
Optomechanical test of the Schrödinger–Newton equation
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Abstract

The Schrödinger–Newton equation has been proposed as an experimentally testable alternative

to quantum gravity, accessible at low energies. It contains self-gravitational terms, which slightly

modify the quantum dynamics. Here we show that it distorts the spectrum of a harmonic system.

Based on this effect, we propose an optomechanical experiment with a trapped microdisc to test

the Schrödinger–Newton equation, and we show that it can be realized with existing technology.

∗ andre.grossardt@ts.infn.it
† jbateman@soton.ac.uk
‡ h.ulbricht@soton.ac.uk
§ bassi@ts.infn.it

1

ar
X

iv
:1

51
0.

01
69

6v
1 

 [
qu

an
t-

ph
] 

 6
 O

ct
 2

01
5

mailto:andre.grossardt@ts.infn.it
mailto:jbateman@soton.ac.uk
mailto:h.ulbricht@soton.ac.uk
mailto:bassi@ts.infn.it


What is the gravitational field of a quantum system in a spatial superposition state? The

seemingly most obvious approach, the perturbative quantization of the gravitational field in

analogy to electromagnetism, makes it alluring to reply that the space-time of such a state

must also be in a superposition. The non-renormalizability of said theory, however, has also

inspired the hypothesis that a quantization of the gravitational field might not be necessary

after all [1–3]. Rosenfeld already expressed the thought that the question whether or not

the gravitational field must be quantized can only be answered by experiment: “There is

no denying that, considering the universality of the quantum of action, it is very tempting

to regard any classical theory as a limiting case to some quantal theory. In the absence

of empirical evidence, however, this temptation should be resisted. The case for quantizing

gravitation, in particular, far from being straightforward, appears very dubious on closer

examination.” [1]

Adopting this point of view, an alternative approach to couple quantum matter to a

classical space-time is provided by a fundamentally semi-classical theory [4]; that is by

replacing the source term in Einstein’s field equations for the curvature of classical space-

time, energy-momentum, by the expectation value of the corresponding quantum operator [1,

5]:

Rµν +
1

2
gµνR =

8πG

c4
〈Ψ | T̂µν |Ψ〉 . (1)

Of course, such presumption is not without complications. For instance, in conjunction

with a no-collapse interpretation of quantum mechanics it would be in blatant contradiction

to everyday experience [6]. Moreover, the nonlinearity that the backreaction of quantum

matter with classical space-time unavoidably induces cannot straightforwardly be reconciled

with quantum nonlocality in a causality preserving manner [7, 8]. Be that as it may, there is

no consensus about the conclusiveness of these arguments [2, 9, 10]. The enduring quest for

a theory uniting the principles of quantum mechanics and general relativity gives desirability

to having access to hypotheses which could be put to an experimental test in the near future.

In the nonrelativistic limit, the assumption of fundamentally semi-classical gravity yields

a nonlinear, nonlocal modification of the Schrödinger equation, commonly referred to as the

Schrödinger–Newton equation [11–13]. After a suitable approximation [12], for the center of
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mass of a complex quantum system of mass M in an external potential Vext it reads:

ih̄
∂

∂t
ψ(t, r) =

(
h̄2

2M
∇2 + Vext + Vg[ψ]

)
ψ(t, r) (2a)

Vg[ψ](t, r) = −G
∫

d3r′ |ψ(t, r′)|2 Iρc(r− r′) . (2b)

The self-gravitational potential Vg depends on the wavefunction, and hence renders the

equation nonlinear. The function Iρc , which models the mass distribution of the considered

system, will be defined below.

The Schrödinger–Newton equation has primarily been discussed in the context of gravita-

tionally induced quantum state reduction [14, 15]. Its relevance for a possible experimental

test of the necessity to quantize the gravitational field was pointed out by Carlip [3]. First

ideas how to test such kind of nonlinear, self-gravitational effects focused on the spreading

of a free wavefunction in matter-wave interferometry experiments [3, 16–21]. Recently, an

experimental test has been proposed by Yang et al. [22], based on the internal dynamics of

a squeezed coherent ground state of a micron-sized silicon particle in a harmonic potential.

Here we propose a novel experiment, studying the spectrum of such a harmonically

trapped microparticle. The advantage of our proposal is that it needs neither squeezing

nor state tomography. Therefore, despite the fact that effects are of the same order of mag-

nitude than those studied in Ref. [22], the prospects of its practical realization in the soon

future are significantly better.

We show that for a suitable choice of mass and frequencies the energy levels become state

dependent, due to the self-gravity term Vg[ψ] in Eq. (2), thus resulting in a non-degenerate

line spacing of the energy levels of the harmonic oscillator. This is schematically depicted

in Fig. 1.

I. THEORY

In matter-wave interferometry, even large molecules can approximately be considered as

single, pointlike particles, meaning that the wavefunction is wide in comparison to the extent

of the considered quantum system. In this case, the function Iρc in Eq. (2) reduces to the

Coulomb-like potential M2/ |r− r′|. This changes if the wavefunction for the center of mass

cannot be treated as wide, as it is the usual situation in optomechanical experiments. In

that instance, one must take the mass distribution ρc of the constituents relative to the
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FIG. 1. Schematic overview of the effect of the Schrödinger–Newton equation on the spectrum. The

top part shows the first three energy eigenvalues and their shift due to the first order perturbative

expansion of the Schrödinger–Newton potential. The bottom part shows the resulting spectrum

of transition frequencies. In the narrow wavefunction regime (middle part), all energy levels are

shifted down by an n-independent value minus an n-proportional contribution that scales with

the inverse trap frequency. In the intermediate regime, where the wavefunction width becomes

comparable to the localization length scale of the nuclei, this n-proportionality does no longer

hold, leading to a removal of the degeneracy in the spectrum.

center of mass into account. The general shape of Iρc is

Iρc(d) =

∫
d3u d3v

ρc(u) ρc(v − d)

|u− v|
. (3)

It has been pointed out by Yang et al. [22] that, for a sufficiently narrow wavefunction,

the crystalline structure of matter becomes significant. Provided that the atomic mass

density can be modeled by a Gaussian distribution, and the microparticle as a whole has

a spherical structure of radius R much larger than the extent of the wavefunction, we get

approximately [23]

Iρc(d) ≈ 6M2

5R
+
M m

d
erf

(
d√
2σ

)
. (4)

Here, and in the following, we denote by m the atomic mass, and by M the mass of the whole

microparticle. The localization of the nuclei, σ, is related to the Debye–Waller B-factor by

σ = 2π
√
B. Values for B at different temperatures can be found in Refs. [24, 25] for most

elemental crystals.
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The external potential is now supposed to be a harmonic trap with frequency ω0 in x-

direction, and we assume the wavefunction to separate in the three spatial dimensions [26].

The additional self-gravitational potential leads to a shift of the energy levels from their

unperturbed values at E
(0)
n = h̄ω0 (1/2 + n). If the system is in a stationary state of the

trap, and the mass is such that the self-gravitational potential is weak, as is the case in

any realistic experimental situation, the energy shift is well approximated by a first-order

perturbative expansion in the gravitational constant G:

∆En = 〈ψ(0)
n | Vg[ψ(0)

n ](r) | ψ(0)
n 〉+O(G2) . (5)

Strictly speaking, this is a twofold approximation, first by taking the unperturbed state ψ
(0)
n

as the source of the gravitational potential, which renders Vg a linear potential, and then

applying ordinary perturbation theory. Inserting the energy eigenstates of the harmonic

oscillator, and introducing the dimensionless parameter α = 2σ
√
M ω0/h̄, the energy shift

can be written

∆En = − Gh̄m
4σ3 ω0

fn(α) , (6)

with the state, mass, and frequency dependent functions fn yet to be determined.

We first consider the situation of Ref. [22], where the potential Vg was simplified further

by taking the limit of a narrow wavefunction, and Taylor expanding Iρc to quadratic order

in |r− r′|. In this case, the function fn takes the form

fnarrow
n (α) = ∝M5/3ω0 −

4

3

√
2

π

(
n+

1

2

)
. (7)

Obviously, the transition frequency ω0 between adjacent energy levels will not be affected

by the n-independent part, while the n-proportional term leads to a shift

∆ωSN =

√
2

π

Gm

3ω0 σ3
. (8)

This frequency shift is, however, independent of n, therefore leaving the degeneracy of the

spectrum intact, according to which all energy transitions with the same ∆n correspond to

the same spectral line at ∆n (ω0 + ∆ωSN).

The experimental situation of Ref. [22], where the frequency is high enough to allow

for the wavefunction to be approximated as narrow, hides the true behavior of the energy

levels. This becomes evident if we consider the scenario where the width of the wavefunction
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is comparable to the localization σ of the nuclei, and hence the quadratic approximation

becomes inaccurate. The wavefunction width is characterized by the factor α defined above,

which relates the width of the ground state to σ. Small values, α � 1, correspond to wide

wavefunctions and large values, α� 1, to narrow ones.

For now, consider only the case where the trap frequency is lowered in one dimension, but

the wavefunction is kept narrow in the remaining two. Then, in the intermediate regime,

where α is of the order of unity, the function fn can be approximated (see Ref. [23] for a

more thorough derivation)

fn(α) ≈ const. + α3

√
2

π

∫ ∞
0

dζ exp

(
−α

2 ζ2

2

)
Pn(α ζ)

(
erf
(√

2 ζ
)

2 ζ
−
√

2

π

)
, (9a)

where “const.” refers to n-independent terms, and the polynomials Pn are defined by

Pn(z) =
e−z

2/2

√
2π (2n n!)2

∫ ∞
−∞

dξ e−2ξ2 Hn (ξ)2 (e2 z ξHn (ξ − z)2 + e−2 z ξHn (ξ + z)2) , (9b)

with the Hermite polynomials Hn. The integrals in fn can be evaluated analytically for low

n [27]. One ends up with the frequency shift

∆ωinterm.
n1n2

= ∆ωSN gn1n2(α) (10a)

gn1n2(α) =
3

8

√
2 π (fn1(α)− fn2(α)) , (10b)

which now depends not only on the difference ∆n but explicitly on n1 and n2. This is

the effect we are interested in, which can be observed experimentally. ∆ωSN contains the

material properties, while gn1n2(α) depends only on the total mass M and trap frequency

ω0.

The functions gn1n2 are plotted in Fig. 2 for ∆n = 1 and n1 ranging from 0 to 12. As

one can see in the plot, while they tend to zero for small α (wide wavefunctions) and to ∆n

for large α (narrow wavefunctions), for values 1 <∼ α <∼ 10 there is a significant dependence

on the actual state, leading to a substantial deviation from the degenerate structure of the

spectrum.

A fully three-dimensional analysis, giving up the approximation of a wavefunction that

is narrow in two dimensions, can only be obtained numerically. For an axially symmetric

wavefunction that is in the ground state for the transverse directions the details can be

found in App. A of Ref. [23]. There it has been shown that the effect stays the same in

quality and order of magnitude also in this three-dimensional situation.
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FIG. 2. Plot of the coefficient function gn1n2(α) for the lowest 13 transitions between harmonic

oscillator eigenstates with ∆n = 1. n increases from top to bottom, the blue curve belonging

to n1 = 0. The parameter α characterizes the wavefunction width. Small values of α (wide

wavefunctions) correspond to smaller masses (for a given frequency) and therefore weaker self-

gravity. In the limit of narrow wavefunctions (large α) the lines become degenerate again, all gn1n2

tending to ∆n = 1.

II. PROPOSAL FOR EXPERIMENT

We propose to measure this effect by interrogating optomechanically the motion of a single

micron-sized superconducting osmium mirror in a dilution refrigeration-cooled linear Paul

ion trap, as shown schematically in Fig. 3. The Schrödinger–Newton effect will be probed

with the longitudinal motion (x-direction in Fig. 3) of the trapped osmium microdisc.

While best known for atomic and molecular ions, the first demonstration of Paul traps

included a 20µm particle [28], and a recently renewed interest has shown single micron-scale

particles at 100 Hz frequencies with single-charge resolution [29, 30]. Longitudinal frequency

can be orders of magnitude lower than the transverse [31, 32], which accurately embodies

our theoretical description that the wave function remains narrow in two dimensions.

A. Magnitude of the expected effect

Requiring that the ground-state wavefunction be in the intermediate regime, α ≈ 5,

yields M = h̄/(2σ/α)2/ω0 ≈ 1016 u/ (ω0/2π s−1). Values of ∆ωSN for selected materials can

be found in Tab. I. We choose osmium, which has superconducting critical temperature

TC = 700 mK, favorable Debye–Waller B-factor [25], and offers the smallest particle for a
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FIG. 3. Schematic of proposed experiment showing a) optical access, b) mode-matching lens, c)

concave cavity mirror, d) ion trap electrode structure, and e) electrically levitated superconducting

disc. The disc acts as a concave cavity mirror and forms an optomechanical cavity with mirror (c) to

read the position of the disc. The apparatus is enclosed in a dilution refrigerator to reduce thermal

noises. The longitudinal direction, which will be used to investigate the self-gravity modification

of the mechanical harmonic oscillator energy levels, is along the x-axis.

Material m / u ρ/g/cm3 σ / pm ∆ωSN / s−1

Silicon 28.086a 2.329a 6.96b 0.00246 / (ω0/s−1)

Tungsten 183.84a 19.30a 3.48b 0.128 / (ω0/s−1)

Osmium 190.23a 22.57a 2.77c 0.264 / (ω0/s−1)

Gold 196.97a 19.32a 4.66b 0.0574 / (ω0/s−1)

aReference [33], bReference [24], cReference [25]

TABLE I. Relevant material properties for selected elements. σ = 2π
√
B is defined as in the text

and depends on the Debye–Waller B-factor. Values are at T = 100 mK. We give ∆ωSN, which

determines the magnitude of the effect according to Eq. (10), depending on the trap frequency ω0.

given mass. The spectral lines are plotted for different mass osmium particles at a trap

frequency ω0 = 2π × 10 s−1 in Fig. 4. The split between adjacent spectral lines scales

with 1/ω0, just like the mass for which the effect is most pronounced. For M = 1015 u,

corresponding to an osmium particle (density ρ = 22.57 g/cm3) of diameter 5.2µm, we

predict a frequency splitting ∆f ∼ 0.1 mHz.

A spherical particle would have radius comparable with typical laser wavelengths, making

it impractical for use in a concave-convex cavity. Instead, the superconductor should be a

thin disk >∼ 3µm in diameter and∼ 1µm thick [34]. Finesse in cavities with wavelength-scale

mirrors is limited by mirror size and orientation stability [35].
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FIG. 4. The resulting frequency spectrum for osmium at T = 100 mK at trap frequency ω0 =

2π × 10 s−1 with ∆n = 1. At low masses, self-gravity becomes negligible. At high masses all

spectral lines are degenerate, shifted by ∆ωSN. The intermediate regime, where a significant

splitting appears, spans about 3 orders of magnitude in mass.

B. Competing effects

All competing heating effects must produce a damping rate which is low compared with

the frequency shift we expect: sub-Hertz heating rates have been demonstrated in room-

temperature conventional traps [36] and cryogenics reduces heating rates substantially, as

demonstrated in microfabricated traps [37]; rates depend strongly on microfabrication pro-

cesses, and improvements to the levels we require are likely. Indeed, already a cryogenically-

cooled conventional trap should fulfill our requirements with existing technology.

Decoherence routes include interaction with blackbody radiation: however, for radiation

frequencies below the superconductor gap energy there is no absorption [38], so by ensuring

environmental temperature much less than superconductor critical temperature, interaction

with ambient photons is exclusively via Rayleigh scattering. To reach this regime requires

dilution refrigerator temperatures and we assume T = 100 mK. Using the particle as a

mirror, not a sub-wavelength particle, means there is negligible Rayleigh scattering of laser

light [39], which would otherwise be a decoherence mechanism. Rayleigh scattering rate

decreases sharply for long wavelengths, and we find negligible probability of even a single

scattering event [40]. Decoherence from collisions with background gas is also negligible for

the low pressures (P <∼ 10−10 mbar) in the UHV cryo-pumped environment [41].
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C. Optomechanical readout

Lack of a long-lived internal state in our particle, such as those employed in sideband

resolved manipulation of trapped atomic ions, means that many techniques for engineering

Fock states in ion traps [42] cannot be applied here. Instead we appeal to optomechanics:

inspired by cantilever experiments [43], where a microfabricated cantilever provides one

mirror of a high-finesse cavity, we use the levitated metallic superconducting particle of

sufficient reflectivity as one mirror in a tightly focused, plano-concave, high optical Q cavity.

Cantilever position can be monitored at the shot-noise limit [44], and protocols have been

proposed to prepare [45] and reconstruct [46] Fock states in these systems.

There are experiments with levitated hybrid nanoparticle ion-optomechanical systems,

albeit with sub-wavelength particles [47]. Creation of Fock states of mechanical motion or

phonon number states for 1014 u particles has previously been proposed for a magnetically-

levitated superconducting microsphere coupled to a quantum circuit [41], while its experi-

mental demonstration is yet to be shown.

III. CONCLUSION

We predict a new self-gravity effect to shift the energy states of a massive mechanical

oscillator. We propose an experimental scenario which makes use of the best parts of the

mature technology of levitation of ions in Paul traps, the cavity enhanced optical position

readout and the use of superconducting materials to avoid competing heating effects for

instance by black body radiation. Our proposal is based on technology available today.

However, the different techniques have to be combined. It does not require the preparation

and tomography of squeezed states of the mechanical harmonic oscillator. Mechanical Fock

states need to be prepared and read out, which is technology under intense development

as of today and has yet to be achieved. The self-gravity induced energy level splitting

effect survives also for states above the mechanical vacuum state, and hence particularly for

thermal states, which means cooling to the ground state is not required as such. Therefore

our proposed experiment is feasible with existing technology.
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Supplemental Material for “Gravitational fine structure of

harmonically trapped particles according to the

Schrödinger–Newton equation”

RAYLEIGH SCATTERING OF BLACKBODY RADIATION BY SUPERCON-

DUCTING MICRODISC

For radiation frequencies below the superconductor gap energy [S1] there is no absorption;

by ensuring the radiation temperature is much less than the gap energy, we can assume

that no photons with energy exceeding the gap are encountered. Under these conditions,

the polarizability of the sub-wavelength particle is χ = 3V where V is the volume of the

particle. The Rayleigh scattering cross-section is σR = k4χ2/6π where k = ω/c is the

wavenumber. Integrating over the blackbody energy density u(T, ω) we find the total rate

of photon scattering

ΓR =

∫ ∞
0

dω
σRcu(T, ω)

h̄ω
= 30 720π5ζ(7)× c χ

2

λ7
T

≈ 107 × c χ
2

λ7
T

where ζ is the Riemann zeta function (ζ(7) ≈ 1.01) and λT = hc/kBT is the typical wave-

length of the thermal radiation at temperature T . For T = 100mK, we find λT ≈ 14cm.

Therefore, for both a sphere of V = 4
3
π(1µm)3 and a disc of V = π

4
(1µm) (3µm)2 the

scattering rate is ΓR ∼ 10−12s−1.
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