Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation

Authors: Helen K. Coxall¹, Claire Huck²,³, Matthew Huber⁴,⁵, Caroline H. Lear⁶, Alba Legardal-Lisarr¹⁰, Matt O’Regan¹, Kasia K. Sliwinska⁷,⁸, Tina van de Flierdt², Agatha M. de Boer¹, James C. Zachos⁹ & Jan Backman¹

Affiliations:
¹Department of Geological Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
²Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
³Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK.
⁴Department of Earth Sciences, University of New Hampshire, Durham, NH 03824, USA.
⁵Earth Systems Research Center, Institute for Earth, Ocean and Space Sciences, The University of New Hampshire, Durham NH, USA.
⁶School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
⁸NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
⁹Earth & Planetary Sciences Department, University of California, Santa Cruz, CA 95064, USA.
¹⁰Department of Earth Sciences, University of Zaragoza, Pedro Cerbuna Street, 12, 50009 Zaragoza, Spain.

Onset of North Atlantic deep water formation is thought to have coincided with Antarctic ice sheet growth about 34 million years ago. However, this timing is debated, in part due to questions over the geochemical signature of ancient Northern Component Water formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep water formation. We find that prior to 36 million years ago, the northwestern Atlantic was stratified, with nutrient-rich, low salinity bottom waters. This restricted basin transitioned into a conduit for Northern Component Water that began flowing southwards approximately one million years before initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled increased exchange across the Greenland-Scotland Ridge. Increasing surface
salinity and density strengthened Northern Component Water production. The late Eocene deep water mass differed in its carbon isotopic signature from modern as a result of leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO₂ to the Earth system perhaps causing short-term warming, whereas the long-term effect of enhanced NCW formation was greater northward heat transport that cooled Antarctica.

Production of deep water in the North Atlantic Ocean plays a vital role in maintaining the global meridional overturning circulation (MOC). North Atlantic Deep Water (NADW), the lower branch of the Atlantic part of the MOC (AMOC), forms in the Labrador and Nordic Seas as surface waters cool and densify. The sinking is largely controlled by an interplay of (i) the stratification at convection sites, determined by the balance of warm salty water from low latitudes, cold freshwater from the Arctic Ocean, and local heat and freshwater fluxes, and (ii) wind-driven upwelling in the Southern Ocean, which returns deep water to the surface. Both factors likely impacted the early Cenozoic MOC state, when Atlantic bathymetry and ocean gateways were different and global temperatures were warmer than today. However, resolving their interplay at the onset of NADW production, referred to here as its palaeo pre-cursor Northern Component Water (NCW), is challenging because the early history of the AMOC remains poorly constrained.

Benthic foraminifera δ^{18}O and δ^{13}C records constrain development of global deep water circulation by giving insights into subsurface temperatures, salinity and nutrients. A widely held view is that NCW began filling the Atlantic close to the Eocene-Oligocene greenhouse to
icehouse climate transition (EOT), ~34 million years ago (Ma)\(^4,6-9\), or earlier\(^10-13\). Others argue
that emergence of significant NCW was delayed until the late Miocene\(^14\). Modeling studies
diverge, suggesting either no NCW\(^15\) during the EOT, strengthening/onset of bipolar deep water
formation triggered by Drake Passage deepening\(^16-18\), or an ocean state with robust NCW
throughout\(^19\). Previous data studies that argue for a late Eocene onset of NCW production
assume that early Cenozoic NCW was nutrient-poor with a high (‘young’) benthic \(\delta^{13}C\) signature
similar to modern well ventilated NADW\(^4,10,13,20\). Yet palaeo data from northerly regions suitable
for characterizing NCW are lacking.

To fill this gap, we produced EOT benthic \(\delta^{13}C\) and \(\delta^{18}O\) records from four deep sea sites (>1000
m palaeodepth) in the high latitude North Atlantic (see Methods and Supplementary
Information). Of these, Site 647 in the Southern Labrador Sea (SLS; 47°N, 34 Ma palaeolatitude,
~2000-3000 m palaeodepth), is the most northerly EOT sequence containing calcareous
microfossils necessary for \(\delta^{18}O\) and \(\delta^{13}C\) analysis\(^21\). Additional data for portions of the late
Eocene were generated from DSDP Sites 112 and 612, and IODP Site U1411 (Fig. 1). The latter
two sites should record NCW export in the deep western boundary current (DWBC) (Fig. 1). The
data are compared against an Atlantic isotope compilation incorporating 14 previously
investigated sites (Fig. 2). Records of benthic foraminifera Mg/Ca, fish tooth \(\varepsilon\)Nd, and planktic
foraminifera \(\delta^{18}O\) and \(\delta^{13}C\) from Site 647 and U1411 were also generated to provide constraints
on bottom water temperature (BWT) and provenance, and water column structure (Methods).
The results add unique perspectives on Atlantic end-member deep water properties and changes
in circulation during the EOT.

High nutrient content of late Eocene Southern Labrador Sea deep waters
At Site 647 we recognize the typical pattern of $\delta^{18}O$ and $\delta^{13}C$ increase (>1.0‰ and ~0.5 to 1.0‰ respectively) between 34-33.5 Ma diagnostic of early Oligocene Antarctic glaciation, including the peak in $\delta^{18}O$ seen at other sites, here referred to as the Early Oligocene Glacial Maximum (EOGM) (Fig. 2). The first novel observation at Site 647 is that before ~35.8 Ma, $\delta^{13}C$ of SLS bottom water is on average 0.5-1‰ lower than all southerly sites. This is opposite to the modern AMOC state, where northern deep waters have the highest $\delta^{13}C$ due to sinking of well ventilated, nutrient poor surface waters. The low $\delta^{13}C$ may reflect nutrient accumulation under stratified conditions analogous to the modern North Pacific, i.e. the end of the circulation path. This could imply a southern-sourced deep water filled the SLS during the late Eocene. However, Site 647 fish debris εNd, an isotopic tracer for the origin of deep water masses, bear the fingerprint of a northern hemisphere source (εNd = -11.4 to -9.4) throughout the studied interval (Fig. 3g). Consequently, we instead argue the low benthic $\delta^{13}C$ reflects local bottom water sourced from surface waters with a high nutrient concentration, within the narrow, restricted North Atlantic basinal deep water circulation. A probable nutrient source is ‘fossil’ carbon leaking in from the Arctic Ocean and subarctic seas (Greenland and Norwegian Seas), which had high nutrient stocks during the Eocene because of their semi-isolation, heavily vegetated margins, and high riverine inflow.

We identify three circulation regimes based on our new Eocene-Oligocene proxy records and comparisons with published data (Figs. 2 and 3). Focusing first on $\delta^{13}C$ (Fig. 2), under Regime 1 (>35.8 Ma), SLS bottom waters were isolated from the rest of the Atlantic and a distinct NCW with low $\delta^{13}C$ bathed Site 647. After ~35.8 Ma an approximately 1.5-2 million year-long (~35.8 to ~33.8 Ma) negative $\delta^{13}C$ excursion (0.5-1‰ $\delta^{13}C$ decrease) is seen to varying degrees at Sites 612, U1411 and 647, as well as some other Atlantic sites (1053, 1090, 366). Offsets in this
excursion’s timing between sites are likely caused by age model differences. The phase encompassing the onset and peak of the excursion is Regime 2. Importantly, the δ13C excursions are largest (maximum 1‰) at Sites 612 and U1411 sitting in the DWBC (Fig. 1). While noted previously28, the wider significance of this δ13C excursion has not been fully explored. The observation that Sites 612 and U1411, directly down stream of Site 647, gain benthic δ13C signals close to the SLS end-member suggests the signal was propagated from the north. Thus it records southward export of Arctic imprinted, nutrient-rich NCW. The increase in Atlantic benthic δ13C towards the end of Regime 2 indicates that either the pulse of NCW ended, or sufficiently ventilated surface water with higher δ13C was imported to convection sites. Regime 3, described below, represents the phase where a more mature form of NCW existed.

Northern deep water cooling, salinification and destratification

A second prominent feature is the pattern of SLS benthic δ18O. The majority of pre-Oligocene δ18O data south of Site 647 range between 0.4-1.2‰ (Fig. 2). Strikingly, in the SLS during Regime 1, benthic δ18O is 1-3‰ lower than the ensemble. The primary controls on benthic δ18O are BWT and the δ18O composition of seawater, the latter reflecting global glacial ice volume and local salinity. Assuming minimal ice before 34 Ma, the relatively low δ18O in SLS benthos indicates a considerably warmer or fresher water mass bathing the seafloor compared to southern stations. Benthic δ18O from Sites 647 and 112 increased gradually from 36.0 to 35.4 Ma, then again from ~34.6-34.4 Ma, and had converged close to the dominant Atlantic trend by ~34.3 Ma, i.e. coincident with or just lagging the Atlantic-wide δ13C minimum. Diagenetic alteration of Site 647 benthic fossils29 is ruled out due to (i) the excellent fossil calcite preservation21 (Supplementary Information), and (ii) the similarity of our new planktic δ18O values from Sites
Moreover, a similar pattern of decreasing benthic $\delta^{18}O$ is seen in a North Sea record30, although at shallower depths (~500m).

Mg/Ca BWT help deconvolve temperature and salinity influences on $\delta^{18}O$ (Methods and Supplementary Information). Across the EOT, Site 647 Mg/Ca data suggest BWT cooling of ~1°C combined with a ~0.6‰ increase in $\delta^{18}O_{sw}$, in agreement with previous studies31 (Fig. 3a). From this, we estimate gradual bottom water cooling in the SLS of ~3-4°C between 37.5 Ma to 35 Ma, which is similar to observed northern high latitude sea surface coolings32. Substituting the Mg/Ca BWTs into a $\delta^{18}O$ palaeotemperature equation (Methods) yields ice-free $\delta^{18}O_{sw}$ estimates of between -3 to -4 ‰ SMOW during this interval. Based on these $\delta^{18}O_{sw}$ constraints, we estimate late Eocene SLS bottom salinities using relevant modern $\delta^{18}O_{sw}$-sea surface salinity (SSS) relationships33 (Fig. 3c).

Applying a modern SSS-$\delta^{18}O_{sw}$ relationship from eastern Greenland, today a conduit for low salinity (32 PSU) Arctic outflow, implies Site 647 bottom water salinity of 30-32 PSU before 36 Ma, increasing by 2-3 PSU from 36 to 34 Ma. The salinity change is similar when a Laptev Sea (today fed by large Siberian rivers) $\delta^{18}O_{sw}$-salinity regression is applied. While SSS-$\delta^{18}O_{sw}$ relationships are spatially widely variable, and modern relationships are only loose analogues for the Eocene, our inferred values are compatible with modern temperature-salinity fields. Therefore, we suggest that (i) before 36 Ma SLS bottom waters were relatively fresh, and (ii) SLS bottom salinity increased from Regime 1 to 2. This conclusion does not change even if samples older than 35 Ma are biased to higher Mg (Supplementary Information) since the salinity signal is embedded in the benthic $\delta^{18}O$, which is independent of Mg/Ca. This
interpretation is consistent with that for pre-formed nutrients—they are both likely derived from
the Arctic Ocean. Proxies and models agree that the Arctic had a thick freshwater cap during the
Palaeogene as a consequence of a strong hydrological system and high fluvial inputs under
greenhouse forcing, combined with restricted salt input\(^{26,33-35}\). With no Pacific Ocean outlet at
this time, major surface discharge occurred through the Nordic Seas\(^{34,36}\).

Site 647 planktic foraminifera \(\delta^{18}O\) and \(\delta^{13}C\) add information on the upper water column. \(\delta^{18}O\) of
mixed layer (surface) species is 1-2 \(\%\) lower than deep-dwellers (subthermocline), consistent
with a stratified upper ocean and calcification of mixed-layer dwellers high in the water column
or during the warmest season (Fig. 3b). During Regime 1, and before 34.5 Ma, \(\delta^{18}O\) of the deep-
dwelling planktic species is indistinguishable from benthic foraminifera, reflecting influence of
relatively fresh deep water at sub-thermocline levels in the SLS. Site 647 planktic data are sparse
before 35 Ma due to low foraminiferal abundance and coring gaps. However, after 34.5 Ma,
deep-dwelling planktic and benthic \(\delta^{18}O\) records separate coincident with the appearance of deep
water with temperature and salinity properties similar to typical Atlantic values. Additionally, a
progressive collapse in the planktic – benthic \(\delta^{13}C\) gradient (Fig. 3d, e) is documented that
captures the SLS water column transitioning from being well-stratified with large vertical \(\delta^{13}C\)
differences (1-1.5 \(\%\)) during Regime 1, to a state with a smaller \(\delta^{13}C\) gradient (0.5\(\%\))
comparable to better-mixed modern North Atlantic convection sites\(^{23}\) by ~34.3 Ma. Both
observations are consistent with increasing NCW volume. An abrupt shift in Site 647 benthic
assemblages at 34.3 Ma from agglutinated species tolerant of carbonate-poor, nutrient-rich
environments, to calcareous species suited to stronger current flow\(^{37}\) coincident with other
changes (Fig. 3f), provides further evidence for increased convection. Circulation Regime 3
begins at 34.3 Ma, when a saltier, denser form of NCW with higher δ^{13}C is exported through the SLS.

Deep water sources and sinking

Our Site 647 fish debris εNd data behave as a conservative tracer of northern sourced deep water (see Supplementary Information) and can be compared to published ocean references38,39 to identify probable NCW source regions (Fig. 3g). While we do not reconstruct Nd directly for Regime 1, our sample from 39 Ma is similar to the rest of the record, implying no systematic change in εNd and thus bottom water provenance as NCW evolved. The comparison suggests that the Southern Ocean, which has the highest end-member εNd signature in our compilation, was not the source of bottom waters at Site 647. Moreover we do not find evidence for the prominent EOT shift to high εNd values found in Southern Ocean records40. Previous studies have suggested that prior to deepening of the Greenland Scotland Ridge (GSR) NCW was sourced from the Labrador Sea10,13. Modern Labrador Sea deep water, however, has characteristically low εNd (~ -14), reflecting erosional inputs from the cratonic hinterland41. In contrast, Site 647 Nd is significantly more radiogenic (εNd = -11.4 to -9.4), and a closer match to the range of values measured in Nordic sea overflows (εNd = ~ -12.0 to -8.4)41,42 and proximal Arctic Ocean basins above 500 m (εNd = -11.7 to -8.8)43. A Palaeogene presence of Tethys-sourced deep water at Site 647 is another possibility, since the Tethyian εNd signature (εNd = -10.0 to -9.344,45) is indistinguishable from that of North Atlantic water masses. However, palaeogeographic reconstructions suggest that water mass exchange between European Tethys and Nordic Seas was limited during the middle to late Eocene25,46 making this unlikely.
The only connections between the Arctic Ocean and Nordic Seas during the Palaeogene were shallow27,46,47. Transfer of freshened, nutrient-rich waters from the Arctic would have occurred via a proto Greenland Current. Similarity between the North Sea (Kysing-4, borehole) and Site 647 benthic δ^{18}O, as well as independent evidence for low salinities in the Nordic Seas34,48, is consistent with this picture. Transport from the subarctic seas to the Atlantic Ocean was also shallow, and sinking of Arctic imprinted NCW, must have taken place south of the GSR until it subsided. With sufficient cooling in the subarctic seas, the density contrast of brackish Arctic waters with warmer saltier North Atlantic surface waters permitted sinking, resulting in the distinct bottom water recorded at Site 647.

Importantly, before \sim 36 Ma, Arctic imprinted NCW deep water formation was minimal, implying regular stratification and stagnation in the SLS. This is consistent with the considerable noise in δ^{13}C and δ^{18}O during Regime 1. How this deep water remained isolated in the SLS at depths of around 2000 m under Regime 1 remains uncertain. One possibility is that production and export rates of local deep waters in the North Atlantic were high compared to the influx of southern-sourced deep waters, and subsequently increased further as the cooler, saltier NCW started being produced. Alternatively, bathymetric highs associated with the now extinct Labrador Sea spreading ridges and the West Thulean igneous province to the south, may have isolated SLS subsurface waters from the overall Atlantic during the early Palaeogene7. In this case, cessation of Labrador Sea spreading close to the EOT was likely important, allowing ridges to subside and enabling enhanced deep water export.
We illustrate the isotopic evidence and sequence of EOT oceanic changes using natural neighbour re-gridding (Methods) of compiled isotopic data to produce south–north Atlantic depth transects during time windows centered on circulation Regimes 1-3 (Fig. 4, see Supplementary Information for data sources, additional transects and maps). Before ~36 Ma (Regime 1), a strong isotopic δ^{18}O and δ^{13}C depletion effects water masses down to ~2000 m above 40°N (Fig. 4a and b), corresponding to small amounts of low salinity, high nutrient Arctic imprinted NCW in the SLS. The rest of the Atlantic is filled with deep waters with more homogenous δ^{18}O sourced from southerly and possibly low latitude regions10,13. Increasing subarctic δ^{18}O, reflecting progressive salinification and densification of Nordic surface waters, is accompanied by a 0.5 – 1.0 Myr pulse of NCW export during Regime 2 (Figs. 4 c to h). By 33.3-34.3 Ma the ‘fresh’ SLS deep water signal no longer exists, bottom water δ^{13}C increased, the acute phase of low δ^{13}C export is over, and a better-ventilated NCW is exported (Regime 3). Importantly, the initial pulse of NCW export under Regime 2 is recorded by decreasing δ^{13}C signals in deep waters down stream of the SLS. The presence of late Eocene NCW in the Atlantic has not been identified in previous δ^{13}C records10,13,20 because NCW was assumed to have high δ^{13}C signature similar to modern NADW.

Causes and consequences of Northern Component Water export

Deepening of the GSR in the late Eocene, for which there is geological evidence4,34, would have increased Nordic overflows, thus strengthening NCW production. Modelling suggests sill deepening to 50 m would initiate a threshold switch from lagoonal to estuarine circulation, salinifying the Nordic Seas sufficiently to intensify northern deep water production34. While this idea is consistent with our findings, the bathymetric history of the GSR is currently too crude to
accurately date such a change. Moreover, we propose that contemporaneous restrictions to the Arctic-Nordic Sea exchange also played a role. Geological evidence suggests that the Barents Sea-Arctic passageway shoaled in the latest Eocene46,47 and that relative sea-level variations in the Arctic were decoupled from global trends from the late Eocene to early Miocene49. This palaeogeographic Arctic isolation enhanced salinification in the Nordic Seas as brackish Arctic outflows were gradually cut off.

Changes in NCW production had varied and competing effects. Its onset presumably impacted poleward heat transport in both hemispheres17,18. Initial export of nutrient rich Arctic imprinted NCW may have generated a short-lived pulse of CO\textsubscript{2}, on the order of 100-200 ppm, which is consistent with proxy compilations showing a temporary reversal in the falling CO\textsubscript{2} trend between \textasciitilde34 to \textasciitilde35 Ma50. On the other hand, strengthening of NCW production, and enhanced northward ocean heat transport, could have played a role in longer-term CO\textsubscript{2} drawdown due to an accompanying increase in rainfall over land and associated CO\textsubscript{2}–weathering feedbacks16. The circulation change timing, 1-2 million years prior to Antarctic glaciation, reinforces the idea that onset of NCW played a role in preconditioning the late Eocene Earth system for the greenhouse to icehouse transition.

Methods

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of this paper.
References

Kaminski, M. & Ortiz, S. The Eocene-Oligocene turnover of deep-water agglutinated foraminifera at ODP Site 647, Southern Labrador Sea (North Atlantic).

Porcelli, D. *et al.* The distribution of neodymium isotopes in Arctic Ocean basins.

Corresponding Author Correspondence and requests for materials should be addressed to Helen Coxall (helen.coxall@geo.su.se).

Acknowledgements Samples were provided by the International Ocean Discovery Program (IODP), which includes the predecessors the Deep Sea Drilling Project and Ocean Drilling Program. We thank Julia Becker and Megan Spencer for technical assistance with the stable isotopes and Hedvig Öste and Emelie Axelsson for preparing the core samples. HKC was supported by a Royal Society Research Fellowship, Swedish Funding agency (VR) no. DNR 2008-2859 and the Bolin Centre for Climate Research, and TF by NERC Grants NE/I006257/1 and NE/L004607/1. KS acknowledges financial support from the Danish Council for Independent Research/Natural Sciences (DFF/FNU; Grant 11-107497).
Author Contributions HKC and JB conceived the project. HKC directed the research, generated the stable isotope data for Sites 112, 647 and U1411, compiled the proxy records and led writing of the paper. AL produced the new Site 612 data and age model. CHL conducted the trace metal analysis. CH produced and interpreted the Nd data with the help of TF. MO produced the palaeogeographic map for Figure 1 and conducted the subsidence modeling. KS helped produce the Site 647 age model. MH helped with the interpretative framework and produced the interpolated Atlantic depth isotopic transects and maps. JZ and AdB helped interpret the data. All authors contributed to writing the manuscript.

Additional information

Supplementary information is available in the online version of this paper. The data can be obtained from the ‘Bolin Centre for Climate Research’ database: http://bolin.su.se/data/Coxall-2018. Reprints and permissions information is available online at www.nature.com/reprints.

Competing financial interests

The authors declare no competing financial interests.

Figure captions

Figure 1. Site locations of sections included in this study. Stars identify the new data sets presented here. Map annotations: Red line = Mid Ocean Ridge 34 Ma; white line = position of 56 Ma isochron; black line = continent-ocean crust boundary. See Methods Section for details of the palaeogeographic framework and inset map. LS = Labrador Sea, NGS = Norwegian
Greenland Sea; T = Tethys Ocean; GSR = Greenland Scotland Ridge. Inset panel shows the path of major deep (blue) and surface currents today: Denmark Strait Overflow Water (DSOW); Iceland-Scotland Overflow Water (ISOW); Labrador Sea Water (LSW); North Atlantic Current (NAC) and the Deep Western Boundary Current (DWBC).

Figures 2. New and published Atlantic benthic δ^{18}O and δ^{13}C (Cibs. adjusted). The EOT (fine dashed horizontal lines) and the EOGM event are identified by the step-increase and maximum in δ^{18}O in the earliest Oligocene respectively. Trend lines represent smoothed curve fits that incorporate a geometric weighting. Regimes 1-3, separated by blue long-dash lines, are phases of ocean circulation defined here based on proxy data. Pale aqua shading represents transition phases. Vertical black arrows identify time windows gridded in Fig. 4. See Supplementary Information for data sources, age modeling and an expanded figure with additional data.

Figure 3. Sites 647 and U1411 multiproxy data. a) Mg/Ca BWT; paler blue symbols = maximum BWTs due to potential Fe contamination (Supplementary information). b), d): planktic and benthic δ^{18}O and δ^{13}C (black symbols=equatorial Pacific EOT chemostratigraphic reference22, open symbols =U1411). c) Estimated Site 647 bottom salinity based on modern δ^{18}Osw-relationships; (LS) Laptev Sea, (EG) Eastern Greenland. Error envelopes are based on 2STD of the Mg/Ca BWT. e) =Site 647 planktic-benthic δ^{13}C difference and modern gradients23. f) Site 647 agglutinated benthic foraminifera37. g) Site 647 fish tooth Nd and EOT ocean signatures, including Arctic ranges (error bars = 2σ standard reproducibility). Annotations as in Fig. 2.
Figure 4. Depth-latitude compilation of Atlantic benthic $\delta^{13}C$ and $\delta^{18}O$ during the late Eocene to early Oligocene constructed using natural neighbor interpolation. Data are plotted at their 34 Ma positions (dots indicate core palaeopositions). The five time slices illustrate the transition through the three circulation regimes identified here (R1, R2 and R3; see Fig. 2). See Supplementary information for data sources and a more extensive set of gridded time slices and late Eocene maps.

METHODS

Palaeogeographic plate reconstructions and modern Atlantic Ocean circulation inset

Palaeogeographic plate reconstructions used in production of main text Figure 1 were performed using G-plates, with coastlines adapted from E-O reconstructions (34 Ma) of Ron Blakey, Colorado Plateau Geosystems, Arizona USA. The inset figure showing modern North Atlantic surface and deep current paths is based on the schematics of ref-51.

Age framework

Site 647 age control is based on biomagnetostratigraphy21, adjusted here using Site 647 $\delta^{18}O$ chemostratigraphy (See Supplementary information for further details for Site 647 and the other sites). Site 112 ages are estimated from biostratigraphy52. Site U1411 ages are based on IODP Exp. 342 shipboard magnetostratigraphy53. The Site 612 age model is based on the biostratigraphy of ref-54. In all cases, datum events are calibrated or rescaled using linear interpolation to the chronology of ref-55 to permit comparison with the Atlantic benthic isotope stack (after refs-5,56,57), much of which exists on this common time scale.

Stable isotopes

Planktic and benthic foraminifera are present throughout the EOT interval of Site 647, 112 and U1411, although heavily diluted by terrestrial clay. Planktic and benthic foraminifera are somewhat more common at Site 612. Tests are exceptionally well preserved at all sites throughout the studied intervals (see Supplementary Information for further details).

Foraminiferal $\delta^{18}O$ and $\delta^{13}C$ for Sites 647 and 112, was derived from the benthic foraminifera taxa *Oridorsalis umbonatus* (shallow infaunal) and *Cibicidoides* spp. (epifaunal), where available, both shown to be a reliable deep-sea tracer in previous studies22,58 (see Supplementary Information). Site U1411 measurements are on *Cibicidoides* spp. and the new Site 612 measurements on *Hanzawaia ammophila*. Sites 647 and U1411 planktic foraminiferal analyses were made on *Turborotalia ampliapertura* and *Catapsydrax unicavus*, representing surface mixed layer and thermocline/subthermocline habitats respectively59. Site 647 stable isotope analysis was performed at Cardiff University using a ThermoFinnigan MAT252 mass spectrometer.
spectrometer equipped with an automated KIEL III carbonate preparation unit. Additional
samples were run at the National Oceanographic Centre, Southampton University, using a
Europa Geo 20–20 mass spectrometer equipped with a CAPS automatic carbonate preparation
system. Standard external analytical precision quoted at Cardiff was better than 0.05‰ for \(\delta^{18}O \)
and 0.03‰ for \(\delta^{13}C \), and ±0.08‰ for \(\delta^{18}O \) and \(\delta^{13}C \) at Southampton. Site 612 analyses were
measured at the Department of Geological Sciences, Stockholm University on a ThermoFinnigan
MAT 252 IRMS coupled with a Finnigan Gasbench II device. Standard external analytical
precision, based on replicate analysis of in-house standards calibrated to international standards
(NBS19, IAEA-CO-1 and IAEA-CO-8), was better than 0.07‰ for \(\delta^{13}C \) and 0.15‰ for \(\delta^{18}O \). All
results are reported relative to the VPDB standard. Our Site 647 \(O. \) umbonatus data have been
adjusted to \(Cibicidoides \) values (believed to be close to ambient seawater) by subtracting -0.28‰
for the \(\delta^{18}O \) following ref-60, and by addition of 1.4‰ to the \(\delta^{13}C \), following ref-61 (consistent
with a species comparison study in a restricted basin in the western North Pacific which closely
matches our few Site 647 \(Cibicidoides-Oridorsalis \) umbontatus \(\delta^{13}C \) pairs). The different species
are differentiated in Figs. 2 and 3 by dark red (\(O. \) umbonatus) and bright red (\(Cibicidoides \) spp.)
symbols. For Site 612 the following adjustments (after ref-60) were used when integrating the
new \(H. \) ammophila data: \((\delta^{18}O_{H. \text{ammophila}} - 0.16)/0.62 = \delta^{18}O_{Cibicidoides}, \text{ and } \delta^{13}C_{H. \text{ammophila}} + 0.08 = \delta^{13}C_{Cibicidoides}. \text{ The planktic-benthic } \delta^{13}C \text{ gradient (}\Delta\delta^{13}C\text{)} \text{ was generated by resampling the}
planktic and benthic foraminifera } \delta^{13}C \text{ curves to provide paired samples. Our new } \delta^{18}O \text{ and } \delta^{13}C
\text{ are compared with 21 other Atlantic data sets that build on the compilations of refs-5,57. The new}
data produced in this study are presented in Supplementary Data file S1). See Supplementary
Table S1 for the full list of sites meta data and sources used in our Atlantic compilation.

Trace metal analysis and Mg/Ca foraminiferal bottom water palaeothermometry
Trace metal content (Mg/Ca, Mn/Ca, Fe/Ca) was analyzed on Site 647 \(O. \) umbonatus. Prior to
analysis, benthic foraminifera samples were cleaned following the protocol of refs-62,63 leaving
out the reducing step due to the scarcity of material but including contaminant removal under
binocular microscope following the oxidative step64. Samples were subjected to one weak acid
leach prior to dissolution and dilution. Analysis was carried out at Cardiff University on a
Thermo Element XR ICP-MS against standards with equivalent Ca concentration. Multi-element
standards were made in-house from single element standards supplied by Greyhound
Chromatography and Allied Chemicals. Analytical precisions determined from separate
consistency standards over the course of a year are 0.5% for Mg/Ca, and 2% for Mn/Ca and
Fe/Ca (rsd). Mg/Ca paleo- bottom water temperatures (BWT) were calculated using the
exponential calibration of ref-58 (See Supplementary Information and Supplementary Data file
S2).

Our \(O. \) umbonatus Mg/Ca record is noisy and high Mg/Ca ratios are often associated with high
Fe/Ca (correlation coefficient \(r^2 = 0.4 \) (Supplementary Data file S2). By excluding the samples
with Fe/Ca >> 900 \(\mu \text{mol/mol} \), \(r^2 \) was reduced to 0.18. The subset of data, with lower Fe/Ca,
largely the upper portion of the core in samples younger than 34.5 Ma (Supplementary Table
S4), may be regarded as most reliable. However, despite the higher Fe/Ca in the older samples,
we believe the Mg/Ca data from the lower part of the core are not entirely flawed since the Fe/Ca
vs Mg/Ca \(r^2 \) value based on the full sample set is still relatively low and there is Mg/Ca overlap
of higher and lower Fe/Ca Mg/Ca around the EOT (Main Figure 3A, paler blue symbols). Thus,
the older Mg/Ca should provide realistic palaeo-bottom water temperatures (within the
uncertainties of the method), and are thus included in the down core record to provide ballpark BWTs and allow salinity reconstructions in the initial part of the late Eocene.

Bottom Water Salinity reconstruction

The pattern of progressive benthic $\delta^{18}O$ increase and maximum $4^\circ C$ BWT cooling between 37.5-35.5 Ma implies that sea water $\delta^{18}O$ ($\delta^{18}O_{sw}$) was changing over this period. To explore this further bottom water palaeosalinity was reconstructed based on modern sea surface salinity (SSS) - $\delta^{18}O$ relationships. This was performed in two steps. First, $\delta^{18}O_{sw}$ values were calculated by substituting the Site 647 Mg/Ca BWTs into the $\delta^{18}O$-benthic foraminifera palaeotemperature equation of ref-65. Due to the noise in our estimated benthic bottom water temperatures we used broad ‘BWT brackets’, based on mean BWT values for three intervals (Supplementary Table S5).

Second, bottom water palaeosalinity was reconstructed based on the modern surface salinity $\delta^{18}O$ relationships for the Laptev Sea and East Greenland Current66,67, regions with relatively low $\delta^{18}O_{sw}$ linked to the Arctic Ocean or Arctic outflows respectively (the Laptev Sea is an Arctic shelf sea that receives large volumes of river run-off from Siberian rivers (22-34 PSU), while the East Greenland Current carries low salinity surface waters (32 PSU) out of the Arctic Ocean). It was assumed that these relationships remained the same down core.

Laptev Sea: $\text{Salinity} = (\delta^{18}O_{sw} - 18.86) = 0.5 \quad R^2 = 0.98 \text{ ref-66}$

East Greenland: $\text{Salinity} = (\delta^{18}O_{sw} - 35.02) = 1.01 \quad \text{ref-67}$

The resulting curve, which is plotted as a ‘smoothed curve-fit’ in KaleidaGraph® with error envelopes representing limits determined by 2σ of the BWT brackets (Main Fig. 3C), provides coarse constraints on the evolution of Site 647 bottom water salinity in the late Eocene. As discussed above, its possible that the decreasing Mg/Ca between 37.5-35.5 Ma represents decreasing trace metal contamination rather than BW cooling. If this is the case then the BWTs around 37 Ma are too high, which would bias the salinities to too salty values. Thus, including or excluding the older Mg/Ca data does not change the conclusions. We have confidence in the Mg/Ca after 34 Ma and thus have $\delta^{18}O_{sw}$ constrained there. The important point is that the subsurface densification signal is seen in the benthic foraminifera $\delta^{18}O$ record (increasing $\delta^{18}O$ from 37.5-35.5 Ma). It is impossible that this is an artifact of the Mg/Ca data.

Neodymium isotope methodology

Fish teeth and bone debris were hand-picked from the >63μm fraction of sieved sediment and cleaned to remove adhering debris. Initial experiments (see Supplementary information) indicated that the ‘simple cleaning method’ of ref-68 was sufficient. All samples were dissolved in 2M HCl, dried and converted to nitrate form prior to column chemistry. A standard two-stage ion chromatography procedure was used, which first isolated the REEs from the sample matrix using TRU Spec resin (100-120μm bead size) and then separated Nd from the other REE’s with Ln-Spec resin (50-100μm bead size) (after ref-69). Neodymium isotope ratios were measured on a Nu Plasma MC-ICP-MS at Imperial College London in static mode. Instrumental mass bias was corrected for using a $^{146}Nd^{144}Nd$ ratio of 0.7219. Samarium interference can be adequately corrected if the ^{144}Sm signal contributes less than 0.1% of the ^{144}Nd signal. The Sm contribution in all our samples was well below this level. Chemistry blanks were consistently below 10pg
Nd. Replicate analyses of the Nd standard JNd1 yielded $^{143}\text{Nd}/^{144}\text{Nd}$ ratios from 0.512060 ± 0.000015 to 0.512251 ± 0.000015 (n=116), dependent on daily running conditions over 12 months. The external reproducibility of our chemistry and mass spectrometry procedure was monitored using a fossil bone composite standard supplied by Clive Trueman (University of Southampton) yielding a $^{143}\text{Nd}/^{144}\text{Nd}$ ratio of 0.512377 ± 0.000028 (n=8 over 18 months), which agrees within error with previously published values70,71. We note that the standard material was digested for analysis following the methods in ref70 for analytical consistency. Briefly, 50 mg of material was digested in 3M HNO3 in a Teflon beaker at 130°C. Any material remaining after this step was subjected to a further 48 hours digestion in a 3:1 mixture of 15M HNO3 to 27M HF. To correct for the decay of ^{147}Sm to ^{143}Nd within the fish teeth over time we use rare earth element concentrations obtained in two samples from this site. Derived $^{147}\text{Sm}/^{143}\text{Nd}$ ratios of 0.129 and 0.134 are consistent with values reported in other studies$^{72-74}$. We applied an average value of our measurements ($^{147}\text{Sm}/^{143}\text{Nd} = 0.132$) to all remaining samples. All Nd isotope ratios are reported in epsilon notation (ε_{Nd}) (Supplementary Table 6). Comparative ε_{Nd} data in Figure 3 are listed in Supplementary Table S7.

Atlantic isotopic depth sections

We used standard techniques in ocean data assimilation to create homogenized and interpolated maps of isotopic values based on the sparse data (see Supplementary Table S1 for site information, data sources and a more complete set of maps; SI Figs 9A-L). For the transects the proxy data were placed on to a regular latitude-depth grid based on their reconstructed depths and palaeo-locations, and the natural neighbor regridding routines implemented in the NCAR Command Language were used to create interpolated, gridded values (https://www.ncl.ucar.edu/Document/Functions/Built-in/natgrid.shtml). Extrapolation beyond the convex hull of the kernel was not used. The background palaeogeography is based on Ref-75 (hotspot reference frame). The differences in interpretation for our paper using the alternative Palaeomag reference frame described in the same study are negligible.

For the maps, the proxy records interpolated using the technique of Barnes-Cressman iterated objective analysis implemented in the NCAR Command Language (www.ncl.ucar.edu/Document/Functions/Contributed/obj_anal_ic_Wrap.shtml). In this approach, each observation is assigned a circular radius of influence, R. Here, we used successive values of R of 9°, 8°, 6°, 4°, 2°, 1°. A first guess of the value at every grid point was made by including all observations within the region of influence of that grid point. A distance-weighted average of the differences between the first-guess fields and the actual observations was made, and this anomaly was added into the first-guess fields to calculate a second-guess field. Thus, observations from beyond the radius of influence were ignored in updating the field, and other observations closer to the initial observation were given greater weight. This was done for all grid points under consideration. The resulting fields were used as the basis for the next iteration, which was carried out with a smaller region of influence.

Data availability statement

The authors declare that lists of the sources of previously published data used in this study are available within the article and its Supplementary Information files. The new data are available at the Bolin Centre for Climate Research Database: http://bolin.su.se/data/Coxall-2018.
References

