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ABSTRACT

In this paper we investigate influence maximization, or optimal opinion control, in a modified
version of the two-state voter dynamics in which a native state and a controlled or influenced state
are accounted for. We include agent predispositions to resist influence in the form of a probability
g with which agents spontaneously switch back to the native state when in the controlled state.
We argue that in contrast to the original voter model, optimal control in this setting depends on
q: For low strength of predispositions ¢ optimal control should focus on hub nodes, but for large
q optimal control can be achieved by focusing on the lowest degree nodes. We investigate this
transition between hub and low-degree node control for heterogeneous undirected networks and
give analytical and numerical arguments for the existence of two control regimes.

Keywords: opinion control, voter dynamics, scale-free networks, optimization, influence maximization

1 INTRODUCTION

Processes of opinion formation play a role in a variety of real-world problems, ranging from political
elections to marketing and product adoption, see (Castellano et al., 2009; [Sirbu et al., 2016) for recent
reviews. Very often these processes involve peer-to-peer interaction (Easley and Kleinberg, 2010) and
thus take place on social networks. In this context the natural question arises how an external party with
a certain amount of resources at its disposal can steer such a social system in a desired direction, maybe
either with the intent of maximizing the adoption of products (Kempe et al.,|2003; Bharathi et al., 2007,
2010; Goyal et al., [2014) or for the purposes of political influence in the so-called campaign problem
(Hegselmann et al., 2015]).

Starting with the seminal study of (Kempe et al., |2003)) on influence maximization, work in this area
has strongly focused on the independent cascade model or related versions of threshold models which
have been studied in competitive and non-competitive settings (Kempe et al.,|2003; Bharathi et al., 2007,
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2010; \Goyal et al., 2014). In the independent cascade model, influencing parties strategically distribute
seeds which can then cause cascades of influence spread. However, whilst allowing for neat solutions
using optimal percolation (Morone and Makse, 2015), in the independent cascade model agent behavior is
assumed to be fixed once committed to a certain opinion, thus not allowing for dynamical change subject
to competing internal or external influence over time. Models of this type thus appear not suitable for a
range of applications (Kuhlman et al.,|2013)) in which the interest is in dynamic opinion change.

Recognizing this limitation of the independent cascade model, recent work has also started to consider
opinion control in dynamic models of binary opinion change, which appear more suitable to capture
dynamic phenomena of opinion change if agents don’t have strong commitment to decisions. Research
in this area so far has considered models based on the kinetic Ising model (Liu and Shakkottai, [2010;
Laciana and Roverel, 2011}; Lynn and Lee, [2016)), a variant of the AB model (Arendt and Blaha, 2015)
which results in majority-like dynamics, and the voter dynamics (Kuhlman et al., 2013} |Yildiz et al., 2013;
Masuda, 2015). Whereas in the kinetic Ising model agents change opinions according to a majority-like
dynamics, in the voting dynamics agents adopt opinions of randomly selected neighbors (Clifford and
Sudbury, |1973}; Holley and Liggett, 1975). In contrast to, e.g., the Glauber dynamics underlying the kinetic
Ising model, opinion changes of agents in the voting dynamics are caused by the pressure of the majority
of their neighbors only in an averaged sense and the state of the majority does not play a direct role when
making updating decisions. With differing effects of majority pressure one thus finds differences in model
behavior (Castellano et al., 2009). Nevertheless, of interest for our study below, for the kinetic Ising model,
recent work has pointed out that optimal influence allocations may shift from focusing at high-degree
nodes to low degree nodes depending on the social temperature of opinion change (Lynn and Lee, |[2016).
The work of Lynn and Lee|(2016) demonstrates that hub control may not be optimal for all types of social
contagion processes and hub nodes may play different roles at different stages of the dynamics (Quax
et al., 2013). However, the focus of the present study is on the voting dynamics. In this context, Mobilia
was first to investigate the impact of an agent favoring one opinion, a so-called ’zealot’ (Mobilia, 2003;
Mobilia and Georgiev, [2005), which was later extended to considerations of inflexible voters (Mobilia et al.,
2007)). Zealots, or partisan voters, can be interpreted as external influence on the system. Whereas in the
voting dynamics consensus is typically reached (Castellano et al., 2009)), the mutual presence of multiple
opposing zealots can lead to the co-existence of different opinions in equilibrium (Mobilia and Georgiev),
2005; Mobilia et al., 2007)). Effects of zealotry in the voting dynamics are of considerable interest in the
literature and have been studied in various settings. For instance, considerations of error-prone zealots have
been addressed in Masuda et al.| (2010)); Masuda and Redner| (2011)). Further recent studies include voter
models with a large number of states (Waagen et al., 2015), extensions to the non-linear g-voter model
(Mobilia, 2015), an exploration of the role of mass media in multi-state voter models (Hu and Zhu, 2017,
or, more recently, a study on the role of noise in the mean-field voter model with zealots (Khalil et al.,
2018]). However, none of the latter studies consider the role of strategically placed zealots.

In the context of opinion control in the voter model Kuhlman et al.|(2013)) investigated control strategies
focused on the highest-degree nodes, attempting to minimize control costs to achieve given threshold
opinion shares. In other related work |Yildiz et al. (2013)) proposed a new algorithm to find optimal control
strategies, but mainly focused on the evaluation of the algorithm. Closest to the present work is the study
of Masuda (2015), in which methods from linear algebra are used to explore optimal opinion control in
the voter model. Masudal (2015) analyzes steady state solutions of the master equation and then carries
out numerical optimization to investigate optimal control strategies for artificially generated scale-free
Barabasi-Albert networks (Albert and Barabasi, 2002)) and a range of empirical social networks, including
email-communication, co-authorship, and directed online social networks, finding that control protocols
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that focus on the highest-degree nodes are generally successful in heterogeneous undirected networks, but
not necessarily in the case of directed networks. Findings of previous work on opinion control in the voter
model thus seem to generally agree that optimal control on undirected social networks should generally be
focused but not exclusively be concentrated on high-degree nodes [Kuhlman et al.| (2013)); Masuda (2015).
However, whilst proposing new algorithms and proving analysis of optimal opinion control for certain
network topologies, up to our best knowledge no previous study has investigated the role of the strength of
predispositions to resist change on strategies for optimal opinion control.

Studies like (Masudal [2015) have assumed the presence of two external influencing parties and
investigated optimal strategies of an active optimizer competing against a passive strategy that does
not actively pursue optimal control. Here we propose a slightly different variant of the voter model which
may be closer in spirit to the independent cascade model but still allows for dynamic change of opinions.
Instead of assuming the presence of a passive party, we consider a setting in which an active party attempts
to align the system towards a goal, but agents are ‘fickle’ in the sense that they might also spontaneously
revert to the uninfluenced state with some probability. The inclusion of such fickleness allows us to study
the dependence of opinion control on the strength of predispositions of agents to resist change. As we shall
argue below, optimal control strategies are indeed very different in low and high predisposition settings on
undirected networks, pointing out that previous findings like those of Kuhlman et al.| (2013) and Masuda
(2015) might not apply in all settings.

With the inclusion of predispositions we aim to provide a framework that agrees with empirical evidence
from recent work on social networks, in which it was observed that influence propagation follows a complex
contagion dynamics (Centola and Macy, |2007; Centola et al., 2007; |Hill et al., |2010; Centola, [2010; Romero
et al.,|2011). Complex contagion describes a process whereby repeated exposure is required for the adoption
of opinions, behavioral patterns, products, etc. Such a process is enhanced by communities, in which
individuals are repeatedly exposed to the same ideas. This contrasts with simple contagion (modeled, for
example, by independent cascades), in which similarly to disease spreading, only one contact is required to
spread a message. An immediate consequence of such different dynamics is that hubs typically represent
the best influencer under a simple contagion dynamics, whereas targeting low-degree nodes may yield a
larger spread for complex contagion (Alshamsi et al., 2017)). By including predispositions to resist change
in our model nodes can spontaneously revert to the uninfluenced state. Therefore, the proposed model
reflects the repeated exposure needed in complex contagion to influence a node with high probability.
Alshamsi et al. (Alshamsi et al., 2017) has recently shown that it may be best to influence low-degree
nodes in complex contagion in a setting in which nodes are committed to a state once adopted. Our results
complement these findings in dynamic settings and show further conditions under which it is best to target
low-degree nodes instead of hub nodes.

Our study is organized as follows. In Section [2| we give a detailed description of the model employed and
describe analytical and numerical methods to find optimal control strategies. Section |3[then gives our main
findings and we finish with a summary and discussion in Section 4]

2 METHODS

In the following we consider a variant of the voter model (Holley and Liggett, |1975; Clifford and Sudbury,
1973)) that accounts for spontaneous changes of opinions with a probability q. Let there be N agents with
binary states s; = 1 or s; = 0,4 = 1, ..., NV which are connected by an unweighted social network given
by its adjacency matrix A = (a;;) %:1. We consider undirected connections, hence a;; = aj; = 1 if there
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is a link between 7 and j and a;; = aj; = 0 otherwise. Additionally, we consider an external controller
with opinion s = 1 who aims to align the system to its opinion. Control is exerted through the presence
of additional in-neighbors with s = 1, i.e. a controlled node has an enhanced likelihood of choosing a
neighbor with state s = 1 when updating. The controller thus influences the system through unidirectional
links given by a vector p’ = (pi, ..., py) Where p; = 1 if the controller influences node i and p; = 0
otherwise. Without loss of generality we assume that s = 1 is the desired state into which the controller
wants to guide the system. However, ‘convinced’ agents in state s = 1 may spontaneously revert to state
s =0.

In more detail, after random initialization of voters the dynamics of opinions are updated as follows:
(i) a focus agent x is picked at random, (ii) with probability (1 — ¢) agent = randomly selects one of its
in-neighbors y and adopts the opinion of y, i.e., s, = s,. In the opposite case, i.e., with probability g,
if in state s = 1 agent x will spontaneously revert to state s = (. Steps (i) and (ii) are repeated until an
equilibrium is reached.

The above process allows for analytical solutions. Define u; as the probability that node ¢ will be in state
s = 1. We can then write down the master equation

i = (1= q)/Si | (1= w) O ajiug +pi) —wi Y agi(l—uy) | — qui, (D
j j

where
Si=Y_aji+p 2
J
is the in-strength or the sum of influences node ¢ experiences. The first term in Eq. (1) captures the typical
copying dynamics of the voter model which occurs with probability 1 — ¢ (see, e.g. (Masuda, 2015)), and
the second term —qu; accounts for spontaneous flips back into the uncontrolled state.

Equilibrium states can be obtained from
(diag(%;) — (1 —q)A)u" = (1 — q)p, 3)

where ©* = (uj, ..., u}y) denotes the vector of equilibrium probabilities and diag(X;) stands for a diagonal
matrix D with entries D;; = ¥; (cf. appendix [ for more detail). Again following (Masuda, 2015)) we next
note that Eq. (3]) gives a linear system which is diagonally dominant for all g. Thus, an efficient way of

0 _ 1/2,i=1,..., N and then iterate

solving system H is by Jacobi iteration, where we start with u;

R Yot FORE S )
J

where superscripts indicate the iteration number. Stationary solutions «* then allow to estimate the share of
votes influenced by the controller via X = 1/N ). u}.

From Eq. (3] we can also read the mean-field solution for the controlled vote share when controllers are
allocated randomly on an all-to-all connected network, finding

_1—q

X=_"1
p+q

P, o)
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Figure 1. (A) Dependence of the controlled share of votes X on the resource of the controller n. For each
color, the lower curve gives the vote share for random allocation of control and the upper curve vote shares
for optimized allocations. (B) Dependence of optimized vote shares on the predisposition parameter g for
various control resource endowments n. (C) Optimization gain relative to random control allocation for the
scenario shown in (B). The data are for networks composed of N = 1000 nodes constructed for o = 3 and
each data point represents an average over 50 randomly sampled network configurations. Error bars are of
the size of the lines/points.

where p = 1/N ). p; is the density of controlled voters. It is straightforward to see the limiting cases of
¢ = 0and ¢ = 1in Eq. (§)) corresponding to a perfectly controlled system (X = 1) and an uncontrollable
system (X = 0), respectively. We can thus see that predisposition to resist change in the form of the
flipping probability ¢ quantify how difficult it is to control the system.

In the following we are interested in optimal control strategies (as quantified by p) for the external
controller for given networks. As a model for social networks we construct networks with power-law
degree distributions P(k) o< k~% according to the configuration model (Newman, [2010). For given control
resource n = y . p; controls p are then first assigned randomly and then optimized using a stochastic
hill climber. More precisely, we iterate the following scheme: (i) select a controlled node = and a yet
uncontrolled node y at random, (ii) rewire the control from x (i.e., p, = 1,p, = 0) to y (i.e., p, = 0,
py =1 if X(p, = 1,py =0) < X(p, = 0,p, = 1). Optimization using steps (i) and (ii) is stopped once
no rewiring of controls has been accepted for a certain number 7' of attempts and three different initial
control allocations are explored to reduce the probability of ending up in local optima with stochastic
hill-climbing. For network sizes of N = 1000 nodes/voters that we shall investigate below, we typically
set T = 10%, which makes sure no substantial improvements in control can be found any more. If not
mentioned otherwise, we set &« = 3 and run experiments with connectivity (k) = 3. In the following, we
will explore the dependence of optimal opinion control strategies on the predisposition parameter ¢ for
various resource allocations n to the controller.

3 RESULTS

In this section we present our main findings. We start by outlining numerical results in subsection |3.1|and
then analyze two toy models, i.e. star networks and chains in subsection Exact solutions for the toy
models illustrate the main claim of the paper and give analytical insight into the shift from optimal high- to
low-degree control.

3.1 Numerical Results

In Figure [I] simulation results on optimal vote control for scale-free networks of size N = 1000
constructed for a scaling exponent o = 3 are visualized. Panel[I]A compares the dependence of optimal vote
shares and average vote shares under random allocation of control on the controller’s resource endowment
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A

Figure 2. Examples of optimized control for a network of N = 100 nodes and L = 288 links for low
q = 0.01 (left) and high ¢ = 0.5 (right). The networks are constructed via a configuration model with
P(k) < k~“ with o = 3. Red boxes indicate controlled nodes, circles indicate ordinary nodes. Interior
colors give relative control on a sliding scale from white (weakest control) to black (strongest control). The
average opinion is (s) = 0.72 (left) and (s) = 0.034 (right).
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Figure 3. Dependence of optimal strategies for opinion control on the predisposition parameter q: (A)
average degree of controlled nodes, (B) degree variance of controlled nodes. (C) Dependence of the
probability of a node to be controlled on degree for control optimized for different values of ¢ for n = 10.
The data are for networks of N = 1000 nodes with « = 3 and (k) = 3 and in (A) and (B) each data point
represents an average over 50 samples.

n for various predisposition strengths g. As one would expect, the larger the resource endowment n and
the lower ¢, the larger the share of controlled votes. Panel Fig. [IB gives a further illustration of related
experiments in which the optimal controller’s resource endowment was fixed, but the magnitude of ¢
systematically varied. We again see that larger resource levels allow for tighter control, but the effects of
control decline strongly with ¢q. One notes that optimal placement of control can considerably improve vote
shares relative to random allocation (cf. Fig.[T|C), but absolute improvements due to optimization are very
limited when either ¢ or n are large. Maximum gains achievable by optimization starting from random
allocations tend to be around 40 — 50% of the initial vote share.

What are the best resource allocations? We proceed by investigating the dependence of optimal control
strategies on the strength of predispositions ¢. Figure [2] gives an illustration of some first results for a
small network of N = 100 nodes where control was evolved for situations of low (left) and high (right)
predisposition strength for a controller which can influence 10 nodes. In the figure, controlled nodes are
indicated by red boxes and the shading of nodes gives their average opinion state u for the chosen control
scheme. Prevailing dark colors of nodes make it immediately obvious that the network can be strongly
influenced in the low predisposition regime visualized in Fig. 2JA but largely resists control in the high
predisposition regime in Fig. 2B in which light colors dominate.
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Figure 4. Dependence of the critical predisposition strength at which optimal control switches from
hub control to low-degree control on (A) the total resource endowment of the controller n, (B) network
heterogeneity for resource endowment n = 10 for the controller. The data are for networks of N = 1000
with connectivity (k) = 3 and error bars result from the discretization of q-values when constructing
Uk,control]ed(Q) plots.
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Figure 5. Dependence of average controlled degree (A) and standard deviation of controlled degrees (B)
on the predisposition to resist for social networks of different assortativity. The data are for networks of
N = 1000 nodes with « = 3 and (k) = 3 and data points represents averages over 50 runs.

For a more systematic investigation, we define the average degree of a controlled node

L Zz Diki

controlled — ) (6)
D pi
where k; = > ; @ij 18 the degree of node 7. Similarly, we also measure the standard deviation
2
2 > Pi(ki — Keontrolled)
Uk, controlled — : . (7)

> ibi

of the distribution of controlled node degrees. To gain further insights about the dependence of control on
degree we also estimate likelihoods F controlled Of nodes to be controlled depending on their degrees.
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The dependence of all three measures on g are plotted in Fig. 3]A,B,C for various resource endowments n.
As also seen in the example above, the figure suggests the existence of two control regimes. For small ¢
control is clearly focused on the highest degree nodes. The smaller n the larger the average degree of the
n highest degree nodes, and accordingly we see relatively lower average degrees of controlled nodes the
larger n. In contrast, for large ¢ control is clearly focused on low-degree nodes. In fact, as we see in the plot
of the dependence of standard deviations of degrees of controlled nodes vs. the strengths of predispositions
¢ there is a sharp transition between the two control regimes, cf. Fig. [3B. Starting from low ¢ up to some
critical point in ¢, the largest degree nodes are controlled in every instance, but control gradually includes
more and more low-degree nodes (see Fig. [3IC). Beyond this point, control suddenly excludes the largest
degree nodes and focuses on a mixture of low-degree nodes before eventually becoming firmly fixed on
low-degree nodes for large ¢.

The low-high standard deviation regime threshold depends on resource endowments. To evaluate this
dependence we have measured g-dependencies of {0k controlled) fOr Various resource endowments n and
determined critical points from the sharp transitions in the respective (ok_ controlled) (¢) plots. Results are
illustrated in Fig. A, where we see that thresholds between the regimes initially grow with n, then saturate,
and decline.

We also investigated dependencies of thresholds on the structure of the social network to be controlled
as quantified by the degree exponent «. For this purpose, we constructed configuration type models with
fixed numbers of links for a range of a-parameters and again estimated critical points from the respective
{0k, controlled) (¢) plots. Results are shown in Fig. , where we see that more degree heterogeneous networks
generally support a larger high-degree control regime.

All of the experiments conducted above have been carried out for networks with given degree
heterogeneity, but without higher order correlations such as clustering or assortativity which are typical
for real-world networks (Newman, 2010). Because of the observed strong dependence of optimal control
on degree, the impact of degree-mixing patterns on the optimal control allocation appears of particular
interest. To address this question, we have constructed synthetic scale-free networks with dis-assortative
and assortative degree mixing patterns. Such networks can be generated by starting from a neutrally
assortative network and then randomly picking two connected pairs of nodes, ordering the nodes by degree,
and rewiring to change connections towards linking the pair of nodes with highest and the pair with lowest
degree (for increased assortativity) or re-linking nodes with largest degree differences (for dis-assortative
mixing). Rewiring according to this scheme preserves the overall degree sequence and allows to tune
degree mixing (Xulvi-Brunet and Sokolov, [2005). To investigate the role of degree mixing on control
schemes, we have carried out rewiring to tune assortativity until no further reconnection moves could
be carried out, resulting in networks with very strong dis-assortative and assortative degree mixing with
a = —0.37 and @ = 0.40 measured by Newman’s assortativity coefficient (Newman, [2003). Results for
optimal control allocations for such networks are shown in Fig.[5] It becomes apparent that assortativity
has a strong influence on optimal control: Whereas the regime of hub control is strongly reduced for
assortative networks it is considerably extended for the case of dis-assortative degree mixing. As we shall
see below, for ¢ > 0 nodes are the more difficult to control, the larger their degree. Thus, in an assortatively
mixed network, hub nodes tend to be surrounded by nodes which are difficult to control, making it even
more difficult to control the hub node itself. The effect results in a much lowered threshold for ¢ at which
periphery control becomes optimal. The contrary argument applies for disassortative networks. In this case
hub nodes are surrounded by nodes that can be more easily controlled, which, in turn, makes them easier to
control even at large ¢, resulting in an extension of the regime of optimal hub control.

This is a provisional file, not the final typeset article 8
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Figure 6. Illustration of a star network with control targeted at a central hub (A) and control targeted at a
periphery node (B) and dependence of the average stationary vote shares for both scenarios on ¢ (C) for a
star network with one central hub and & = 15 spokes. Average probabilities of being in the controlled state
are labeled v for the hub node, u; for uncontrolled periphery nodes, and us for a controlled periphery
node.

3.2 A Model of Star Networks and Chains

To understand changes in optimal control strategies depending on predisposition strengths we give an
analytical argument for a star network and analyze two control scenarios: control of strength one focused
at the central hub and control of strength one focused on a single peripheral node, cf. Fig. [6A and Fig.
6B, respectively. Note that Masudal (2015) has also analyzed this toy network for the original voter model
with a passive controller, finding that single node control should always be focused on the central hub in
that case. As an illustrative example to investigate how the effects of control change with distance from a
directly controlled node, we also investigate control of an undirected chain by placing a controller at one of
the ends of the chain.

Our arguments below are based on applying Eq. (3)) to the star network. With some algebraic manipulation
(see Appendix [ for a detailed derivation) for control of strengths py = 1 applied to the central hub, we
obtain ug = (1 — ¢q)/(1 + kq(2 — q)) and u; = (1 — q)up and thus

Kl1-gq)+1 1-g¢
k+1 1+kq2—¢q)

(8)

Xcentral =

where £ is the number of spoke nodes. For the periphery controlled scenario similar calculations yield
ur = (1=pJuo, up = (1-¢q)/(k—(1—q)*(k—1))uzand uz = (1-q)/ (2~ (1-q)*/(k—(1—q)*(k—1)))

resulting in
f+A-gk-1Df+1 1-9¢

Xperiphery = E+ 1 9 _ (1 _ (])JN (9)

where
l—gq

(1—q)*+kq(2—q)
Comparison of Xcengrai(q) With Xperiphery (¢) reveals changes in the optimal strategy when ¢ is increased,
cf. Fig. [6C where we illustrate this scenario for & = 15 and observe that for low ¢ hub control is
optimal whereas for large g periphery control proves superior. To analyze what control strategy performs
better depending on ¢ we first note that Xcenwal(¢ = 0) = Xperiphery(¢ = 0) = 1 and observe that
O X periphery/ 0q|q=0 = (1 — 2k — 4k*) /(k + 1) whereas X central/0qlg=0 = (—1 — 4k — 2k?)/(k + 1), i.e.,
for £ > 2 after starting at the same point for ¢ = 0 the effectiveness of central control initially decays

= (10)
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Figure 7. Illustration of a chain network with control targeted at node 0 at the left end (A) and dependence
of the average stationary vote shares u; depending on the distance : to the directly controlled node (B) for a
chain of length 100 and ¢ = 0.01 calculated based on Eq. (19).

slower with ¢ than the effectiveness of peripheral control. Thus, for small ¢ one has Xcengral > Xperiphery-
As for both control scenarios Xcentral(¢ = 1) = Xperiphery(¢ = 1) = 0, similar analysis of slopes at ¢ = 1
shows that Xcenral < Xperiphery for ¢ close to 1.

Instead of a not very instructive exact calculation of the critical point g at which optimal control
switches, we limit the analysis to the case of large k. Figure |§p suggests that ¢y ~ 1/2 for large
k > 10 in star networks. In fact, expansion of Eq’s. and @[) in leading order in 1/k confirms that
Xeentral > Xperiphery for ¢ < 1/2 and Xcengral < Xperiphery for ¢ > 1/2 in the limit of & — oo.

More importantly, calculations in this toy model illustrate why hub control weakens at large values of q.
We note that for any ¢ > 0 nodes are the more difficult to control the larger their degree. In fact, whilst this
effect vanishes for ¢ = 0 hub control also becomes the more difficult, the larger q. However, nodes are also
the more difficult to (indirectly) control the farther away they are in terms of network distance from the
node directly influenced by the controller. To analyze the latter effect, consider a linear chain of length
[, controlled by influence of strength one applied to either end, cf. Fig. [7A. Equation (3)) applied to this
situation then reads

2up — (1 — q)uy = (1 —q) (11)
(12)

2u; — (1 = q)ui—1 — (1 = @)ui+1 =0
(13)

up — (1 —q)uy—1 = 0.

To solve the above system of linear homogeneous difference equations we use the ansatz u; = A\ for
1t =1,...,n — 1 and find eigenvalues

1
A2 = T4 (1+g), (14)

This is a provisional file, not the final typeset article 10
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with ¢ = \/q(2 — ¢). General solutions are thus of the form u; = A/\"i +B /\é. Matching with the boundary
conditions for ¢ = 0 and ¢ = 1 gives two conditions to fix the values of the constants A and B

2044+ B)—(1—=q)(AN\ +BX) =1—¢q (15)
AN+ BAY) — (1 — )(ANT - BALY = 0. (16)
Solving for A and B one obtains
Nty —1
A=-p2 9= (17)
A9+l
and
l—q
B = T. (18)
1+ (12)
We finally obtain
1 1 (1—g) : >
= . I+g9)+(1-9)). 19
I+g

We observe that for ¢ < [ the second term in Eq. is always substantially larger than the first. Noting
also that ¢ < ¢(q) for ¢ € (0, 1) it follows that u; is decreasing with i, i.e. the example of the controlled
chain network demonstrates that influence of indirect control on a node decreases with the distance from
that node, cf. also Fig.[7B.

We thus see two opposing effects of hub control. On the one hand hubs are the more difficult to control the
larger their degree. On the other hand, because a hub node has more neighbors than an average node, control
of hub nodes provides a controller with closer access to other nodes in the network and this improved access
can outweigh the enhanced difficulty of controlling high degree nodes for low predisposition strengths. In
contrast, in high ¢ settings the decreased controllability of hub nodes outweighs the enhanced access to the
their respective neighbors that they provide to the controller.

4 DISCUSSION

In this paper we have investigated the impact of predispositions to return to the uninfluenced state on
opinion control in a variant of the voter model. Results have shown that predisposition strength has
a strong influence on optimal control strategies, such that essentially two control regimes exist. For
low predisposition strength, optimal control is found to be focused on hub nodes, whereas for large
predisposition strength optimal control should be focused on low-degree nodes. In the latter situation,
controllers can only gain relatively little total influence over the system, but strategic allocation can still
result in improvements of control gains of up to 40% relative to random allocation.

Through numerical simulations of the voting dynamics on scale-free networks and analytical calculations
on star networks we have established that both regimes tend to be separated by a transition, with details
of the transition depending on resource endowments of the controller and the heterogeneity of the social
network. Our numerical results suggest that more heterogeneous networks (i.e., scale-free networks with
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a smaller scaling exponent «) support a larger regime of optimal hub control than more homogeneous
networks.

Our main finding, i.e., the existence of regimes in which optimal control strategies should focus on
low-degree nodes, differs markedly from previous investigations of the original voter model (Yildiz et al.,
2013} |Kuhlman et al.,|2013; Masudal, 2015)). A point that may serve to illustrate the reduced effectiveness
of hub control in the present model is that the model can be mapped to the conventional voter model with a
passive opponent who influences every voter on the social network. To account for the spontaneous state
reversion which occurs with constant probability for each node, in the mapped version of the standard voter
model such a passive controller would have to have control strengths to nodes proportional to their degree,
i.e., exert a much stronger influence on hub nodes than low-degree nodes (see Appendix [ for details).
Thus, it is not surprising that a binary active controller may wish to focus on low-degree nodes. In this light
one might wonder why hub control is optimal for any value of ¢q. As our toy example of a chain network
has illustrated, indirectly controlling nodes that do not have a direct connection from the controller comes
at a cost that grows with distance from the closest directly controlled node. Thus, hub nodes can still be
optimal because of their central topological position in the network such that average distances from them
to other nodes are lower than for low-degree nodes, potentially outweighing the enhanced difficulty in
gaining control over them.

In the presented model we have analyzed the case of binary scenarios in which nodes can either be
controlled or not, but controllers cannot choose the strengths of control. An alternative scenario could be an
allocation scheme in which controllers can distribute resource in such a way that some nodes are strongly
influenced and others only experience a weak effect. It is thus possible that our choice of binary control
could have affected the results. One could imagine that even in the low degree regime in the binary model
optimal continuous schemes that allocate very strong control to hubs could outperform evenly balanced
control that aims to influence many low-degree nodes. Investigations of the continuous scenario represent
an interesting avenue for future work.

Another point worth emphasizing is that we have considered undirected networks in this study. Results
in the voter dynamics may differ markedly on directed networks (Masuda, |2015). Moreover, on directed
networks in- and out-degrees of nodes might be uncorrelated such that out-degree hubs are not necessarily
in-degree hubs and vice versa. Difficulties in hub-control as described above relate to the difficulty of
node control with growing in-degree, whereas benefits of node control result from large out-degrees. One
can thus expect a more nuanced picture for directed networks in the presence of a predisposition to resist,
which should be worth studying in more detail in the future.

On a more speculative note, we remark that predispositions to return to the uninfluenced state in the
present model essentially introduce a degree-dependent resistance of nodes to align with the external
control. A rewrite of Eq. (I) shows that a very similar equation and essentially similar effects can be
observed when not introducing ¢ a probability to return to the opposed state when in the influenced state,
but as a probability to flip state in any state. The latter phenomenon corresponds to noise, and it will be of
interest to carry out a more detailed comparison of results for the voting dynamics in this situation with the
results of Lynn and Lee| (2016)) for the kinetic Ising model.

APPENDIX A

Here we provide a more detailed derivation of Eq. (3). We start from Eq. (1)), setting «; = 0 to obtain a
stationarity condition. One notes that the quadratic terms proportional to products u;u; cancel out and after
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multiplication by 3J; we find

0=(1-gq) Zaﬂuj (1 —u)p —uZZ:aJZ — qXu;. (20)

Re-arranging terms and recalling ¥; = > j @ji + i yields
—(1—qpi=(1—¢q Z ajiuy — (1= qQuips — (1 — @ui Y aji — qui ¥ _aji —qpivg  (21)
J J

and thus
(1 - Q> = uid; — 1 —q Zajzuja (22)
J

which is Eq. (3).

APPENDIX B

In this section we provide some additional detail for the calculation of equilibrium shares for star
networks with central and peripheral control (cf. section [3.2] and Fig. [f] for a pictorial representation
of the corresponding networks). We start by analyzing central control, for which Eq. (3) reads

(k+1up — (1 — q)kur = (1 —q) (23)
— (1 =q)up = 0. (24)

From (24) we find u1 = (1 — ¢)uo and inserting into yields
uo((k+1) = k(1 = 9)*) = (1 - q). (25)

We thus find the expression for ug given in section [3.2] We further have

1
Xcentral = 1 (UO + k'ul) (26)
up(1+ k(1 —q))
= 27
k+1 ’ @7

which results in Eq. (8] in section [3.2] after inserting uy.

We proceed with details of the calculation to obtain the controlled vote share for a periphery-controlled
star. In this case, Eq. @) reads:

kup — (1 —q)(k—1Du; — (1 —qug =0 (28)
—(1=qup=0 (29)
2up — (1 — q)ug =1 —q. (30)
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329 We immediately see u; = (1 — ¢)uyp. Inserting into (28)) and solving for ua gives the expression in section
330 for ua which can be written in more convenient form using (10)

l—gq
2-(1-q)f
331 Finally, we have
1
Xperiphery - k’—H (U2 + fU2 + (k - 1)(1 - Q)fUQ) y (32)

332 which, after inserting ug, results in expression (9) in section[3.2]

APPENDIX C

333 In this section we provide a more detailed argument how the voting model with predisposition can be
334 mapped to the original voter model in the presence of two opposing zealots, where the passive zealot has
335 a control strength which is proportional to a node’s degree. In the following, we shall label the active
336 controller as A and its control influence as p;“ (as opposed to just labeling its control gain by p; in the rest
337 of the paper), and label the passive controller as B with control gain pf . We shall show that our Eq. (1) is
338 equivalent to Eq. (3) in Masudal (2015) provided that the strength of the passive controller is proportional
339 to the influence exerted on an agent by the social network and the active control, i.e. p? =05 j @ji + pf‘).
340 We first note that we can scale time in our Eq. (1)) to obtain an equivalent condition

= (1= q)/Si [ (1= w)Oajiuj+pi) —wi Y ai(l—uy) | —q/(1 = q)us, (33)
j j
341 We can now rewrite Eq. as

'_Zjaij—kpfl-#p? <( ) Zjajiuijpi Zjaji(l—uj) ) q Zjaithpf—i—pf
= — U

U — u; — u;,
Z >, aji + i >+t Ao e et P ) 1= a3 ai 0P
(34)
342 and thus
i = (1+7) | (1—w) 2y ity 0 — U 2 il =) | a(l+7) p u;
(— 1 7 (3]
Siai+pt+pP e+t +pP ) L=y Y a4+ ot +pP
(35)
343 Again rescaling time by a factor (1 + 7) we find
gy Ziai e 36— ) + e/ (1~ 9))p? 3
U; = ( _UZ)Z~CL"—{— A_|_ B W Z B A B ) ( )
j @i TP R i

344 which corresponds to Masuda’s Eq. (3) provided we choose v = ¢/(1 — ¢). We thus see that the model
345 with predisposition of strength ¢ to resist influence is formally equivalent to the original controlled
346 voter model with a passive controller who exerts a given degree-dependent control of strength pZB =
347 q/(1—q)(>_; aji + p) on all nodes. As we consider binary control with p/* € {0, 1}, p? would have to
348 be essentially proportional to degree for large degrees.

This is a provisional file, not the final typeset article 14



349
350

351
352

353
354
355
356
357
358
359
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

Brede et al. Predispositions and optimal opinion control in the voter model

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

M.B. designed the study, conducted and evaluated the experiments and wrote the paper. All authors
contributed to manuscript revision, read and approved the submitted version.

ACKNOWLEDGMENTS

The authors acknowledge the use of the IRIDIS High Performance Computing Facility, and associated
support services at the University of Southampton, in the completion of this work. This research was
sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement
Number WOT1NF-16-3-0001. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

REFERENCES

Albert, R. and Barabasi, A.-L. (2002). Statistical mechanics of complex networks. Rev. Mod. Phys. 74,
47-97

Alshamsi, A., Pinheiro, F., and Hidalgo, C. (2017). When to target hubs? strategic diffusion in complex
networks. arXiv:1705.00232v1

Arendt, D. L. and Blaha, L. M. (2015). Opinions, influence, and zealotry: a computational study on
stubbornness. Comput. Math. Organ. Theory 21, 184-209

Bharathi, S., Kempe, D., and Salek, M. (2007). Competitive influence maximization in social networks.
Internet and Network Economics, Lect. Notes Comput. Sci. 4858, 306-311

Bharathi, S., Kempe, D., and Salek, M. (2010). Threshold models for competitive influence in social
networks. Proc. Workshop on Internet and Network Economics, WINE (2010) 4858, 539-550

Castellano, C., Fortunato, S., and Loreto, V. (2009). Statistical physics of social dynamics. Rev. Mod. Phys.
81, 591-646

Centola, D. (2010). The spread of behavior in an online social network experiment. Science 329,
1194-1197

Centola, D., Eguiluz, V. M., and Macy, M. W. (2007). Cascade dynamics of complex propagation. Physica
A 374, 449-456

Centola, D. and Macy, M. (2007). Complex contagions and the weakness of long ties. Am. J. Sociol. 113,
702-734

Clifford, P. and Sudbury, A. (1973). A model for spatial conflict. Biometrika 60, 581-588

Easley, D. and Kleinberg, J. (2010). Networks, Crowds and Markets: Reasoning About a Highly Connected
World (Cambridge University Press, New York, NY, 2010.)

Goyal, S., Heidari, H., and Kearns, M. (2014). Competitive contagion in networks. Games and Economic
Behaviour doi:https://doi.org/10.1016/j.geb.2014.09.002

Frontiers 15



384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

426
427

Brede et al. Predispositions and optimal opinion control in the voter model

Hegselmann, R., Konig, S., Kurz, S., Niemann, C., and Rambau, J. (2015). Optimal opinion control: The
campaign problem. Journal of Artificial Societies and Social Simulation 18

Hill, A. L., Rand, D. G., Nowak, M. A., and Christakis, N. A. (2010). Infectious disease modeling of social
contagion in networks. PLoS Comput. Biol. 1000968

Holley, R. and Liggett, T. (1975). Ergodic theorems for weakly interacting infinite systems and the voter
model. Ann. Probab. 3, 643—-663

Hu, H. and Zhu, J. J. H. (2017). Social networks, mass media and public opinions. J. Econ. Interact. Coord.
12, 393411

Kempe, D., Kleinberg, J., and Tardos, E. (2003). Maximizing the spread of influence through a social
network. Proceedings of the Nineth International Conference on Knowledge discovery and Data Mining
(KDD), Washington, DC, USA , 137-146

Khalil, N., San Miguel, M., and Toral, R. (2018). Zealots in the mean-field noisy voter model. Phys. Rev.
E 97,012310

Kuhlman, C. J., Anil Kumar, V. S., and Ravi, S. S. (2013). Controlling opinion propagation in online
networks. Computer Networks 57, 2121-2132

Laciana, C. E. and Rovere, S. L. (2011). Ising-like agent-based technology diffusion model: Adoption
patterns vs. seeding strategies. Physica A 390, 1139-1149

Liu, S. and Shakkottai, S. (2010). Influence maximization in social networks: An ising-model-based
approach. Proceedings of the Forty-Eighth Annual Allerton Conference , 570-576

Lynn, C. W. and Lee, D. D. (2016). Maximizing influence in an ising network: A mean-field optimal
solution. Proceedings of the 30th conference on neural information processing systems (NIPS 2016) ,
1-9

Masuda, M., Gilbert, N., and Redner, S. (2010). Heterogeneous voter models. Phys. Rev. E 82, 010103

Masuda, M. and Redner, S. (2011). Can partisan voting lead to truth? J. Stat. Mech. , 1.02002

Masuda, N. (2015). Opinion control in complex networks. New Journal of Physics 17, 033031

Mobilia, M. (2003). Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91, 028701

Mobilia, M. (2015). Nonlinear g-voter model with inflexible zealots. Phys. Rev. E 92, 012803

Mobilia, M. and Georgiev, I. T. (2005). Voting and catalytic processes with inhomogeneities. Phys. Rev. E
71, 046102

Mobilia, M., Petersen, A., and Redner, S. (2007). On the role of zealotry in the voter model. J. Stat. Mech.
, P08029

Morone, F. and Makse, H. A. (2015). Influence maximization in complex networks through optimal
percolation. Nature 524, 65-68

Newman, M. E. J. (2003). Mixing patterns in networks. Phys. Rev. E 67, 026126

Newman, M. E. J. (2010). Networks: An introduction (Oxford University Press)

Quax, R., Apolloni, A., and Sloot, P. M. (2013). The diminishing role of hubs in dynamical processes on
complex networks. J. R. Soc. Interface 10, 20130568

Romero, D. M., Meeder, B., and Kleinberg, J. (2011). Differences in the mechanics of information
diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. Proc. 20th Int.
Conf. on World Wide Web (ACM)

Sirbu, A., Loreto, V., Servedio, V. P. D., and Tria, F. (2016). Opinion dynamics: Models, extensions and
external effects. Participatory Sensing, Opinions and Collective Awareness , 363—-401

Waagen, A., Verma, G., Chan, K., Swami, A., and D’Souza, R. (2015). Effect of zealotry in high-
dimensional opinion dynamic models. Phys. Rev. E 91, 022811

This is a provisional file, not the final typeset article 16



428
429
430
431

Brede et al. Predispositions and optimal opinion control in the voter model

Xulvi-Brunet, R. and Sokolov, I. M. (2005). Changing correlations in networks: assortativity and

disassortativity. Acta Physica Polonica 36, 1431-1455

Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., and Scaglione, A. (2013). Binary opinion dynamics

with stubborn agents. ACM Transactions on Economics and Computation 1, 19

Frontiers

17



	Introduction
	Methods
	Results
	Numerical Results
	A Model of Star Networks and Chains

	Discussion

