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Abstract: In some forms of gait analysis it is important to be able to capture when the heel strikes occur. In addition, in terms 
of video analysis of gait, it is important to be able to localise the heel where it strikes on the floor. In this paper, a new motion 
descriptor, acceleration flow, is introduced for detecting heel strikes. The key frame of heel strike can be determined by the 
quantity of acceleration flow within the Region of Interest (ROI), and positions of the strike can be found from the centre of 
rotation caused by radial acceleration. Our approach has been tested on a number of databases which were recorded indoors 
and outdoors with multiple views and walking directions for evaluating the detection rate under various environments. 
Experiments show the ability of our approach for both temporal detection and spatial positioning. The immunity of this new 
approach to three anticipated types of noises in real CCTV footage is also evaluated in our experiments. Our acceleration 
flow detector is shown to be less sensitive to Gaussian white noise, whilst being effective with images of low-resolution and 
without incomplete body position information when compared to other techniques.  
 

1. Introduction 
Gait analysis is the systematic study of human walking. 

It has been mainly applied in two fields: human identification 
[1] and medical consultation for diseases which affect 
walking [2]. Current gait analysis techniques can be classified 
as three types based on the sensor modality that is used to 
make measurements: physical-sensor based, depth image 
based and standard image based.  

Physical-sensor based techniques are often used for 
clinical gait analysis; they measure the physical data, usually 
kinetic parameters, on the different parts of the walking body 
during gait cycles [3], [4]. The most popular wearable sensors 
are accelerometers and gyroscopes [5]. Milica and et al. [6] 
use accelerometer to measure the angle of leg segments and 
ankle. Rueterbories and et al. [7] use gyroscopes to capture 
the angular displacement, or Coriolis force since it is the 
response to a rotating particle, to discriminate gait events. 

Depth, or RGBD image, based gait analysis 
techniques have expanded since the introduction and wide 
availability of PrimeSense and Kinect sensors. These 
measurements use the distance between the body parts and 
the sensor in depth images to analyse gait [8], [9]. Lu et al. 
[10] have built a gait database named ADSC-AWD based on 
Kinect data. O’Connor measure the acceleration of the body 
using Kinect.  

Standard image-based gait recognition has been 
extensively studied. Most approaches are targeted at 
recognition of individual humans, using gait as the biometric 
signature. The general framework usually consists of 
background subtraction, feature extraction and classification 
[11]. The approaches can be classified into two catalogues: 
model-based and model-free. Model-based approaches have 
an intimate relationship with the human body and its motion. 
[12] presents an analytical gait model which extract the angle 
of thigh and lower leg rotation without parameter selection 
and [13] uses the statistical shape of the body for recognition. 
Model-free based approaches concentrate on the body shape 
or the motion of the entire gait process and thus could be used 
for the analysis of other moving shapes or mammals. Bobick 
and Davis [14] employ the motion-energy image and motion-

history images of silhouette, Han and Bhanu [15] use the gait-
energy image for recognition. Model-based methods are 
view-invariant and scale-invariant but the computation cost is 
relatively high and the approaches can be very sensitive to 
image quality. Model-free approaches, an alternative to 
model-based approaches, are less sensitive to the image 
quality with lower computation cost though they are not 
intrinsically robust to variation in viewpoint and scale [11]. 

 

 
Fig. 1 The temporal components contained in a gait cycle 
and step and stride length during the cycle [27]. 

These gait analysis methods all rely on accurate gait 
events detection. The components of one gait cycle are shown 
in Fig. 1: a gait cycle is defined as the interval between two 
consecutive heel strikes of the same foot. A heel strike refers 
to the moment the heel first strikes the floor. Suppose one gait 
cycle starts from the heel strike of right foot, the right foot 
rotates on the heel to touch the floor (‘stance phase’) to 
support the body while the left foot is swinging forward 
(‘swing phase’) until the left heel strikes the floor. Then the 
roles of the two feet switch, the left foot remains flat on the 
floor whilst the right foot is swinging forward. When the right 
heel strikes the floor again, then a gait cycle is complete. 

Hence the accurate and efficient detection of heel 
strikes is essential because it partitions a walking sequence 
into cycles composed of stance and swing phases [16]. In 
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addition, the stride and step length can be derived from the 
stationary position of the heel at the moment of strike.  

In this paper, we introduce a novel image-based 
technique to determine the moment and position of heel 
strikes by using a new motion descriptor: acceleration flow. 
Kinematic data has been commonly used in sensor-based 
approaches to indicate gait events: [7] and [17] use 
accelerometers; [18] and [19] use gyroscopes to measure the 
angular displacement on the subject to determine the gait 
phases.  

In our contribution, we note that the change of velocity, 
which is acceleration, can also be determined by analysis of 
optical flow in image sequences. Standard optical flow 
algorithms focus on the displacement of brightness pattern, 
and do not consider high order motions or classification of 
different types of motion. To address this, we propose an 
algorithm to classify motion within image sequences and 
subsequently use the extracted acceleration field to detect 
heel strikes. 

Previous standard image-based heel strike detection 
methods accumulate the image sequence of a gait cycle and 
determine the densest areas. They use corner [20] and 
silhouette [21] as the clues. Compared with these approaches, 
the temporal template of this new approach only requires 
three consecutive frames for processing and it also allows 
near real-time detection with only a single frame of delay.  

The technique presented in this paper is based on the 
idea of differentiating motion types. Heel strikes incorporate 
radial acceleration on the foot while walking as they can be 
detected by the changes in angular velocity measured with 
gyroscopes [7]. In our approach, we first disambiguate 
acceleration and velocity from optical flow and then 
decompose the acceleration into tangential and radial 
components. Experimentation on multiple databases shows 
that our method reaches state of art accuracy on determining 
the timing of heel strikes, as well as demonstrating improved 
reliability on locating of each heel strike within the frame in 
which it occurs. An earlier version of this analysis showed 
how acceleration could be used to detect heel strikes [22] by 
applying a physical quantity to detect gait events based on a 
computer vision technique. There we classified acceleration 
and velocity from optical flow and decomposed acceleration 
along radial and tangential directions. We now extend the 
evaluation and explore ramifications of the new analysis. 
Beyond our previous work, this paper makes the following 
contributions:  
• We evaluate the sensitivity of our approach to different 

imaging conditions via a wider range of datasets; 
• We now evaluate different types of distortion: visual 

angle, lighting condition, Gaussian noise, occlusion and 
low resolution; and 

• We compare the performance of our new operator with 
that of a previous technique and show performance 
improvement and capabilities. 

The paper is organised as follows: Section 2 explains 
the details of acceleration flow and decomposition algorithms. 
Section 3 describes the methodology of applying acceleration 
flow to detect heel strikes. The experiments and analysis are 
presented in Section 4. Section 5 discusses the current heel 
strike detection techniques and the advantages and limitation 
of our algorithm. Finally, Section 6 concludes our work and 
explores potential future directions. 

2. Acceleration Estimation in Computer Images  
Previous research in motion analysis has usually used 

established techniques without considering the diversity of 
different types of motion [21], [23] and has typically focused 
on the determination of velocity flow. In fact, there are many 
different types of motion: in the simplest sense, there are 
objects that move with constant velocity and some that move 
with acceleration. If one looks more closely, it can be seen 
that the trajectory of an object is linked to its motion; an 
object moving at a constant velocity on a curved path is in 
fact undergoing acceleration as well. In kinetics, 
instantaneous acceleration is the derivative of instantaneous 
velocity with respect to time: 

𝐚 = lim
∆'→)

Δ𝐯
Δ𝑡 			(1)

 

 
To estimate the acceleration fields from image 

sequences, we formulate an approximation within three 
frames by considering the finite differences in the velocity 
fields between the current frame and the previous and 
following frames. The acceleration field 𝐀 can be estimated 
by the temporal derivative of the optical flow between 
consecutive frames: 

𝐀(𝑡) = 𝐕(𝑡 + 1) − 5−𝐕(𝑡)6			(2) 
 
where 𝐕(𝑡)  and 𝐕(𝑡 + 1)  denote the motion fields from 
frame 𝑡 − 1 to 𝑡, and 𝑡 to 𝑡 + 1 separately. This formulation 
ensures reference to 𝑡 as the initial frame. In other words, the 
velocity fields in image sequences have the same starting 
frame by reversing the time axis from frame 𝑡 − 1 to 𝑡.  

For this work, we use the state of the art optical flow 
technique, DeepFlow [26], to estimate the motion fields used 
to extract acceleration. Deepflow has excellent performance 
for large displacement estimation and non-rigid matching. 
We now decompose acceleration into radial and tangential 
components to determine their effects on motion respectively. 
 

 
 

Fig. 2 The relationship between resultant, tangential and 
radial acceleration. 

Decomposing acceleration into tangential and radial 
components is necessary for understanding the motion in 
image sequences. In kinematics, when a mass is moving 
along a curved path, the tangential acceleration changes the 
magnitude of velocity and the direction is in the tangent line 
of the trajectory (increasing or decreasing the speed). The 
radial acceleration (also called centripetal acceleration in 
circular motion) changes the trajectory and it points to the 
centre of the circular path (normal to the tangential direction), 
as shown in Fig. 2.  

Furthermore, the trajectory of a mass can be 
considered as a straight line or a circumference of a circle if 
the period is short enough. Thus, we assume that the objects 
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in the image sequence are moving along the same path within 
three consecutive frames and the trajectory is either a straight 
line or a circle. Then the estimated acceleration field can be 
decomposed into tangential and radial components since 
three points can determine one and only one circle or line. For 
determining the centre of rotation, we assume that the pixels 

which follow the circular motion rotate along the same 
circumference in any three consecutive frames because three 
points can decide one and only one circle.  

Following the assumption, the radial component 𝐚𝐫 
and tangential component 𝐚𝐭  can be estimated by their 
geometry relationship with the resultant acceleration 𝐚: 

 
𝐚𝐫 = sin 𝜃 ∗ 𝐚
𝐚𝐭 = cos𝜃 ∗ 𝐚			(3) 

 
where 𝜃 represents the angle between a and 𝐚𝐭 which equals 
to the angle between resultant acceleration 𝐚 and velocity 𝐯, 
as the velocity direction is along the tangent: 
 

𝜃 = cosAB
𝐚 ∙ 𝐯
|𝐚||𝐯|			(4) 

 
Then the rotation centre estimation of radial acceleration 𝐚𝐫 
is similar with circular motion:  
 

𝐚𝐫 = 𝐯F 𝑟⁄ 			(5) 
 

𝑟 = 𝐯F (𝑠𝑖𝑛𝜃 ∗ 𝐚)			(6)⁄  
 
The centre 5𝑜O, 𝑜Q6  can be derived by the coordinates of 
current processing pixel 5𝑝O, 𝑝Q6 subtract the rotation radius:  
 

𝑜O = 𝑝O − 𝑟
𝑜Q = 𝑝Q − 𝑟			(7) 

We now have the basis for detecting acceleration and 
its extension to a more generalized form in terms of radial and 

tangential components. We shall now move to investigating 
the application of this approach in detecting heel strikes. 

3. Detecting Heel Strike for Gait Analysis by 
Acceleration  

Torsos move like connected pendula during walking, 

[27] and [28] have successfully simulated pathological gait 
by using a liner inverted pendulum model. Penduli have a 
regular acceleration pattern, which implies that we can 
describe gait by the acceleration pattern of the image-based 
data. Fig. 4 shows the acceleration fields of the body during 
toe off (a), heel strike (b) and heel rise (c). They reveal that 
the legs and feet appear to have more acceleration or 
deceleration than the other parts of the body during different 
gait phases. Likewise, the forearms have acceleration since 
they are similar to swinging penduli. Therefore, the 
acceleration pattern of a walking body could be used to 
indicate the gait phases. In this work, we detect the heel strike 
by analysing the radial acceleration of the leading foot.  

 

 
a 

 

 
b 

 

 
c 

Fig. 4 The radial acceleration flow on a walking person. 

 
Fig. 3 An overview of key frame detection. 

                                     (a) The gait sequences. 
                                     (b) Extracted silhouettes and derived ROI. 
                                     (c) Detected radial acceleration in ROI. 
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When the heel is approaching to strike, it changes 
from swinging forward to hit the ground and then the foot 
starts a circular motion which is centred at the heel. During 
this process, there is a large amount of radial acceleration 
flow on the front foot. Consequently, the key frame and 
location of heel strike can be estimated by detecting the radial 
acceleration on the foot. The framework of our heel strike 
detection system is illustrated in Fig. 3.  

 
3.1. Locating the frame of heel strike 

 
At the instant of heel strike, the heel hits the ground 

which forces the foot’s velocity to cease in a short time. 
Therefore, the acceleration of the leading foot increases 
dramatically (rapid deceleration). Also, the striking foot 
sole’s motion is approximately circular during the period 
between the heel striking on the ground to fully touching the 
ground, centred at the heel. Hence, most acceleration caused 
by heel strikes is radial in nature. The key frames where the 
heel strikes then can be located by the quantity of radial 
acceleration. Due to the similarity to penduli, as mentioned in 
acceleration pattern analysis on gait, the radial acceleration 
caused by a heel strike might be confused with that caused by 
other limbs. To reduce interference, we extract the region of 
interest (ROI) which is located on the leading foot according 
to a walking body model. The size of the ROI is 
0.133H × 0.177H where H represents the height, shown in 
Fig. 5.  

 

 
Fig. 5 Gait Proportion [33]. 

 

 

3.2. Heel Position Estimation and verification 
 

 
a 
 

 
b 

Fig. 6 Labelling error on different databases. 
(a) Key frame, (b) Strike position. 

  
If all the radial accelerations in the ROI are caused by 

the strike, their rotatin centres should all locate at the heel. A 
rotation centres accumulator map 𝐈  is derived from the 
detected radial acceleration in the ROI. The weight of heel 
strike position (𝑖Y, 𝑗Y) is determined by the density map: 

 
[
𝑖Y
𝑗Y
\ =

1
𝑆
^𝐈(𝑖, 𝑗) × [

𝑖
𝑗
\

_,`

			(8) 

 

Table 1 Database information. 

Databases 
 

CASIA-A (45°) 
 

CASIA-A (90°) 
 

CASIA-B 
 

SOTON OU-ISIR 

Lighting Control 
 

NO NO Yes Yes Yes 

Camera Visual Angle (°) 
 

45 90 54 90 ~75 

Number of subjects 
 

13 25 15 21 15 

Number of heel strike 
 

96 98 126 114 120 

Frame size 240´352 240´352 240´320 576´720 480´640 
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where 𝐈(𝑖, 𝑗)  is the density at location (𝑖, 𝑗)  and 𝑆  is the 
quantity of detected radial acceleration in the ROI. 

4. Experimental Results 
 We evaluate our method on three benchmark 

databases: CASIA [29], [30], SOTON [31] and OU-ISIR [32]. 
The data used in this paper is collected with various 
controlled environments. We test around 100 heel strikes in 
each scenario and the test data incorporates multiple viewing 
angles and walking directions with gait sequences recorded 
indoors and outdoors, as described in Table 1. The ground 
truth of key frames and heel strike positions were manually 
labelled multiple times by different people. Fig. 6 shows the 
variance of manually labelled ground truth between different 
databases for key frames and strike positions. The variance in 
the key frame labelling is generally low and within one frame. 
Fig. 6 (b) shows greater variance on the SOTON dataset as it 
has the largest ROI compared with other databases.  

 
a 

 

 
b 

Fig. 7 Heel strike verification process.  
(a) Candidates for heel strikes, 

(b) Detected heel strikes (after filtering). 

 
The acceleration decomposition algorithm is based on 

a subject moving perpendicular to the background so it is 
theoretically most effective in a direction perpendicular to the 
camera. Therefore, gait data imaged at multiple views has 

                                                
1 https://github.com/YanSunSoton/HeelStrikeAcc. 

been used to evaluate the robustness of our approaches to 
other view angles. For further research and evaluation, the 
implementation code and heel strikes’ ground truth are 
publicly available1. 

 
4.1. Key Frame Detection 

 
The moment of a heel strike is detected according to 

the quantity of radial acceleration in the ROI as described in 
Section 3. The histogram of radial acceleration within a 
walking sequence shows distinct suggestions for key frames, 
as shown previously in Fig.3. In the sequence, the radial 
acceleration appears regularly and noticeably, showing the 
periodicity of gait. The heel strikes occur at frame 13, 27, 41, 
and between frames 54 and 55. 

 
4.2. Heel Strike Position Verification 

 
The ROI extracted according to gait proportions is not 

always perfectly located on the leading foot in the sequence 
because the shape of the human body changes during a gait 
cycle. Also, there is radial acceleration on the other body parts, 
for example the calf, since the limbs’ motion is that of several 
joined pendulums [33]. The rotation centres of these 
erroneous radial accelerations also form invalid strike 
position candidates. To reduce the effect of this error, the 
detected key frames are used to filter the heel strike position 
candidates. When the heel strikes between two frames, the 
acceleration quantities are used as a weighting factor for 
deriving the positions. Fig. 7 (a) shows detected candidates of 
heel strike positions in each frame and (b) is the result after 
being filtered by key frames. The (expected) periodicity of 
gait is evident in the result.  

Table 2 The accuracy of heel strike detection by 
corner and acceleration (values in %). 

Dataset Corner  Acceleration 
   
CASIA-A (45°) 75.3 40.0 
CASIA-A (90°) 82.9 81.2 
CASIA-B 73.3 70.8 
SOTON 86.9 89.7 
OU-ISIR 65.8 73.1 

 

Table 3 The precision of strike positions (values 
in %). 

Dataset Corner  Acceleration 
   
CASIA-A (45°) 25.3 72.0 
CASIA-A (90°) 46.6 88.9 
CASIA-B 46.2 78.8 
SOTON 20.2 85.2 
OU-ISIR 12.5 82.1 

 
 

4.3. Detection Performance 
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Bouchrika and Nixon proposed a method that 
accumulated corners within a gait cycle by the Harris corner 
detector to determine the positions of heel strikes.  

 
a 
 

 
b 
 

 
c 
 

 
d 

Fig. 8 Examples of detection results with various 
databases. 

(a) CASISA-A (45°), 
(c) CASIA-B,  

(b) CASIA-A (90°), 
(d) SOTON. 

Theoretically, there should be dense corners 
accumulated at the positions of heel since the heels stay at the 
strike positions for almost half gait cycle [34]. We compare 
our detection results against the corner detection method 
since there are few heel strike detection methods based on 
standard image sequences with implementation available. 
Tables 2 and 3 illustrate the comparative results of corner 
detection and acceleration detection. The results in these 
tables differ from the earlier results [22] because the 
background has been included to give a more realistic 
implementation scenario. The detection of the heel strike 
moments (the key frames) and positions are evaluated 
separately since they are determined individually and they 
describe different events in gait analysis. Table 2 shows the 

accuracy of key frame detection and Table 3 is the precision 
of heel strike positions. Since the corner detection does not 
return the key frames, an additional condition is applied 
which is that for a key frame to be successfully detected a 
corner position within ±30 pixels from the ground truth is 
considered as a true positive. This condition is actually quite 
generous and leads to an optimistic estimate of the frame for 
corner detection. For the radial acceleration detector, the 
criterion for a true positive key frame is whether the detection 
frame within ±1 frames from the ground truth. For heel 
positioning results of both methods, a distance within ±10 
pixels (along both axes) from the ground truth is considered 
as an accurate location in Table 3. 

In these results, the radial acceleration detector shows 
a much better ability for precise positioning for all the camera 
views. It is also able to detect key frames accurately when the 
camera view is nearly perpendicular to the subjects but the 
detection rate decreases with the increase of the angle 
between the camera and the walking subjects. Acceleration is 
more sensitive to the view angle since the magnitude of the 
detected acceleration is much smaller than the actual value if 
the walking trajectory is not perpendicular to the camera. The 
difference increases with the angle between them therefore a 
universal threshold becomes inappropriate. Fig. 8 shows 
samples of the detection results for different databases. In Fig. 
8 (a), the acceleration detector failed to detect several strikes 
when the subject was walking away from the camera and the 
accuracy of localization also decreases.  
 

4.4. Robustness of Heel Strike Detection 
Approaches 

 
Since the performance of a system under adverse 

imaging conditions is important, we evaluate the robustness 
of our heel strike detection technique. Three different factors 
affecting image quality, that might reduce the detection rates, 
are applied to the original sequences: Gaussian zero-mean 
white noise, occlusion in the detection area, and reduced 
resolution. These factors reflect some of the difficulties 
anticipated when detecting heel strikes in real surveillance 
videos. Fig. 9 shows the examples of different types of noised 
gait images at different levels. 

 

 
a 

 
b 

Fig. 9 Examples of added noise and occlusion. 

(a) Gaussian white noise (𝜎 = 1.5%), 
(b) Occlusion (40%). 

  
 Fig. 10 illustrates the results of testing the 

acceleration detector’s immunity to these factors. Corner 
detection is also evaluated for comparison. The performance 
of the acceleration detector reduces slowly with the increase 
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of Gaussian noise variance while corner detection is much 
more sensitive to the Gaussian noise, as shown in Fig. 10 (a).  

The evaluation of immunity to occlusion investigates 
whether the gait information in real surveillance can be totally 
seen, or not. Occlusion was achieved by covering ROI from 
the toe to the heel increasingly with a random texture. The 
performance under occlusion decreases steadily, and our 
approach failed when ROI is covered more than 30% of the 
whole area. This is because most high-magnitude 
acceleration is located around the toe (the toe travels the 
greatest distance during heel strikes) but the toe is almost 
completely occluded when the occlusion in ROI is over 30%. 
The detection by corners does not decrease significantly since 
the area that most corners are concentrated on the heel which 
has not been totally occluded yet. Acceleration does 
outperform the Corner method when occlusion is slight.  If 
the occlusion were to start from heel to toe, acceleration flow 
detection could achieve much better immunity than the corner 
detector. 

 

 
a 
 

 
b 
 

 
c 

Fig. 10 Performance analysis of heel strike detection. 

(a) Testing immunity to Gaussian white noise, 
(b) Testing immunity to occlusion, 
(c) Testing immunity to low resolution. 

Resolution reduction investigates whether resolution 
of the subject is sufficient in surveillance footage. The 
original images are down-sampled and the detection rate of 
both approaches decreases to a low level when the new pixels 
are equivalent to 5×5 patches in the original image (in which 
the height of the subject is now around 70 pixels whereas it 
was 350 pixels originally). Acceleration and corner detectors 
show similar characteristics under this situation.  

5. Discussion 
In dynamics, the change of force causes acceleration, 

and acceleration changes motion. Consequently, acceleration 
is a distinctive cue to the change of motion. Some physics-
based gait analysis has used accelerometers and gyroscopes 
to detect the acceleration and angular velocity of the body 
parts to determine gait phases. We now apply this principle 
to standard image sequences to detect heel strikes. When the 
heel approaches strike, the foot has great amount of radial 
acceleration which is centred at the heel. Only the 
acceleration flow in the region around the leading foot is 
taken into account in our approach to reduce the effects of 
noise. Our experimental results show that acceleration is a 
more powerful way of estimating the positions of the strike 
than previous standard image-based technique. Also, our 
method overcomes the problem of detection in real-time as 
only three frames are needed for estimating acceleration flow. 
The evaluation of immunity to different types of noise 
suggests that acceleration is more robust to Gaussian noise 
than Bouchrika’s approach. 

On the other hand, the main limitation of acceleration 
is its sensitivity to the visual angle between camera and the 
subject. When the camera is orthogonal to the subject, 
acceleration performs best since the measurements and 
decomposition algorithms utilise a 2-D plane. The most 
realistic way of solving this problem at present is by applying 
the algorithm using a 3-D volume, for example using Kinect 
depth images, to replace the standard image sequence. 
However, the complexity of computation from this will be 
much higher than the existing technique. 

Another weakness of this approach is it can only be 
applied in data with a clean background and the subjects in 
the images not overlap, which is similar to the most existing 
techniques. Currently background subtraction and silhouette 
extraction are still essential pre-processing for most standard 
image-based approaches. The results will be severely affected 
if the scene is too complex, for example in a crowded scene 
since the subjects’ bodies overlap. Hence there is still 
refinement necessary to be able to apply these techniques in 
poor quality images, such as surveillance footage of the 
underground, or to videos recorded with adverse illumination. 

6. Conclusions and Ongoing Work 
This work uses acceleration to estimate the 

spatiotemporal position of heel strikes in standard image 
sequences for gait analysis. This is achieved by 
disambiguating acceleration and velocity from the 
displacement estimated by optical flow. In previous research 
on motion analysis in image sequences, only relative 
movement between consecutive frames has been considered. 
We have found that acceleration is much more distinctive 
than displacement or velocity in motion analysis so we 
derived an approach to extract acceleration from optical flow 
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and used it to represent the change of motion. We have shown 
that it is possible to estimate acceleration from triplets of 
consecutive frames and that it can be decomposed into 
directional components, allowing selectivity of different 
types of motion. This allows greater depth in the 
understanding of motion sequences, and provides us with an 
approach to potentially extract more discriminative features.  

We have shown that acceleration flow can be used for 
heel strike detection, since the foot undergoes a specific set 
of motion during heel strikes. Cunado et al. [33] proposed that 
the limbs appear to have pendulum-like motion in their gait 
model. In physics, the motion of a pendulum can be easily 
described by radial and tangential acceleration. Beyond that, 
acceleration has been widely used for recognition in physical-
based gait analyse techniques. Therefore, it will be propitious 
to investigate in the future whether the acceleration 
components in standard images can be used for recognition 
purposes. 

Our experiments have investigated how camera 
viewpoint can affect performance, as radial and tangential 
components are derived based on a plane perpendicular to the 
subjects. The ability to detect heel strikes and estimate their 
positions using acceleration has been compared with one of 
the few existing techniques and the results show that whilst 
the new approach is more sensitive to the track of the walking 
subject relative to the camera. Our algorithm performs much 
better on heel strike positions estimation and appears more 
robust to Gaussian noise. 
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