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In our teaching with primary pre-service teachers (PSTs), each of us 
includes generalising tasks in the context of mathematical reasoning. We 
set out to explore the value of such activity from the perspective of PSTs 
and their approaches to generalisation. In this paper, we focus on one PST’s 
mathematical reasoning when working on the ‘flower beds’ problem. We 
analyse the ways in which this PST attends to: looking for a relationship; 
seeing structure within a single figure in a sequence; and seeing sameness 
and difference between figures in a sequence. We consider what motivates 
shifts in attention, we reflect on the significance of students’ prior 
experience, and of student collaboration in our teaching sessions. 
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Introduction 

The current National Curriculum (Department for Education, DfE 2013) for children at 
primary schools in England includes reasoning as one of the aims of its programme of 
study for primary mathematics. This has renewed the place of reasoning in the debate 
about teaching and learning of children in primary school. For example, national testing 
for children aged 7 and 11 includes written papers on mathematical reasoning (DfE 
2017).  

However, the term ‘mathematical reasoning’ covers many different thinking 
processes and strategies, and DfE exemplification focuses on reasoning associated with 
answering closed questions (DfE 2016). This sort of reasoning does not necessarily 
match the aim of the National Curriculum, which focuses on conjecturing relationships 
and generalisations.   

As primary mathematics teacher educators in five universities, we have found 
that we promote mathematical reasoning in similar ways in our programmes. We have 
a shared belief in the value of reasoning associated with pattern, algebra and 
generalisation, and find that we use very similar activities in our sessions. In order to 
enrich our work as tutors of ITE programmes, we wanted to investigate how student 
teachers respond to university-based training sessions which aim to prepare them to 
teach reasoning, and to explore the approaches to generalisation that student teachers 
adopt themselves when engaging with such activities.  

Literature  
Within the broader context of mathematical reasoning, a common context for 
generalising, sometimes referred to as ‘growing patterns,’ is a sequence of geometric 
figures constructed from, for example, matchsticks, squares or dots.  Learners’ attempts 
to generalise such a pattern can involve “manipulating the figure itself to make counting 
easier; finding a local rule (recursion) which reflects one way to build the next term 
from previous ones; (and) spotting a pattern which leads to a direct formula” (Mason, 
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1996, p.75-6).  One important theme of the research on pattern generalising is this 
distinction between finding a local, recursive relationship and a direct, functional 
relationship. Research points to learners’ preferences towards finding a local rule of 
recursion between figures in a sequence, and the relative difficulty of finding a 
functional relationship (MacGregor and Stacey, 1993; Stacey and MacGregor, 2001).  
Ferrara and Sinclair (2016) argue that while noticing a recursive relationship requires 
an understanding of horizontal ‘mobilities,’ identifying a functional rule requires an 
understanding of vertical ‘mobilities,’ i.e. understanding the relationship between the 
independent and dependent variable.   

Wider literature also identifies the significance of visualisation in pattern 
generalisation. Wilkie and Clarke (2016) explored the different ways in which 
individual students see a pattern, by inviting them to use colour to show how they saw 
elements of the geometric shape. They found that the subsequent generalisations 
reflected the ways in which students initially perceived the pattern.  Seeing the structure 
of a figure as the result of ‘growth’ from previous figures led to a recursive rule, while 
other ways of seeing led to a functional rule.  Different ways of seeing and counting 
elements in a pattern can lead to different, equivalent generalisations.  

Seeing the structure of a geometric figure supports what Rowland and Bills 
(1999) refer to as ‘structural’ generalisation.  This is in contrast to ‘empirical’ 
generalisation which, in the context of a geometric sequence, describes the ways in 
which learners look for patterns between quantifiable elements, such as the figure 
number and number of matchsticks, for example (Rowland and Bills, 1999).  The 
resulting empirical generalisation is then “divorced from the structure of the pattern” 
(Küchemann, 2010, p.233). Küchemann (2010) makes a powerful case for focussing 
on structure within a single figure in a sequence rather than presenting learners with a 
systematic sequence of elements.  Such analysis of the structure of a generic example 
fosters “seeing a generality through the particular” (Mason, 1996, p.65).  Beyond 
working with a generic example, teachers have an array of pedagogic choices which 
may shape pattern perception and visualisation.  These include the use of concrete 
materials, drawings, diagrams and technological environments, as well as prompting 
learners to consider a higher figure in the sequence (Wilkie and Clarke, 2016). 

While there is relatively little attention in the literature paid to teacher 
knowledge in relation to generalising and functional thinking, there is evidence that this 
is an area of difficulty for primary teachers and primary pre-service teachers (Wilkie, 
2016; Goulding et. al., 2002).  Wilkie’s research highlighted “the importance of 
teachers developing their own ability to generalise patterns and to learn to understand 
the process by which students develop functional thinking through recursive and 
explicit generalisation” (p.270).  Our own study explores these important ideas as pre-
service teachers work on tasks which challenge them to reason yet are sufficiently close 
to primary mathematics. 

The Study 
This paper presents the approach that one student teacher - we call him Terry - took to 
tackling a problem involving reasoning and generalisation. Terry was on a one year 
graduate primary teacher education course, specialising in mathematics. The session 
that Terry reflects on below was designed to enable students to explore growing 
patterns, whilst working together with peers to explore possible alternative approaches. 
Students were presented with the Flowerbed pattern (original source unknown) where 
square slabs are placed around the border of a square flowerbed - see figure 1 below. 
They were asked to generalise about the number of paving slabs required around each 
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square bed. Students were given some time initially to consider the problem, then they 
worked together, sharing their approaches. Shortly after the taught session, Terry was 
interviewed about his approach to the problem. We used Wilkie’s notions of ‘recursive’ 
and ‘functional’ thinking to analyse his responses.  

Terry’s response and our analysis 
Terry had a degree in Theatre Studies and had studied mathematics at A level. In the 
interview, he said that he had been confident with the subject in the first year of his A 
level study but had found the second year “quite a lot more challenging”.  Terry (T) 
was enjoying teaching mathematics and had found the experience of applying his 
mathematics knowledge in his teaching practice rewarding. The specialist course had 
changed his view of the subject by introducing him to mathematics pedagogy. 

T: I think my view of mathematics was quite narrow until coming onto the course 
and just seeing how everything can be broken down and made so much more 
accessible, even … even things like fractions which is like this feared term in 
primary schools. 

Terry recounted his approach to the Flowerbeds problem with reference to his notes 
from the session. During the interview, and while he was explaining his train of thought, 
Terry made additional notes on a printed illustration of the pattern that was provided 
by the interviewer (I – one of the authors). He explained that his initial approach was 
to focus on the number of squares that formed the centre of the shape for each case. He 
wrote the corresponding numbers (1, 4, 9) under each case and then counted the number 
of white squares that surrounded the dark-shaded centre of the shape in each case (8, 
12, 16) (Figure 1).   

T: I started off by noting down, we had case 1, case 2, case 3, and I noted down 
how many squares were in the centre of the flowerbed … Yeah, so I was drawn to 
that, so we had 1, 4 and 9.  And then I calculated … 

 
Figure 1: Terry’s jottings while explaining his initial approach to the pattern. 

Terry continued his explanation referring to his own notes from the session. 
T: And then I started off by trying to figure out some kind of pattern or link or 
connection between those numbers, and I wasn’t really getting anywhere to be 
honest.  And then I … I thought back to a previous university session, when we did 
something similar to generalising, where we found something that stays the same 
each time. 
I: OK. 
T: So this is obviously where I’d gone to in the middle, originally that is different 
each time …so I thought what is the same each time.…And it ended up being the 
four corners. …Were the same each time, there’s always going to be four corners, 
so that’s where I ended up going down this route. 
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I: OK, and following that, after you saw the four corners as staying the same, what 
did you do next?  Where did you go after that? 
T: So for this one I would have, N would be 1 (referring to case 1), so I’d have … 
four lots I think of N, and then I would be adding on … oh no hang on … this is 4 
here, that’s always … I’ve just confused myself. 

Terry’s initial approach was to count the squares of each case in the sequence with the 
view of identifying a functional relationship between two quantifiable aspects of each 
case; the number of squares that constitute the central part of each case and the number 
of white squares that surround the central part (Figure 2).  

The difficulty that he encountered in identifying a link between these numbers 
prompted a move to a recursive approach whereby he looked for what remained the 
same and what changed in each item of the sequence. This was supported by his 
recollection of a similar activity and strategy that he had learned in a previous university 
session. Terry found it difficult to conclude his explanation. The interviewer prompted 
a bit more.  

I: Right, so you have the four corners as a constant feature. 
T: Yes. 
I: And then what happens?  Are you looking at the squares between the corners 
now? 
T: Yeah, so then there’s, we’ve got … four here and then obviously one, two, so 
it’s two lots … 
I: So you’re still looking at the middle part or not anymore? 
T: I, yes, to base off this one. 
I: OK. 
T: So you’ve got the, I guess we call that, maybe that can be called N, so it’s 
4N….Plus 4 … 
I: … N is the centre one with four around it? 
T: Yes, so there’s four lots of N around it. 

In the above extract, Terry goes back to focusing his attention on a single case 
of the sequence (case 1) seeking to identify a general rule with attention to structure of 
the shape. He associates N with the central black square. He refers to 4N as representing 
the four adjacent white squares and to “Plus 4” as representing the four constant corners. 
When moving his attention to case 2, he becomes confused and returns to recursive 
reasoning. 

T: And then … plus four, this one, but then I’m, I’ve not accounted for this one, 
have I?  Or have I?  No, I haven’t. 

Here, “plus four, this one” refers to Terry’s observation that the sides of the 
square in case 2 (excluding the four corners) are formed out of eight, in total, white 
squares that are adjacent to the centre (i.e. four more than the squares that constitute the 
sides in case 1). However, at that point Terry realises that he has not accounted for how 
the central square has grown moving from case 1 to case 2 and remains puzzled.  

Terry then recalls his collaboration with one of his peers during the session, 
and describes an alternative approach that they took when seeking the general rule for 
the sequence. 

T: Yeah, well we had ways of looking at it, I mean I think, that was one way of 
seeing it.  The other way I saw was I’d looked at this as like a 1, 2, 3 (draws a line 
across the three white squares in the first and third row of case 1). 
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Figure 2: Terry’s jottings on the printed pattern 

T: And then there was the middle ones and these, (referring to the central square of 
case 1 and the squares on either side of it) and then the same with this one (case 2), 
the top … (draws a line across the top and bottom rows of case 2, Figure 2). 
I: And you are still looking at the middle part, the dark part, yeah? 
T: Yes, so this one (goes back to case 1) I guess would be N and then there’s, so 
there’s two lots of N isn’t there, and then on the top there’s plus two, so two lots of 
N plus 2. 
I: Where are the two lots of N?  What is the two lots of N?  The four squares in the 
middle of case 2? 
T: Ehm … so 2, it’s case 2 and then we’ve got on the top 1 and 2, 3, 4, so N plus 2 
…Two lots of N plus 2. 

Focusing on case 1, Terry associates N with 1 and explains that the number of 
squares in the top and bottom row is represented by N+2 so the top and bottom row are 
“two lots of N plus 2”. He provides the same explanation for case 2 (Figure 2) noting 
the relationship between N and the number of squares that form the top and bottom row 
but without accounting the central, dark square and the adjacent white squares. 
Although he did not complete the formula here, he had generalised about all sections 
of the pattern separately by that point. 

Towards the end of the session, the interviewer asked Terry to indicate one 
thing that he had learned from this session and would apply when he teaches 
mathematics. 

T: Giving children plenty of opportunity to discuss, I think that’s quite important, 
and just to encourage people to discuss in the classroom because I know … 
I: Why do you think it’s important? 
T: Because that’s what helped me in terms of when I heard … 
T: … anything like that, that often was like a hook into allowing me to access the 
problem in which, without that I wouldn’t have been able to.  If it was just silent, I 
would have been sat there in my own space, staring at the one way I could identify 
it, trying to see it in some other way, but probably struggling and failing miserably.  
But being able to hear other people discuss it, allowed me like access into the 
problem a little bit more.   

In his response, Terry highlights, on the basis of this experience, the value of 
opportunities for classroom discussion that encourage learners to see patterns in 
different ways, and to allow all learners to access tasks that might have been too 
challenging for them to tackle on their own.  

Conclusion  
Terry’s account of different approaches to the exploration for a general rule indicated 
shifts of reasoning and attention to recursive as well as functional relationships 
(Ferrara and Sinclair, 2016). In this case, shifts of reasoning appeared to be prompted 
by difficulty in completing a particular line of exploration, which steered Terry to 
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draw from his prior experience with similar activities, and also, by his observation of 
alternative approaches that others had adopted, in a setting that encouraged peer 
collaboration.  Through the reported shifts between functional and recursive thinking, 
Terry appeared to maintain, largely, his focus and attention to the structural elements 
of the sequence (Küchemann, 2010).  

Although Terry explicitly referred to “other ways of looking at it [the pattern]”, 
we cannot ascertain whether he was aware of his move between different kinds of 
mathematical reasoning. A question that is raised for us, as primary mathematics 
teacher educators, is whether this matters and would require greater and explicit 
emphasis as part of our sessions. Terry considered the opportunity to see patterns in 
different ways, in discussion with his peers, to be the key learning from this experience 
that would influence his own teaching in the classroom. This highlights the value of 
including such activities in mathematics teacher-training sessions, offering pre-service 
teachers the opportunity to experience generalisation explorations for themselves and 
identify aspects of practice that would be important in their own classrooms.    
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