involved in the edit would need to be swapped using the same paired record. 

Otherwise, adjustments could be carried out as defined by the linear programming approach 

described in Section 2.1 for preserving the additivity. 

We demonstrate this method on the 16,232 individuals that earned an income in the 2000 Israel 

Income Survey based on the income variable gross. After sorting the variable, we define 

groupings of size 10 and of size 20, select random pairs in each group and swap the values of 

gross between each pair. No edits failed for either size grouping, and the original means and 

variances for the univariate variable gross are preserved. Next we examine some information loss 
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measures based on the distortion to a particular joint distribution defined by cross classifying age 

groups (14), sex (2) and income groups (22).  

The following information loss measures are used for our evaluation study.  

Hellinger Distance: Let  be the original cell count for a joint distribution and  the perturbed 

cell count. Also, let n again be the sample size. The Hellinger Distance metric is defined as:  

ix ix̂

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

i

ii

n
x

n
x

HD
2

ˆ

2
1 . This is a symmetrical distance metric and measures how different 

two probability distributions are. Note that this measure takes into account the relative sizes of 

the original cell counts, i.e. the smaller the original cell count, the more impact on the Hellinger 

Distance. We use the Hellinger Distance to measure the distortion to the distribution defined by 

age groups ×  sex ×  income groups (616 cells) before and after rank swapping of gross income. 

The smaller the Hellinger Distance, the less information loss. 

Cramer’s V: Let T define a 2-dimensional frequency table spanned by two variables each having 

 and  number of cells and n is again the sample size. Define Cramer’s V by: 1C 2C

))1(),1min(( 21

2

2,1 −−×
=

CCn
V χ  where  is the standard test statistic for independence. Cramer’s 

V lies between 0 for no association and 1 for full association. The measure that defines the loss in 

the association when comparing  and  is 

2χ

origT pertT )()( 2,12,12,1 origpert TVTVCV −= . We use the 

difference in Cramer’s V statistic on the frequency table defined by combined age groups ×  sex 

on the rows and the income groups on the columns. The smaller the difference in Cramer’s V, the 

less information loss. Moreover, the sign of the difference is important since this tells us whether 

we are attenuating a target variable or adding more artificial association into the table. 

Impact on R2: For a univariate analysis of variance (ANOVA), we assess the impact on the 

“between” variance, i.e. the impact on the 2R  statistic. R2 is the ratio of the between sum of 

squares SSB to the total sum of squares SST (see Section 2.2). In this ANOVA analysis, we define 

the dependent variable as income gross and the independent variables as the cross-classified age 

groups  sex. The information loss measure is the ratio of the “between” variance of the 

perturbed distribution and the “between” variance of the original distribution, where the 

“between” variance is defined by: 

×

2

1
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1 xxn
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i
ii −

−
= ∑

=

, and p is the number of cells in age 
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groups ×  sex (28 cells),  is the sample size in cell i, in ix  is the mean of gross in cell i and x  is 

the overall sample mean of gross. Note that an information loss measure below one indicates 

attenuation, i.e., the means in cells i (i=1,…,p) are flattening towards the overall mean of the 

distribution whereas a value above one indicates more of a dispersion in the cell means. Table 5 

presents the results of these information loss measures.  

 

[PLACE TABLE 5 AROUND HERE] 

 

In general, as the size of the groupings increases, we obtain slightly more distortion to the 

distribution examined. There is almost no impact on the measures of association for the frequency 

table examined nor on the ratio of the between variance for the ANOVA analysis. The negative 

sign for the Cramer’s V and the ratio of BV smaller than one indicates that as the size of the 

groupings increases, we are indeed attenuating target variables across the distribution.  

3. Perturbation of identifying categorical key variables 

3.1 Protecting categorical variables by means of PRAM 

PRAM is a method used for changing values of categorical variables for certain records in the 

original data to other categories according to a prescribed probability mechanism (Gouweleeuw 

et al, 1998). It is analogous to adding random noise to continuous variables. In this method, 

values of categories are changed or not changed according to a prescribed probability matrix and 

a stochastic process based on the outcome of a random multinomial draw. The prescribed 

probability matrix can be developed in such a way as to preserve the expected marginal 

frequencies of the original variable and thus minimize the information loss. Indeed, using a more 

deterministic approach in the actual perturbation process, the exact marginal distributions can 

also be maintained. This method was used to perturb the Sample of Anonymized Records (SARs) 

of the 2001 UK Census (Gross, Guiblin and Merrett, 2004).  

The probability mechanism can be taken into account when making statistical inferences. We 

define a perturbation method in which a value in a record is moved from category  to category i
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j  with probability: . Let P  be a  transition 

matrix containing the conditional probabilities  for a categorical variable with  categories. 

Let  be the vector of frequencies and  the vector of its relative frequencies: 

) iscategory  original| iscategory  perturbed( ijppij = LL×

ijp L

t v ntv =  , where n 

is the number of records in the micro-data set. On each record of the data set, the category of the 

variable is changed or not changed according to the prescribed transition probabilities in the 

matrix  and the result of a draw of a random multinomial variate u with parameters pP ij 

(j=1,…,L). If the j-th category is selected, category i is moved to category j. When i = j, no 

change occurs.  

Let  be the vector of the perturbed frequencies. We note that  is a random variable and 

. Assuming that the transition probability matrix  has an inverse , this can be 

used to obtain an unbiased moment estimator of the original data: . Statistical analysis 

can be carried out on t̂ . In order to ensure that the transition probability matrix has an inverse 

and to control the amount of perturbation, the matrix P  is chosen to be dominant on the main 

diagonal, i.e. each entry on the main diagonal is over 0.5.  

*t *t

tPtt =)|(E * P 1−P

1*ˆ −= Ptt

Another method of applying PRAM is described in Willenborg and De Waal (2001) and is called 

invariant PRAM since it places the condition of invariance on the transition matrix , i.e. P ttP = . 

This releases the users of the perturbed file of the extra effort to obtain unbiased moment 

estimates of the original data, since  itself will be an unbiased estimate of t . Note that the 

property of invariance means that the expected values of the marginal distribution of the variable 

being perturbed are maintained. The invariance applies to the variable being perturbed, so to do a 

full invariant PRAM on several variables at once means that all of the variables would have to be 

compounded into a single variable, i.e. the variables are cross-classified. An example is given by 

Van den Hout and Elamir (see Chapter 6 in Van den Hout, 2004).  

*t

To obtain an invariant transition matrix, the following two stage algorithm given in Willenborg 

and De Waal (2001) is described below. Let  be any transition probability matrix: 

 where c  represents the original category and  represents the perturbed 

category. Now calculate the matrix Q  using Bayes formula by 

P

)|( * ickcppik === *c

∑ =

=
====

l lk p
cp(jk

kj lcp
jp

kcjcpQ
)(

)
)|( * . We estimate the entries Qkj of this matrix by 

∑l llk

jjk

vp
vp

, 

where  is the relative frequency of category j. For jv PQR =  we obtain an invariant matrix where 
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vvPQvR ==  since ∑ ∑
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l llk

jkikj
ij vp

ppv
r  and ∑∑ == k jikjiji i vpvrv . The vector of the original 

frequencies  is the eigenvector of v R . In practice, Q  can be calculated by transposing matrix , 

multiplying each column  by  and then normalizing its rows so that the sum of each row 

equals one. We define  where I  is the identity matrix of the appropriate size. 

P

j jv

IRR )1(* αα −+=

*R  is also invariant and the amount of perturbation is controlled by the value of α . 

In this article, the general method for invariant PRAM on a categorical variable having L 

categories is as follows: 

1. Choose the minimum diagonal entry for the LL×  transition probability matrix P, , and 

generate L random numbers between  and 1 to be placed on the main diagonal of P. Note 

that the probability on the main diagonal determines the amount of perturbation that will be 

carried out on the variable and it typically is over 80% in order to minimize information loss 

to the variable.  

dp

dp

2. Divide  evenly among the other columns of the row in the dp−1 LL×  transition matrix P. 

3. Calculate the invariant matrix R as described above. This will distort the original probabilities 

in the transition matrix, and in particular the diagonals will not necessarily meet the 

requirement of having a value between  and 1.  dp

4. Choose α  for *R that will bring the diagonals back to their approximate desired level. For 

instance, one can choose α  so that the average value of the entries on the main diagonal of 
*R  equals the desired level. 

For instance, assume a variable having four categories: )10 ,50 ,30 ,25(=′X . A typical transition 

probability matrix would be generated as follows with a minimal diagonal of 0.80:  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

8207.00598.00598.00598.0
0479.08563.00479.00479.0
0427.00427.08718.00427.0
0579.00579.00579.08264.0

P  

Following the above algorithm, the invariant matrix R* with 5.0=α  is as follows: 
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⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

7543.01067.00674.00716.0
0213.09058.00359.00370.0
0225.00598.08764.00413.0
0287.00740.00496.08478.0

*R

Note that XRX * ′=′ . 

As shown above, invariant PRAM can be carried out so that the expected marginal distribution of 

the variable being perturbed is preserved. By using a more deterministic approach and selecting 

(without replacement) those records which will have their value of the variable transformed from 

category i to category j based on the probability , we can obtain the exact marginal distribution 

of the variable. This method can also be implemented as an SDC data masking technique for 

frequency tables where high utility is gained by preserving the exact totals and sub-totals of the 

table and only the internal cells of the table are perturbed. In this article we will not explore the 

possibilities of applying PRAM as an SDC masking technique for frequency tables any further. 

ijp

PRAM is a generalization of other perturbative methods of disclosure control such as record 

swapping and delete/impute techniques. As in all perturbative SDC methods, joint distributions 

between perturbed and unperturbed variables will be distorted, in particular for variables that are 

highly correlated with each other. An initial analysis of the dependencies between the categorical 

variables can provide insight into which variables should be perturbed for SDC. In particular 

those variables that are highly dependent should be compounded and treated as a single variable 

in the perturbation process. As more perturbation is introduced, the utility of the data will be 

compromised. Variables that are typically perturbed are the demographic and geographic 

identifiers in the micro-data, and as mentioned in Section 2.4 these are typically used for 

statistical analysis as explanatory independent variables (e.g., regression models, ANOVA). 

Therefore, the perturbation of these variables will have an impact on the ability to make statistical 

inferences based on the perturbed micro-data. 

3.2   Evaluation dataset for PRAM 

The dataset that has been used for evaluating the SDC techniques for continuous data is less 

suited for evaluation of PRAM. For the evaluation of PRAM we have therefore used a file drawn 

from the 1995 Israel Census sample data which comprised 20% of all households in Israel. The 

dataset for this analysis contains 35,773 individuals aged 15 and over in 15,468 households 
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across all geographical areas and household characteristics. For this analysis, we perturb the 

variable age. Age has 86 categories since the evaluation dataset includes only individuals aged 15 

and over. 

The edits involve the original edits from the data processing phase that check for inconsistencies 

with the variable under perturbation, age. The edits used for the evaluation dataset are:  

EPRAM,1 : {Under 16 and ever married}=Failure; 

E PRAM,2 : {Age of marriage under 14}=Failure; 

E PRAM,3 : {Age difference between spouse over 25}=Failure; 

E PRAM,4 : {Age of mother under 14}=Failure; 

E PRAM,5 : {Year of immigration less than year of birth}=Failure; 

E PRAM,6 : {Age of father under 14}=Failure; 

E PRAM,7 : {Under 16 and relation is spouse or parent}=Failure; 

E PRAM,8 : {Under 30 and relation is grandparent}=Failure; 

E PRAM,9 : {Under 16 and academic}=Failure; 

E PRAM,10 : {Under 16 and higher degree}=Failure; 

E PRAM,11 : {Age inconsistent with year of birth}=Failure. 

In addition, since other variables may be changed in the post-editing imputation stage for 

correcting inconsistent records resulting from the perturbation, we add the following edits:  

E PRAM,12 : {Single and year of marriage not null}=Failure; 

E PRAM,13 : {Single and has spouse in household}=Failure; 

E PRAM,14 : {Relation is spouse and not married}=Failure. 

The subscript “PRAM” indicates that these edits refer to the data set that is used to evaluate 

PRAM. 

We need to ensure that not only are all records consistent in the final perturbed micro-data, but 

also that the usefulness of the data for statistical analysis is preserved by ensuring that the 

information loss measures do not fall below acceptable thresholds. Information loss measures 

were described in Section 2.4. We use the following distributions to assess information loss. 

Hellinger Distance: We use the Hellinger Distance to measure the distortion to the distribution 

defined by district (27) ×  sex (2) ×  age (86) before and after PRAM. The smaller the Hellinger 

Distance, the less information loss. 
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Cramer’s V: We use the difference in Cramer’s V statistic on two dimensional tables where the 

rows contain the variable age (86) and the columns contain the following target variables: labour 

force characteristics (4) and years of education (26). We compare the Cramer’s V before and after 

the perturbation. The smaller the difference in Cramer’s V, the less information loss. Moreover, 

the sign of the difference is important since this tells us whether we are attenuating the association 

between variables. 

Impact on R2: The information loss is expressed as the ratio of the “between” variance BV for a 

target variable in groupings defined by the perturbed variable age compared to the “between” 

variance BV for a target variable in groupings defined by the original variable age. For this 

analysis we banded age into 9 groupings: 15-17, 18-24, 25-34, 35-44, 45-54, 55-64, 65-69, 70-74, 

and 75+. The target variables selected for this analysis are: percentage of academics, percentage 

belonging to the labour force and percentage unemployed out of those belonging to the labour 

force. An information loss measure below one indicates attenuation, i.e., the percentages in cells i 

defined by the age groupings are flattening towards the overall percentage of the distribution. 

3.3    PRAM and edit constraints 

If no controls are taken into account in the perturbation process, edit failures will occur resulting 

in inconsistent and “silly” combinations, such as married children, children earning income, or an 

unfeasible age difference between a child and parents. Methods need to be developed for 

implementing PRAM that will place controls on the perturbation process and will avoid as much 

as possible edit failures, reduce information loss and raise the overall utility of the data. The 

controls in the perturbation are defined by control variables which define groupings within which 

perturbations will be allowed. These control variables are typically highly correlated with the 

variable being perturbed and ensure a priori that failed edits and information loss will be minimal. 

The methods for controlling the perturbation are the following: 

1. Before applying PRAM, the variable to be perturbed is divided into subgroups, Gg ,...,1= . 

The transition (and invariant) probability matrix is developed for each subgroup g, . The 

transition matrices for each subgroup are placed on the main diagonal of the overall final 

transition matrix where the off diagonal probabilities are all zero, i.e. the variable is only 

perturbed within the subgroup and the difference in the variable between the original value 

gR
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and the perturbed value will not exceed a specified level. An example of this is perturbing age 

within broad age bands.  

2. The variable to be perturbed may be highly correlated with other variables. Those variables 

should be compounded into one single variable. PRAM should be carried out on the 

compounded variable. Alternatively, the variable to be perturbed is carried out within 

subgroups defined by the second highly correlated variable. An example of this is when age is 

perturbed within groupings defined by marital status.  

The control variables in the perturbation process will minimize the amount of edit failures, but 

they will not eliminate all edit failures, especially edit failures that are out of scope of the 

variables that are being perturbed. Remaining edit failures need to be manually or automatically 

corrected through imputation procedures depending on the types of edit failures and the amount.  

We have applied a hot-deck imputation method for correcting inconsistent records and edit 

failures. This hot-deck imputation method was implemented by choosing a neighboring donor 

matching on control variables: district, number of persons in the household, marital status, sex 

and perturbed age. All variables that are included in the edits and are not control variables are 

imputed. The need for further imputation to satisfy edits means that more perturbation is 

introduced into the micro-data for other variables in the file interacting with the perturbed 

variable age. For example, the ages of the spouse and/or parents may also need to be changed as 

well as marital status. Therefore, the lower the number of overall edit failures resulting from the 

perturbation process, the less need for imputation to correct inconsistencies and the higher the 

utility maintained in the data. Section 3.4 presents results of the effectiveness of putting into place 

controls in the perturbation of the micro-data, thereby minimizing failed edits.  

3.4    Results of PRAM on evaluation data 

The perturbation of age by PRAM was carried out using an invariant transition probability matrix 

as described in Section 3.1. As mentioned, there are 86 categories of age in the evaluation data 

for individuals aged 15 and over. To perturb age we use the following methods:  

1. Random perturbation across all ages, i.e. the transition probability matrix is of size 86× 86, the 

diagonal pd is generated randomly and all other columns are given equal entries: 85)1( dp− . 

The matrix is then made to be invariant and the diagonals controlled through the use of α  as 

explained in Section 3.1.  
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2. Perturbation carried out within categories of marital status (4 categories – married, divorced, 

widowed and single), i.e. four separate invariant transition probability matrices are developed 

for perturbing age in each of the categories of marital status and the perturbation is carried out 

separately within each category. In other words, the final probability transition matrix is block 

diagonal containing the four matrices on the diagonals and all other parts of the transition 

probability matrix are zero. 

3. Perturbation carried out on marital status (4 categories – married, divorced, widowed and 

single) ×  age bands (5 bands – 15-17, 18-24, 25-44, 45-64, 65-74 , 75+) as explained above. 

4. Perturbation only allowed within broad age bands (9 bands – 15-17, 18-24, 25-34, 35-44, 45-

54, 55-64, 65-69, 70-74, 75+) as explained above.  

Because of the stochastic nature of the process, each method above results in a different number 

of records being perturbed. The number of perturbations for method 1 was 7,316 records. For 

methods, 2, 3, and 4, 6,822, 7,535, and 8,068 records were perturbed, respectively. Table 6 

presents the number of records that failed the edits as presented in Section 3.2 after perturbing 

age according to the above methods. Note the large reduction in the number of edit failures as a 

result of placing controls on the perturbation processes. In particular, perturbing within narrow 

age bands (which is highly correlated with marital status) produced the best results.  

 

[PLACE TABLE 6 AROUND HERE] 

 

For each of the perturbation methods above, the edit failures were corrected using the hot-deck 

donor imputation method described in Section 3.3. In method 1, 37 records could not be imputed 

since no suitable donor was found so these records were unperturbed. In some cases, the control 

variables for the hot deck imputation had to be collapsed in order to be able to find a suitable 

donor for the failed record. After the imputation process, all records satisfy the edits. However, 

the information loss measures are also affected and we need to choose the method of perturbation 

that will minimize the information loss measures and obtain high utility data. Table 7 presents the 

results of the information loss measures as defined in Sections 2.4 and 3.2.  

 

[PLACE TABLE 7 AROUND HERE] 
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It is shown in Table 7 that putting more controls in the perturbation process raises the level of the 

utility of the data. For example, the original value for Cramer’s V which measures the association 

between labour force characteristics (employed, unemployed and out of the labour force) and age 

is 0.306. By perturbing the variable age, the measure of association decreases by 0.082 when age 

is perturbed across all possible ages, but only decreases by 0.008 when age is perturbed within 

narrow age bands. Note that all the information loss measures are negative based on the Cramer’s 

V analysis. This indicates the attenuation of the target variables. In another example, we assume 

that the user is interested in carrying out an ANOVA analysis on the percentage of unemployed 

out of those belonging to the labour force using age groups as an explanatory variable. Before 

perturbing age, the value of the “between” variance BV was 8.8. However, when age is perturbed 

across all possible ages, the BV decreased by almost a half. This implies that the percentage of 

unemployed in each perturbed age grouping is tending towards the overall mean and we would 

obtain a lower 2R  as a result of the analysis. Figure 1 shows the shrinkage of the unemployment 

percentages within randomly perturbed age groups compared to the percentages within original 

age groups. Note that the unemployment percentages are much flatter across the randomly 

perturbed age groups. By contrast, there is only a minute change in the BV when age is perturbed 

within narrow age bands. 

[PLACE FIGURE 1 AROUND HERE] 

4. Discussion 

In this article we have demonstrated how placing controls in the perturbation processes preserves 

the logical consistency of the records by minimizing micro edit failures.  In addition, we focus 

also on minimizing information loss measures which are based on preserving the quality and 

utility of the data for statistical analysis and inference. While this article mainly discusses aspects 

of utility, quality and consistency, data suppliers and Statistical Agencies must also focus on 

minimizing disclosure risk. The trade off between managing the disclosure risk and ensuring high 

data utility must be carefully assessed before developing optimal SDC strategies. Future work 

will examine this trade off by measuring  disclosure risk in micro-data before and after applying 

SDC methods (see: Elamir and Skinner, forthcoming; Skinner and Shlomo, 2005; Rinott and 

Shlomo, 2006 and references therein), and comparing the methods with respect to  information 
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loss and the preservation of edit constraints. By combining SDC methods and developing 

innovative methodologies for implementation, we can obtain consistent data, preserve totals, 

means and variance estimates,  and release statistical outputs with higher degrees of utility at little 

cost to the risk of disclosure.  

We have applied relatively simple approaches to ensure that perturbed data satisfy the specified 

edits. More sophisticated methods for ensuring that variables satisfy edits are available from the 

area of statistical data editing and the area of imputation. For instance, the Fellegi-Holt principle 

of minimum change (Fellegi and Holt, 1976) can be applied. This principle determines that the 

data of an inconsistent record should be made to satisfy all edits by changing the fewest possible 

number of values. When applying the Fellegi-Holt principle, one first identifies the erroneous 

fields. These erroneous fields can subsequently be imputed by an imputation method. In a last 

step, the imputed values can be adjusted so all edits become satisfied. An algorithm for 

implementing the Fellegi-Holt principle for both categorical and continuous data is based on a 

branch-and-bound search (De Waal and Quere, 2003). Several alternative approaches and a 

method to adjust imputed fields so all edits become satisfied are described by De Waal (2003). 

Another approach, called NIM (Nearest-Neighbor Imputation Method) which is implemented in 

Statistic’s Canada CANCEIS, has been successfully carried out for Canadian Censuses (Bankier, 

1999). This approach implements a minimum change principle similar to Fellegi-Holt principle. 

Namely, the data in a record are made to satisfy all edits by changing the fewest possible number 

of values given the available potential donor records. Intuitively, using the Fellegi-Holt principle 

or the NIM approach leads to results that are closer to optimality than using the relatively simple 

method for ensuring consistencies that we have used. Our intuition remains to be confirmed by 

future work. 

With respect to the evaluation of information loss owing to the application of SDC methods much 

more research remains to be done. An aspect of information loss that requires more attention is, 

for instance, the effect of SDC methods on regression parameters. Some work on this aspect has 

been carried out by Van den Hout and Kooiman (2006). 

Based on a given threshold for disclosure risk, the “best” method to protect a micro-data set is 

hard to determine in general. For a particular micro-data set the “best” SDC method depends on 

the intended uses of the data by the users, the willingness of the statistical agency to disseminate 

this data set, the legal aspects of releasing these data, and on the structure of the data. For 
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instance, homogeneous data require different SDC techniques than heterogeneous data. To some 

extent the “best” SDC method for a micro-data set will always be a subjective choice. Levels of 

protection and tolerable disclosure risk thresholds vary from country to country and depend on 

the different modes for accessing the micro-data. A prerequisite however for making a well-

founded choice of SDC method is a solid understanding of a wide range of SDC methods. We 

hope that this article helps to improve our understanding of several of such SDC methods.  
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Table 1. Standard deviation (STD)  at different stages of micro-aggregation and additive random 
noise for variable tax 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Total 

STD of tax 79 149 253 555 2,998 2,119

STD of micro-
aggregated tax 61 122 220 502 2,864 2,082

STD for generating 
random noise(*) 50 86 125 236 835 394

STD of micro-
aggregated tax with 
random noise 78 149 252 552 2,981 2,126

(*) the value 50 in the cell defined by “STD for generating random noise” and Quintile 1 is 
obtained by taking the variance of tax (79× 79) minus the variance of the micro-aggregated tax 
(61× 61). 

 

Table 2. Number of individuals with an absolute difference (Diff) between the perturbed variable 
gross and the sum of perturbed variables net and tax based on micro-aggregation and additive 

noise 
Diff  Number of Individuals 

Total 16,232

No Difference 641

 1  Diff  10 < ≤ 677

 10  Diff  50 < ≤ 2,859

 50  Diff 100 < ≤ 2,966

100  Diff  500 < ≤ 6,239

Diff  500 > 2,850
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Table 3. Standard deviation (STD) at different stages of micro-aggregation for two procedures: 
adding random noise with  linear programming and adding correlated random noise  

Procedure 1 Procedure 2 Variable STD 
Original 
Variable 

STD Micro-
aggregated 
Variable STD Micro-

aggregated 
Variable with 
Random Noise  

STD Micro-
aggregated 

Variable with 
Random Noise 

and Linear 
Programming 

STD Micro-
aggregated 

Variable with 
Correlated 

Random Noise  

tax 2,119  2,082 2,115  2,103  2,091

net 5,137  5,114 5,134  5,129  5,119

gross 

(=net+tax) 

7,181 7,174 7,174 7,174 7,171

 

Table 4. Results of the random rounding (RR)  with and without controls and the re-shuffling 
algorithm on the totals of rounded variables net, tax and gross 

Variable True Total 

 

RR - no 
controls on 
totals and 

no additivity 

Differ-
ence  

RR - 
controls on 
totals and 
additivity 
but not all 
within the 

base  

Differ-
ence  

RR -
controls on 
totals and 
additivity 

and all 
within the 

base  

Differ-
ence  

tax 25,443,623 25,444,410 -787 25,443,630 -7 25,443,710 -87

net 86,724,755 86,725,330 -575 86,724,770 -15 86,724,860 -105

gross 
(=net+tax) 

112,168,378 112,169,740 -1,362 112,168,400 -22 112,168,570 -192
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Table 5. Information loss measures for the joint distribution of age group, sex and gross income 
 Groupings of 10 Groupings of 20 

Number and Percent of Cells with 
Differences (out of 616 possible 
combinations) 

106 (22%) 166 (34%) 

Hellinger’s Distance: 
 age groups× sex× income groups 

0.011 0.013 

Difference in Cramer’s V: 
income groups and age groups× sex

 1300.0)( =origTV

0 -0.0001 

Ratio of BV: 
mean of gross within 
age groups× sex  

 91083×.3=origBV

1.004 0.998  

 

 

Table 6. Number of records failing edits according to the method of perturbation 
Method of Perturbation  

Random  Within Marital 
Status 

Within Marital 
Status and Broad 
Age Groups 

Within Narrow 
Age Groups 

No edit 
failures 

31,983 33,143 35,023 35,440

1 edit failure 2,344 1,827 731 328

2 edit failures 1,303 800 19 5

3 edit failures 59 3 0 0

4+ edit 
failures 

84 0 0 0
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Table 7. Results of information loss measures according to perturbation method 

Method of Perturbation information loss measures 
Random Within 

 Marital 
Status 

Within 
Marital 

Status and 
Broad Age 

Groups 

Within 
Narrow Age 

Groups 

Hellinger 
Distance 

District*sex*age 0.0995 0.0913 0.0844 0.0895

Years of Education and 
Perturbed Age  

146.0)( =origTV  

-0.0091 -0.0099 -0.0046 -0.0037Difference in 
Cramer’s V 

Labour Force 
Characteristics and 
Perturbed Age 

 306.0)( =origTV

-0.0816 -0.0686 -0.0106  -0.0076

Percent Academics 
Within Perturbed Age 
Groupings 

9.19=origBV  

0.838 0.815 0.969  1.001

Percent in Labour Force 
Within Perturbed Age 
Groupings 

5.270=origBV  

0.513 0.580 0.967 0.996

Ratio of 
Between 
Variance 

Percent Unemployed 
Within Perturbed Age 
Groupings  

8.8=origBV  

0.486 0.557 0.982  0.998

 

 34



Figure 1: Percent unemployed according to original age groups and perturbed age groups 
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