PP21D-09 INVITED

Miocene-Oligocene magnetostratigraphy from Equatorial Pacific sediments (ODP Site 1218, Leg 199)

- Lanci, L
 - lancl@uniurb.it
 - Urbino University, Ist. Dinamica Ambientale Loc. Crocicchia, Urbino, PU 61029 Italy
- Pares, J M
 - jmpares@umich.edu
 - University of Michigan, Department of Geological Sciences 2534 C.C. Little Building, Ann Arbor, MI 48109 United States
- Channell, J E
 - jetc@nersp.nerdc.ufl.edu
 - University of Florida, Dept. of Geological Science 241 Williamson Hall, Gainesville, 32611 United States

ODP Site 1218 was cored in the equatorial Pacific Ocean during Leg199. The 270 m of sediments from the site yielded an excellent record of the geomagnetic polarity reversals for the entire Miocene and most of the Oligocene. Nannofossils and radiolarians indicate that the section is biostratigraphically complete with no apparent hiatuses. The top 165 m of Site 1218 was cored using the Advanced Piston Corer and sediment cores could be azimuthally oriented preserving the declination information. The high-resolution magnetostratigraphic record has been obtained by measurements made on u-channel samples, augmented by about 300 discrete samples. U-channel samples were measured at 1cm interval and stepwise demagnetized in alternating field up to a maximum peak field of 80 mT. The Characteristic Remanent Magnetization directions were determined each 1 cm by principal component analysis for demagnetization steps in the 20 mT to 50mT peak field range. A similar treatment was carried out on the discrete samples, that gave results compatible with u-channel measurements.

MAGNETOSTRATIGRAPHY

DE:
1520 Magnetostatigraphy
1525 Paleomagnetism applied to tectonics (regional, global)
SC: Paleoclimatology [PP]
MN: 2002 Fall Meeting

Paleomagnetic data indicate that the paleolatitude of Site 1218 is increasing with time form nearly equatorial in the Oligocene to its present latitude. Within the precision given by the paleomagnetic method, this is in agreement with current predictions of plate motion.

New Search