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Abstract
Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical 
interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses 
during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon 
regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified 
a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal 
function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them 
less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the 
synapses between these organisms, the most likely interpretation is that many of these components are equally important, but 
not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained 
C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. 
elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informa-
tive tool for dissecting synaptic components, based on a simple nervous system organization.
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Background

Transmission of a signal within a neuron is carried by depo-
larization of the resting membrane potential typically involv-
ing a transient reversal of the resting membrane potential. 
The depolarization leads to the opening of voltage-gated 
 Ca2+ channels in the presynaptic membrane. Then, the open-
ing of these channels causes a rapid influx of  Ca2+ into the 
presynaptic terminal, facilitating synaptic vesicles fusion 
with the presynaptic plasma membrane of the neuron, and 
causing neurotransmitters to be released into the synaptic 
cleft. Neurotransmitters in the synaptic cleft diffuse away 
from the release site and have ready access to binding sites 
on synaptic receptors localized on both the post- and pre-
synaptic membrane. They bind to their cognate receptors 
and elicit a transduction cascade to bring about the cellular 
response. In nerve terminals, neurotransmitters are packaged 
into synaptic vesicles (SVs) and released by  Ca2+-induced 

exocytosis (Katz 1971, 1979; Sudhof 2004). A precise neu-
ronal reaction requires that SVs are clustered adjacent to 
the release site or presynaptic active zone. Here the SVs are 
docked and held in contact with the cell membrane by the 
docking complex, where they are primed for fusion. Then, a 
depolarization induces the opening of  Ca2+ channels, and the 
rising  Ca2+ concentration stimulates SV-plasma membrane 
fusion. For cells to respond rapidly and reliably to incom-
ing depolarizing potentials, they must maintain a sufficient 
supply of vesicles containing neurotransmitter close to the 
active zone where the content is released from the presynap-
tic neuron. However, there are neurons that use only graded 
voltage signals. These ‘non-spiking’ neurons that encode 
information as graded potentials typically have higher infor-
mation rates compared to ‘spiking neurons’ (DiCaprio et al. 
2007). Graded potentials are a consequence of the passive 
electrical property of the membrane and depolarizing poten-
tials the result of a coordinated response (van Steveninck and 
Laughlin 1996). Finally, neurotransmitter release can occur 
by action potential-independent spontaneous vesicle fusion. 
Although for decades it was thought that spontaneous trans-
mission was a consequence of ‘leaky’ synapse, recent data 
show that this alternative mechanism underpins signalling 
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roles involve in synapse maturation and homoeostatic plas-
ticity (Ramirez and Kavalali 2011).

Neurotransmitters are secreted from neurons by two types 
of vesicles that are classified by their size and appearance in 
electron micrographs. Small clear synaptic vesicles (SCV) 
(40–60 nm diameter) contain small molecule, so-called clas-
sical transmitters, such as glutamate, GABA and acetylcho-
line, that activate postsynaptic ionotropic receptors mediat-
ing fast synaptic transmission, and metabotropic receptors 
mediating a more slow and sustained transmission. Dense-
core vesicles (DCVs) (60–120 nm diameter) are character-
ized by their electron dense appearance and larger diameter 
relative to SCVs, containing neuropeptides and biogenic 
amine neuromodulators such as serotonin and dopamine. 
DCVs dock at the plasma membrane but might be excluded 
from active zones (Hammarlund et al. 2008). There are 
similarities in the fusion machinery for both vesicle types, 
but also there are differences in the kinetics of exocytosis, 
docking localization and physiological regulation of release 
(Martin 2003; Rettig and Neher 2002), suggesting that there 
are proteins and mechanisms that are distinct for SCV- and 
DCV-mediated exocytosis.

Current models describing the molecular mechanism of 
 Ca2+-regulated synaptic vesicle exocytosis and endocytosis 
divide the process into multiple steps, leading ‘preferred’ 
models: docking, priming, fusion, exocytosis (Fig. 1) (Jung 
and Haucke 2007; Sudhof 1995, 2004). This process is facil-
itated by the formation of a complex between molecules on 
the synaptic vesicle and molecules attached to the plasma 
membrane.  Ca2+ binding to synaptotagmin triggers release 
by stimulating synaptotagmin binding to a molecular com-
plex composed of SNARE (‘soluble NSF attachment recep-
tor’) and SM (‘Sec1/Munc18-like’) proteins that mediates 
membrane fusion during exocytosis. Synaptic vesicles con-
taining synaptotagmin are positioned at the active zone, the 
site of vesicle fusion, by a protein complex containing RIM 
proteins. RIM proteins simultaneously activate docking and 
priming of synaptic vesicles and recruit  Ca2+ channels to 
active zones, thereby connecting within a single complex 
the primed synaptic vesicles to  Ca2+ channels. This archi-
tecture allows direct flow of  Ca2+ ions from  Ca2+ channels 
to synaptotagmin, mediating tight millisecond coupling of 
a depolarization to neurotransmitter release. Influx of  Ca2+ 
then leads to the rapid completion of membrane fusion and 
the release of the neurotransmitter (Rizo and Sudhof 2002). 
Finally, after fusion the vesicular components are recycled 
through endocytosis to replenish the synaptic vesicle pools. 
Three functional and morphological classes of vesicle pools 
have been assigned: the readily releasable pool (docked at 
active zones and ‘ready to go’ upon stimulation), the recy-
cling pool (scattered throughout the nerve terminals and 
recycling upon moderate stimulation) and finally the reserve 

pool (occupying most of the vesicle clusters and only recy-
cling upon C strong stimulation) (Sudhof 2013).

Key insights into the molecular mechanisms of synaptic 
events have come from research using genetic model systems 
such as the nematode Caenorhabditis elegans (Richmond 
2005). Of particular note are studies employing mutants with 
uncoordinated locomotion (unc genes) (Brenner 1974) to 
define key synaptic determinants, optogenetics coupled with 
high-pressure freezing to resolve the relationship between 
docking and fusion (Watanabe et  al. 2013) and genetic 
manipulation of syntaxin to define priming events (McEwen 
and Kaplan 2008). Here we provide a review of regulated 
exocytosis in C. elegans by presynaptic elements, highlight-
ing C. elegans synapse as a powerful tool to dissect synaptic 
components and understanding key synaptic processes. We 
comment on the opportunity for future research directions 
deploying this model organism.

Attachment of vesicles to the cytoskeleton

The principal synaptic protein which functions as a cytoskel-
eton anchor for vesicles in the reserve vesicle pool is syn-
apsin (Fig. 2). Synapsins comprise a family of synaptic 
vesicle proteins that have been identified in a variety of 
invertebrate and vertebrate species (Stavoe et  al. 2012; 
Cesca et al. 2010). In C. elegans, there is a homologue of 
synapsin protein (SNN-1) which is most similar to verte-
brate synapsin II. In vertebrates, synapsins present highly 
conserved domains among the different isoforms. The best 
characterized domains are: domain A containing a phos-
phorylation site for PKA/CaMKI that regulates binding to 
synaptic vesicles, domain C containing ATP binding sites 
and domain E that regulates the reserve pool of synaptic 
vesicles. In C. elegans, snn-1 presents a conserved domain 
organization with PKA/CaMKI site within domain A, sev-
eral ATP binding sites in domain C and a highly conserved 
domain E (Cesca et al. 2010). ssn-1 is expressed in neurons 
exhibiting patterns consistent with localization to vesicles 
in presynaptic regions. Very little is known about the exact 
role of SNN-1 in C. elegans, since snn-1 mutants display 
predominantly wild-type phenotypes. However, a detailed 
analysis of specific synapses in snn-1 mutants reveals syn-
aptic vesicle clustering defects in the sensory neuron AIY 
(Stavoe et al. 2012) and resistance to paralysis on aldicarb 
(Sieburth et al. 2005). This latter phenotype is indicative of 
reduced acetylcholine release at the body wall neuromuscu-
lar junction as the paralysis is induced by accumulation of 
acetylcholine in the presence of the cholinesterase inhibi-
tor aldicarb. This assay has been extensively deployed to 
resolve genetic determinants of cholinergic transmission in 
C. elegans (Mahoney et al. 2006).
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The synaptic vesicle clustering in mammals is regu-
lated by F-actin protein through two different pathways, 
one dependent on synapsins and the other independent 
(Nelson et al. 2013). In mammals, the synapsin family 
consists of at least 9 isoforms encoded by 3 distinct genes 
which are characterized by a mosaic of conserved and var-
iable domains (Fornasiero et al. 2010). Specifically, the 
N-terminal portion of all synapsins is highly conserved, 
whereas the C-terminal portion is variable because of het-
erogeneous combinations of two different domains (Kao 
et al. 1999; Porton et al. 2011). Synapsins are vesicle 

proteins that link synaptic vesicles to the presynaptic 
cytoskeletal matrix by interacting with actin (Bahler and 
Greengard 1987; De Camilli et al. 1983; Li et al. 1995). 
They are expressed in neurons exhibiting patterns con-
sistent with localization to vesicles in presynaptic regions 
(Sieburth et al. 2005), having multiple functions within 
presynaptic terminals, including anchoring of synaptic 
vesicles to the actin cytoskeleton, recruitment of them to 
a reserve pool and regulation of the fusion of SVs (De 
Camilli et al. 1990; Pieribone et al. 1995; Hilfiker et al. 
1998). They are also implicated in neuronal development, 

Fig. 1  Molecular mechanisms of biogenesis and exocytosis of synap-
tic vesicles. Under resting conditions, synaptic vesicles are stored in 
the cytoplasm of the nerve terminal. Vesicles are loaded with neuro-
transmitter through an active processes requiring a neurotransmitter 
transporter and a vacuolar-type proton pump ATPase that provides 
a pH and electrochemical gradient. These transporters are selective 
for different classes of transmitters. The identity of many of these 
transporters was determined through the molecular characterization 
of C. elegans mutants. Filled vesicles dock at the active zone (repre-
sented by a thick grey line), where they undergo a priming reaction 
that makes them competent for  Ca2+-triggered fusion-pore opening. 
Priming involves all steps required to acquire release preparation of 
the exocytosis complex. In special situations—i.e., during sustained 
activity, the priming could precede docking, resulting in immediate 
fusion of vesicles. After exocytosis, the vesicle proteins remain clus-
tered in the plasma membrane to be recycled by endocytosis. The 
double arrow between docking and priming representations indi-
cates that priming can precede docking instead to the interpretations 

based on ‘preferred’ models where docking is before priming. The 
last interpretation is supported by evidence, among others, such as 
rab-3 and unc-18 knockouts present an alteration in vesicle docking 
although the docking is not completely disrupted (Nonet et al. 1997; 
Weimer et al. 2003). Finally, synaptic vesicles are regenerated within 
the nerve terminal probably through one of the three proposed path-
ways (not shown in the diagram): a pathway in which vesicles endo-
cytose by closure of the fusion pore and are refilled with neurotrans-
mitters while remaining docked to the active zone (kiss-and-stay); 
a local recycling pathway that is clathrin independent but results in 
mixing vesicles with the reserve pool after endocytosis (kiss-and-
run); and a pathway whereby vesicles undergo clathrin-mediated 
endocytosis and recycle either directly or via endosomes, ultrafast 
endocytosis removes membrane added by vesicle fusion at the lat-
eral edge of the active zone. Large endocytic vesicles then fuse to 
endosomes, and in this way, newly formed synaptic vesicles can be 
recruited back to the active zone
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synaptogenesis and maintenance of mature synapses (Fer-
reira et al. 2000).

Studies in mice show that mutants lacking synapsin I appear 
to develop normally and do not have gross anatomical abnor-
malities. However, in these mutants, the giant fibre terminals, 
in the CA3 area of the hippocampus, are significantly smaller, 
the number of synaptic vesicles is reduced, and the presynaptic 
structures altered (Takei et al. 1995). Furthermore, suppression 
of synapsin II leads to an inhibition of developing and synapse 
formation in hippocampal neurons. Similarly, a depletion of 
synapsin III affects the extension of processes and axon differ-
entiation in hippocampal neurons (Bloom et al. 2003; Ferreira 
et al. 1995, 2000; Takei et al. 1995).

Docking

The vesicle cluster that represents the reserve pool dock at 
the active zone through a subset of synaptic proteins include 
Rab proteins, CAPs protein (UNC-31), Munc-18 (UNC-18) 

and tomosyn (Fig. 2). Rab proteins present a key role regu-
lating the recruitment of vesicles to the active zone in C. 
elegans. The Rab proteins are a large family of monomeric 
GTPases, conserved from yeast to humans, which through 
specific scaffolding with distinct interactors specify presyn-
aptic function (Bock et al. 2001; Stenmark and Olkkonen 
2001). In C. elegans, there are 31 members of the Rab fam-
ily, 29 of which are also found in humans as orthologues 
(Gallegos et al. 2012). Probably, the most extensively stud-
ied Rab proteins in C. elegans are RAB-27/AEX-6 and 
RAB-3, homologues of human RAB-27 and RAB-3, respec-
tively. C. elegans rab-27 is expressed in neurons and in the 
intestine. In the nervous system, rab-27 localizes to synapse-
rich regions of the nervous system (nerve ring, dorsal and 
ventral cord) and partially co-localizes with synaptic vesicle-
associated rab-3, although RAB-27 immunostaining is nor-
mal in rab-3 mutants, suggesting that RAB-27 localization 
is independent of RAB-3 function (Mahoney et al. 2006). 
This expression profile is consistent with that of mammalian 
Rab27B, which is also expressed in both brain and intestine 

Fig. 2  Molecular protein complexes that organize the secretory 
machinery at the presynaptic active zone. The vesicle clusters dock 
at the active zone through Rab proteins, CAPs protein (UNC-31), 
Munc-18 (UNC-18) and tomosyn. RIM (UNC-10) protein places the 
priming factor Munc-13 and  Ca2+ channels into close proximity to 
synaptic vesicles and SNARE protein complex-dependent (synapto-
brevin, SNAP-25, syntaxin) fusion machinery. In addition to  Ca2+ 

channels, RIM proteins directly bind to the vesicle protein Rab3, to 
the priming factor Munc-13. Munc-13 directly activates the SNARE 
protein assembly. Both RIM and Munc-13 proteins are tightly regu-
lated in a manner that determines presynaptic plasticity. The diagram 
is based on the Sudhof’s synaptic model (Sudhof 2013) and repre-
sents a magnified view of vesicle docking shown in Fig. 1
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as well as other secretory cells. Both RAB-27 and RAB-3 
present a key role in synaptic transmission process in C. 
elegans, regulating the recruitment of vesicles to the active 
zone or sequestration of vesicles near release sites (Mahoney 
et al. 2006). In vertebrates, Rab molecules regulate vesicu-
lar trafficking in many different transport pathways for both 
exocytosis and endocytosis in neural and non-neuronal tis-
sues, but in C. elegans RAB-3 in neurons specifically plays 
a crucial role in regulating synaptic vesicle-mediated release 
(Nonet et al. 1997). As a consequence, C. elegans rab-3 
mutants present slight behavioural abnormalities. They are 
resistant to the paralytic action of the cholinesterase inhibitor 
aldicarb suggesting that cholinergic transmission is gener-
ally depressed (Mahoney et al. 2006; Nonet et al. 1997), as 
well as exhibiting an altered morphology of neuromuscular 
junctions (Nonet et al. 1997). There is a depletion of ≈ 40% 
of normal levels in vesicle population at synapses (identi-
fied by electron microscopy) accompanied by an elevation 
of these populations in inter-synaptic regions of the axons 
consistent with a deficit in SCV trafficking (Mahoney et al. 
2006; Nonet et al. 1997). In addition, extracellular electro-
physiological recordings reveal an impairment of synaptic 
transmission in the pharyngeal nervous system (Nonet et al. 
1997). There is only one isoform of rab-27 in C. elegans, 
while two isoforms are found in mammals. Like the rab-
3 mutants, C. elegans rab-27 mutants are slightly aldicarb 
resistant indicative of a reduction in cholinergic signalling, 
and exhibiting defecation defects consistent with neuromus-
cular transmission dysfunction in anterior body wall muscle 
contraction and expulsion steps of the defecation motor pro-
gram (Mahoney et al. 2006).

In humans, the number of Rab genes reaches up to 60 
where 33 of them have been identified by proteomic analyses 
in synaptic vesicle fractions (Takamori et al. 2006). Of these, 
Rab-3A, 3B, 3C, 3D and 27-B are involved in exocytosis, 
while Rab-4, 5, 10, 11B and 14 are intermediates of synap-
tic vesicle recycling such as early endosomes (Binotti et al. 
2016). Specifically, Rab-3A and Rab-27B are the best inves-
tigated and play overlapping roles during  Ca2+-triggered 
neurotransmitter release in mammals (Schluter et al. 2002).

Another indispensable actor for synaptic vesicle-medi-
ated exocytosis is UNC-31. This is also known as CAPS 
 (Ca2+-dependent activator protein for secretion) and is a 
multi-domain protein containing, from the N to the C ter-
minus, a dynactin 1 binding domain (DBD), a C2 domain, 
a PH domain, a (M)UNC-13 homology domain (MHD) 
and finally a DCV binding domain (DCVBD) (Ann et al. 
1997). The DBD is required for CAPS sorting (Sadakata 
et al. 2007b). The C2 domain, as a  Ca2+ sensor, mediates 
 Ca2+-dependent binding to phospholipids (Rizo and Sudhof 
1998). The PH domain interacts with acidic phospholipids 
and binds with plasma membranes (Lemmon 2008). The 
MHD domain directly interacts with syntaxin, transforming 

syntaxin from the closed conformation into the open form 
giving the opportunity for syntaxin to form the SNARE 
core complex required for priming and docking (Basu et al. 
2005; Betz et al. 1997; Hammarlund et al. 2008). Finally, the 
DCVBD domain mediates CAPS targeting to DCV (Gris-
hanin et al. 2002).

CAPS was first identified as an essential protein for 
noradrenaline release from PC12 cells and recognized as 
being orthologous to C. elegans UNC-31 which had previ-
ously been shown to be involved in neurosecretion (Walent 
et al. 1992). As the name of the protein suggests, mutations 
in unc-31 result in uncoordinated motor behaviour and 
the worms are constitutively lethargic with slow and soft 
movements (Avery et al. 1993). In addition, unc-31 mutants 
feed constitutively and they have defects in egg laying and 
failures in recovery from dauer, a metabolically quiescent 
developmental larval stage of C. elegans (Avery et al. 1993; 
Dalliere et al. 2016). Consistent with this, the expression 
pattern of unc-31 reveals a broad distribution in the nervous 
system (Charlie et al. 2006).

UNC-31/CAPS has been associated with exocytosis 
mediated by DCVs (Berwin et al. 1998), and in line with 
this, in C. elegans it has been found that loss of the sin-
gle isoform of UNC-31 decreases neuropeptide secretion 
accompanied by an increase in neuropeptide abundance in 
motor axons (Sieburth et al. 2007). Mammals express two 
isoforms of CAPS, CAPS1 and CAPS2, with similar func-
tions but which differ in their spatiotemporal expression 
pattern (Sadakata et al. 2007c; Speidel et al. 2003). CAPS1 
is essential for the uptake or storage of catecholamines in 
DCVs (Speidel et al. 2005), while CAPS2 appears to be 
required for DCV-mediated neurotrophin secretion in the 
cerebellum (Sadakata et al. 2007a, c). In addition, in CAPS-
1/CAPS-2 double null mutants DCV secretion is severely 
reduced (Farina et al. 2015). While early studies seemed to 
indicate that CAPS is not required for exocytosis of gluta-
mate-containing SCVs (Tandon et al. 1998), this has been 
revised with further investigation that provides evidence for 
a more overlapping functional role with SCV-mediated exo-
cytosis. CAPS1 and CAPS2 double knockout mice exhibit 
specific priming defects in glutamatergic transmission (Jock-
usch et al. 2007). In Drosophila melanogaster, in which a 
single gene encodes dCAPS, there is a ≈ 50% loss in evoked 
glutamatergic transmission at the neuromuscular junction, as 
well as an accumulation of synaptic vesicles at active zones 
(Renden et al. 2001).

Munc-18 proteins are the mammalian homologue of 
UNC-18 proteins in C. elegans and are a member of the 
Sec1/Munc18-like (SM) protein family. Munc-18 is a 
key synaptic protein acting during multiple stages of 
the exocytosis including vesicle priming, docking and 
fusion. Although during these steps syntaxin interactions 
are required, Munc-18 also regulates vesicle fusion via 
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syntaxin-independent interactions. These syntaxin interac-
tions are possible through a Munc-18 closed conformation 
of syntaxin binding. In C. elegans, UNC-18 is a protein 
required in neurons for synaptic vesicle-mediated exocy-
tosis. Characterization of unc-18 reveals a localization in 
ventral-cord motor neurons and some unidentified head neu-
rons in the adult hermaphrodite (Gengyo-Ando et al. 1993). 
A similar expression is observed in males, but also a strong 
expression in the gonad (Schindelman et al. 2006). unc-18 
mutants are deficient in synaptic transmission with a reduc-
tion in neurotransmitter release and a consequent resistance 
to aldicarb (Graham et al. 2011; Gracheva et al. 2010). The 
introduction of a gain of function mutation in a functionally 
important domain (3b) within the UNC-18 protein confers 
a hypersensitivity to aldicarb (Graham et al. 2011). Munc-
18 has a function in several exocytosis processes requiring 
syntaxin-dependent interactions; however, data based on C. 
elegans studies reveal a key role of domain 3b of Munc-18 
in transducing regulation of vesicles fusion independent of 
closed-conformation syntaxin binding (Graham et al. 2011). 
This fact highlights C. elegans as a powerful and key tool to 
discover functional analysis of synaptic proteins, enhanced 
by the availability of CRISPR editing. Physiological data 
and electron micrographs of C. elegans neuromuscular junc-
tion provide evidence that in the absence of UNC-18 the 
size of the ready releasable pool of vesicles is drastically 
reduced (Weimer et al. 2003). Thus, unc-18 mutants present 
a reduction in docked vesicles at the active zone, indicating 
that UNC-18 functions as a facilitator of vesicle docking 
(Weimer et al. 2003). Overall, the release defects in unc-18 
mutants are associated with the lack of two morphologi-
cally distinct vesicle pools: those tethered within 25 nm of 
the plasma membrane and those docked with the plasma 
membrane (Gracheva et al. 2010).

TOM-1 has also a role regulating the macromolecular 
complex binding between the SNARE proteins syntaxin, 
SNAP-25 and synaptobrevin, three synaptic molecules 
participating in the priming step. Tomosyn is a soluble 
protein first isolated from rat brain as a syntaxin binding 
partner capable of disrupting Munc18–syntaxin-1a com-
plexes (Fujita et al. 1998). Tomosyn has two recognizable 
domains, an N-terminal domain rich in WD40 repeats and 
a C-terminal SNARE domain with high sequence homol-
ogy to the R-SNARE domain of synaptobrevin (Hatsuzawa 
et al. 2003; Masuda et al. 1998). C. elegans tomosyn (TOM-
1) is a cytosolic syntaxin binding protein implicated in the 
modulation of both constitutive and regulated exocytosis that 
negatively regulates synaptic vesicle priming in C. elegans 
(Gracheva et al. 2006). Thus, tomosyn inhibits synaptic 
vesicle priming through its synaptobrevin SNARE motif, 
which forms an inhibitory SNARE complex with syntaxin 
and SNAP-25 (McEwen et al. 2006). The expression of tom-
1 is observed in ventral nerve cord motor neurons and in 

a subset of neurons in head and tail ganglia (Dybbs et al. 
2005). The synapses in C. elegans tom-1 mutants present 
no changes in neuronal outgrowth or in synaptogenesis but 
exhibit prolonged evoked postsynaptic responses. This lat-
ter phenotype is accompanied by an increase in the number 
of plasma membrane-contacting vesicles (Gracheva et al. 
2006). Thus, tomosyn-deficient mutants have increased syn-
aptic transmission, an increased pool of primed vesicles and 
increased abundance of UNC-13 (a synaptic protein involved 
in  Ca2+-triggered fusion-pore opening described in the next 
sections) at synapses (McEwen et al. 2006). This indicates 
that priming is negatively regulated by TOM-1 and that there 
is a fine balance between tomosyn and UNC-13, with the 
availability of open syntaxin a possible mechanism for this 
regulation (McEwen et al. 2006).

Overall, these findings from C. elegans along with stud-
ies using mouse models have shown tomosyn has a diffuse 
distribution in neurites and is accumulated at synapses co-
localized with both moving SCVs and DCVs, regulating 
their mediated secretion. This suggests a function control-
ling the delivery, synaptic sharing and secretion of neuronal 
signalling molecules (Geerts et al. 2017).

Priming

After the docking of vesicles at the active zone, they undergo 
a priming reaction regulated by a few key synaptic ele-
ments, syntaxins (UNC-64), synaptobrevin (SNB-1) and 
SNAP-25 (RIC-4) (Fig. 2). Nevertheless, there might be a 
regulatory-coupled process between docking and priming 
of the synaptic vesicles (Fig. 1); namely, synapses lack-
ing priming proteins, such as Munc-13 or SNARE, have a 
reduced or absence docking of vesicles (Imig et al. 2014). 
Syntaxins are a family of transmembrane proteins that par-
ticipate in SNARE complexes to mediate membrane fusion 
events including exocytosis in different compartments of 
the nervous system such as axons, the soma/dendrites or 
astrocytes. In C. elegans, the unc-64 gene encodes syntaxin, 
a plasma membrane receptor for intracellular vesicles that 
is orthologous to vertebrate syntaxin 1A and Drosophila 
Syx1A. It is expressed in neural cells, especially in motor 
neurons and neurons constituting head ganglions (Ogawa 
et al. 1998; Yamashita et al. 2009). UNC-64 is required for 
normal locomotion and possibly also for insulin secretion 
and is an essential component of the core synaptic vesicle 
fusion machinery (McEwen and Kaplan 2008). UNC-64 
interacts with UNC-13, UNC-18 and SNB-1/synaptobrevin 
(Sassa et al. 1999). Thus, it has been shown that loss of the 
N-terminal binding interaction between the syntaxin UNC-
64 and the protein UNC-18 severely impairs neuromuscular 
synaptic transmission in C. elegans, resulting in an uncoor-
dinated phenotype (Munson and Bryant 2009). In addition, 
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unc-64–null mutants are unable to move and develop beyond 
the first larval stage (Saifee et al. 1998). C. elegans unc-64 
and mammalian syntaxin-1A are functional orthologues as 
shown by the observation that unc-64–null mutant worms 
expressing the mammalian syntaxin-1A wild type are able 
to move, grow and reproduce (Park et al. 2016). Another 
example of the power of C. elegans to further analyse, in 
this case, the structure/function relationship of syntaxin-1, 
is the recent discovery that syntaxin-1 N-peptide is criti-
cal when syntaxin adopts an ‘open’ conformation to bend 
towards Munc-18 (Park et al. 2016).

Similar to C. elegans, mammalian syntaxins present a 
typical domain organization where the N-terminal region 
contains two different motifs: a short N‐terminal peptide 
(‘N‐peptide’) that binds to Munc18‐1 (Dulubova et al. 2007), 
and a larger  Habc‐domain that consists of an autonomously 
folded three‐helical bundle (Bracher and Weissenhorn 
2004). Perhaps, the best-studied membrane–fusion complex 
is that mediating synaptic vesicle fusion through syntaxin 
1A/1B (Teng et al. 2001). It has been suggested that STX1A 
and STX1B are functionally redundant. Thus, STX1A KO 
mice show a normal lifespan, and hippocampal neurons with 
normal neurotransmission, indicating that STX1B function-
ally compensates the function of STX1A (Fujiwara et al. 
2006; Gerber et al. 2008). However, complete loss or partial 
loss of STX1B in mice caused a pre-weaning death, sug-
gesting that STX1A and STX1B have differential functions 
(Mishima et al. 2014).

Synaptobrevins are vesicle-associated proteins involved 
in neurotransmitter release (Nonet et al. 1998). In C. elegans, 
SNB-1 is broadly present in nervous system, in neurons in 
the head ganglia and motor neurons in ventral nerve cord. 
Particularly, the abundance of SNB-1 in GABAergic motor 
neurons is controlled by MEC-15, one of a small number of 
F-box proteins evolutionarily conserved from C. elegans to 
mammal (Sun et al. 2013). C. elegans null snb-1 mutants are 
not viable and die soon after hatching (Nonet et al. 1998). 
In an attempt to generate viable C. elegans snb-1-deficient 
mutants, the I97D substitution in snb-1(e1563) changes a 
hydrophobic residue to a charged residue in the TMD of 
synaptobrevin, leading to a synaptobrevin with reduction in 
function. snb-1 mutants carrying this substitution are via-
ble, with grossly normal locomotion (Sandoval et al. 2006). 
These mutants are resistant to the acetylcholinesterase 
inhibitor aldicarb, indicating that cholinergic transmission 
is impaired, and present abnormal electropharyngeograms 
which are extracellular recordings of the pharyngeal neuro-
muscular network (Nonet et al. 1998).

Studies on synaptobrevins in mouse are difficult to carry 
out since synaptobrevin 1 and 2 mutants, the two isoforms 
extensively expressed in the central nervous system (Schoch 
et al. 2001), immediately die after birth (Nystuen et al. 2007; 
Schoch et al. 2001). In this sense, C. elegans has been a 

useful tool dissecting the role of synaptobrevins in neuro-
transmitter release. However, using high-density cultures of 
hippocampal neurons from embryos, a drastic reduction in 
 Ca2+-triggered vesicle fusion has been observed (Schoch 
et al. 2001).

The SNAP protein family consists of several homolo-
gous proteins of which SNAP-25 is essential for SV fusion 
(Delgado-Martinez et al. 2007). The C. elegans orthologue 
of vertebrate SNAP-25, ric-4, appears to be expressed selec-
tively in the nervous system including the nerve ring, com-
missures, and ventral and dorsal nerve cords (Hwang and 
Lee 2003). Little is known about the role of ric-4 at the C. 
elegans synapse; however, it is known that the loss of ric-4 
function via RNAi experiments leads to aldicarb resistance, 
indicating that ric-4 plays a role in synapse structure and 
function (Sieburth et al. 2005). Studies using mouse models 
show that the deletion of SNAP-25 leads to reduced neuronal 
survival and impaired arborisation, reduced spontaneous 
release, and arrest of evoked release in the surviving neurons 
(Delgado-Martinez et al. 2007). In addition, the neurons of 
SNAP-25 null mutant mice (SNAP-25 KO) contain fewer 
DCVs and have reduced DCV fusion probability in surviv-
ing neurons at DIV14 (days in vitro). Others SNAP family 
members such us SNAP-23, SNAP-29 and SNAP-47 are also 
present in neurons and in synaptic vesicle purifications (Holt 
et al. 2006). Overexpression of SNAP-29 inhibits synap-
tic vesicle fusion possibly via inhibiting SNARE complex 
disassembly (Pan et al. 2005). Finally, SNAP-47 binds to 
plasma membrane SNAREs in vitro, but is predominantly 
located on intracellular membranes (Holt et al. 2006).

Ion channel regulation and fusion

The priming reaction makes the vesicles competent for 
 Ca2+-triggered fusion-pore opening. The major elements 
among the synaptic proteins involved in priming of SVs are 
synaptotagmin (SNT-1), synaptogyrin (SNG-1), Munc-13 
(UNC-13) and RIM (UNC-10) (Fig. 2).

One key factor in  Ca2+ regulation and vesicle fusion is the 
 Ca2+ sensor synaptotagmin, which consists of a short N-ter-
minal luminal segment, a single transmembrane α-helix, 
an unstructured linker, and two  Ca2+ binding C2 domains, 
termed C2A and C2B, respectively. In C. elegans, the two 
synaptotagmin isoforms, snt-1a and snt-1b, are expressed in 
neurons, where snt-1a is typically expressed at higher levels 
and in a larger subset of neurons. In addition, snt-1b is exclu-
sively expressed in the excretory duct cell and a subset of 
tail neurons including DVB, a GABAergic neuron required 
for defecation (Nonet et al. 1993; Mathews et al. 2007). 
Behaviourally, snt-1 mutants present locomotory defects in 
swimming behaviour, as well as in the defecation motor pro-
gram (Mathews et al. 2007). Evoked synaptic transmission 
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is dependent on interactions between synaptotagmin and the 
SNARE complex, comprised of syntaxin, SNAP-25 and syn-
aptobrevin. It has been shown that snt-1 C. elegans mutants 
present a significant reduction in this evoked transmission, 
indicating its key role in SNARE complex assembly (Yu 
et al. 2013). On the other hand, snt-1 mutants present large 
irregular cisternae associated with abnormal endocytosis, 
indicating a defect impacting at this level of the vesicle 
cycle (Yu et al. 2013). In addition, morphometric analyses 
of NMJ (neuromuscular junction) in snt-1 mutants reveal 
a reduction in vesicle density, a phenotype associated with 
an endocytosis defect (Yu et al. 2013). snt-1 mutants also 
show a reduction in absolute numbers of docked vesicle, 
and this docking defect appeared to be a consequence of an 
overall reduced vesicle density, since the fraction of docked 
vesicles as a function of total vesicles in snt-1 mutants was 
not significantly reduced compared to wild type (Yu et al. 
2013). Both reductions in absolute docked vesicles and in 
evoked transmission suggest that SNT-1 has additional func-
tion beyond exocytosis, consistent with the well-documented 
role of snt-1 as a  Ca2+ sensor promoting vesicle fusion (Yu 
et al. 2013). In addition, SNT-1 in C. elegans is crucial for 
the SVs (synaptic vesicles) association of RAB-3 protein. 
SNT-1 promotes the GTP-bound state of RAB-3 by inhibit-
ing RAB-3 GAP, and thus, the catalytic subunit of RAB-3 
GAP (RBG-1) localizes on SVs and directly binds to SNT-1 
(Cheng et al. 2015).  Ca2+ treatment disrupts the direct asso-
ciation between SNT-1 and RBG-1 (a Rab-3 GTPase). In 
addition,  Ca2+ binding activity of SNT-1 is essential for the 
dissociation of RAB-3 from SVs (Cheng et al. 2015).

Complementary studies in mouse models have shown that 
synaptotagmins (specifically Syt1 and Syt2) are  Ca2+ sen-
sors for both synchronous and fast neurotransmitter release 
(Sun et al. 2007; Xu et al. 2009). Overall, synaptotagmins 
act as a cooperative  Ca2+ receptor in exocytosis, binding 
 Ca2+ at physiological concentrations. This binding is specific 
for  Ca2+ and involves the cytoplasmic domain of synaptotag-
min (Geppert et al. 1994; Pang et al. 2006).

Synaptogyrin and synaptophysin are tetraspan membrane 
proteins, the major vesicle proteins, characterized by four 
membrane-spanning domains that are tyrosine-phospho-
rylated (Arthur and Stowell 2007; Evans and Cousin 2005; 
Hubner et al. 2002). They are abundant and evolutionary 
conserved synaptic vesicle membrane proteins (Abraham 
et al. 2006) whose functions are poorly defined, and their 
depletion does not interfere with proper neuronal develop-
ment and basic neuronal function in both C. elegans and 
mammals (Abraham et al. 2006; Eshkind and Leube 1995; 
McMahon et al. 1996). In contrast to vertebrates, in C. ele-
gans the synaptogyrin but not the synaptophysin orthologue 
is predominant in neurons (Abraham et al. 2006; Hubner 
et al. 2002; Nonet 1999; Ruvinsky et al. 2007), expressed in 
all 26 GABAergic neurons, as well as in a subset of neurons 

across the nervous system (Abraham et al. 2011). In mouse 
and C. elegans, synaptogyrin is completely dispensable for 
nervous system development and performance of basic neu-
ronal functions (Abraham et al. 2006; Eshkind and Leube 
1995; McMahon et al. 1996). Thus, C. elegans mutants lack-
ing or overexpressing synaptogyrin present an increased 
sensitivity to the epileptogenic GABA antagonist pentyl-
enetetrazole (PTZ), showing a reduced convulsive thresh-
old (Abraham et al. 2011). This suggests that modulation 
of the synaptic vesicle cycle is fine-tuned by the specific 
amount of synaptogyrin, since both decrease and increase 
in synaptogyrin result in an altered sensitivity to PTZ and 
aldicarb (Abraham et al. 2011). In addition, detailed analysis 
also uncovers mildly altered motility and decreased recruit-
ment of synaptobrevin though not of RAB-3 to synapses, 
suggesting that synaptogyrin presents a distinct modulatory 
and redundant neuronal function in C. elegans (Abraham 
et al. 2011).

Another conserved core components of the presynaptic 
active zone are the UNC-13/Munc13 family. They are essen-
tial for both evoked and spontaneous SV release (Augustin 
et al. 1999; Richmond et al. 1999). These proteins con-
tain multiple protein interaction domains and involved in 
many aspect aspects of presynaptic release. All the UNC-
13/Munc13 isoforms contain a diacylglycerol binding  C1 
domain followed by a MUN domain including the MHD 
(Munc13 homology domain) flanked by  C2B and  C2C 
domains. The MUN domain, structurally similar to the vesi-
cle tethering factors of the CATCHR (Complex Associated 
with Tethering Containing Helical rods) family (Li et al. 
2011), is necessary for vesicle priming (Basu et al. 2005; 
Madison et al. 2005; Stevens et al. 2005) through binding to 
SNARE and Munc18 (Betz et al. 1997; Ma et al. 2011). The 
N-terminal regions of UNC-13/Munc13 isoforms are diver-
gent in amino acid sequences and have been hypothesized to 
contribute to the distinct properties of SV exocytosis in dif-
ferent types of synapses (Augustin et al. 2001; Rosenmund 
et al. 2002).

In C. elegans, the unc-13 locus produces two main 
isoforms that differ at the N-terminal region (Kohn et al. 
2000). The expression of unc-13 is in all neurons of 
both head and tail ganglia, as well as ventral nerve cord 
(Maruyama et  al. 2001). Using genetic mutations that 
eliminate function of all isoforms or only UNC-13L dem-
onstrate an essential role of UNC-13L in neurotransmitter 
release (Richmond et al. 1999). The kinetic components of 
release are thought to be mediated by SVs in different spa-
tial domains of the nerve terminal. Rapid (or synchronous) 
release occurs within a few milliseconds and is proposed 
to consist of fusion of SVs that are close to  Ca2+ entry 
sites. However, slow release occurs over tens to hundreds 
of milliseconds and is thought to be mediated by fusion 
of SVs that are farther from  Ca2+ channels (Neher and 
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Sakaba 2008). In C. elegans, the UNC-13L isoform is co-
localized at presynaptic terminals concentrated near dense 
projections. By contrast, the UNC-13S isoform presents a 
diffuse distribution in axons. This suggests that UNC-13L 
and UNC-13S may mediate different forms of release and 
distinct effects on synaptic transmission (Hu et al. 2013). 
In this sense, it has been shown that UNC-13L is involved 
in both fast and slow release of SVs, while the short iso-
form UNC-13S is required for the slow release (Hu et al. 
2013). In more detail, other studies using a unique unc-
13 mutant that specifically deletes the  C2A domain of 
UNC-13L show that the precise position of UNC-13 in 
the active zone depended on the  C2A domain. In addition, 
the  C2A domain regulates the release probability of SVs, 
likely through positioning UNC-13L to the active zone, 
and that this domain also has a significant influence in 
spontaneous release (Zhou et al. 2013). Importantly, early 
works using C. elegans have shown the role of PKC/DAG 
in the modulation of UNC-13. Thus, the binding of DAG 
by UNC-13 drives its membrane association and regulates 
the exocytosis function of UNC-13 (Lackner et al. 1999). 
Later, studies in Drosophila have also shown how the PLC 
and DAG modulation as well as G-proteins regulates the 
synaptic levels of DUNC-13, critical determinant of SV 
fusion probability (Aravamudan and Broadie 2003).

RIM proteins are presynaptic scaffolding proteins spe-
cifically localized to the active zone and found to bind 
several presynaptic proteins, like Munc13-1, Rab3a and 
voltage-gated  Ca2+ channels (Betz et al. 2001; Kaeser 
et al. 2011; Schoch et al. 2002; Wang et al. 1997). RIM 
proteins are encoded by four genes (Rims1–4); the Rim1 
and 2 genes give rise to five RIM isoforms, called RIM1α, 
RIM1β, RIM2α, RIM2β and RIM2γ (Kaeser et al. 2008; 
Wang and Sudhof 2003). Studies using RIM1α constitu-
tive knockout mice and RIM mutants in C. elegans found 
roles for RIM1 in transmitter release, presumably via 
determining readily releasable vesicle pool size (Calakos 
et al. 2004; Koushika et al. 2001; Schoch et al. 2002). 
RIM mutants isolated in C. elegans (unc-10) are viable but 
exhibit behavioural and pharmacological defects, indica-
tive of synaptic dysfunction according to the localization 
of RIM at the active zone. Although RIM was originally 
identified as a RAB-3 binding partner, the consequence 
of a loss of function mutation is more severe than rab-3 
mutants, suggesting that it possesses additional functions 
(Gracheva et al. 2008). Electrophysiological analysis of 
unc-10 worms revealed both reduced evoked release of 
SVs and spontaneous synaptic event frequency, thus impli-
cating RIM in release (Koushika et al. 2001). UNC-10 is 
co-localized with the  Ca2+ channel, UNC-2 at C. elegans 
presynaptic densities and synaptic release in unc-10 and 
rab-3 mutants exhibit reduced  Ca2+ sensitivity (Gracheva 
et al. 2008a).

Concluding remarks

Through this review, we discussed the synaptic release 
machinery, and how the powerful genetic model C. elegans 
contributes to elucidating core processes of synaptic trans-
mission. This is facilitated by the ability to maintain viable 
mutants of C. elegans for synaptic proteins that are other-
wise essential in mice. It has broad relevance as C. elegans 
harbours the same elaborate elements for neurotransmis-
sion as mammals, and thus, it has been instrumental in key 
discoveries relating to the synaptic vesicle cycle. However, 
some key processes have yet to be elucidated; for exam-
ple, the precise physicochemical mechanisms underlying 
fusion, the roles of key synaptic proteins with overlapping 
functions within complex neural networks and understand-
ing how synaptic vesicles recaptured by clathrin-mediated 
endocytosis are placed back into the vesicle pool; all these 
aspects demand further study which may be supported by 
the C. elegans model. Advances in techniques to study the 
vesicle cycle in the intact living synapse in combination 
with genetic manipulation will accelerate progress in the 
field, shedding more light on these intricate processes. In 
this sense, C. elegans is an excellent system to facilitate 
discovery in this field, thanks to a simple, genetically trac-
table nervous system that is evolutionarily conserved with 
mammalian neurons, as well as providing new routes to 
understand the dynamic processes underlying neurotrans-
mitter exocytosis.
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